Site Loader

Содержание

Электрическая мощность — это… Что такое Электрическая мощность?

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения:

U — напряжение на участке A-B (принимаем его постоянным на интервале Δt), Q — количество зарядов, прошедших от А к B за время Δt. А — работа, совершённая зарядом Q при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:

Для единичного заряда на участке A-B:

Для всех зарядов:

Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:

Если участок цепи содержит резистор c электрическим сопротивлением R, то

Дифференциальные выражения для электрической мощности

Мощность, выделяемая в единице объёма, равна:

В линейном изотропном приближении:

В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

где — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока

В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность

Единица измерения — ватт (W, Вт).

Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи

r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность

Единица измерения — вольт-ампер реактивный (var, вар)

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью

Р соотношением: .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[

источник не указан 124 дня]

Полная мощность

Единица полной электрической мощности — вольт-ампер (V·A, В·А)

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность

Мощность, аналогично импедансу, можно записать в комплексном виде:

где  — комплексное напряжение,  — комплексный ток, — импеданс, * — оператор комплексного сопряжения.

Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая  — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.

Неактивная мощность

Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.

Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].

Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.

Связь неактивной, активной и полной мощностей

Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:

Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем

Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:

Отсюда находим

Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.

Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:

Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.

Измерения

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ

Мощность некоторых электрических приборов

В таблице указаны значения мощности некоторых потребителей электрического тока:

Электрический прибор Мощность,Вт
Лампочка фонарика 1
Лампа люминесцентная бытовая 5…30
Лампа накаливания бытовая 25…150
Холодильник бытовой 15…200
Электропылесос 100…2 000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1 000…2 000
Сварочный аппарат бытовой 1 000…5 500
Двигатель трамвая 45 000…50 000
Двигатель электровоза 650 000
Электродвигатели прокатного стана 6 000 000…9 000 000

Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.

Литература

  • ГОСТ 8.417-2002 Единицы величин
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
  • Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.

Дополнительная литература

  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
  • Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
  • Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.

Ссылки

См. также

Электроэнергия — Википедия

Материал из Википедии — свободной энциклопедии

Электроэне́ргия — физический термин, широко распространённый в технике и в быту для определения количества электрической энергии, выдаваемой генератором в электрическую сеть или получаемой из сети потребителем. Основной единицей измерения выработки и потребления электрической энергии служит киловатт-час (и кратные ему единицы). Для более точного описания используются такие параметры, как напряжение, частота и количество фаз (для переменного тока), номинальный и максимальный электрический ток.

Электрическая энергия является также товаром, который приобретают участники оптового рынка (энергосбытовые компании и крупные потребители-участники опта) у генерирующих компаний, а участники розничного рынка у энергосбытовых компаний. Цена на электрическую энергию в международной торговле обычно выражается в центах за киловатт-час либо в долларах за тысячу киловатт-часов. Электрическая энергия (электроэнергия): Способность электромагнитного поля совершать работу под действием приложенного напряжения в технологическом процессе её производства, передачи, распределения и потребления.

Мировое производство электроэнергии[править | править код]

Динамика мирового производства электроэнергии (Год — млрд кВт*час):

  • 1890 — 9
  • 1900 — 15
  • 1914 — 37,5
  • 1950 — 950
  • 1960 — 2300
  • 1970 — 5000
  • 1980 — 8250
  • 1990 — 11800
  • 2000 — 14500
  • 2005 — 18138,3
  • 2007 — 19894,9
  • 2013 — 23127[1]
  • 2014 — 23536,5[2]
  • 2015 — 24255[3]
  • 2016 — 24816[4]

Крупнейшими в мире странами — производителями электроэнергии являются Китай и США, вырабатывающие соответственно 24 % и 18 % от мирового производства, а также уступающие им в 4 раза каждая[что?] — Индия, Россия и Япония.

Начиная с 2012 года, Китай занял лидирующее место по годовому объему выработки электроэнергии (6,14 трлн кВт⋅ч в 2016)[5][4].

Промышленное производство электроэнергии[править | править код]

В эпоху индустриализации подавляющий объем электроэнергии вырабатывается промышленным способом на электростанциях.

Вид электростанции Доля вырабатываемой электроэнергии в России (2000 г. [6]) Доля вырабатываемой электроэнергии в России (2016 г. [7]) Доля вырабатываемой электроэнергии в мире (1973 г. [3]) Доля вырабатываемой электроэнергии в мире (2015 г. [3]) Доля энергии, преобразуемая в электрическую Доля потерь энергии при её производстве
Теплоэлектростанции (ТЭС) 67 %; 582,4 млрд кВт·ч 64,2 %; 687,8 млрд кВт·ч 75,2 %; 66,3 %;
Гидроэлектростанции (ГЭС) 19 %; 164,4 млрд кВт·ч 17,3 %; 186,7 млрд кВт·ч 20,9 % 16,0 %
Атомные станции (АЭС) 14 %; 128,9 млрд кВт·ч 18,6 %; 196,4 млрд кВт·ч 3,3 % 10,6%

В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солнечные батареи, малые газогенераторы.

В некоторых государствах, например в Германии, приняты специальные программы, поощряющие инвестиции в производство электроэнергии домохозяйствами.

В 2017 году мировой рынок электроэнергии оценивался в 5,61 млрд. долл. США[8]. Почти 9/10 объемов купли-продажи электроэнергии приходится на страны Европы. Крупнейшими экспортерами являются Франция (1,75 млрд. долл.), Германия (731 млн. долл.), Нидерланды (410 млн. долл.), Испания (358 млн. долл.), Босния и Герцеговина (294 млн. долл.). Крупнейшие импортеры — Италия (2,21 млрд. долл.), Великобритания (1,07 млрд. долл.), Марокко (360 млн. долл.), Греция (328 млн. долл.).

Единицы измерения электрических величин

Иногда в электрических или электронных схемах и системах необходимо использовать кратные или дольные значения стандартных единиц, когда измеряемые величины очень велики или очень малы.

В следующей таблице приведен список некоторых стандартных электрических единиц измерения, используемых в электрических формулах.

Стандартные электрические единицы

Электрический 
параметр

Измерительный 
блок

Символ

Описание

Напряжение

Вольт

U или E

Единица электрического потенциала 
U = I × R

Ток

Ампер

I или i

Единица электрического тока 
I = U ÷ R

Сопротивление

Ом

R или Ω

Единица сопротивления постоянного тока
R = U ÷ I

Проводимость

Сименс

G или ℧

Взаимное сопротивление 
G = 1 ÷ R

Емкость

Фарад

С

Единица емкости 
C = Q ÷ U

Заряд

Кулон

Q

Единица электрического заряда 
Q = C × U

Самоиндукция

Генри

L или H

Единица индуктивности 
L  = -L (di / dt)

Мощность

Вт

W

Единица мощности 
P = U × I   или   2  × R

Полное сопротивление

Ом

Z

Единица сопротивления переменного тока 
2  = R 2  + X 2

Частота

Герц

Гц

Единица частоты 
ƒ = 1 ÷ T

Кратные и дольные значения

Существует огромный диапазон значений, встречающихся в электрической и электронной технике, между максимальным значением и минимальным значением стандартной отдельно взятой единицы измерения. Например, сопротивление может быть ниже 0,01 Ом или выше, чем 1 000 000 Ом. Используя кратные и дольные значения  мы можем избежать написания большого количества нулей до или после десятичной запятой. В приведенной ниже таблице перечислены приставки для кратных и дольных единиц.

Десятичный множитель

Приставка

Обозначение

Пример

русская

международная

русское

международное

101

дека

deca

да

da

дал — декалитр

102

гекто

hecto

г

h

гПа — гектопаскаль

103

кило

kilo

к

k

кН — килоньютон

106

мега

mega

М

M

МПа — мегапаскаль

109

гига

giga

Г

G

ГГц — гигагерц

1012

тера

tera

Т

T

ТВ — теравольт

1015

пета

peta

П

P

Пфлопс — петафлопс

1018

экса

exa

Э

E

Эм — эксаметр

1021

зетта

zetta

З

Z

ЗэВ — зеттаэлектронвольт

1024

иотта

yotta

И

Y

Иг — иоттаграмм

10-1

деци

deci

д

d

дм — дециметр

10−2

санти

centi

с

c

см — сантиметр

10−3

милли

milli

м

m

мА — миллиампер

10−6

микро

micro

мк

µ

мкф — микрофарад

10−9

нано

nano

н

n

нм — нанометр

10−12

пико

pico

п

p

пФ — пикофарад

10−15

фемто

femto

ф

f

фс — фемтосекунда

10−18

атто

atto

а

a

ас — аттосекунда

10−21

зепто

zepto

з

z

зКл — зептокулон

10−24

иокто

yocto

и

y

иг — иоктограмм

Таким образом, чтобы отображать единицы или кратность единиц для сопротивления, тока или напряжения, мы использовали бы в качестве примера:

  • 1 кВ = 1 киловольт- что равно 1000 вольт.
  • 1 мА = 1 миллиампер,что равно одной тысячной (1/1000) ампера.
  • 47 кОм = 47 килоом- что равно 47000 Ом.
  • 100uF = 100 микрофарад,что равно 100 миллионной (100/1 000 000) фарада.
  • 1 кВт = 1 киловатт, что равно 1000 Вт.
  • 1MHz = 1 мегагерц,что равно миллиону Герц.

Для преобразования из одного префикса в другой необходимо либо умножить, либо разделить на разницу между двумя значениями. Например, для того чтобы преобразовать   МГц в кГц, необходимо значение в кГц умножить на 1000, т.е. 1МГц = 1000кГц.

Точно так же, если нам нужно было преобразовать килогерцы в мегагерцы, нам нужно было бы делить на тысячу. Гораздо проще и быстрее будет перемещать десятичную точку влево или вправо в зависимости от того, нужно ли умножать или делить.

Как и «стандартные» электрические единицы измерения, упомянутые выше, другие единицы также используются в электротехнике для обозначения других значений и величин, таких как:

  • Втч (Ваттчас) количество электрической энергии, потребляемой приемником в течение определенного периода времени. Например, лампочка потребляет сто ватт электроэнергии в течение одного часа. Он обычно используется в виде: Втч(ватт-часов), кВтч (киловатт-час), который составляет 1000 ватт-часов или МВт-ч (мегаватт-час), что составляет 1 000 000 ватт-часов.
  • дБ — децибел – одна десятая единицы измерения Белл (символ Б) и используется для представления усиления как по напряжению, так и по току. Это логарифмическая единица, выраженная в дБ и, обычно, используется для представления отношения входного сигнала к выходному и используется, как правило, в разного рода усилителях.

Например, отношение дБ входного напряжения (Uin) к выходному напряжению (Uout) выражается как 20log 10 (Uout/Uin). Значение в дБ может быть положительным (20 дБ), представляющим коэффициент усиления или отрицательный (-20 дБ), представляющий потерю с единицей, т.е. при Вход = выход, получаем 0 дБ.

  • θ —  фазовый угол — это разность в градусах между формой сигнала напряжения и формой волны, имеющей такое же периодическое время. Это разность во времени или сдвиг во времени и в зависимости от элемента схемы может иметь «ведущее» или «отстающее» значение. Фазовый угол формы волны измеряется в градусах или радианах.
  • ω —  угловая частота – это величина, которая в основном используется в цепях переменного тока для представления скорости изменения фаз и равная 2πƒ. Измеряется в радианах в секундурад/с. Один цикл (оборот) составляет 360 градусов или 2π, поэтому половина оборота задается как 180 градусов или π рад.

В следующем учебном пособии по теории схем постоянного тока мы рассмотрим законы Кирхгофа, которые вместе с законом Ома позволяют рассчитать различные напряжения и токи, циркулирующие внутри сложной цепи.

В чем измеряется электроэнергия? | ENARGYS.RU

Единицы измерения электрической энергии обозначены и закреплены в Международной системе единиц.

Использование бытовых электроприборов в домашних условиях заставляет пользователей считать электроэнергию и знать единицы, в которых она измеряется.

Электроэнергия единицы измерения

Напряжение

Напряжение (U) в сети измеряется в вольтах (В).

В однофазной сети, которая обычно используется для электроснабжения частных потребителей напряжение – 220В.

В трехфазной сети – напряжение – 380В. 1 киловольт (кВ) равен 1000В.

Напряжение 220 и 380В, приравнивается к обозначению напряжения как 0,22 и 0,4 кВ.

Сила тока

Потребляемая нагрузка, которую выдают бытовые приборы, оборудование и прочие потребители называется силой тока (I) и измеряется в амперах (А).

Сопротивление

Сопротивление (R) не менее важный показатель и демонстрирует величину противодействия материалов прохождению электротока. В быту, замер сопротивления свидетельствует о целостности электрических приборов, измеряется в (Ом). Для замера большого значения сопротивления, например, при замере целостности электродвигателя, пользуются мегомметром, 1 Ом равен 0,000001 мегаОм (мОм).

1 килоОм (кОм) равен 1000 Ом.

Сопротивление человеческого тела составляет от 2 до 10 кОм.

Удельное сопротивление проводника служит для оценки сопротивляемости материалов, для их последующего использования при изготовлении электротехнических изделий, зависит от площади поперечного сечения и длины проводника.

Мощность

Мощность – это количество электрической энергии, потребляемое тем или иным бытовым прибором за определенную единицу времени измеряется в ваттах (Вт) и килоВт (кВт) – 1000 Вт, в промышленных масштабах используют такие единицы измерения, как мегаватт – 1 млн. Вт и гигаватт (гВт) – 1 млрд ватт.

В чем измеряется электроэнергия по счетчику

Для определения количества потребленной электроэнергии, используются электрические счетчики активной энергии, они служат для ее учета. В промышленности существуют также счетчики реактивной энергии.

Чтобы определить, в чем измеряется потребление электроэнергии в квартире, используют 1 кВт*час. Для счетчиков реактивной энергии, интегрированная реактивная мощность измеряется как 1 кВар*час. Необходимо заметить, что при записи потребляемой энергии, по счетчику правильно надо писать, мощность умножить на время.

Электрическая мощность — это… Что такое Электрическая мощность?

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения: U — напряжение на участке A-B (принимаем его постоянным на интервале Δt), Q — количество зарядов, прошедших от А к B за время Δt. А — работа, совершённая зарядом Q при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:

Для единичного заряда на участке A-B:

Для всех зарядов:

Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:

Если участок цепи содержит резистор c электрическим сопротивлением R, то

Дифференциальные выражения для электрической мощности

Мощность, выделяемая в единице объёма, равна:

В линейном изотропном приближении:

В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

где — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока

В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность

Единица измерения — ватт (W, Вт).

Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность

Единица измерения — вольт-ампер реактивный (var, вар)

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]

Полная мощность

Единица полной электрической мощности — вольт-ампер (V·A, В·А)

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность

Мощность, аналогично импедансу, можно записать в комплексном виде:

где  — комплексное напряжение,  — комплексный ток, — импеданс, * — оператор комплексного сопряжения.

Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая  — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.

Неактивная мощность

Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.

Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].

Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.

Связь неактивной, активной и полной мощностей

Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:

Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем

Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:

Отсюда находим

Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.

Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:

Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.

Измерения

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ

Мощность некоторых электрических приборов

В таблице указаны значения мощности некоторых потребителей электрического тока:

Электрический прибор Мощность,Вт
Лампочка фонарика 1
Лампа люминесцентная бытовая 5…30
Лампа накаливания бытовая 25…150
Холодильник бытовой 15…200
Электропылесос 100…2 000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1 000…2 000
Сварочный аппарат бытовой 1 000…5 500
Двигатель трамвая 45 000…50 000
Двигатель электровоза 650 000
Электродвигатели прокатного стана 6 000 000…9 000 000

Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.

Литература

  • ГОСТ 8.417-2002 Единицы величин
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
  • Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.

Дополнительная литература

  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
  • Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
  • Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.

Ссылки

См. также

Электрическая мощность — это… Что такое Электрическая мощность?

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения: U — напряжение на участке A-B (принимаем его постоянным на интервале Δt), Q — количество зарядов, прошедших от А к B за время Δt. А — работа, совершённая зарядом Q при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:

Для единичного заряда на участке A-B:

Для всех зарядов:

Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:

Если участок цепи содержит резистор c электрическим сопротивлением R, то

Дифференциальные выражения для электрической мощности

Мощность, выделяемая в единице объёма, равна:

В линейном изотропном приближении:

В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

где — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока

В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность

Единица измерения — ватт (W, Вт).

Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность

Единица измерения — вольт-ампер реактивный (var, вар)

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]

Полная мощность

Единица полной электрической мощности — вольт-ампер (V·A, В·А)

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность

Мощность, аналогично импедансу, можно записать в комплексном виде:

где  — комплексное напряжение,  — комплексный ток, — импеданс, * — оператор комплексного сопряжения.

Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая  — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.

Неактивная мощность

Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.

Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].

Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.

Связь неактивной, активной и полной мощностей

Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:

Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем

Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:

Отсюда находим

Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.

Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:

Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.

Измерения

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ

Мощность некоторых электрических приборов

В таблице указаны значения мощности некоторых потребителей электрического тока:

Электрический прибор Мощность,Вт
Лампочка фонарика 1
Лампа люминесцентная бытовая 5…30
Лампа накаливания бытовая 25…150
Холодильник бытовой 15…200
Электропылесос 100…2 000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1 000…2 000
Сварочный аппарат бытовой 1 000…5 500
Двигатель трамвая 45 000…50 000
Двигатель электровоза 650 000
Электродвигатели прокатного стана 6 000 000…9 000 000

Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.

Литература

  • ГОСТ 8.417-2002 Единицы величин
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
  • Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.

Дополнительная литература

  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
  • Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
  • Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.

Ссылки

См. также

Электрическая мощность — это… Что такое Электрическая мощность?

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения: U — напряжение на участке A-B (принимаем его постоянным на интервале Δt), Q — количество зарядов, прошедших от А к B за время Δt. А — работа, совершённая зарядом Q при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:

Для единичного заряда на участке A-B:

Для всех зарядов:

Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:

Если участок цепи содержит резистор c электрическим сопротивлением R, то

Дифференциальные выражения для электрической мощности

Мощность, выделяемая в единице объёма, равна:

В линейном изотропном приближении:

В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

где — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока

В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность

Единица измерения — ватт (W, Вт).

Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность

Единица измерения — вольт-ампер реактивный (var, вар)

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]

Полная мощность

Единица полной электрической мощности — вольт-ампер (V·A, В·А)

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность

Мощность, аналогично импедансу, можно записать в комплексном виде:

где  — комплексное напряжение,  — комплексный ток, — импеданс, * — оператор комплексного сопряжения.

Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая  — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.

Неактивная мощность

Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.

Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].

Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.

Связь неактивной, активной и полной мощностей

Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:

Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем

Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:

Отсюда находим

Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.

Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:

Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.

Измерения

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ

Мощность некоторых электрических приборов

В таблице указаны значения мощности некоторых потребителей электрического тока:

Электрический прибор Мощность,Вт
Лампочка фонарика 1
Лампа люминесцентная бытовая 5…30
Лампа накаливания бытовая 25…150
Холодильник бытовой 15…200
Электропылесос 100…2 000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1 000…2 000
Сварочный аппарат бытовой 1 000…5 500
Двигатель трамвая 45 000…50 000
Двигатель электровоза 650 000
Электродвигатели прокатного стана 6 000 000…9 000 000

Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.

Литература

  • ГОСТ 8.417-2002 Единицы величин
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
  • Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.

Дополнительная литература

  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
  • Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
  • Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.

Ссылки

См. также

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *