Site Loader

Содержание

Холла эффект — это… Что такое Холла эффект?

Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также Холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Э. Холлом в 1879 году в тонких пластинках золота.

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через металлический брус в слабом магнитном поле B течет электрический ток под действием напряженности E. Магнитное поле будет отклонять носители заряда (для определенности электроны) от их движения вдоль или против электрического поля к одной из граней бруса. При этом критерием малости будет служить условие, что при этом электрон не начнет двигаться по спирали.

Таким образом, сила Лоренца приведет к накоплению отрицательного заряда возле одной грани бруска и положительного возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов

E1 не скомпенсирует магнитную составляющую силы Лоренца: eE_1=evB \Rightarrow E=vB Скорость электронов v можно выразить через плотность тока: j=nev \Rightarrow v={j \over ne}, где n — концентрация носителей заряда. Тогда E_{1}= {1 \over ne}jB.

Коэффициент R_H={1 \over ne}

пропорциональности между E1 и jB называется коэффициентом (константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их тип для большого числа металлов. Для некоторых металлов (в сильных полях), таких как алюминий, цинк, железо, кобальт, наблюдается положительный знак RH, что объясняется в полуклассической и квантовой теориях твердого тела.

Аномальный эффект Холла

Случай появления напряжения (электрического поля) в образце перпендикулярного направлению пропускаемого через образец тока, наблюдающегося в отсутствие приложенного постоянного магнитного поля, то есть явление полностью аналогичное

эффекту Холла, но наблюдающееся без внешнего постоянного магнитного поля — называется Аномальный эффект Холла.

Необходимым условием для наблюдения аномального эффекта Холла является нарушение инвариантности по отношению к обращению времени в системе. Например, аномальный эффект Холла может наблюдаться в образцах с намагниченностью.

Датчики на основе эффекта Холла получили очень большое распространение в вентильных двигателях (сервомоторах). Они закрепляются непосредственно на статоре двигателя и выступают в роли ДПР (датчика положения ротора). ДПР реализует обратную связь по положению ротора, выполняет ту же функцию, что и коллектор в ДПТ.

Квантовый эффект Холла

В сильных магнитных полях в плоском проводнике (то есть в квази-двумерном электронном газе) в системе начинают сказываться квантовые эффекты, что приводит к квантовому эффекту Холла: квантованию холловского сопротивления. В ещё более сильных магнитных полях проявляется дробный квантовый эффект Холла, который связан с кардинальной перестройкой внутренней структуры двумерной электронной жидкости.

Магнитосопротивление

Холл проводил опыты в надежде обнаружить возрастание сопротивления проводника в магнитном поле, но в слабых полях не зарегистрировал его. Также оно не следует из теории металлов Друде, расчеты по которой приводились выше. Однако при более строгих расчетах и в сильных полях магнитосопротивление проявляется достаточно хорошо.

Применение

R_H={1 \over ne}

Датчик Холла, используемый для измерения силы тока в проводнике.

Эффект Холла, в некоторых случаях, позволяет определить тип носителей заряда (электронный или дырочный) в металле или полупроводнике, что делает его незаменимым методом исследования свойств полупроводников.

На основе эффекта Холла работают датчики Холла: приборы, измеряющие напряжённость магнитного поля.

См. также

Ссылки

  • Эффект Холла — описание на Effects.ru.
  • Абрикосов А.А. Основы теории металлов. М., «Наука», главная редакция физико-математической литературы. — 1987.
  • Н. Ашкрофт, Н. Мермин. Физика твердого тела.

Wikimedia Foundation. 2010.

Эффект Холла — это… Что такое Эффект Холла?

Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота.

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через металлический брус в слабом магнитном поле течёт электрический ток под действием напряжённости . Магнитное поле будет отклонять носители заряда (для определённости электроны) от их движения вдоль или против электрического поля к одной из граней бруса. При этом критерием малости

[1] будет служить условие, что при этом электрон не начнёт двигаться по циклоиде.

Hall-Effect-diagram.svg

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов не скомпенсирует магнитную составляющую силы Лоренца:

Скорость электронов можно выразить через плотность тока:

где  — концентрация носителей заряда. Тогда

Коэффициент пропорциональности между и называется коэффициентом (или константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их тип для большого числа металлов. Для некоторых металлов (например, таких, как свинец, цинк, железо, кобальт, вольфрам), в сильных полях наблюдается положительный знак , что объясняется в полуклассической и квантовой теориях твёрдого тела.

Аномальный эффект Холла

Случай появления напряжения (электрического поля) в образце, перпендикулярного направлению пропускаемого через образец тока, наблюдающегося в отсутствие приложенного постоянного магнитного поля (то есть явление, полностью аналогичное эффекту Холла, но наблюдающееся без внешнего постоянного магнитного поля), называется аномальным эффектом Холла.

Необходимым условием для наблюдения аномального эффекта Холла является нарушение инвариантности по отношению к обращению времени в системе. Например, аномальный эффект Холла может наблюдаться в образцах с намагниченностью[2].

Квантовый эффект Холла

В сильных магнитных полях в плоском проводнике (то есть в квазидвумерном электронном газе) в системе начинают сказываться квантовые эффекты, что приводит к появлению квантового эффекта Холла: квантованию холловского сопротивления. В ещё более сильных магнитных полях проявляется дробный квантовый эффект Холла, который связан с кардинальной перестройкой внутренней структуры двумерной электронной жидкости.

Спиновый эффект Холла

В случае отсутствия магнитного поля в немагнитных проводниках может наблюдаться отклонение носителей тока с противоположными направлениями спинов в разные стороны перпендикулярно электрическому полю. Это явление, получившее название спинового эффекта Холла, было теоретически предсказано Дьяконовым и Перелем в 1971 году. Говорят о внешнем и внутреннем спиновых эффектах. Первый из них связан со спин-зависимым рассеянием, а второй — со спин-орбитальным взаимодействием.

Магнетосопротивление

Эдвин Холл проводил опыты в надежде обнаружить возрастание сопротивления проводника в магнитном поле, но в слабых полях не зарегистрировал его. Также оно не следует из теории металлов Друде, расчёты по которой приводились выше. Однако при более строгих расчётах и в сильных полях магнетосопротивление проявляется достаточно хорошо.

Применение

R_H Датчик Холла, используемый для измерения силы тока в проводнике. В отличие от трансформатора тока, измеряет также и постоянный ток.

Эффект Холла, в некоторых случаях, позволяет определить тип носителей заряда (электронный или дырочный) в металле или полупроводнике, что делает его достаточно хорошим методом исследования свойств полупроводников.

На основе эффекта Холла работают датчики Холла: приборы, измеряющие напряжённость магнитного поля. Датчики Холла получили очень большое распространение в бесколлекторных, или вентильных, электродвигателях (сервомоторах). Датчики закрепляются непосредственно на статоре двигателя и выступают в роли ДПР (датчика положения ротора). ДПР реализует обратную связь по положению ротора, выполняет ту же функцию, что и коллектор в коллекторном ДПТ.

Также на основе эффекта Холла работают некоторые виды ионных реактивных двигателей.

См. также

Примечания

  1. Критерий малости — внешние воздействия не разрушают присущих физической системе внутренних свойств, не осуществляют «насилия» над системой.
  2. Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald and N. P. Ong Anomalous Hall effect (англ.) // Rev. Mod. Phys.. — 2010. — В. 2. — Т. 82. — С. 1539–1592.

Литература

  • Абрикосов А. А. Основы теории металлов. — Москва: «Наука», главная редакция физико-математической литературы, 1987. — 520 с. — ISBN нет, ББК 22.37, УДК 539.21 (075.8)
  • Ашкрофт Н., Мермин Н. Физика твердого тела. — «Мир», 1979. — ISBN нет

Ссылки

Эффект Холла

      Одним из проявлений магнитной составляющей силы Лоренца в веществе служит эффект, обнаруженный в 1879 г. американским физиком Э.Г. Холлом (1855–1938). Эффект состоит в возникновении на боковых гранях проводника с током, помещенного в поперечное магнитное поле, разности потенциалов, пропорциональной величине тока I и индукции магнитного поля В.

      Рассмотрим эффект, обусловленный действием лоренцевой силы  на свободные заряды в проводнике. Представим себе проводник с током I в виде плоской ленты, расположенной в магнитном поле с индукцией , направленной от нас (рис. 2.19).

      В случае изображенном на рис. 2.19, а, верхняя часть проводника будет заряжаться отрицательно, в случае 2.19, б – положительно.

а                                                                  б

Рис. 2.19

      Это позволяет экспериментально определить знак носителя заряда в проводнике.

      При равной концентрации носителей заряда обоих знаков возникает холловская разность потенциалов, если различна подвижность, т.е. дрейфовая скорость носителей заряда.

      Подсчитаем величину холловской разности потенциалов (Uх).

      Обозначим: Ex – напряженность электрического поля, обусловленного ЭДС Холла,  h – толщина ленты проводника.

  ,  (2.10.1)  

      Перераспределение зарядов прекратится, когда сила qEx уравновесит лоренцеву силу, т.е.

   или   

      Плотность тока   , отсюда   .  Тогда .

      Подставим Ex в (2.10.1) и найдем Ux:

  ,  (2.10.2)  

где  – коэффициент Холла.

      Исследования ЭДС Холла привели к удивительным выводам. Металлы могут обладать проводимостью р-типа (Zn, Cd – у них дырки более подвижные, чем электроны). Это металлы с чуть перекрывающимися знаками, т.е. полуметаллы.

      Из формулы (2.10.2) можно найти число носителей заряда:

  ,  (2.10.3)  

      Итак, измерение холловской разности потенциалов позволяет определить:

·     знак заряда и тип носителей;

·     количество носителей.

Рис 2.20

      На рисунке 2.20 показана установка для исследования магнитного поля длинного соленоида с помощью датчика Холла.


Что такое эффект Холла-полное описание

Эффектом Холла называют явление возникновения поперечных разностей потенциалов (также называемых холловским напряжением) при помещении проводников с постоянным током в магнитные поля.

Если в магнитном поле с определенной индукцией разместить электронный полупроводник или проводник, по проводнику пустить электрический ток определенной плотности, то на электроны, которые передвигаются с конкретной скоростью в магнитных полях, будет действовать сила Лоренца, отклоняя их в определенную сторону.

Что такое эффект Холла

Магнетосопротивление

Эдвин Холл проводил исследования в надежде обнаружить повышение сопротивления проводника в магнитных полях, но в слабом поле не зарегистрировал его.

Магнетосопротивление не следует из теории металлов Друде. Однако при более строгом расчёте и в сильном поле магнетосопротивление достаточно хорошо проявляется.

Квантовый эффект Холла

В сильном магнитном поле в плоских проводниках (то есть в квазидвумерных электронных газах) в системе начинает сказываться квантовый эффект, что приводит к проявлению квантового эффект Холла — квантованию холловского сопротивления.

В сильном магнитном поле появляется дробный квантовый эффект Холла, с которым связана кардинальная перестройка внутренней структуры двумерных электронных жидкостей.

Аномальный эффект Холла

Пример возникновения напряжения в образцах, перпендикулярного направлению пропускаемых токов через образец, наблюдающегося в отсутствие приложенных постоянных магнитных полей. Явление полностью совпадает с эффектом Холла, но наблюдается без внешних постоянных магнитных полей.

Для наблюдения аномального эффекта необходимо нарушение инвариантности в отношении обращения времени в системе. Аномальный эффект Холла нередко наблюдаться в образце с намагниченностью.

Спиновый эффект Холла

В случаях отсутствия магнитных полей в немагнитном проводнике могут наблюдаться отклонения носителя тока в разные стороны с противоположным направлением спинов перпендикулярно электрическим полям.

Подобное явление получило определение спинового эффекта Холла, было предсказано теоретически Перелем и Дьяконовым в 1971 году. Говорят о внешних и внутренних спиновых эффектах. Внешние связаны со спин-зависимым рассеянием, а внутренние — со спин-орбитальным взаимодействием.

Применение

Датчики Холла используются для измерения силы постоянного тока в проводниках.

Эффект Холла допускает определение концентрации и подвижности носителей зарядов, а в некоторых случаях и типы носителей зарядов (дырки или электроны) в металлах или полупроводниках, что делает его хорошим методом изучения свойств полупроводников.

На основе эффекта Холла работает датчик Холла — прибор, измеряющий напряжённость магнитных полей. карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Эффект Холла • Джеймс Трефил, энциклопедия «Двести законов мироздания»

Электрический ток при его протекании через металл в присутствии магнитного поля производит электрическое напряжение, перпендикулярное направлению и самого тока, и силовых линий магнитного поля.

При движении электрического заряда в магнитном поле на него воздействует отклоняющая сила. Именно на этом принципе основана работа таких экспериментальных установок, как синхрофазотрон, широко использующихся в исследованиях в области физики элементарных частиц: в них заряженные частицы оказываются пойманными в тороидальную (в форме бублика) магнитную ловушку и летают по кругу внутри неё. В малых масштабах этот эффект используется в устройстве микроволновой печи — в ней электроны, циркулируя в магнитном поле, производят сверхвысокочастотное излучение, разогревающее пищу.

Представьте, что на столе перед вами лежит кусок проводящей проволоки, а магнитное поле направлено перпендикулярно плоскости крышки стола. Если по проволоке пропустить ток, магнитное поле заставит заряды внутри провода отклоняться в одну сторону (вправо или влево от направления тока, в зависимости от ориентации магнитного поля и полярности зарядов). Смещаясь от направления прямолинейного движения внутри проводника, заряды будут скапливаться в приграничной зоне, пока силы взаимного электростатического отталкивания между ними, возникающие в силу закона Кулона, не уравновесят отклоняющую силу воздействия магнитного поля на ток. После этого ток снова потечёт прямолинейно, однако на проводнике возникнет разность электрических потенциалов в плоскости, перпендикулярной как направлению тока, так и направлению силовых линий магнитного поля, вызванная перераспределением электрических зарядов в плоскости сечения проводника, а величина этой разности потенциалов будет пропорциональна силе тока и напряженности магнитного поля.

Первым поперечное электрическое напряжение, возникающее под воздействием внешнего магнитного поля, по вышеописанной схеме измерил в 1879 году Эдвин Холл. Он осознал, что направление вектора напряжения будет зависеть от того, какие заряды — отрицательные или положительные — являются носителем тока. И, в результате проведённых опытов, Холл первым в мире наглядно продемонстрировал, что электрический ток в металлах создаётся направленным движением отрицательно заряженных электронов. А до этого опыта учёные сомневались и относительно полярности зарядов-носителей тока, и относительно того, воздействует ли магнитное поле на заряженные частицы внутри проводника или на саму неподвижную структуру проводника.

Прошло более столетия после экспериментов Холла, и германский физик Клаус фон Клитцинг (Klaus von Klitzing, р. 1943) открыл квантово-механический аналог эффекта Холла, за что и был в 1985 году удостоен Нобелевской премии по физике.

Эффект Холла Википедия

У этого термина существуют и другие значения, см. Холл.

Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота.

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через проводящий брусок в слабом магнитном поле с индукцией B{\displaystyle B} течёт электрический ток с плотностью j{\displaystyle j} под действием напряжённости E{\displaystyle E}. Магнитное поле будет отклонять носители заряда к одной из граней бруса от их движения вдоль или против электрического поля. При этом критерием малости[1] будет служить условие, что при этом носители заряда не начнут двигаться по циклоиде.

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1{\displaystyle E_{1}} не скомпенсирует силу Лоренца:

eE1=evB⇒E1=vB.{\displaystyle eE_{1}=evB\Rightarrow E_{1}=vB.}
где e{\displaystyle e} — электрический заряд электрона.

Скорость электронов v{\displaystyle v} можно выразить через плотность тока j{\displaystyle j}:

j=nev⇒v=jne,{\displaystyle j=nev\Rightarrow v={\frac {j}{ne}},}
где n{\displaystyle n} — концентрация носителей заряда. Тогда
E1=1nejB.{\displaystyle E_{1}={\frac {1}{ne}}jB.}

Коэффициент RH=1ne{\displaystyle R_{H}={\frac {1}{ne}}} пропорциональности между E1{\displaystyle E_{1}} и jB{\displaystyle jB} называется коэффициентом (или константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определить знак их заряда для большого числа металлов и полупроводников.

Несмотря на то, что носителями заряда в металлах являются электроны, имеющие отрицательный заряд, для некоторых металлов — например, таких, как свинец, цинк, железо, кобальт, вольфрам в достаточно сильном магнитном поле наблюдается положительный знак константы Холла RH{\displaystyle R_{H}}, что объясняется в полуклассической и квантовой теориях твёрдого тела.

Аномальный эффект Холла

Случай появления напряжения (электрического поля) в образце, перпендикулярного направлению пропускаемого через образец тока, наблюдающегося в отсутствие приложенного постоянного магнитного поля (то есть явление, полностью аналогичное эффекту Холла, но наблюдающееся без внешнего постоянного магнитного поля), называется аномальным эффектом Холла.

Необходимым условием для наблюдения аномального эффекта Холла является нарушение инвариантности по отношению к обращению времени в системе. Например, аномальный эффект Холла может наблюдаться в образцах с намагниченностью[2].

Квантовый эффект Холла

В сильных магнитных полях в плоском проводнике (то есть в квазидвумерном электронном газе) в системе начинают сказываться квантовые эффекты, что приводит к появлению квантового эффекта Холла: квантованию холловского сопротивления. В ещё более сильных магнитных полях проявляется дробный квантовый эффект Холла, который связан с кардинальной перестройкой внутренней структуры двумерной электронной жидкости.

Спиновый эффект Холла

В случае отсутствия магнитного поля в немагнитных проводниках может наблюдаться отклонение носителей тока с противоположными направлениями спинов в разные стороны перпендикулярно электрическому полю. Это явление, получившее название спинового эффекта Холла, было теоретически предсказано Дьяконовым и Перелем в 1971 году. Говорят о внешнем и внутреннем спиновых эффектах. Первый из них связан со спин-зависимым рассеянием, а второй — со спин-орбитальным взаимодействием.

Магнетосопротивление

Эдвин Холл проводил опыты в надежде обнаружить возрастание сопротивления проводника в магнитном поле, но в слабых полях не зарегистрировал его. Также оно не следует из теории металлов Друде, расчёты по которой приводились выше. Однако при более строгих расчётах и в сильных полях магнетосопротивление проявляется достаточно хорошо.

Применение

Датчик Холла, используемый для измерения силы тока в проводнике. В отличие от трансформатора тока, измеряет также и постоянный ток.

Эффект Холла позволяет определить концентрацию и подвижность носителей заряда, а в некоторых случаях − тип носителей заряда (электроны или дырки) в металле или полупроводнике, что делает его достаточно хорошим методом исследования свойств полупроводников (см. Метод ван дер Пау).

На основе эффекта Холла работают датчики Холла — приборы, измеряющие напряжённость магнитного поля. Датчики Холла получили очень большое распространение в бесколлекторных, или вентильных, электродвигателях (сервомоторах). Датчики закрепляются непосредственно на статоре двигателя и выступают в роли датчика положения ротора (ДПР), который реализует обратную связь по положению ротора[3] и выполняет ту же функцию, что и коллектор в коллекторном ДПТ.

Датчики Холла применяются:

См. также

Примечания

  1. ↑ Критерий малости — внешние воздействия не разрушают присущих физической системе внутренних свойств, не осуществляют «насилия» над системой.
  2. Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald and N. P. Ong. Anomalous Hall effect (англ.) // Rev. Mod. Phys.. — 2010. — Vol. 82, iss. 2. — P. 1539—1592.
  3. ↑ Датчик Холла: применение в автомобиле (неопр.). kojieco.ru. Дата обращения 23 сентября 2019.

Литература

  • Абрикосов А. А. Основы теории металлов. — Москва: «Наука», главная редакция физико-математической литературы, 1987. — 520 с. — ISBN нет, ББК 22.37, УДК 539.21 (075.8).
  • Ашкрофт Н., Мермин Н. Физика твердого тела. — «Мир», 1979.

Ссылки

Эффект Холла — Википедия. Что такое Эффект Холла

Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота.

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через проводящий брусок в слабом магнитном поле с индукцией B{\displaystyle B} течёт электрический ток с плотностью j{\displaystyle j} под действием напряжённости E{\displaystyle E}. Магнитное поле будет отклонять носители заряда к одной из граней бруса от их движения вдоль или против электрического поля. При этом критерием малости[1] будет служить условие, что при этом носители заряда не начнут двигаться по циклоиде.

Hall-Effect-diagram.svg

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1{\displaystyle E_{1}} не скомпенсирует силу Лоренца:

eE1=evB⇒E1=vB.{\displaystyle eE_{1}=evB\Rightarrow E_{1}=vB.}
где e{\displaystyle e} — электрический заряд эдектрона.

Скорость электронов v{\displaystyle v} можно выразить через плотность тока j{\displaystyle j}:

j=nev⇒v=jne,{\displaystyle j=nev\Rightarrow v={\frac {j}{ne}},}
где n{\displaystyle n} — концентрация носителей заряда. Тогда
E1=1nejB.{\displaystyle E_{1}={\frac {1}{ne}}jB.}

Коэффициент RH=1ne{\displaystyle R_{H}={\frac {1}{ne}}} пропорциональности между E1{\displaystyle E_{1}} и jB{\displaystyle jB} называется коэффициентом (или константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их знак заряда для большого числа металлов и полупроводников.

Несмотря на то, что носителями заряда в металлах являются электроны, имеющие отрицательный заряд, для некоторых металлов — например, таких, как свинец, цинк, железо, кобальт, вольфрам в достаточно сильном магнитном поле наблюдается положительный знак константы Холла RH{\displaystyle R_{H}}, что объясняется в полуклассической и квантовой теориях твёрдого тела.

Аномальный эффект Холла

Случай появления напряжения (электрического поля) в образце, перпендикулярного направлению пропускаемого через образец тока, наблюдающегося в отсутствие приложенного постоянного магнитного поля (то есть явление, полностью аналогичное эффекту Холла, но наблюдающееся без внешнего постоянного магнитного поля), называется аномальным эффектом Холла.

Необходимым условием для наблюдения аномального эффекта Холла является нарушение инвариантности по отношению к обращению времени в системе. Например, аномальный эффект Холла может наблюдаться в образцах с намагниченностью[2].

Квантовый эффект Холла

В сильных магнитных полях в плоском проводнике (то есть в квазидвумерном электронном газе) в системе начинают сказываться квантовые эффекты, что приводит к появлению квантового эффекта Холла: квантованию холловского сопротивления. В ещё более сильных магнитных полях проявляется дробный квантовый эффект Холла, который связан с кардинальной перестройкой внутренней структуры двумерной электронной жидкости.

Спиновый эффект Холла

В случае отсутствия магнитного поля в немагнитных проводниках может наблюдаться отклонение носителей тока с противоположными направлениями спинов в разные стороны перпендикулярно электрическому полю. Это явление, получившее название спинового эффекта Холла, было теоретически предсказано Дьяконовым и Перелем в 1971 году. Говорят о внешнем и внутреннем спиновых эффектах. Первый из них связан со спин-зависимым рассеянием, а второй — со спин-орбитальным взаимодействием.

Магнетосопротивление

Эдвин Холл проводил опыты в надежде обнаружить возрастание сопротивления проводника в магнитном поле, но в слабых полях не зарегистрировал его. Также оно не следует из теории металлов Друде, расчёты по которой приводились выше. Однако при более строгих расчётах и в сильных полях магнетосопротивление проявляется достаточно хорошо.

Применение

R_{H} Датчик Холла, используемый для измерения силы тока в проводнике. В отличие от трансформатора тока, измеряет также и постоянный ток.

Эффект Холла позволяет определить концентрацию и подвижность носителей заряда, а в некоторых случаях − тип носителей заряда (электроны или дырки) в металле или полупроводнике, что делает его достаточно хорошим методом исследования свойств полупроводников (см. Метод ван дер Пау).

На основе эффекта Холла работают датчики Холла — приборы, измеряющие напряжённость магнитного поля. Датчики Холла получили очень большое распространение в бесколлекторных, или вентильных, электродвигателях (сервомоторах). Датчики закрепляются непосредственно на статоре двигателя и выступают в роли датчика положения ротора (ДПР), который реализует обратную связь по положению ротора и выполняет ту же функцию, что и коллектор в коллекторном ДПТ.

Датчики Холла применяются:

См. также

Примечания

  1. ↑ Критерий малости — внешние воздействия не разрушают присущих физической системе внутренних свойств, не осуществляют «насилия» над системой.
  2. Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald and N. P. Ong. Anomalous Hall effect (англ.) // Rev. Mod. Phys.. — 2010. — Vol. 82, iss. 2. — P. 1539—1592.

Литература

  • Абрикосов А. А. Основы теории металлов. — Москва: «Наука», главная редакция физико-математической литературы, 1987. — 520 с. — ISBN нет, ББК 22.37, УДК 539.21 (075.8).
  • Ашкрофт Н., Мермин Н. Физика твердого тела. — «Мир», 1979.

Ссылки

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *