Site Loader

Содержание

Электрическое поле — Википедия

Материал из Википедии — свободной энциклопедии

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле[1], существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела[2].

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

u=12(E→D→),{\displaystyle u={\frac {1}{2}}\left({\vec {E}}{\vec {D}}\right),}

где E — напряжённость электрического поля, D — индукция электрического поля.

Однородное поле[править | править код]

u={\frac  {1}{2}}\left({\vec  E}{\vec  D}\right),
Направление линий напряжённости между двумя разнозаряженными пластинами

Однородное поле — это электрическое поле, в котором напряжённость одинакова по модулю и направлению во всех точках пространства. Приблизительно однородным является поле между двумя разноимённо заряженными плоскими металлическими пластинами. В однородном электрическом поле линии напряжённости направлены параллельно друг другу.

Наблюдение электрического поля в быту[править | править код]

Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные чистые волосы. На ручке создастся заряд, а вокруг — электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет большей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов.

Электрическое поле часто возникает возле телевизионного экрана (относится к телевизорам с ЭЛТ) при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

Электрическое поле внутри проводников с избыточными зарядами[править | править код]

Из опытов, приводимых в электростатике, известно, что избыточные заряды привнесённые в проводник извне, перемещаются к поверхности проводника и остаются у поверхности проводника. Само перемещение избыточных зарядов к поверхности проводника свидетельствует о наличии электрического поля внутри проводника в период перемещения к поверхности проводника.

Электрическое поле внутри проводников с недостатком собственных электронов[править | править код]

При недостатке собственных электронов тело получает положительный заряд «дырочной» природы. Дырки при этом ведут себя подобно электронам и также распределяются по поверхности тела.

Расчёты электрического поля можно проводить аналитическими[3][4][5] или численными методами[6]. Аналитические методы удается применить лишь в простейших случаях, на практике в основном используются численные методы. Численные методы включают в себя: метод сеток или метод конечных разностей; вариационные методы; метод конечных элементов; метод интегральных уравнений; метод эквивалентных зарядов[6].

  • Орир, Джей — Популярная физика: [пер. с англ.].: Мир, 1966. — 446 с.
  • Учебник «Элементарный учебник физики» под ред. Ландсберга Г. С., Часть 2 (Электричество и магнетизм.)
  • Трофимова Т. И. Курс физики: Учеб. пособие для вузов.—2-е изд., перераб. и доп.— М.: Высш. шк., 1990.—478 с.: ил. ISBN 5-06-001540-8

Электрическое поле: определение, типы и свойства

В данной статье вы узнаете что такое электрическое поле, определение, его типы и основные свойства.

Определение

Область вокруг электрического заряда, в которой действует напряжение или электрическая сила, называется электрическим полем или электростатическим полем. Если величина заряда велика, то это может создать огромное напряжение в области. Электрическое поле обозначается символом E. Единица СИ электрического поля — ньютон на кулон, что равно вольт на метр.

электрическое поле

Электрическое поле представлено воображаемыми силовыми линиями. Для положительного заряда силовая линия выходит из заряда, а для отрицательного заряда силовая линия будет двигаться в направлении заряда. Электрическое поле для положительных и отрицательных зарядов показано ниже.

Электрическое поле для положительных и отрицательных зарядов

Рассмотрим единичный заряд Q, помещенный в вакуум. Если рядом с Q находится другой заряд q, то согласно закону Кулона на него накладывается сила. Заряд Q создает вокруг него электрическое поле, и когда рядом с ним помещается любой другой заряд, электрическое поле Q прикладывает к нему силу.

единичный заряд Q, помещенный в вакуум

Электрическое поле, создаваемое зарядом Q в точке r, определяется как:

формула электрического поля

где Q — единица заряда,
r — расстояние между зарядами.

Заряд Q прикладывает силу к заряду q, выраженному:

Заряд Q прикладывает силу к заряду q

Заряд q также прикладывает равную и противоположную силу к заряду Q.

Типы электрического поля

Электрическое поле в основном подразделяется на два типа. Это однородное электрическое поле и неоднородное электрическое поле.

Однородное электрическое поле

Когда электрическое поле является постоянным в каждой точке, то это поле называется однородным электрическим полем

. Постоянное поле получается путем размещения двух проводников параллельно друг другу, и разность потенциалов между ними остается одинаковой в каждой точке.

Однородное электрическое поле

Неоднородное электрическое поле

Непостоянное в каждой точке поле называется неоднородным электрическим полем. Неоднородное поле имеет разную величину и направления.

Неоднородное электрическое поле

Свойства электрического поля

Ниже приведены свойства электрического поля.

  1. Полевые линии никогда не пересекаются друг с другом.
  2. Они перпендикулярны поверхностному заряду.
  3. Поле сильное, когда линии расположены близко друг к другу, и слабое, когда линии поля расходятся друг от друга.
  4. Количество силовых линий прямо пропорционально величине заряда.
  5. Линия электрического поля начинается с положительного заряда и заканчивается отрицательным зарядом.
  6. Если заряд одиночный, то они начинаются или заканчиваются на бесконечности.
  7. Кривые линий непрерывны в области без заряда.

Когда электрическое и магнитное поле объединяются, они образуют электромагнитное поле.

Электрическое поле. Виды и работа. Применение и свойства

Электрическое поле – это векторное поле, действующее вокруг частиц обладающих электрическим зарядом. Оно входит в состав электромагнитного поля. Для него характерно отсутствие реальной визуализации. Оно невидимо, и может быть замечено только в результате силового воздействия, на которое реагируют другие заряженные тела с противоположными полюсами.

Как устроено и действует электрическое поле
По сути, поле является особым состоянием материи. Его действие проявляется в ускорении тел или частиц, обладающих электрическим зарядом. К его характеризующим особенностям, можно отнести:
  • Действие только при наличии электрического заряда.
  • Отсутствие границ.
  • Наличие определенной величины воздействия.
  • Возможность определения только по результату действия.

Поле неразрывно связано с зарядами, которые находятся в определенной частице или теле. Оно может образовываться в двух случаях. Первый предусматривает его появление вокруг электрических зарядов, а второй при перемещении электромагнитных волн, когда меняется электромагнитное поле.

Электрические поля воздействуют на неподвижные относительно наблюдателя электрически заряженные частицы. В результате они получают силовое влияние. Пример воздействия поля можно наблюдать и в быту. Для этого достаточно создать электрический заряд. Учебники физики предлагают для этого простейший пример, когда диэлектрик натирается о шерстяное изделие. Получить поле вполне возможно, взяв пластиковую шариковую ручку и потерев ее о волосы. На ее поверхности образуется заряд, что приводит к появлению электрического поля. Как следствие ручка притягивает мелкие частицы. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней. Такой же результат можно достигнуть и при использовании пластиковой расчески.

Бытовым примером проявления электрического поля является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя заряды. При снятии такого предмета одежды электрическое поле подвергается различным силам воздействия, что и приводит к образованию световых вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов.

Свойства поля
Для характеристики электрического поля применяется 3 показателя:
  • Потенциал.
  • Напряженность.
  • Напряжение.
Потенциал

Данное свойство является одним из главных. Потенциал указывает на количество накопленной энергии применяемой для перемещения зарядов. По мере их сдвига энергия расточается, постепенно приближаясь к нулю. Наглядной аналогией данного принципа может выступить обыкновенная стальная пружина. В спокойном положении она не обладает никаким потенциалом, но только до того момента, пока не будет сжата. От такого воздействия она получает энергию противодействия, поэтому после прекращения влияния обязательно разогнется. Когда пружина отпускается, то моментально распрямляется. Если на ее пути окажутся предметы, она начнет их двигать. Возвращаясь непосредственно к электрическому полю потенциал можно сравнить с приложенными усилиями на выпрямление назад.

Электрическое поле обладает потенциальной энергией, что и делает его способным выполнять определенное воздействие. Но перемещая заряд в пространстве, оно истощает свой ресурс. В том же случае если передвижение заряда внутри поля осуществляется под воздействием сторонней силы, то поле не только не теряет свой потенциал, но и пополняет его.

Также для большего понимания данной величины можно привести еще один пример. Предположим, что незначительный положительно заряженный заряд располагается далеко за пределами действия эл.поля. Это делает его совершенно нейтральным и исключает взаимный контакт. Если же в результате воздействия любой сторонней силы заряд будет двигаться по направлению к электрическому полю, то достигнув его границы, будет втянут в новую траекторию. Энергия поля, затраченная на влияние относительно заряда в определенной точке воздействия, и будет называться потенциалом на этой точке.

Выражение электрического потенциала осуществляется через единицу измерения Вольт.

Напряженность

Этот показатель применяется для количественного выражения поля. Данная величина рассчитывается как отношение положительного заряда воздействующего на силу действия. Простым языком напряженность выражает силу эл.поля в определенном месте и времени. Чем выше напряженность, тем более выраженным будет влияние поля на окружающие предметы или живые существа.

Напряжение

Этот параметр образуется от потенциала. Он применяется для демонстрации количественного соотношения действия, которое производит поле. То есть, сам потенциал показывает объем накопленной энергии, а напряжение демонстрирует потери на обеспечение движения зарядов.

В электрическом поле положительные заряды перемещаются от точек с высоким потенциалом в места, где он ниже. Что касается отрицательных зарядов, то они движутся противоположно. Как следствие осуществляется работа с использованием потенциальной энергии поля. Фактически напряжение между точками качественно выражает работу, совершенную полем для переноса единицы противоположно заряженных зарядов. Таким образом, термины напряжение и разность потенциалов это одно и то же.

Наглядное проявление поля

Электрическое поле имеет условное визуальное выражение. Для этого применяются графические линии. Они совпадают с линиями воздействия силы, которые излучают заряды вокруг себя. Помимо линии действия сил, также важно их направление. Для классификации линий за основу определения направлений принято использовать положительный заряд. Таким образом, стрелка движения поля идет от положительных частиц к отрицательным.

Чертежи, изображающие эл.поля, на линиях имеют направление в виде стрелки. Схематически в них всегда есть условное начало и конец. Таким образом, они не замыкаются сами на себе. Силовые линии берут свое начало на точке нахождения положительного заряда и заканчиваются на месте отрицательных частиц.

Электрическое поле может иметь различные типы линий в зависимости не только от полярности заряда, который способствует их образованию, но и наличию сторонних факторов. Так, при встрече противоположных полей они начинают действовать друг на друга притягательно. Искаженные линий приобретают очертания гнутых дуг. В том же случае, когда встречаются 2 одинаковых поля, то они отталкиваются в противоположные стороны.

Сфера применения

Электрическое поле обладает рядом свойств, которые нашли полезное применение. Данное явление используется при создании различного оборудования для работы в нескольких весьма важных сферах.

Использование в медицине

Воздействия электрического поля на определенные участки тела человека позволяет повышать его фактическую температуру. Это свойство нашло свое применение в медицине. Специализированные аппараты обеспечивают воздействия на необходимые участки поврежденных или больных тканей. В результате чего улучшается их кровообращение и возникает заживляющий эффект. Поле воздействует с высокой частотой, поэтому точечное влияние на температуру дает свои результаты и вполне ощутимо для больного.

Применение в химии

Данная сфера науки предусматривает использования различных чистых или смешанных материалов. В связи с этим работа с эл.полями не могла обойти эту отрасль. Компоненты смесей взаимодействуют с электрическим полем по-разному. В химии это свойство применяется для разделения жидкостей. Данный метод нашел лабораторное применение, но встречается и в промышленности, хотя и реже. К примеру, при воздействии полем осуществляется отделения в нефти загрязняющих компонентов.

Электрическое поле применяется для обработки при фильтрации воды. Оно способно отделить отдельные группы загрязняющих веществ. Такой способ обработки намного дешевле, чем использование сменных картриджей.

Электротехника

Использование электрического поля имеет весьма интересное применение в электротехнике. Так, был разработан способ беспроводной передачи электричества от источника до потребителя. До недавнего времени все разработки имели теоретический и экспериментальный характер. Уже имеется эффективная реализация технологии зарядки телефона без применения непосредственного гибкого кабеля вставляемого в USB разъем смартфона. Данный способ пока не позволяет передавать энергию на продолжительное расстояние, но он совершенствуется. Вполне возможно, что в ближайшем будущем надобность в зарядных кабелях с блоками питания отпадет полностью.

При выполнении электромонтажных и ремонтных работ применяется светодиодная индикаторная отвертка, действующая на основе схемы полевого транзистора. Помимо ряда функций, она может реагировать на электрическое поле. Благодаря этому при приближении пробника к фазному проводу индикатор начинает светиться без фактического касания к токопроводящей жиле. Он реагирует на поле исходящие от проводника даже сквозь изоляцию. Наличие электрического поля позволяет находить токопроводящие провода в стене, а также определять точки их разрыва.

Защититься от воздействия эл.поля можно при помощи металлического экрана, внутри которого его не будет. Это свойство широко применяется в электронике, чтобы исключить взаимное влияние электрических схем, которые расположены довольно близко друг к другу.

Возможности применения в будущем

Имеются и более экзотические возможности для электрического поля, которыми на сегодняшний день еще не обладает наука. Это коммуникации быстрее скорости света, телепортация физических объектов, перемещение за один миг между разомкнутыми местоположениями (червоточины). Однако для осуществления подобных планов будут нужны куда более сложные исследования и эксперименты, чем проведение экспериментов с двумя возможными исходами.

Однако наука все время развивается, открывая все новые возможности применения электр.поля. В будущем его сфера использования может значительно расшириться. Возможно, что оно найдет применение во всех значимых областях нашей жизни.

Похожие темы:

Электрическое поле. Напряженность. Линии напряженности. Видеоурок. Физика 10 Класс

Закон Кулона, изученный на прошлом уроке, был установлен экспериментально и справедлив для покоящихся заряженных тел. Каким же образом происходит взаимодействие заряженных тел на расстоянии? До некоторых пор при изучении электрических взаимодействий бок о бок развивались две принципиально разные теории: теория близкодействия и теория дальнодействия (действия на расстоянии).

Теория близкодействия заключается в том, что заряженные тела взаимодействуют друг с другом посредством промежуточного звена (например, цепь в задаче о поднятии ведра из колодца является промежуточным звеном, посредством которого мы воздействуем на ведро, то есть поднимаем его).

Теория дальнодействия гласит, что заряженные тела взаимодействуют через пустоту. Шарль Кулон придерживался именно этой теории и говорил, что заряженные тела «чувствуют» друг друга. В начале XIX века конец спорам положил Майкл Фарадей (рис. 1). В работах, связанных с электрическим полем, он установил, что между заряженными телами существует некий объект, который и осуществляет действие заряженных тел друг на друга. Работы Майкла Фарадея были подтверждены Джеймсом Максвеллом (рис. 2). Он показал, что действие одного заряженного тела на другое распространяется за конечное время, таким образом, между заряженными телами должно существовать промежуточное звено, через которое осуществляется взаимодействие.

Джеймс Клерк Максвелл

Рис. 1. Майкл Фарадей (Источник)

Майкл Фарадей

Рис. 2. Джеймс Клерк Максвелл (Источник)

Определение: Электрическое поле – это особая форма материи, которая создается покоящимися зарядами и определяется действием на другие заряды.

Электрическое поле характеризуется определенными величинами. Одна из них называется напряженностью.

Вспомним, что по закону Кулона, сила взаимодействия двух зарядов:

Майкл Фарадей

Максвелл показал, что это взаимодействие осуществляется за конечное время:

Майкл Фарадей

где l – расстояние между заряженными частицами, а c – скорость света, скорость распространения электромагнитных волн.

Рассмотрим эксперимент по взаимодействию двух зарядов. Пусть электрическое поле создается положительным зарядом +q0, и в это поле на некотором расстоянии помещается пробный, точечный положительный заряд +q (рис. 3,а). Согласно закону Кулона, на пробный заряд будет действовать сила электростатического взаимодействия со стороны заряда, создающего электрическое поле. Тогда отношение этой силы к величине пробного заряда будет характеризовать действие электрического поля в данной точке. Если же в эту точку будет помещен вдвое больший пробный заряд, то сила взаимодействия также увеличится вдвое (рис. 3,б). Аналогичным образом отношение силы к величине пробного заряда снова даст значение действия электрического поля в данной точке. Так же действие электрического поля определяется и в том случае, если пробный заряд отрицательный (рис. 3,в).

Сила электростатического взаимодействия двух точечных зарядов

Рис. 3. Сила электростатического взаимодействия двух точечных зарядов

Таким образом, в точке, где находится пробный заряд, поле характеризуется величиной:

Сила электростатического взаимодействия двух точечных зарядов

Эта величина и называется напряженностью электрического поля. Напряженность поля в данной точке не зависит от величины пробного заряда: во всех трех случаях отношение силы к величине заряда – постоянная величина. Единица измерения напряженности:

Сила электростатического взаимодействия двух точечных зарядов

Напряженность – векторная величина, является силовой характеристикой электрического поля, направлена в ту же сторону, куда и сила электростатического взаимодействия. Она показывает, с какой силой электрическое поле действует на помещенный в него заряд.

Рассмотрим напряженность электрического поля уединенного точечного заряда либо заряженной сферы.

Из определения напряженности следует, что для случая взаимодействия двух точечных зарядов, зная силу их кулоновского взаимодействия, можем получить величину напряженности электрического поля, которое создается зарядом q0 в точке на расстоянии r от него до точки, в которой исследуется электрическое поле:

Сила электростатического взаимодействия двух точечных зарядов

Данная формула показывает, что напряженность поля точечного заряда изменяется обратно пропорционально квадрату расстояния от данного заряда, то есть, например, при увеличении расстояния в два раза, напряженность уменьшается в четыре раза.     

Попытаемся теперь охарактеризовать электростатическое поле нескольких зарядов. В этом случае необходимо воспользоваться сложением векторных величин напряженностей всех зарядов. Внесем пробный заряд и запишем сумму векторов сил, действующих на этот заряд. Результирующее значение напряженности получится при разделении значений этих сил на величину пробного заряда. Данный метод называется принципом суперпозиции.

Напряженность электростатического поля принято изображать графически при помощи силовых линий, которые также называют линиями напряженности. Такое изображение можно получить, построив вектора напряженности поля в как можно большем количестве точек вблизи данного заряда или целой системы заряженных тел.

Сила электростатического взаимодействия двух точечных зарядов

Рис. 4. Линии напряженности электрического поля точечного заряда (Источник)

Рассмотрим несколько примеров изображения силовых линий. Линии напряженности выходят из положительного заряда (рис. 4,а), то есть положительный заряд является источником силовых линий. Заканчиваются линии напряженности на отрицательном заряде (рис. 4,б).

Рассмотрим теперь систему, состоящую из положительного и отрицательного зарядов, находящихся на конечном расстоянии друг от друга (рис. 5). В этом случае линии напряженности направлены от положительного заряда к отрицательному.

Большой интерес представляет электрическое поле между двумя бесконечными плоскостями. Если одна из пластин заряжена положительно, а другая отрицательно, то в зазоре между плоскостями создается однородное электростатическое поле, линии напряженности которого оказываются параллельными друг другу (рис. 6). 

Линии напряженности системы двух зарядов

Рис. 5. Линии напряженности системы двух зарядов (Источник)  

Линии напряженности поля между заряженными пластинами

Рис. 6. Линии напряженности поля между заряженными пластинами (Источник)

В случае неоднородного электрического поля величина напряженности определяется густотой силовых линий: там, где силовые линии гуще, величина напряженности поля больше (рис. 7).

Неоднородное электрическое поле

Рис. 7. Неоднородное электрическое поле (Источник)

Определение: Линиями напряженности называют непрерывные линии, касательные к которым в каждой точке совпадают с векторами напряженности в этой точке.

Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных и являются непрерывными.

Изображать электрическое поле с помощью силовых линий мы можем так, как сами посчитаем нужным, то есть число силовых линий, их густота ничем не ограничивается. Но при этом необходимо учитывать направление векторов напряженности поля и их абсолютные величины.

Очень важно следующее замечание. Как говорилось ранее, закон Кулона применим только для точечных покоящихся зарядов, а также заряженных шариков, сфер. Напряженность же позволяет характеризовать электрическое поле вне зависимости от формы заряженного тела, которое это поле создает.

 

Список литературы

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: учеб. для 10 кл. общеобразоват. учреждений: базовый и профил. уровни. – М.: Просвещение, 2008.
  2. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000.
  3. Рымкевич А.П. Физика. Задачник. 10-11 кл.: пособие для общеобразоват. учреждений. – М.: Дрофа, 2013.
  4. Генденштейн Л.Э., Дик Ю.И. Физика. 10 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (базовый уровень) – М.: Мнемозина, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Nauka.guskoff.ru (Источник).
  2. Youtube (Источник).
  3. Physics.ru (Источник).

 

Домашнее задание

  1. Стр. 378: № 1–3. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000. (Источник)
  2. С каким ускорением движется электрон в поле напряженностью 10 кВ/м?
  3. В вершинах равностороннего треугольника со стороной a находятся заряды +q, +q и –q. Найти напряженность поля Е в центре треугольника.

Электрическое поле и электрический ток: напряженность и сила

Взаимодействие электрических зарядов объясняется тем, что вокруг каждого заряда существует электрическое поле.

Электрическое поле

Электрическое поле заряда – это материальный объект, оно непрерывно в пространстве и способно действовать на другие электрические заряды. Электрическое поле неподвижных зарядов называется электростатическим. Электростатическое поле создается только электрическими зарядами, существует в пространстве, окружающем эти заряды и неразрывно с ними связано.

Если к электроскопу, не касаясь его оси, поднести на некотором расстоянии заряженную палочку, то стрелка все равно будет откланяться. Это и есть действие электрического поля.

Напряженность электрического поля

Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля. Наличие электрического поля можно обнаружить, помещая в различные точки пространства электрические заряды.  Если на заряд в данной точке действует электрическая сила, то это означает, что в данной точке пространства существует электрическое поле. Графически силовые поля изображают силовыми линиями.

Силовая линия – это линия, касательная в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.

Напряженность электрического поля – это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. За направление вектора напряженности принимают направление силы, действующей на точечный положительный заряд.

Однородное электрическое поле – это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. Приблизительно однородным является электрическое поле между двумя разноименно заряженными металлическими пластинами. Силовые линии такого поля являются прямыми одинаковой густоты.                

Потенциал. Разность потенциалов. Кроме  напряженности, важной характеристикой электрического поля является потенциал j. Потенциал j – это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.

Диэлектрики в электрическом поле

Диэлектриками или изоляторами называются тела, которые не могут проводить через себя электрические заряды. Это объясняется отсутствием в них свободных зарядов.

Если одни конец диэлектрика внести в электрическое поле, то перераспределения зарядов не произойдет, т. к. в диэлектрике нет свободных носителей заряда. Оба конца диэлектрика будут нейтральны. Притяжение незаряженного тела из диэлектрика к заряженному телу объясняется тем, что в электрическом поле происходит поляризация диэлектрика, т. е. смещение в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества.

Полярные и неполярные диэлектрики

Виды диэлектриковВиды диэлектриков Виды диэлектриков

К неполярным относятся диэлектрики, в атомах или молекулах которых центр отрицательно заряженного электронного облака совпадает с центром положительного атомного ядра. Например, инертные газы, кислород, водород, бензол.

Полярные диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Например, спирты, вода. Их молекулы можно рассматривать как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии друг от друга. Такую в целом нейтральную систему называют электрическим диполем.

Проводники в электрическом поле

Проводниками называются тела, способные пропускать через себя электрические заряды.  Это свойство проводников объясняется наличием в них свободных носителей заряда. Примерами проводников могут быть металлы и растворы электролитов.

Если взять металлический проводник и один его конец поместить в электрическое поле, то на данном конце появится электрический заряд. Согласно закону сохранения электрического заряда, на другом конце проводника появится равный ему по модулю и противоположный по знаку заряд. Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией.

При внесении в электрическое поле проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля внутри проводника становится равной нулю. Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела.   Электростатическое поле внутри проводника равно нулю, весь статический заряд проводника сосредоточен на его поверхности.

Электроемкость и конденсатор

Электроемкость – количественная мера способности проводника удерживать заряд.

Простейшие способы разделение разноименных электрических зарядов – электризация и электростатическая индукция – позволяют получить на поверхности тел не большое количество свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.

Конденсатор – это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.

 Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины. Вне пластин напряженность электрического поля равна нулю, т. к. равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению.

Электрический ток

Это направленное движение заряженных частиц. В металлах носителями тока являются свободные электроны, в электролитах – отрицательные и положительные ионы, в полупроводниках – электроны и дырки, в газах – ионы и электроны. Количественной характеристикой тока является сила тока.

Источниками могут служить – гальванический элемент(происходят хим. реакции и внутренняя энергия, превращается в электрическую) и аккумулятор(для зарядки через него пропускают постоянный ток, в результате химической реакции один электрод становиться положительно заряженным, другой – отрицательно.

Действия электрического тока: тепловое, химическое, магнитное.

Направление электрического тока: от + к –

Направленное движение заряженных частицНаправленное движение заряженных частиц Направленное движение заряженных частиц

Поэтому достаточным условием для существования тока является наличие электрического поля и свободных носителей заряда.  О наличии тока можно судить по явлениям, которые его сопровождают: Проводник, по которому течет ток, нагревается. Электрический ток может изменять химический состав проводника.

Силовое воздействие на соседние точки и намагниченные тела.

При существовании электрического поля внутри проводника, на концах его существует разность потенциалов. Если она не меняется, то в проводнике устанавливается постоянный электрический ток.

Сила тока

Сила тока – отношение заряда, пронесенного через поперечное сечение проводника за интервал времени, к этому интервалу времени.

Сила тока, как и заряд, величина скалярная. Она может быть как положительной, так и отрицательной. За положительное направление силы тока принято движение положительных зарядов. Если с течением времени сила тока не меняется, то ток называется постоянным.

Электродвижущая сила

Для того, чтобы в проводнике существовал электрический ток длительное время, необходимо поддерживать неизменными условия, при которых возникает электрический ток.

Во внешней цепи электрические заряды движутся под действием сил электрического поля. Но, чтобы поддерживать разность потенциалов на концах внешней цепи, необходимо перемещать электрические заряды внутри источника тока против сил электрического поля. Такое перемещение может осуществляться только под действием сил неэлектростатической природы.

Силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами. Сторонние силы в гальваническом элементе или аккумуляторе возникают в результате электрохимических процессов, происходящих на границе раздела электрод – электролит. В машине постоянного тока сторонней силой является сила Лоренца.

Последовательное и параллельное соединение проводников

Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно.

При последовательном соединении электрическая цепь не имеет разветвлений, все проводники включают в цепь поочередно друг за другом.

Сила тока во всех проводниках одинакова, так как в проводниках электрический заряд не накапливается и через поперечное сечение проводника за определенное время проходит один и тот же заряд.

При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.

При параллельном соединении электрическая цепь имеет разветвления (точку разветвления называют узлом). Начала и концы проводников имеют общие точки подключения к источнику тока.

При этом напряжение на всех проводниках одинаково. Сила тока равна сумме сил токов во всех параллельно включенных проводниках, так как в узле электрический заряд не накапливается, поступающий за единицу времени в узел заряд равен заряду, уходящему из узла за то же время.

Соединение источников тока

Соединение источников токаСоединение источников тока Соединение источников тока

Химические источники э. д. с. (аккумуляторы, элементы) включаются между собой последовательно, параллельно и смешанно.

Последовательное соединение источников э. д. с. На рисунке представлены три соединенных между собой аккумулятора. Такое соединение аккумуляторов, когда минус каждого предыдущего источника соединен с плюсом последующего источника, называется последовательным соединением. Группа соединенных между собой аккумуляторов или элементов называется батареей.

16. Электрическое поле и его характеристики. Сила Кулона.

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

• порождается электрическим зарядом;

• обнаруживается по действию на заряд;

• действует на заряды с некоторой силой.

Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях

данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до

точки определения поля.

Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем

самым не изменить создаваемое ими поле.

Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор

p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий –это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:

2. энергетическая характеристика – потенциал j — это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

Dj = j2 — j1 – изменение потенциала;

U = j1 — j2 — разность потенциалов (напряжение)

Физический смысл напряжения: U = j1 — j2 = А/q — — напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

.

Единицей измерения индукции электрического поля служит 1 Кл/ м2. Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности – это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

(78.1)

где F12 — сила, действующая на заряд Q1 со стороны заряда Q2, r12 — радиус-вектор, соединяющий заряд Q2 с зарядом Q1, r = |r12| (рис. 117). На заряд Q2 со стороны заряда Q1 действует сила F21 = –F12.

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде:

Электрическое поле. Напряженность электрического поля. Графическое представление электростатического поля.

Электрическое поле. Напряженность электрического поля.

Закон Кулона не объясняет механизм передачи электромагнитного взаимодействия: близкодействие (непосредственный контакт) или дальнодействие? Если заряды действуют друг на друга на расстоянии, то скорость передачи взаимодействия должна быть бесконечно большой, взаимодействие должно распространяться мгновенно. На опыте скорость конечна (скорость света с=3.108м/с).

 

Для объяснения вводится понятие электрического поля (впервые — М. Фарадей) — особый вид материи, существующий вокруг любого электрического заряда и проявляющий себя в действии на другие заряды.

 

Напряженность  —  силовая характеристика электрического поля.

 

Пусть заряд  q0 создает поле, в произвольную точку которого мы помещаем положительный заряд  q. Во сколько бы раз мы не изменяли заряд q  в этой точке, сила взаимодействия изменится во столько же раз (з-н Кулона).

Напряженность  -  силовая характеристика электрического поля.

Следовательно: величина постоянная  в  данной  точке  данного  поля — величина постоянная  в  данной  точке  данного  поля.

 

Напряженность - векторная физическая величина, численно равная отношению  силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда

 Напряженность — векторная физическая величина, численно равная отношению

силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда.

Напряженность - векторная физическая величина, численно равная отношению  силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда

Напряженность не зависит от величины заряда, помещенного в поле.

Напряженность - векторная физическая величина, численно равная отношению  силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда, если q>0Напряженность - векторная физическая величина, численно равная отношению  силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда, если q<0. Т.е. вектор напряженности направлен от положительного заряда и к отрицательному.

 

единицы измерения Напряженности поля в данной точке   Напряженность в данной точке поля равна 1единицы измерения Напряженности поля в данной точке, если на заряд в 1 Кл, помещенный в эту точку, действует сила в 1 Н. (Напряженность равна 1 единицы измерения Напряженности поля в данной точке , если между точками электростатического поля, находящимися на расстоянии 1 м друг от друга, существует разность потенциалов 1 В).

единицы измерения Напряженности поля в данной точке

Принцип суперпозиции полей:   напряженность поля, созданного системой зарядов равна геометрической сумме напряженностей полей, созданных каждым зарядом. Т.е. напряженности складываются геометрически: Принцип суперпозиции полей

(Это опытный факт.)

Пример:

 напряженность поля, созданного системой зарядов равна геометрической сумме напряженностей полей, созданных каждым зарядом

напряженность поля, созданного системой зарядов равна геометрической сумме напряженностей полей, созданных каждым зарядом

Графическое представление электростатического поля.

Силовые линии (линии напряженности) —  непрерывные (воображаемые) линии вектор напряженности касателен к каждой точке которых. Способ описания с помощью силовых линий введен Фарадеем.

Силовые линии (линии напряженности)

Силовые линии (линии напряженности)

Силовые линии (линии напряженности)

Силовые линии (линии напряженности)

Силовые линии (линии напряженности)

Свойства:

  1. Начинаются на положительных и заканчиваются на отрицательных зарядах.
  2. Не пересекаются.
  3. Густота линий тем больше, чем больше напряженность. Т.е. напряженность поля прямо пропорциональна количеству силовых линий, проходящих через единицу площади поверхности.
  4. Можно договориться изображать поля так, что количество проведенных линий пропорционально величине заряда.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *