Site Loader

Содержание

Электрическая дуга — причины, свойства, ВАХ

Электрическая дуга представляет собой электрический разряд в среде (воздух, вакуум, элегаз, трансформаторное масло) с большим током, низким напряжением, высокой температурой. Это явление как электрическое, так и тепловое.

Может возникать между двумя контактами при их размыкании.

Обратимся к ВАХ-диаграмме:

На данном графике у нас зависимость тока от напряжения, немного не в масштабе, но так нагляднее. Значит, есть три области:

  • в первой области у нас высокое падение напряжения у катода и малые токи — это область тлеющего разряда
  • во второй области у нас падение напряжения резко снижается, а ток продолжает увеличиваться — это переходная область между тлеющим и дуговым разрядом
  • третья область характеризует дуговой разряд — малое падение напряжения и высокая плотность тока и следовательно высокая температура.

Механизм возникновения дуги может быть следующий: контакты размыкаются и между ними возникает разряд. В процессе размыкания воздух между контактами ионизируется, обретая свойства проводника, затем возникает дуга. Зажигание дуги — это процессы ионизации воздушного промежутка, гашение дуги — явления деионизации воздушного промежутка.

Явления ионизации и деионизации

В начале горения дуги преобладают процессы ионизации, когда дуга устойчива, то процессы ионизации и деионизации происходят одинаково часто, как-только процессы деионизации начинают преобладать над процессами ионизации — дуга гаснет.

ионизация:

  • термоэлектронная эмиссия — электроны отрываются от раскаленной поверхности катодного пятна;
  • автоэлектронная эмиссия — электроны вырываются с поверхности из-за высокой напряженности электрического поля.
  • ионизация толчком — электрон вылетает с достаточной скоростью и в пути сталкивается с нейтральной частицей, в результате образуется электрон и ион.
  • термическая ионизация — основной вид ионизации, поддерживает дугу после её зажигания. Температура дуги может достигать тысяч кельвинов, а в такой среде увеличивается число частиц и их скорости, что способствует активным процессам ионизации.

деионизация:

  • рекомбинация — образование нейтральных частиц из противоположно заряженных при взаимодействии
  • диффузия — положительно заряженные частицы отправляются “за борт”, из-за действия электрического поля дуги от середины к границе

Бывают ситуации, когда при размыкании контактов дуга не загорается, тогда говорят о безыскровом разрыве. Такое возможно при малых значениях тока и напряжения, или при отключении в момент, когда значение тока проходит через ноль.

Свойства дуги постоянного тока

Дуга может возникать как при постоянном токе-напряжении, так и при переменном. Начнем рассмотрение с постоянки:

Анодная и катодная области — размер=10

-4см; суммарное падение напряжения=15-30В; напряженность=105-106В/см; в катодной области происходит процесс ударной ионизации из-за высокой напряженности, образовавшиеся в результате ионизации электроны и ионы образуют плазму дуги, которая обладает высокой проводимостью, данная область отвечает за разжигание дуги.

Ствол дуги — падение напряжения пропорционально длине дуги; плотность тока порядка 10кА на см2, за счет чего и температура порядка 6000К и выше. В данной области дуги происходят процессы термоионизации, данная область отвечает за поддержание горения.

ВАХ дугового разряда постоянного тока

Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть:

  • Uз — напряжение зажигания
  • Uг — напряжение гашения

Если ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу.

Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации.

Сопротивление дуги:

  • можно определить из ВАХ дуги
  • активное, независимо от рода тока
  • переменная величина
  • падает с ростом тока

Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.

Если не отображается плеер (значит у вас старый браузер), можете скачать видео в формате mp4 по этой ссылке


Свойства дуги переменного тока

Особенностью дуги переменного тока является её поведение во времени. Если посмотреть на график ниже, то видно, что дуга каждый полупериод проходит через ноль.

Видно, что ток отстает от напряжения примерно на 90 градусов. Вначале появляется ток и резко повышается напряжение до величины зажигания (Uз). Далее ток продолжает расти, а падение напряжения снижается. В точке максимального амплитудного значения тока, значение напряжения дуги минимальное. Далее ток стремится к нулю, а падение напряжения опять возрастает до значения гашения (Uг), которое соответствует моменту, когда ток переходит через ноль. Далее всё повторяется опять. Слева от временной характеристики приведена вольт-амперная характеристика.

Особенностью переменной дуги, кроме её зажигания и гашения на протяжении полупериода, является то, как ток пересекает ноль. Это происходит не по форме синусоиды, а более резко. Образуется бестоковая пауза, во время которой происходят знакомые нам процессы деионизации. То есть возрастает сопротивление дугового промежутка. И чем больше возрастет сопротивление, тем сложнее будет дуге обратно зажечься.

Если дуге дать гореть достаточно долго, то уничтожению подлежат не только контакты, но и само электрооборудование. Условия для гашения дуги заложены на стадии проектирования, постоянно внедряются новые методы борьбы с этим вредным явлением в коммутационных аппаратах.

Само по себе явление дуги не является полезным для электрооборудования, так как ведет к ухудшению эксплуатационных свойств контактов: выгорание, коррозия, механическое повреждение.

Но не всё так печально, потому что светлые умы нашли полезное применение дуговому разряду — использование в дуговой сварке, металлургии, осветительной технике, ртутных выпрямителях.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

Электрическая дуга и её свойства

Наибольшее распространение в машиностроении получила электродуговая сварка. Рассмотрим подробнее особенности электродуговой сварки.

Электрической дугой называется продолжительный разряд электрического тока между двумя электродами, происходящий в газовой среде. Электрическая дуга, используемая для сварки металлов, называется сварочной дугой. Такая дуга в большинстве случаев горит между электродом и изделием, т.е. является дугой прямого действия.

Дуга прямого действия постоянного тока, горящая между металлическим электродом (катодом) и свариваемым металлом (анодом), имеет несколько ясно различимых областей (рис.2.3). Электропроводный газовый канал, соединяющий электроды, имеет форму усеченного конуса или цилиндра. Его свойства на различных расстояниях от электродов неодинаковы. Тонкие слои газа, примыкающие к электродам, имеют сравнительно низкую температуру. В зависимости от полярности электрода, к которому они примыкают, эти слои называются катодной

2 и анодной 4 областями дуги.

Протяженность катодной области lk определяется длиной свободного пробега нейтральных атомов и составляет

̃порядка 10-5 см. Протяженность анодной области la определяется длиной свободного пробега электрона и составляет примерно 10-3 см. Между приэлектродными областями располагается наиболее протяженная, высокотемпературная область разряда — столб дуги

lc3.

На поверхности катода и анода образуются пятна, называемые, соответственно, катодное 1 и анодное 5 пятно, являющиеся основаниями столба дуги, через которые проходит весь сварочный ток. Электродные пятна выделяются яркостью свечения при сравнительно невысокой их температуре (2600… 3200 К). Температура в столбе дуги достигается 6000…8000 К.

Общая длина сварочной дуги lд равна сумме длин всех трех её областей (lд=la+lk) и для реальных условий составляет 2…6 мм.

Общее напряжение сварочной дуги, соответственно, слагается из суммы падений напряжений в отдельных областях дуги

и находится в пределах от 20 до 40 В. Зависимость напряжения в сварочной дуге от её длины описывается уравнением , где а — сумма падений напряжений в катодной и анодной областях, В; lд — длина столба дуги, мм; b — удельное падение напряжения в дуге, т.е. отнесенное к 1 мм длины столба дуги, В/мм.

Одной из основных характеристик электрического дугового разряда является статическая вольт-амперная характеристика — зависимость напряжения дуги при постоянной ее длине от силы тока в ней (рис.2.4).

С увеличением длины дуги напряжение увеличивается и кривая статической вольтамперной характеристики дуги поднимается выше, примерно сохраняя при этом свою форму (кривые, а, б, в). На ней различают три области: падающую I, жесткую (почти горизонтальную) II и возрастающую III. В зависимости от условий горения дуги ей соответствует один из участков характеристики. При ручной дуговой сварке покрытыми электродами, сварке в защитных газах неплавящимся электродом и сварке под флюсом на сравнительно небольших плотностях тока характеристика дуги будет вначале падающей, а при увеличении тока полностью перейдет в жесткую. При этом с увеличением сварочного тока пропорционально увеличиваются поперечное сечение столба дуги и площади поперечного сечения анодного и катодного пятен. Плотность тока и напряжение дуги остаются постоянными.

При сварке под флюсом и в защитных газах тонкой электродной проволокой на больших плотностях тока характеристика дуги становится возрастающей. Это объясняется тем, что диаметры катодного и анодного пятен становятся равными диаметру электрода и больше увеличиваться не могут. В дуговом промежутке наступает полная ионизация газовых молекул и дальнейшее увеличение сварочного тока может происходить лишь за счет увеличения скорости движения электронов и ионов, т. е. за счет увеличения напряженности электрического поля. Поэтому для дальнейшего увеличения сварочного тока требуется увеличение напряжения дуги.

Сварочная дуга представляет собой мощный концентрированный источник теплоты. Почти вся электрическая энергия, потребляемая дугой, превращается в тепловую. Полная тепловая мощность дуги Q=IсвUд (Дж/с) зависит от силы сварочного тока Iсв (А) и напряжения дуги Uд (В).

Следует отметить, что не вся теплота дуги затрачивается на нагрев и плавление металла. Часть её бесполезно расходуется на нагрев окружающего воздуха или защитного газа, радиационное излучение и т.д. В связи с этим эффективная тепловая мощность дуги qэф(Дж/с) (та часть теплоты сварочной дуги, которая вводится непосредственно в изделие) определяется следующим соотношением:

где η — коэффициент полезного действия (КПД) процесса нагрева изделия сварочной дугой, определяемый опытным путем.

Коэффициент η зависит от способа сварки, материала электрода, состава покрытия или флюса и ряда других факторов. Например, при сварке открытой дугой угольным или вольфрамовых электродом он составляет в среднем 0,6; при сварке покрытыми (качественными) электродами — около 0,75; при сварке под флюсом — 0,8 и более.

 



Дата добавления: 2017-03-12; просмотров: 2798;


Похожие статьи:

свойства. Защита от воздействия электрической дуги :: SYL.ru

Электрическая дуга может быть крайне разрушительной для оборудования и, что более важно, представлять опасность для людей. Тревожное количество вызванных ею несчастных случаев происходит ежегодно, часто приводя к серьезным ожогам или смерти. К счастью, в электротехнической промышленности достигнут значительный прогресс в части создания средств и методов защиты от воздействия дуги.

Причины и места возникновения

Электрическая дуга является одной из самых смертоносных и наименее изученных опасностей электроэнергии и преобладает в большинстве отраслей промышленности. Широко признается, что чем выше напряжение электрической системы, тем больше риск для людей, работающих на территории или вблизи проводов и оборудования, находящихся под напряжением.

электрическая дуга

Тепловая энергия от вспышки дуги, однако, может на самом деле быть больше и возникать чаще при более низких напряжениях с теми же разрушительными последствиями.

Возникновение электрической дуги, как правило, происходит при случайном контакте между токоведущим проводником, таким как контактный провод троллейбусной или трамвайной линии с другим проводником, или заземленной поверхностью.

возникновение электрической дугиКогда это происходит, возникающий ток короткого замыкания плавит провода, ионизирует воздух и создает огненный канал проводящей плазмы характерной дугообразной формы (отсюда и название), причем температура электрической дуги в ее сердцевине может достигать свыше 20000 °С.

Что же такое электрическая дуга?

По сути, так в обиходе именуют хорошо известный в физике и электротехнике дуговой разряд – вид самостоятельного электроразряда в газе. Каковы же физические свойства электрической дуги? Она горит в широком диапазоне давления газа, при постоянном или переменном (до 1000 Гц) напряжении между электродами в диапазоне от нескольких вольт (сварочная дуга) до десятков киловольт. Максимальная плотность тока дуги наблюдается на катоде (102-108 А/см2), где она стягивается в катодное пятно, очень яркое и малое по размерам. Оно беспорядочно и непрерывно перемещается по всей площади электрода. Температура его такова, что материал катода в нем кипит. Поэтому возникают идеальные условия для термоэлектронной эмиссии электронов в прикатодное пространство. Над ним образуется небольшой слой, заряженный положительно и обеспечивающий ускорение эмитируемых электронов до скоростей, при которых они ударно ионизируют атомы и молекулы среды в межэлектродном промежутке.

температура электрической дуги

Такое же пятно, но несколько большее и малоподвижное, формируется и на аноде. Температура в нем близкая к катодному пятну.

Если ток дуги порядка нескольких десятков ампер, то из обоих электродов вытекают с большой скоростью нормально к их поверхностям плазменные струи или факелы (см. на фото ниже).

При больших токах (100-300 А) возникают добавочные плазменные струи, и дуга становится похожей на пучок плазменных нитей (см. на фото ниже).

Как проявляет себя дуга в электрооборудовании

Как было сказано выше, катализатором ее возникновения является сильное тепловыделение в катодном пятне. Температура электрической дуги, как уже упоминалось, может достигать 20 000 °С, примерно в четыре раза выше, чем на поверхности солнца. Этот зной может быстро расплавить или даже испарить медь проводников, которая имеет температуру плавления около 1084 °С, намного ниже, чем в дуге. Поэтому в ней часто образуются пары меди и брызги расплавленного металла. Когда медь переходит из твердого состояния в пар, она расширяется в несколько десятков тысяч раз от своего первоначального объема. Это эквивалентно тому, что кусочек меди в один кубический сантиметр изменится до размера 0,1 кубометра в доли секунды. При этом возникнет давление высокой интенсивности и звуковые волны, распространяющиеся вокруг с большой скоростью (которая может быть свыше 1100 км в час).

свойства электрической дуги

Воздействие электрической дуги

Тяжелые травмы, и даже со смертельным исходом, при ее возникновении могут получить не только лица, работающие на электрооборудования, но и люди, находящиеся поблизости. Дуговые травмы могут включать в себя внешние ожоги кожи, внутренние ожоги от вдыхания горячих газов и испаренного металла, повреждения слуха, зрения, такие как слепота от ультрафиолетового света вспышки, а также многие другие разрушительные повреждения.

При особо мощной дуге может также произойти такое явление, как ее взрыв, создающий давление более 100 килопаскалей (кПа) с выбросом частиц мусора, подобных шрапнели, со скоростью до 300 метров в секунду.

Лица, перенесшие воздействия электрического тока электрической дуги, могут нуждаться в серьезном лечения и реабилитации, а цена их травм может быть экстремальной — физически, эмоционально и финансово. Хотя законодательство требует от предприятий проведения оценки рисков для всех видов трудовой деятельности, однако риск поражения электрической дугой часто упускается из виду, потому что большинство людей не знают, как оценивать и эффективно управлять этой опасностью. Защита от воздействия электрической дуги предполагает использование целого комплекса средств, включая применение при работе с электрооборудованием, находящимся под напряжением, специальных электрозащитных средств, спецодежды, а также самого оборудования, прежде всего высоко- низковольтных коммутационных электроаппаратов, сконструированных с применением средств гашения дуги.

напряжение электрической дуги

Дуга в электрических аппаратах

В этом классе электротехнических устройств (автоматические выключатели, контакторы, магнитные пускатели) борьба с данным явлением имеет особое значение. Когда контакты выключателя, не оборудованного специальными устройствами для предотвращения дуги, размыкаются, то она обязательно зажигается между ними.

В момент, когда контакты начинают отделяться, площадь последних уменьшается быстро, что приводит к увеличению плотности тока и, следовательно, к повышению температуры. Выделяемого тепла в промежутке между контактами (обычная среда масло или воздух) достаточно для ионизации воздуха или испарения и ионизации масла. Ионизированный воздух или пар действует как проводник для тока дуги между контактами. Разность потенциалов между ними весьма мала, но ее достаточно для поддержания дуги. Следовательно, ток в цепи остается непрерывным тех пор, пока дуга не устранена. Она не только задерживает процесс прерывания тока, но также генерирует огромное количество теплоты, которое может привести к повреждению самого выключателя. Таким образом, главная проблема в выключателе (прежде всего высоковольтном) – это гашение электрической дуги в кратчайшие сроки для того, чтобы выделяемое в ней тепло не могло достичь опасного значения.

воздействие электрической дуги

Факторы поддержания дуги между контактами выключателей

К ним относятся:

1. Напряжение электрической дуги, равное разности потенциалов между контактами.

2. Ионизированные частицы между ними.

Принимая это, отметим дополнительно:

  • Когда между контактами имеется небольшой промежуток, даже небольшой разности потенциалов достаточно для поддержания дуги. Одним из способов ее гашения является разделение контактов на такое расстояние, что разность потенциалов становится недостаточной для поддержания дуги. Тем не менее этот метод является практически неосуществимым в высоковольтном оборудовании, где может потребоваться разделение на многие метры.
  • Ионизированные частицы между контактами, как правило, поддерживают дугу. Если ее путь деионизирован, то процесс гашения будет облегчен. Это может быть достигнуто путем охлаждения дуги или удаления ионизированного частиц из пространства между контактами.
  • Есть два способа, посредством которых осуществляется защита от электрической дуги в выключателях:

— метод высокого сопротивления;

— метод нулевого тока.

Гашение дуги увеличением ее сопротивления

В этом методе сопротивление на пути дуги растет с течением времени так, что ток уменьшается до значения, недостаточного для ее поддержания. Следовательно, он прерывается, и электрическая дуга гаснет. Основной недостаток этого метода состоит в том, что время гашения достаточно велико, и в дуге успевает рассеиваться огромная энергия.

защита от электрической дуги

Сопротивление дуги может быть увеличена путем:

  • Удлинения дуги – сопротивление дуги прямо пропорциональна ее длине. Длина дуги может быть увеличена за счет изменения зазора между контактами.
  • Охлаждением дуги, точнее среды между контактами. Эффективное охлаждение обдувом должно быть направлено вдоль дуги.
  • Помещением контактов в трудноионизируемую газовую среду (газовые выключатели) или в вакуумную камеру (вакуумные выключатели).
  • Снижением поперечного сечения дуги путем ее пропускания через узкое отверстие, или снижением площади контактов.
  • Разделением дуги — ее сопротивление может быть увеличено путем разделения на ряд небольших дуг, соединенных последовательно. Каждая из них испытывает действие удлинения и охлаждения. Дуга может быть разделена путем введения некоторых проводящих пластин между контактами.

Гашение дуги методом нулевого тока

Этот метод используется только в цепях переменного тока. В нем сопротивление дуги сохраняется низким, пока ток не снижается до нуля, где она гаснет естественным путем. Ее повторное зажигание предотвращается несмотря на увеличение напряжения на контактах. Все современные выключатели больших переменных токов используют этот метод гашения дуги.

В системе переменного тока последний падает до нуля после каждого полупериода. В каждое такое обнуление дуга гаснет на короткое время. При этом среда между контактами содержит ионы и электроны, так что ее диэлектрическая прочность небольшая и может быть легко разрушена растущим напряжением на контактах.

Если это происходит, электрическая дуга будет гореть в течение следующего полупериода тока. Если сразу же после его обнуления диэлектрическая прочность среды между контактами растет быстрее, чем напряжение на них, то дуга не зажжется и ток будет прерван. Быстрое увеличение диэлектрической прочности среды вблизи нуля тока может быть достигнуто путем:

  • рекомбинации ионизированных частиц в пространстве между контактами в нейтральные молекулы;
  • удалением ионизированных частиц прочь и заменой их нейтральными частицами.

Таким образом, реальной проблемой в прерывании переменного тока дуги является быстрая деионизация среды между контактами, как только ток становится равным нулю.

Способы деионизация среды между контактами

1. Удлинение зазора: диэлектрическая прочность среды пропорциональна длине зазора между контактами. Таким образом, при быстром размыкании контактов может быть достигнута и более высокая диэлектрическая прочность среды.

2. Высокое давление. Если оно в непосредственной близости от дуги, увеличивается, плотность частиц, составляющих канал дугового разряда, также растет. Повышенная плотность частиц приводит к высокому уровню их деионизации и, следовательно, диэлектрическая прочность среды между контактами увеличивается.

3. Охлаждения. Естественная рекомбинация ионизированных частиц происходит быстрее, если они остывают. Таким образом, диэлектрическая прочность среды между контактами может быть увеличена путем охлаждения дуги.

4. Эффект взрыва. Если ионизированные частицы между контактами сметены прочь и заменены неионизированными, то диэлектрическая прочность среды может быть увеличена. Это может быть достигнуто с помощью газового взрыва, направленного в зону разряда, или впрыскиванием масла в межконтактное пространство.

В таких выключателях в качестве среды гашения дуги используется газ гексафторид серы (SF6). Он имеет сильную тенденцию поглощать свободные электроны. Контакты выключателя открываются в потоке высокого давления SF6) между ними (см. рисунок ниже).

гашение электрической дугиГаз захватывает свободные электроны в дуге и формирует избыток малоподвижных отрицательных ионов. Число электронов в дуге быстро сокращается, и она гаснет.

49. Электрическая дуга и ее свойства

Дуга — это устойчивый вид разряда, су­ществующий при токе от десятых долей ампера до ты­сячи ампер. Известно несколько способов возбуждения дугового разряда. По способу В. В. Петрова два элек­трода сводят до соприкосновения и сразу же раз-водят на небольшое расстояние. В этот момент между ними возникает дуга. Упрощенное объяснение этого явления следующее. При соприкосновении электродов электри­ческая цепь замыкается и по ней идет ток. В соответст­вии с законом Джоуля-Ленца в проводниках выделя­ется теплота. Количество теплоты Q, выделяющейся в проводнике при прохождении по нему постоянного элек­трического тока, зависит от тока I, сопротивления про­водника R и времени прохождения тока t

Q = I2Rt.

Место контакта двух электродов, которое обладает самым большим сопротивлением, нагревается сильнее и быстрее остальных участков цепи. При высокой тем­пературе начинается испарение материала электрода и возникает явление термомеханической эмиссии (термо­эмиссия) —испускание электронов под действием теп­лового возбуждения. В результате этих процессов в про­странстве между электродами появляются свободные электроны, которые, сталкиваясь с молекулами и атомами газа и испарившегося электродного металла, «раскалывают» их на ионы и новые электроны (вторич­ная эмиссия). В ионизированном таким образом про­странстве развивается дуговой разряд.

В установившейся сварочной дуге конец электрод­ного стержня и поверхность изделия расплавлены, так что дуга горит между жидкими электродами. Пламя имеет значительные размеры и содержит главным образом пары материалов электродов, реаги­рующие с окружающим воздухом. Поверхность жидкой ванны на изделии не плоскогоризонтальна. Она вдав­ливается под действием механических сил, создаваемых дугой. Образующееся углубление (ямка) в жидком ме­талле называют кратером. Дуга расплавляет металл на определенную глубину h.

На движение частиц оказывают действие силы, вы­званные разностью давлений из-за неодинаковой концентрации частиц, кулоновским взаимодействием меж­ду электронами и ионами и другими причинами.

Маленькие подвижные электроны быстро перемеща­ются, легко разгоняются и, сталкиваясь с атомами и ионами, передают им свою энергию. Столкновения элек­тронов с атомами бывают упругими и неупругими.

При упругих столкновениях ничего заметного не происходит. Атом, в который попал электрон, начинает дви­гаться быстрее (увеличивается его кинетическая энер­гия). В результате повышается температура плазмы.

Этот электрон, который в электрическом поле при­обрел достаточную энергию, участвует в неупругих столкновениях. Попав в атом (молекулу), он возбуждает его, а когда удар достаточно силен, то и выбивает из атома его собственные электроны. Атом становится однозарядным положительным ионом, если выбить один электрон, двухзарэдным — если два, и т. д.

Сложные процессы идут у поверхности электродов. Именно здесь прерывается течение электронов по металлическому проводнику (электроду) и начинается другой вид тока (ток дуги), который создается как электронами, так и ионами. Изменяется характер явле­ний не только электрических, но и термических. Здесь горячая плазма граничит со сравнительно холодной (2.. .3 тыс. °С) поверхностью электродов.

Кроме электрического поля, на поведение частиц в столбе дуги влияет еще много факторов: термическая диффузия — стремление разогретых частиц «разбежать­ся» в разные стороны; линчэффект — воздействие маг­нитного поля, возникающего вокруг столба и стремяще­гося его сжать, и др.

При сварке применяют прямую и обратную поляр­ность. При прямой полярности минус источника тока подключают к электроду, плюс — к свариваемой дета­ли, а при обратной полярности наоборот.

При сварке угольным электродом по методу, разра­ботанному русским инженером Н. Н. Бенардосом(1882 г.), на постоянном токе и прямой полярности ду­га легче возбуждается и устойчивее, чем при сварке на обратной полярности. При использовании металличе­ских плавящихся электродов по методу Н. Г. Славяно-ва (1801 г.) полярность дуги меньше влияет на ее ус­тойчивость, поэтому сварку осуществляют как на пере­менном, так и на постоянном токе с прямой и обратной полярностью в зависимости от состава покрытия элек­тродов и флюсов.

При сварке металлическим электродом длина дуги (расстояние между электродом и поверхностью жидкой ванны) до 4 мм и не более 0,6.. .0,8 диаметра электрода (короткая дуга). При сварке длинной дугой (больше 4 мм) увеличивается разбрызгивание, окисление метал­ла, снижается качество шва.

Электрическая дуга и ее свойства


Электрическая дуга и ее свойства

Категория:

Сборка металлоконструкций



Электрическая дуга и ее свойства

Электрическая дуга представляет собой длительный электрический разряд, происходящий в газовом промежутке между двумя проводниками — электродом и свариваемым металлом при значительной силе тока. Непрерывно возникающая под действием стремительного потока положительных и отрицательных ионов и электронов в дуге ионизация воздушной прослойки создает необходимые условия для продолжительного устойчивого горения сварочной дуги.

Рис. 1. Электрическая дуга между металлическим электродом и свариваемым металлом: а — схема дуги, б — график напряжений дуги длиной 4 мм; 1 — электрод, 2 — ореол пламени, 3 — столб дуги, 4 — свариваемый металл, 5 — анодное пятно, 6 — расплавленная ванна, 7 — кратер, 8 — катодное пятно; h — глубина проплавления в дуге, А — момент зажигания дуги, Б — момент устойчивого горения

Дуга состоит из столба, основание которого находится в углублении (кратере), образующемся на поверхности расплавленной ванны. Дуга окружена ореолом пламени, образуемым парами и газами, поступающими из столба дуги. Столб имеет форму конуса и является основной частью дуги, так как в нем сосредоточивается основное количество энергии, соответствующее наибольшей плотности проходящего через дугу электрического тока. Верхняя часть столба, расположенная на электроде 1 (катоде), имеет небольшой диаметр и образует катодное пятно 8. Через катодное пятно излучается наибольшее количество электродов. Основание конуса столба дуги расположено на свариваемом металле (аноде) и образует анодное пятно. Диаметр анодного пятна при средних значениях сварочного тока больше диаметра катодного пятна примерно в 1,5 … 2 раза.

Для сварки применяют постоянный и переменный ток. При использовании постоянного тока минус источника тока подключают к электроду (прямая полярность) или к свариваемому изделию “”{обратная полярность). Обратную полярность применяют в тех случаях, когда нужно уменьшить выделение теплоты на свариваемом изделии: при сварке тонкого или легкоплавкого металла, чувствительных к перегреву легированных, нержавеющих и высокоуглеродистых сталей, а также при пользовании некоторыми видами электродов.

Выделяя большое количество теплоты и имея высокую темпе-оатуру. электрическая дуга вместе с тем дает очень сосредоточенный нагрев металла. Поэтому металл во время сварки остается сравнительно мало нагретым уже на расстоянии нескольких сантиметров от сварочной дуги.

Действием дуги металл расплавляется на некоторую глубину h называемую глубиной проплавления или проваром.

Возбуждение дуги происходит при приближении электрода к свариваемому металлу и замыкании им сварочной цепи накоротко. Благодаря высокому сопротивлению в точке соприкосновения электрода с металлом конец электрода быстро нагревается и начинает излучать поток электронов. Когда конец электрода быстро отводят от металла на расстояние 2…4 мм, возникает электрическая дуга.

Напряжение в дуге, т. е. напряжение между электродом и основным металлом, зависит в основном от ее длины. При одном и том же токе напряжение в короткой дуге ниже, чем в длинной. Это обусловлено тем, что при длинной дуге сопротивление ее газового промежутка больше. Возрастание же сопротивления в электрической цепи при постоянной силе тока требует увеличения напряжения в цепи. Чем выше сопротивление, тем выше должно быть и напряжение для того, чтобы обеспечить прохождение в цепи того же тока.

Дуга между металлическим электродом и металлом горит при напряжении 18… 28 В. Для возбуждения дуги требуется более высокое напряжение, чем то, которое необходимо для поддержания ее нормального горения. Это объясняется тем, что в начальный момент воздушный промежуток еще недостаточно нагрет и необходимо придать электронам большую скорость для расцепления молекул и атомов воздуха. Этого можно достичь только при более высоком напряжении в момент зажигания дуги.

График изменения тока I в дуге при ее зажигании и устойчивом горении (рис. 1, б) называется статической характеристикой дуги и соответствует установившемуся горению дуги. Точка А характеризует момент зажигания дуги. Напряжение дуги V быстро падает по кривой АБ до нормальной величины, соответствующей в точке Б устойчивому горению дуги. Дальнейшее увеличение тока (вправо от точки Б) увеличивает нагрев электрода и скорость его плавления, но не оказывает влияния на устойчивость горения дуги.

Устойчивой называется дуга, горящая равномерно, без произвольных обрывов, требующих повторного зажигания. Если дуга горит неравномерно, часто обрывается и гаснет, то такая дуга называется неустойчивой. Устойчивость дуги зависит от многих причин, основными из которых являются род тока, состав покрытия электрода, вид электрода, полярность и длина дуги.

При переменном токе дуга горит менее устойчиво, чем при постоянном. Это объясняется тем, что в тот момент, когда ток п, дает до нуля, ионизация дугового промежутка уменьшается и дуга может гаснуть. Чтобы повысить устойчивость дуги переменного тока, приходится наносить на металлический электрод ио-крытия. Пары элементов, входящих в покрытие, повышают ионизацию дугового промежутка и тем способствуют устойчивому горению дуги при переменном токе.

Длину дуги определяют расстоянием между торцом электрода и поверхностью расплавленного металла свариваемого изделия. Обычно нормальная длина дуги не должна превышать 3…4 мм для стального электрода. Такая дуга называется короткой. Короткая дуга горит устойчиво и при ней обеспечивается нормальное протекание процесса сварки. Дуга длиной больше 6 мм называется длинной. При ней процесс плавления металла электрода идет неравномерно. Стекающие с конца электрода капли металла в этом случае в большей степени могут окисляться кислородом и обогащаться азотом воздуха. Наплавленный металл получается пористым, шов имеет неровную поверхность, а дуга горит неустойчиво. При длинной дуге понижается производительность сварки, увеличивается разбрызгивание металла и количество мест непровара или неполного сплавления наплавленного металла с основным.

Перенос электродного металла на изделие при дуговой сварке плавящимся электродом является сложным процессом. После зажигания дуги (положение /) на поверхности торца электрода образуется слой расплавленного металла, который под действием сил тяжести и поверхностного натяжения собирается в каплю (положение //). Капли могут достигать больших размеров и перекрывать столб дуги (положение III), создавая на непродолжительное время короткое замыкание сварочной цепи, после чего образовавшийся мостик из жидкого металла разрывается, дуга возникает вновь, и процесс каплеобразования повторяется.

Размеры и количество капель, проходящих через дугу в единицу времени, зависят от полярности и силы тока, химического состава и физического состояния металла электрода, состава покрытия и ряда других условий. Крупные капли, достигающие 3…4 мм, обычно образуются при сварке непокрытыми электро-дами, мелкие капли (до 0,1 мм)—при сварке покрытыми электл родами и большой силе тока. Мелкокапельный процесс обеспечивает стабильность горения дуги и благоприятствует условиям переноса в дуге расплавленного металла электрода.

Рис. 2. Схема переноса металла с электрода на свариваемый металл

Рис. 3. Отклонение электрической дуги магнитными полями (а—ж)

Сила тяжести может способствовать или препятствовать переносу капель в дуге. При потолочной и частично при вертикальной сварке сила тяжести капли противодействует переносу ее на изделие. Но благодаря силе поверхностного натяжения жидкая ванна металла удерживается от вытекания при сварке в потолочном и вертикальном положениях.

Прохождение электрического тока по элементам сварочной цепи, в том числе по свариваемому изделию, создает магнитное поле, напряженность которого зависит от силы сварочного тока. Газовый столб электрической дуги является гибким проводником электрического тока, поэтому он подвержен действию результирующего магнитного поля, которое образуется в сварочном контуре. В нормальных условиях газовый столб дуги, открыто горящей в атмосфере, расположен симметрично оси электрода. Под действием электромагнитных сил происходит отклонение дуги от оси электрода в поперечном или продольном направлении, что по внешним признакам подобно смещению факела открытого пламени при сильных воздушных потоках. Это явление называют магнитным дутьем.

Присоединение сварочного провода в непосредственной близости к дуге резко снижает ее отклонение, так как собственное круговое магнитное поле тока оказывает равномерное воздействие на столб дуги. Подвод тока к изделию в отдалении от Дуги приведет к отклонению ее вследствие сгущения силовых линий кругового магнитного поля со стороны токопровода.


Реклама:

Читать далее:
Процесс сварки металла

Статьи по теме:

Электрическая сварочная дуга: свойства, строение, характеристики

Во время дуговой сварки сварочная дуга является основным инструментом, который должен расплавлять основной металл заготовки и присадочный материал, чтобы создать шов и соединить две части неразрывно. В большинстве случаев, явление электрической дуги является вредным для электрических приборов. Оно возникает всегда, когда размыкаются контакты. В бытовых выключателях, магнитных контакторах и в прочих устройствах данное явление неизбежно, так что принимаются различные меры, чтобы погасить дугу и сделать ее более короткой. В сварке она является главной особенностью, но ею нужно научиться управлять.

Электрическая сварочная дуга возникает в тот момент, когда контакт, образованный между основным металлом и электродом, размыкается. В это время образуется длительный и мощный заряд электричества, который обладает высокой температурой. В данном месте наблюдается высокая плотность тока, способствующая расплавлению. Для ее создания требуется высокий уровень затрат энергии.

Область применения

Сварочная дуга применяется в обыкновенной ручной дуговой сварке, которая на данный момент является наиболее простым методом стандартного сваривания. Здесь она защищается обмазкой электродов, которая при сгорании образует газовые испарения, препятствующие проникновению посторонних элементов внутрь ванны расплавленного металла.

Также дуга используется в полуавтоматической газовой сварке. Здесь используется сварочная электрическая дуга, которая подается не на обыкновенный электрод, а на неплавкий вольфрамовый. Соответственно, расплавления металла идет не с одного из выходов, как это было в предыдущем методе. На дугу подается сварочная проволока, которая расплавляет материал.

Еще одним вариантом являются автоматы. Они проще в создании, чем газовые, так что получили широкое распространение в промышленности. Они могут быть как с плавкими, так и с неплавкими электродами. С одной установки может зажигаться несколько электродуг, если они имеют многопостовую конструкцию.

В ручной дуговой сварке идет работа с обыкновенными конструкционными сталями. Иногда пробуют сваривать цветные металлы, но это сложно и не всегда успешно. Лучше дуга проявляет себя при защите газа. Она оказывается более стабильной при горении, а также позволяет создавать качественные надежные швы.

Классификация сварочной дуги

Электрические свойства сварочной дуги могут отличаться в зависимости от того, с какого источника подается электричество. Для ее создания используют инверторы, генераторы, выпрямители, трансформаторы и прочую технику. Выделяют два основных типа получаемой дуги:

  • В первом случае наблюдаются статичные параметры. Они не меняются в течение длительного времени использования. Допустимы минимальные отклонения, но они не являются существенными и не влияют на характеристики накладываемого шва.
  • Во втором случае получается динамические параметры. Это переходные, когда параметры в системе изменяют и из-за них меняется характеристика дуги.

Классифицировать дугу можно еще по другим признакам:

  • Открытая – горение происходит в воздухе;
  • Закрытая – горение происходит во флюсе;
  • С подачей защитных газов – в дугу поставляются газы с защитными функциями.
Классификация сварочной дуги

Классификация сварочной дуги

Строение сварочной дуги

Сварочная дуга представляет собой явление, в котором можно выделить несколько основных областей, определяющих ее строение. Выделяют три основные области:

  • Столб дуги – это основная доля всего дугового промежутка. В него входят положительные и отрицательные ионы. Столб обладает нейтральным зарядом, так как положительные и отрицательные элементы здесь находятся в одинаковом количестве.
  • Катодная область – это источник электронов, которые ионизируют газы, находящиеся рядом. Здесь очень высокое напряжение. Выделившиеся электроды удаляются из данной области под действием электрического поля. Это поле притягивает положительные ионы. Ионов здесь всегда больше, чем электронов.
  • Анодная область – это самая широкая область из всей дуги. Ток анода условно считают сугубо электронным, но на самом деле здесь присутствуют и ионы, пусть и в незначительном количестве. Здесь создается отрицательный объемный заряд. В анодной области присутствует низкий уровень напряжения.
Схема строения сварочной дуги

Схема строения сварочной дуги

Во время горения дуги на электроде можно выделить несколько активных пятен. Они разделяются по степени нагревания, так как есть несколько зон нагретых по-разному, и они наблюдаются практически при каждом процессе сваривания. Если пятно находится на аноде, то его называют анодным, а если на катоде, то катодным.

Свойства дуги

Дуга обладает очень ярким светом, который оказывается вредным для глаз и может привести к их ожогу во время своего горения. Помимо видимого спектра, она излучает еще ультрафиолетовые и инфракрасные лучи. Если расстояние между электродом и заготовкой слишком большое, то дуга тухнет. Она обладает очень высокой силой тока и температурой, которая увеличивается, если размер столба будет расти. При подаче плотного воздуха или газа под давлением, а также масла, дуга может потухнуть.

Свойства сварочной электрической дуги

Свойства сварочной электрической дуги

Характеристики

Вольтамперная характеристика сварочной дуги зависит от напряжения и сварочного тока, которые формируются источником питания. При изменении какого-либо из параметров меняются и другие значения данного явления. Существует три основных разновидности характеристик:

  • Жесткая;
  • Возрастающая;
  • Падающая.

Падающая характеристика получается, когда производится сварка в обыкновенных условиях в среде защитных газов. Она характеризуется относительно небольшими значениями сварочного тока. Если сила тока будет повышаться, то возрастает и уровень процесса ионизации. Дуга увеличивает площадь своего сечения, а также температура горения.

«Важно!

Если сила тока находится от 80 до 300 А, то дуга получает жесткую характеристику.»

Здесь характерны низкие значения напряжения. Площадь сечения напрямую зависит от силы тока, так что можно легко регулировать ширину свариваемого шва.

Возрастающая характеристика присущая наиболее высоким значениям сварочного тока, более 300 А. Напряжение может увеличиваться тогда, когда скапливается большое количество зарядов на электроде. Это де приводит к падению напряжения на катоде.

Чем определяется мощность сварочной дуги?

От мощности сварочной дуги зависит много факторов, но и сама она является результатом определенных воздействий. Длина сварочной дуги является одним из определяющих факторов. Даже при одних и тех же параметрах на источнике электричества, при более высокой длине мощность будет расти. Также она зависит от силы тока, который подается на электрод. Он позволяет развивать мощность на более широком диапазоне, так что даже при длинном столбе она не будет тухнуть. Толщина и плотность также оказывают решающие значения на мощность, но для их увеличения требуется обеспечить достаточную силу тока.

Заключение

Сварочная электрическая дуга является одним из основных инструментов для данной области. Практически все инновации современных инверторов направлены на то, чтобы лучше освоить управление ее свойствами.

 

Электрическая дуга: описание и характеристики

Электрическая дуга представляет собой дуговой разряд, который возникает между двумя электродами или же электродом и заготовкой и который позволяет произвести соединение двух и более деталей посредством сваривания.

Электрическая дуга

Сварочная дуга в зависимости от среды, в которой она возникает, делится на несколько групп. Она может быть открытой, закрытой, а также в среде защитных газов.

Открытая дуга протекает на открытом воздухе посредством ионизации частиц в области горения, а также за счет паров металла свариваемых деталей и материала электродов. Закрытая дуга, в свою очередь, горит под слоем флюса. Это позволяет изменить состав газовой среды в области горения и обезопасить металл заготовок от окисления. Электрическая дуга в таком случае протекает по парам металла и ионам флюсовой присадки. Дуга, которая горит в среде защитных газов, протекает по ионам этого газа и парам металла. Это также позволяет предотвратить окисление деталей, а, следовательно, повысить надежность образуемого соединения.

Электрическая дуга различается по роду подводимого тока — переменный или постоянный — и по продолжительности горения — импульсная или же стационарная. Кроме того, дуга может иметь прямую или же обратную полярность.

Сварочный аппарат дуга

По типу используемого электрода различают неплавящиеся и плавящиеся. Применение того или иного электрода напрямую зависит от характеристик, которыми обладает сварочный аппарат. Дуга, возникающая при использовании неплавящегося электрода, как видно из названия, не деформирует его. При сварке плавящимся электродом ток дуги расплавляет материал и он наплавляется на исходную заготовку.

Дуговой промежуток можно условно разделить на три характерных участка: прикатодный, прианодный, а также ствол дуги. При этом последний участок, т.е. ствол дуги, обладает наибольшей длиной, однако, характеристики дуги, а также возможность ее возникновения определяются именно околоэлектродными областями.

В целом же, характеристики, которыми обладает электрическая дуга, можно объединить в следующий список:

Сварочная дуга

1. Длина дуги. Имеется в виду суммарное расстояние прикатодной и прианодной области, а также ствола дуги.

2. Напряжение дуги. Состоит из суммы падений напряжений на каждой из областей: ствол, прикатодная и прианодная. При этом изменение напряжения в околоэлектродных областях значительно больше, чем в оставшейся области.

3. Температура. Электрическая дуга в зависимости от состава газовой среды, материала электродов и плотности тока может развивать температуру вплоть до 12 тысяч градусов Кельвина. Тем не менее, подобные пики расположены не по всей плоскости торца электрода. Поскольку даже при самой лучшей обработке на материале токопроводящей части имеются различные неровности и бугорки, благодаря которым возникает множество разрядов, которые воспринимаются как один. Конечно же, температура дуги во многом зависит от среды, в которой она горит, а также от параметров подводимого тока. К примеру, если увеличить величину тока, то, соответственно, увеличится и значение температуры.

И, наконец, вольт-амперная характеристика или ВАХ. Представляет собой зависимость напряжения от длины и величины тока.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *