Site Loader

Содержание

Ампер-единица измерения силы тока

Как называется единица измерения силы тока? Именно такой вопрос наиболее часто задают учителя в школе ученикам на уроках физики. Именно этому вопросу и посвящена настоящая статья.

Единица измерения силы тока – ампер, в России обозначается буквой А, аналогично ампер обозначается и на международном уровне.

Ампер является единицей измерения силы тока, получившей свое название в честь известного французского физика, математика и естествоиспытателя Андре Ампера, который ввел в физику понятие «электрический ток» и является автором Закона Ампера.

В первые, единица измерения ампер была принята в 1881 году на 1-ом Международном конгрессе электриков.

Определение ампера, которое используется в физике в настоящее время было установлено Международным комитетом мер и весов (МКМВ) в 1946 году и принято IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году.Ампер на ряду с метр, килограмм, секунда, кельвин, моль, кандела является одной из семи основных единиц Международной системы единиц (СИ).

В Российской Федерации допускаются к применению основные единицы СИ, производные единицы СИ и отдельные внесистемные единицы величин.

В соответствии с Постановлением Правительства РФ от 31 октября 2009 г. № 879 Об утверждении положения о единицах величин, допускаемых к применению в Российской Федерации», в Российской Федерации применяются единицы величин Международной системы единиц (СИ), принятые Генеральной конференцией по мерам и весам и рекомендованные к применению Международной организацией законодательной метрологии.

Также в Российской Федерации действует ГОСТ 8.417-2002, который устанавливает единицы физических единиц, применяемых в нашей стране, их наименование, обозначение и определение , в данном государственном стандарте также указана единица измерения электрического сопротивления Ом (Таблица №3 ГОСТ 8.417-2002).

Согласно указанным нормативно-правовым актам установлено официальное определение ампера, ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2•10^( -7) ньютона (Международный Комитет мер и весов (МКМВ), 1946 год, Резолюция 2, одобренная IX ГКМВ, 1948 год).

Стоит отметить , что сейчас физики обсуждают ревизию основных систем единиц с целью изменения определений основных единиц измерений, не является исключением и единица измерения ампер. Планируется, что ампер останется единицей силы электрического тока, но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X•10−19, когда он выражен единицей СИ c•А, что эквивалентно Кл.

Делается это для того чтобы определение базировалось на фундаментальных физических постоянных.

Каким прибором измеряется сила тока?

Сила тока измеряется прибором, который носит название – Амперметр.

Ампер в кроссворде и сканвордах.

Да-да, ампер не только единица измерения силы тока, но и регулярный участник множества кроссвордов и сканвордов.

Очень часто в кроссворде или сканворде можно встретить такой вопрос: «единица измерения силы электрического тока 5 букв». Правильный ответ, естественно: «Ампер».

Либо вопросы сканворда касаются физика Ампера : «имя физика ампера 5 букв». Правильный ответ: «Андре»

Физика 8 класс. Сила тока. Единицы силы тока :: Класс!ная физика

Физика 8 класс. СИЛА ТОКА

Направленное движение заряженных частиц называется электрическим током.

Условия существования электрического тока в проводнике:
1. наличие свободных заряженных частиц ( в металлическом проводнике — свободных электронов),
2. наличие электрического поля в проводнике
(электрическое поле в проводнике создается источниками тока.).

Электрический ток имеет направление.
За направление тока принимают направление движения положительно заряженных частиц.

Сила тока ( I )- скалярная величина, равная отношению заряда q , прошедшего через поперечное сечение проводника, к промежутку времени t , в течение которого шел ток.

Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени.

Единица измерения силы тока в системе СИ:
[I] = 1 A (ампер)

В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух поводников с током:

……………………

при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях отталкиваются.

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1м, расположенные на растоянии 1м друг от друга, взаимодействуют с силой 0,0000002 Н.

АНДРЕ-МАРИ АМПЕР
(1775 — 1836)
— французский физик и математик

— ввел такие термины, как электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток и т. д.;

— предположил, что, вероятно, возникнет новая наука об общих закономерностях процессов управления и предложил назвать ее «кибернетикой»;
— открыл явление механического взаимодействия проводников с током и правило определения направления тока;
— имеет труды во многих областях наук: ботанике, зоологии, химии, математике, кибернетике;

— его именем названа единица измерения силы тока — 1 Ампер.

ЭЛЕКТРИЧЕСКИЕ ТОКИ В ПРИРОДЕ.

Мы живем в океане электрических разрядов, создаваемых машинами, станками и людьми. Эти разряды — кратковременные электрические токи не так мощны, и мы их часто не замечаем. Но они все-таки существуют и могут принести немало вреда!

Что такое молния?

В результате движения и трения друг о друга воздушные слои в атмосфере электризуются. В облаках с течением времени скапливаются большие заряды. Они-то и являются причиной молний.
В момент, когда заряд облака станет большим, между его частями, имеющими противоположные по знаку заряды, проскакивает мощная электрическая искра – молния. Молния может образовываться между двумя соседними облаками и между облаком и поверхностью Земли. В этом случае под действием электрического поля отрицательного заряда нижней части облака поверхность Земли под облаком электризуется положительно. В результате молния ударяет в землю.

Природа молнии стала проясняться после исследований, проведенных в XVIII столетии русскими учеными М.В.Ломоносовым и Г.Рихманом и американским ученым Б.Франклином.

НЕУЖЕЛИ ?

Обычно молнию рисуют бьющей сверху вниз. Между тем в действительности свечение
начинается снизу и только затем распространяется по вертикальному каналу.
Молния – точнее ее видимая фаза, оказывается, бьет снизу вверх!

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ!

1. Как уберечься от молнии?

( или устройство громоотвода)
2. Эта загадочная молния!

А ЕСТЬ ЛИ ГРОМООТВОД У ТЕБЯ НА ДАЧЕ?

Одним из первых в мире громоотводов (молниеотводов) водрузил над крестом своего храма сельский священник из Моравии по имени Прокоп Дивиш, крестьянский сын, ученый и изобретатель.
Это было в июне 1754 года.
___

Первый в России молниеотвод появился в 1756 г. над Петропавловским собором в Петербурге.
Он был сооружен после того, как молния дважды ударила в шпиль собора и подожгла его.

Устали? — Отдыхаем!

Единицы измерения силы тока — Справочник химика 21

    Единицей измерения количества электричества является кулон — количество электричества, проходящее через проводник при токе силой 1 а за время 
[c.425]

    Магнитодвижущая (намагничивающая) сила Р — величина, которая характеризует намагничивающее действие электрического тока. Если магнитный контур замкнут, то магнитодвижущая сила (МДС) равна Р = Ш, т.е. произведению тока I в обмотке на ее число витков (рис. 1.27). Единица измерения МДС — ампер-виток. [c.248]


    Международная система (СИ) включает шесть основных единиц измерения длины — метр, массы — килограмм, времени — секунда, температуры — градус Кельвина, силы электрического тока — ампер и силы света — свеча. Кроме того, в эту систему входят две дополнительные единицы (плоского угла — радиан и телесного угла — стерадиан) и 27 важнейших производных. 
[c.5]

    Единицей электрического сопротивления в СИ и практической единицей измерения сопротивления является ом — это электрическое сопротивление линейного проводника, в котором разность электрических потенциалов, равная 1 в, вызывает ток силой в 1 й (1 ед. эл. сопр. СГС = 9- 10 ом) .  [c.388]

    Ввиду того что законы Фарадея принадлежат к точным законам, явления электролиза положены в основу метода измерения силы тока и определения практической единицы такой силы — ампера. 

[c.74]

    Единицей измерения силы тока служит ампер (1 А = 1 Кл/с). Ток в сплощной среде удобнее характеризовать его плотностью I — количеством электричества, перемещаемого за единицу времени через единицу площади, ориентированной перпендикулярно к направлению тока в проводящей среде (размерность — А/ м ). [c.654]

    Электрическая энергия определяется тремя факторами — напряжением, силой тока и временем его протекания. Единицы измерения электрической энергии по размерности совпадают с единицами измерения тепловой и механической энергии. Все 36 [c.36]

    Необходимо условиться относительно единицы измерения количества теплоты. В настоящее время за единицу количества теплоты принят джоуль, который равен работе, производимой силой в 1 ньютон при перемещении точки ее приложения на 1 -метр по направлению этой силы. С другой стороны, джоуль можно охарактеризовать как работу, совершаемую электрическим током мощностью в 1 ватт в течение 1 с. Наконец, следует отметить, еще одно определение джоуля, связанное непосредственно с представлением о количестве теплоты. Джоуль — это такое количество теплоты, которое необходимо для нагревания 1/4,186 г воды на ГС в интервале температур от 14,65 до 15,65°С. Последнее определение иллюстрирует взаимосвязь джоуля с калорией, которая в настоящее время для определения количества теплоты не рекомендуется. Следовательно, единицей теплоемкости для принятой единицы количества вещества является Дж/К. 

[c.29]

    Основной электрической единицей в Международной системе единиц (СИ) является ампер (а) — сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1. и один от другого в вакууме, вызывал бы между этими проводниками силу, равную 2-10 н (1а = 0,1 абс. эл. ед.). Ампер одновременно является практической единицей измерения силы тока. [c.364]


    Единицей измерения силы тока является ампер (а). 1 а — это ток, который переносит 1 кулон электричества за 1 сек. При прохождении через раствор нитрата серебра тока силой 1 а из раствора выделяется 1,1180 мг серебра в 1 сек. 
[c.199]

    Единицей тока является ампер, численно равный величине постоянного тока, вызывающего появление силы в 2-10 ньютона между двумя прямыми параллельными проводниками на участке длиной в один метр, по которым течет этот ток. При этом проводники теоретически должны иметь бесконечную длину, пренебрежимо малое поперечное сечение и размещены на расстоянии 1 м друг от друга в вакууме. Для точного измерения силы тока используются электрические весы, которые позволяют производить замеры с погрешностью менее 4-10 %. Такие измерения возможны лишь в специализированных лабораториях. В обычных условиях стандартные значения тока получают на основе закона Ома, используя стандарты напряжения и сопротивления. 

[c.60]

    Электрический ток, проходя по катушке, создает магнитное поле. Величина его характеризуется силой, с которой поле воздействует на другое магнитное поле (например, на проводник длиной 1 м, по которому проходит ток силой 1 А). Численную величину этой силы принято условно обозначать количеством магнитных силовых линий, проходящих через площадь сечения катушки и называемую потоком магнитной индукции, или магнитным потоком (обозначается Ф, единица измерения — Вебер). Магнитный поток, проходящий через единицу поверхности (плотность потока), называется магнитной индук- [c.101]

    Единицей измерения силы электрического тока служит ампер (а) это такая сила тока, при которой через поперечное сечение проводника за каждую секунду проходит количество электричества, равное одному кулону. [c.172]

    При работе на таких приборах, когда измеряют большие оптические плотности, ошибка dD от неточности измерения силы тока возрастает настолько, что снова становится преобладающей. На рис. 121 и 122 пунктирной линией показан тот случай, когда величина dD постоянна до оптической плотности, равной единице. В этом случае относитель- [c.228]

    При этом сила направлена перпендикулярно плоскости, в которой находятся проводник и вектор индукции, в соответствии с известным из физики правилом левой руки (если расположить левую руку так, чтобы магнитное поле входило в ладонь, а пальцы направить вдоль направления тока, то отогнутый большой палец укажет направление силы). Единица измерения магнитной индукции в системе единиц СИ — тесла (Тл). [c.87]

    Единиц ей измерения силы тока служит ампер (а). [c.22]

    Своеобразие роста электролитических осадков металлов затрудняет измерение илотности тока, иными словами, скорости электрохимического процесса. Здесь необходимо различать кажущуюся плотность тока, т. е. силу тока, приходящуюся на единицу геометрической (видимой) поверхности электрода, и истинную плотность тока, равную отношению силы тока к активной поверхности, т. е. к действительной поверхности роста осадка. В процессе образования катодного осадка при неизменной кажущейся илотности тока истинная илотность тока может меняться. [c.455]

    В техно-химических расчетах используются, главным образом, только механические, тепловые и электрические параметры свойств и состояния тела (вещества) длина, площадь, объем, масса, вес, сила, давление, мощность, работа, температура, теплоемкость, сила тока, напряжение и т. п. Для измерения и численного выражения этих параметров приняты следующие единицы измерения  [c.7]

    В технохимических расчетах используются главным образом только механические, тепловые и электрические параметры свойств и состояния тела (вещества) длина, площадь, объем, масса, давление, работа температура, теплоемкость, сила тока и т. п. Для измерения и численного выражения этих параметров в СССР с 1/1-1963 г. введена в действие Международная система единиц из.мерения (ГОСТ 9867—61), обозначаемая символом 51 (в русском обозначении СИ). Основными единицами измерения этой системы являются  [c.8]

    При таком способе измерений отношение плеч k/h отличается от единицы не более чем на 20%, что сводит к минимуму погрешности опыта. Если концентрация растворов весьма мала, то минимальная сила тока наблюдается при перемещении подвижного контакта на некотором участке линейки. В этом случае находят границы участка и для расчета берут среднее значение. Зная константу сосуда, вычисляют удельную электрическую проводимость любого электролита по уравнению (XIV. 19). При очень малых концентрациях раствора электрическая проводимость воды становится сравнимой с таковой электролита. [c.192]

    Сравним мысленно прохождение электрического тока по проволоке с точением воды в трубке. Количество воды измеряется в литрах или кубических метрах количество электричества обычно измеряют в кулонах или эл.ст.ед. Скорость течения или поток воДы, т.е. количество ее, проходящее в данной точке трубки в единицу времени, измеряют в литрах в секунду или в кубических метрах в секунду силу электрического тока измеряют в амперах (кулонах в секунду) или в эл.ст.ед. в секунду. Скорость движения воды в трубке зависит от разности давления на концах трубки это давление выражается в килограммах на квадратны11 сантиметр. Сила электрического тока в проволоке зависит от электрической разности давления или от разности потенциалов (падения напряжения) между концами проволоки, обычно измеряемой в вольтах или эл.ст.ед. Единица измерения количества электричества (кулон) и единица измерения электрического потенциала (вольт) были приняты произвольно но международному соглашению. [c.57]


    В уравнение (16.12) мы обязаны ввести аналог плотности силы Ясно, что при отсутствии объемных сил (/ = 0) уравнение (16.12) сводится к (15.34). В последнем случае (при / = 0) задача о вихре скалярного поля в безграничной среде полностью эквивалентна задаче магнитостатики о магнитном поле в магнетике, созданном линейным током силы Ь (при надлежащем выборе единиц измерения). [c.261]

    Ом — это единица электрического сопротивления (размерность единицы измерения кг-м А» или В А» ), через которое при разности потенциалов 1 В протекает ток силой 1 А  [c.129]

    В дуге постоянного тока при большой силе тока (15—25 А) наилучшие условия для введения порошков достигались в том случае, если навеска анализируемой пробы (ЗЮг) в 1 г встряхивалась с амплитудой 0,31 мм, скорость потока газа-носителя равнялась 15 л/ч, а скорость потока инертного газа (Аг) — 30 л/ч [14]. Этими исследованиями было показано, что для введения в плазму наиболее подходят порошки с размером частиц ниже 35—40 мкм. При этих условиях максимальная интенсивность линии в дуге наблюдалась при скорости введения порошка 15 мг/мин. Относительные флюктуации количества вводимой в единицу времени пробы (за 2-минутный период измерения) составили 1—2%. [c.144]

    Если в стакан, содержащий раствор электролита, поместить два платиновых электрода и присоединить их к источнику электричества, то через раствор потечет ток. Сила его определяется как приложенным напряжением Е, так и сопротивлением Я той части раствора, которая заключена между электродами. Это отношение математически выражается законом Ома 1=Е1Я, где / —сила тока в амперах, —напряжение в вольтах и сопротивление в омах. Электропроводность Ь определяется как величина, обратная сопротивлению, так что 1 — Е1. Единицей измерения электропроводности является обратный ом ом или л[c.12]

    Количественное определение основано на измерении высоты полярографической волны, т. е. силы предельного тока. Чтобы понять это, обратим внимание на то обстоятельство, что по мере увеличения напряжения скорость восстановления ионов определяемого металла на катоде все возрастает и непосредственно прилегающий к катоду слой раствора все более и более обедняется этими ионами. В конце концов система достигнет такого состояния, при котором сколько ионов разряжается в единицу времени на катоде, ровно столько же их подходит к нему в результате диффузии из более отдаленных частей раствора. Начиная с этого момента, дальнейшее увеличение силы тока с возрастанием напряжения происходить уже не может. При этом и получается предельный ток, который именно вследствие его связи со скоростью диффузии называется иначе диффузионным. [c.538]

    Сущность метода. Э. д. с. гальванического элемента определяется непосредственно чувствительными измерительными приборами, последовательно с которыми включается большое и точно известное сопротивление. При включении измерительного прибора в сеть гальванического элемента необходимо, чтобы внешнее сопротивление сети было во много раз больше внутреннего. Тогда о напряжении между электродами элемента можно будет судить по силе тока. Подобная схема позволяет по изменению последней в цепи определять изменения э. д. с. испытуемого гальванического элемента. Шкала чувствительности прибора может быть отградуирована в милливольтах—милливольтметры в амперах — гальванометры в единицах измерения анализа, например в значениях pH, т. е. эти измерительные приборы выступают в роли индикаторов. [c.445]

    Основной стандартной единицей измерения электрических величин является ампер (а), служащий для выражения силы тока. [c.23]

    Международная система единиц СИ состоит из шести основных единиц (метра — для длины, килограмма — для массы, секунды — для времени, градуса Кельвина —для термодинамической температуры, ампера — для силы тока и свечи — для силы света), двух дополнительных единиц (радиана — для плоского угла, стерадиана — для телесного угла) и 27 важнейших производных единиц. В связи с тем, что система единиц СИ соответствует системе МКС, все недостающие производные и внесистемные единицы, допускаемые к применению, следует брать из государственных стандартов на единицы по отдельным видам измерения (ГОСТ 7664-61 Механические единицы , ГОСТ 8550-61 Тепловые единицы , ГОСТ 8849-58 Акустические единицы , ГОСТ 7932-56 Световые единицы и ГОСТ 8848-58 Единицы рентгеновского и гамма-излучений и радиоактивности ). [c.727]

    Электронный прибор для измерения э.д.с. является, по существу, автоматизированным вариантом компенсационной схемы (рис. IX.21). В контур включены исследуемый элемент (э.д.с. Ех), усилитель и Сопротивление обратной связи Яос, на котором выходной ток усилителя создает напряжение Ек, почти точно равное измеряемому Е и обратное по знаку. Появление ничтожно малой разности потенциалов между точками А и В усилителя вызывает изменение выходного тока, приближающее эту разность к нулю. Поэтому сила тока через источник э.д.с. ничтожно мала или, другими словами, входное сопротивление / вх прибора, очень велико, так как оно определяется произведением входного сопротивления усилителя без обратной связи (обычно 10 —10 Ом) на коэффициент усиления (10 —10 Ом),. вх может быть порядка 10 Ом, а сила тока через источник э. д. с. 10- — 10- А. Ясно, что кос выполняет роль той части реохорда, которая компенсирует э.д.с., но тут реохорд питается изменяющимся пропорционально э.д.с. током. Компенсация происходит практически мгновенно при подключении э.д.с., шкала миллиамперметра оцифровывается в единицах напряжения или в пропорциональных ему единицах логарифма активности иона pH, рЫа. [c.561]

    При амперометрическом титровании сигнализатор должен реагировать на определенную величину силы тока, которая может колебать-Рис. 87. Измерение силы тока, СЯ ОТ единиц ДО десятков микроам-проходящего через электроли- пер. Величина сопротивления цепи тическую ячейку, при помощи измерительных электродов в раз-………………….ных случаях может быть различной, часто эта величина не может быть более 1—2 ком. Применение для измерения в этих условиях чувствительных стрелочных и зеркальных гальванометоов возможно, но нерационально вследствие их малой надежности и неудобств в эксплуатации. Эти приборы рационально использовать лишь при наладке и проверке автоматов в лабораторных условиях. В качестве сигнализаторов целесообразно применение тех же приборов, что и при потенциометрическом титровании, т. е. лабораторных и автоматических потенциометров. [c.142]

    Таким образом, для названия одного и того же процесса были предложены два термина, причем авторы обоих терминов исходили из аналогии с потенцио- и кондуктометрией . Однако термин, предложенный Кольтгофом, нельзя считать правильным, на что впервые обратили наше внимание Гей ровский и Смолер. В самом деле, термин амперометрия неудачен по следующим причинам 1) измерение силы тока применяется в аналитической химии и в ряде других случаев, например при фотоколориметрии, термографии и т. п. 2) термин амперометрическое титрование не отражает того обстоятельства, что измерение силы тока в данном случае связано с явлением поляризации электродов в процессе электролиза. Кроме того, если говорить об аналогии с терминами по-тенциометрия и кондуктометрия , то следовало бы остановиться на термине куррентометрия (по выражению проф. Смолера), поскольку в основе этих терминов лежит название измеряемого электрического параметра, а не единицы измерения (с этой точки зрения неправильным является также термин кулонометрическое титрование). [c.11]

    Может быть не лишне сказать еще вкратце о способе, при помощи которого можно определять электрическую энергию и без измерения электродвижущей силы. С этой целью, например, элемент, находищийся в калориметре, замыкается очень большим внешним сопротивлением, по сравнению с которым можно пренебречь внутренним сопротивлением глемента. Затем электрическую энергию превращают в теплоту. Количество тепло ы, выделяемое в единицу времени, согласно закону Джоуля, равно WJ , где W—сопротинление, а J—сила тока. Путем измерения силы тока можно, зная сопротивление, определить электрическую энергию, лаваемую элементом в единицу времени, а затем уже легко вычис- [c.168]

    Колнчестиенное определение основано на измерении высоты полярографической полны, т. е. значении предельного тока. По мере увеличения напр 5жеиия скорость восстановления ионов определяемого металла на катоде непрерывно возраст,чет и непосредственно прилегающий к катоду слон раствора все более и более обедняется этими ионами. В конце концов система достигнет такого состояния, ири котором количество иоиов, разряжающихся в единицу времени на катоде, равно количеству ионов, которые подходят к катоду в результате диффузии нз более отдаленных частей раствора. Начиная с этого момента дальнейшее увеличение силы тока с [c.453]

    Законы Фарадея для стационарных токов абсолютно строги. На этих законах основывается очень точный метод измерения количества электричества путем измерения массы или объема реагирующего или выделяюн егося вещества (кулонометрия). Раньше с помощью законов Фарадея определяли единицу силы тока — Международный ампер — как силу неизменяю-щегося тока, который, проходя через водный раствор нитрата серебра, отлагает на катоде 1,1П800 мг серебра в секунду (в настоящее время в системе СИ дается другое определение ампера). [c.30]

    Удельное объемное электрическое сопротивление Ру — сопротивление между электродами, приложенными к противоположным граням единичного куба данного вещества выражается в системе СИ в ом-м илл в кратных и дольных от этой единицы — Том м, Гом м, ом-см и др.). Значение ру определяется наличием в полимере заряженных частиц и их подвижностью. При внесении полимера в постоянное поле ру увеличивается во времени вследствие поляризационных процессов (см. Диэлектрическая проницаемость). После установления стационарной поляризации образец характеризуется остаточным (т. е. не зависящим от времени) значением ру, к-рое определяется количеством свободных заряженных частиц в единице объема, строением полимера и темп-рой. Грубую оценку остаточного ру часто производят по значению силы тока, измеренной спустя 10 мин после подачи напряжения на образец. Значения ру 1Том-м ом-см) стеклообразных полимеров при 20 °С приведены ниже  [c.369]


Конвертер электрического тока • Электротехника • Определения единиц • Онлайн-конвертеры единиц измерения

Электротехника

Электротехника — область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии. Электротехника включает в себя такие области техники как электроэнергетику, электронику, системы управления, обработку сигналов и связь.

Конвертер электрического тока

Электрический ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц в проводящей среде. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы, в плазме — ионы и электроны.

Сила тока в Международной системе единиц (СИ) измеряется в амперах. Ампер является одной из семи основных единиц СИ. В СИ ампер определяется с учетом фиксированного численного значения элементарного заряда e, равного величине 1.602176634×10⁻¹⁹, выраженной в кулонах, 1 К = 1 А⋅с, причем секунда определяется на основании фиксации точного значения ΔνCs. Один ампер можно также определить как силу постоянного тока, при котором заряд, равный одному кулону проходит через поперечное сечение за одну секунду. До 20 мая 2019 г. ампер определялся как сила тока, который при прохождении по двум параллельным прямым проводникам бесконечной длины и малого диаметра, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает на участке проводника длиной 1 м силу взаимодействия, равную 0,2 мкH.

Использование конвертера «Конвертер электрического тока»

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие.
Примечание. В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.

Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x.», то есть «…умножить на десять в степени…». Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Задачи

Задачи к уроку 50/14

1.      Космическая ракета при старте с Земли движется вертикально вверх с ускорением a = 25 м/с2. Определите вес космонавта массой m = 100 кг. Ускорение свободного падения считать равным 10 м/с2.

2.      Парашютист, достигнув в затяжном прыжке скорости υ1 = 60 м/с, раскрыл парашют, после чего его скорость за t = 2 с уменьшилась до υ2 = 10 м/с. Чему равен вес парашютиста массой m = 70 кг во время торможения? Ускорение свободного падения считать равным 10 м/с2.

3.      Самолет, двигаясь с постоянной скоростью 720 км/ч, совершает фигуру высшего пилотажа – «мертвую петлю» – радиусом 1000 м. Чему равна перегрузка летчика в верхней точке петли? (g = 10 м/с2).

 

Задачи д/з к уроку 48/12

1.         Во сколько раз изменится сила Всемирного тяготения, если массу одного тела увеличить в 3 раза, а другого уменьшить в 9 раз?

2.         Во сколько раз изменится сила Всемирного тяготения, если расстояние между телами уменьшить в 5 раз?

3.         С каким ускорением всплывает тело массой 25 кг, если на него действует сила Архимеда 300 Н?

Задачи д/з к уроку 60  

1. Почему невозможно, из положения сидя прямо на стуле, встать на ноги, не наклонившись предварительно вперед?

2. Почему однородный прямоугольный кирпич можно положить на край стола, только если с края стола свисает не более половины длины кирпича?

3. Почему вы вынуждены отклоняться назад, когда несете в руках тяжелый груз?

Задачи д/з к уроку 58/7 

1. Какова средняя сила давления F на плечо при стрельбе из автомата, если масса пули m = 10 г, а скорость пули при вылете из канала ствола v = 300 м/с? Автомат делает 300 выстрелов в минуту.

2. Для проведения огневых испытаний жидкостный ракетный двигатель закрепили на стенде. С какой силой он действует на стенд, если скорость истечения продуктов сгорания из сопла 150 м/с, а расход топлива за 5 секунд составил 30 кг?

3. Ракета массой 1000 кг неподвижно зависла над поверхностью земли. Сколько топлива в единицу времени сжигает ракета, если скорость истечения продуктов сгорания из ракеты равна 2 км/с?

Электричество и магнетизм

Таким образом, скорость  в выражении (4.7) — это дрейфовая скорость носителей тока в присутствии внешнего электрического поля или любого другого силового поля, обуславливающего направленное (упорядоченное) движение носители заряда. Если в веществе возможно движение зарядов разного знака, то полная плотность тока определяется векторной суммой плотностей потоков заряда каждого знака.

Как уже указывалось, в отсутствие электрического поля движение носителей заряда хаотично и не создает результирующего тока. Если, приложив электрическое поле, сообщить носителям заряда даже малую (по сравнению с их тепловой скоростью) скорость дрейфа, то, из-за наличия в проводниках огромного количества свободных электронов, возникнет значительный ток.

Поскольку дрейфовая скорость носителей тока создается электрическим полем, логично предположить пропорциональность

так что и плотность тока будет пропорциональна вектору напряженности (рис. 4.4)

                              

(4.9)

Более подробно этот вопрос обсуждается в Дополнении

Входящий в соотношение (4.9) 

Коэффициент пропорциональности   называется проводимостью вещества проводника. 

Проводимость связывает напряженность поля в данной точке с установившейся скоростью «течения» носителей заряда. Поэтому она может зависеть от локальных свойств проводника вблизи этой точки (то есть от строения вещества), но не зависит от формы и размеров проводника в целом. Соотношение (4.9) носит название закона Ома для плотности тока в проводнике (его называют также законом Ома в дифференциальной форме).

Рис. 4.4. Силовые линии электрического поля совпадают с линиями тока 

Чтобы понять порядки величин, оценим дрейфовую скорость носителей заряда в одном из наиболее распространенных материалов — меди. Возьмем для примера силу тока I = 1 А, и пусть площадь поперечного сечения провода составляет
1 мм2 = 10–6 м2. Тогда плотность тока равна j = 106 А/м2. Теперь воспользуемся соотношением (4.7)

Носителями зарядов в меди являются электроны (е = 1.6·10-19 Кл), и нам осталось оценить их концентрацию . В таблице Менделеева медь помещается в первой группе элементов, у нее один валентный электрон, который может быть отдан в зону проводимости. Поэтому число свободных электронов примерно совпадает с числом атомов. Берем из справочника плотность меди — r Cu=8,9·10кг/м3. Молярная масса меди указана в таблице Менделеева — MCu = 63,5·10–3 кг/моль. Отношение 

 

— это число молей в 1 м3. Умножая на число Авогадро Na = 6,02·1023 моль–1, получаем число атомов в единице объема, то есть концентрацию электронов

Теперь получаем искомую оценку дрейфовой скорости электронов

Для сравнения: скорости хаотического теплового движения электронов при 20°С в меди по порядку величины составляют 106 м/с, то есть на одиннадцать порядков величины больше. 

Возьмем произвольную воображаемую замкнутую поверхность S, которую в разных направлениях пересекают движущиеся заряды. Мы видели, что полный ток через поверхность равен

где dq — заряд, пересекающий поверхность за время dt. Обозначим через q ‘ заряд, находящийся внутри поверхности. Его можно выразить через плотность заряда , проинтегрированную по всему объему, ограниченному поверхностью

Из фундаментального закона природы — закона сохранения заряда — следует, что заряд dq, вышедший через поверхность за время dt, уменьшит заряд q ‘ внутри поверхности точно на эту же величину, то есть dq ‘ = –dq  или

Подставляя сюда написанные выше выражения для скоростей изменения заряда внутри поверхности , получаем математическое соотношение, выражающее закон сохранения заряда в интегральной форме

                          

(4.10)

Напомним, что интегрирования ведутся по произвольной поверхности S и ограниченному ею объему V.

определение, единицы измерения, переменный и постоянный

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

Электрическим током называют направленное перемещение заряженных частиц, которое происходит под влиянием электрического поля.

Как образуется электрический ток?

Электрический ток появляется в веществе при условии наличия свободных (несвязанных) заряженных частиц. Носители заряда могут присутствовать в среде изначально, либо образовываться при содействии внешних факторов (ионизаторов, электромагнитного поля, температуры).

В отсутствие электрического поля их передвижения хаотичны, а при подключении к двум точкам вещества разности потенциалов становятся направленными – от одного потенциала к другому.

Количество таких частиц влияет на проводимость материала – различают проводники, полупроводники, диэлектрики, изоляторы.

В каким материалах возникает ток?

Процессы образования электрического тока в различных средах имеют свои особенности:

  1. В металлах заряд перемещают свободные отрицательно заряженные частицы – электроны. Переноса самого вещества не происходит – ионы металла остаются в своих узлах кристаллической решетки. При нагревании хаотичные колебания ионов близ положения равновесия усиливаются, что мешает упорядоченному движению электронов, — проводимость металла уменьшается.
  2. В жидкостях (электролитах) носителями заряда являются ионы – заряженные атомы и распавшиеся молекулы, образование которых вызвано электролитической диссоциацией. Упорядоченное движение в этом случае представляет собой их перемещение к противоположно заряженным электродам, на которых они нейтрализуются и оседают.

    Катионы (положительные ионы) движутся к катоду (минусовому электроду), анионы (отрицательные ионы) – к аноду (плюсовому электроду). При повышении температуры проводимость электролита возрастает, так как растет число разложившихся на ионы молекул.

  3. В газах под действием разности потенциалов образуется плазма. Заряженными частицами являются ионы, плюсовые и минусовые, и свободные электроны, образующиеся под воздействием ионизатора.
  4. В вакууме электрический ток существует в виде потока электронов, которые движутся от катода к аноду.
  5. В полупроводниках в направленном движении участвуют электроны, перемещающиеся от одного атома к другому, и образующиеся при этом вакантные места – дырки, которые условно считают плюсовыми.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

При низких температурах полупроводники приближаются по свойствам к изоляторам, так как электроны заняты ковалентными связями атомов кристаллической решетки. При увеличении температуры валентные электроны получают достаточную для разрыва связей энергию, и становятся свободными. Соответственно, чем выше температура – тем лучше проводимость полупроводника.

Посмотрите видео ниже с подробным рассказом об электрическом токе:

Возникновение тока в различных материалах

От чего зависит электрический ток?

На количество свободных заряженных частиц и на скорость их упорядоченного передвижения влияют следующие факторы:

  1. Материал проводящего вещества;
  2. Заряд и масса частиц;
  3. Величина разности потенциалов;
  4. Окружающая температура;
  5. Наличие дополнительных внешних факторов – магнитного поля, ионизирующего излучения.

В чем измеряется электрический ток? Единицы измерения

Для измерения электрического тока пользуются понятиями силы тока и его плотности. Измеряется сила тока специальным приборам — амперметром.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Сила тока измеряется в Амперах (А) и представляет собой величину заряда, который проходит через поперечное сечение проводящего материала за единицу времени. Единица измерения силы тока называется Ампер (А). Один ампер приравнивают к отношению одного Кулона (Кл) к одной секунде.

Плотностью тока называют отношение силы тока к площади этого сечения. Единицей измерения измеряют в Амперах на квадратный метр (А/м2).

Ниже представлено видео о силе электрического тока в рамках школьной программы:

Постоянный и переменный ток

Электрический ток, который всегда имеет одно направление, называется постоянным. Если же периодически он устремляется в обратную сторону, а также меняет свою величину, то называется переменным.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

Сети с переменным током используют для передачи энергии по проводам на значительные расстояния. Это связанно с тем, что переменный ток легко трансформируется по классам напряжения, т.е. для того чтобы передать большое количество энергии необходимо высокое напряжение и провод или кабель с небольшим сечением. Сети постоянного тока больше распространены в Европе, т.к. там нет больших расстояний как в России.

Генерация такого тока основана на явлении электромагнитной индукции. Происходит она за счет вращения магнита вокруг катушки с замкнутым проводящим контуром. Поэтому сила переменного тока при разворачивании ее по времени представляет собой синусоиду.

Единица электрического тока: ампер или ампер

Ампер или ампер — это единица измерения электрического тока в системе СИ, позволяющая определять величину тока в цепи.


Учебное пособие по электрическому току Включает:
Что такое электрический ток Единица измерения тока — Ампер ПЕРЕМЕННЫЙ ТОК


Важно иметь возможность количественно оценить величину тока, протекающего в цепи, поскольку это позволяет определить характеристики цепи и обеспечить работу цепи должным образом.

Для этого необходимо иметь блок, а это ампер или усилитель. Аббревиатура для этого — «А». Ток в десять ампер можно записать как 10 ампер или 10 А.

Примечание: имя физика Ампера пишется с заглавной буквы A и с ударением, единицей измерения тока является ампер или ампер без заглавной буквы или ударения.

Единица тока; определение ампер

Ампер эквивалентен заряду в один кулон в секунду, протекающему в цепи.Хотя это практическая реализация ампера, формальное определение связывает уровень тока с основными параметрами SI.

Определение ампер:

Формальное определение ампера — это постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением и помещать на расстоянии одного метра в вакууме, создавал бы между этими проводниками силу, равную 2 × 10 −7 ньютон на метр длины.

Условия определения ампера

Ампер — это единица измерения электрического тока в системе СИ и одна из семи основных единиц системы СИ

Интересно, что один ампер приблизительно эквивалентен приблизительно 6,24 × 10 18 элементарным зарядам, таким как электроны или дырки, проходящим мимо заданной точки или границы за одну секунду.

Физики считают, что ток течет от относительно положительных точек к относительно отрицательным точкам; это называется обычным током или током Франклина.

Это определение использует электромагнетизм для определения единицы тока. Это приводит к неявному определению значения магнитной постоянной µ 0 = 4 π 10 -7 Hm -1 = 4 π 10 -7 м кг с 2 A -2 . Следовательно, ампер базовой единицы — и, следовательно, все другие электрические единицы — связаны с базовыми единицами измерения, килограмма и секунды через эту фундаментальную константу.

История ампер

Единица измерения тока; Ампер назван в честь Андре-Мари Ампера, одного из первых пионеров в области электротехники.

Записка об Андре-Мари Ампере:

Андре-Мари Ампер (1775–1836) был французским математиком и физиком. Он провел много экспериментов, связанных с ранней наукой об электричестве, и в связи с его новаторской работой многие считают его отцом электродинамики.

Подробнее о Андре-Мари Ампер.

Ввиду действительно фундаментальной работы, проделанной Ампером, единицей измерения электрического тока, ампер был назван в его честь.Это было признанием его большого вклада в установление многих основ современной электротехники. Название «ампер» было установлено как стандартная единица измерения электрических величин на международной конвенции, подписанной в 1881 году.

Кратные и подмножественные значения для ампер

Диапазон тока, переносимого в различных сценариях, сильно различается — на много порядков. Следовательно, необходимо использовать стандартные кратные и подмножители.

Кратные и подмножители ампер
Текущий Имя Аббревиатура
10 -15 ампер фемтоампы fA
10 -12 ампер пикоампер pA
10 -9 ампер наноампер нА
10 -6 ампер микроампер мкА
10 -3 ампер миллиампер мА
Ампер ампер А
10 3 ампер килоампер кА
10 6 ампер Мега ампер MA

Ток в амперах типовых устройств

Различные устройства используют разные уровни тока и часто задаются вопросом, сколько ампер может использовать устройство.В таблице ниже приведен список типичных значений тока в амперах, используемых рядом различных электрических и электронных устройств.

Типичный ток в амперах обычных устройств
Устройство Детали Типовой ток
Электрокамин Шина 1 кВт, работающая от сети 240 В 4 ампера
Настольный компьютер Компьютер используется и не находится в режиме ожидания ~ 0.5 ампер
Чайник Типовой чайник мощностью 2,5 кВт, работающий от 240 В 10 ампер
Портативный компьютер Взимается ~ 0,2 ампер
Телевидение Пример типичного 42-дюймового ЖК-телевизора с плоским экраном ~ 0,3 ампер

Ампер — одна из семи основных единиц СИ и, как таковая, является ключевой в электротехнике и электронике, а также во многих других областях науки.Определение основано на электромагнитном эффекте, который он вызывает, что дает ему фундаментальное определение.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
Вернуться в меню «Основные понятия электроники». . .

Единица тока — Введение, Единица СИ, стандартные электрические единицы и измерения

Что такое электрический ток?

Мы много слышим об электрических токах в повседневной жизни: в классе, а также дома.Электрический ток с точки зрения науки — это, в основном, протекание тока или заряда в электрических цепях. Иногда заряд переносится одновременно ионами и электронами.

Необходимо измерить заряд тока, протекающего по цепи. Это позволяет нам понять производительность схемы и схему, чтобы она работала должным образом. Электрический ток измеряется амперметром, его единица измерения — ампер или ампер. Однако в настоящее время существуют разные методы измерения силы тока.

SI Единица измерения электрического тока?

Единица измерения электрического тока в системе СИ обозначается ампером, который измеряет движение электрического заряда через поверхность со скоростью один кулон в секунду. Как заряд измеряется в кулонах, а время в секундах; так что единица измерения становится кулон / сек (C / s) или ампер. Формула для измерения электрического тока приведена ниже.

I = V / R

Где

[Изображение будет загружено в ближайшее время]

Одной из основных единиц измерения электрического тока в системе СИ является Ампер, который в основном используется в электронной и электротехнической науке, а также в других областях науки. .На основании электромагнитного эффекта можно определить наведенный ампер.

Что такое единица измерения тока?

Чтобы определить единицу измерения тока, ампер номинирован в честь Андре-Мари Ампера, которая была одним из первых предшественников электротехники. Однако практическая реализация Ампера эквивалентна заряду кулонов в секунду, протекающему в цепи. Формальное описание ампера — это постоянный ток, который, если он протекает в двух прямых параллельных проводниках бесконечной длины и незначительного круглого сечения и помещен на расстоянии одного метра в вакууме, создает между этими проводниками силу, равную 2 × 10⁻. ⁷ ньютона на метр длины

Условия определения ампера

Французский физик и математик XIX века Андре-Мари Ампер решил, что символ I символизирует силу тока.

Единица измерения электрического тока в системе СИ, известная как ампер, является одной из семи основных единиц системы СИ.

Интересно, что один ампер примерно эквивалентен примерно 6,24 × 10¹⁸ элементарным зарядам, таким как дырки или электроны, проходящим через заданную точку или предел за одну секунду. Физики считают, что ток течет от умеренно положительных точек к несколько отрицательным; это называется стандартным током или током Франклина.

Это определение использует электромагнетизм для определения единицы силы тока.Это начинает неявно проверять значение магнитной постоянной µ0 = 4 π 10⁻⁷ Hm-1 = 4 π 10⁻⁷ м кг с² A⁻². Следовательно, ампер базовой единицы и, следовательно, все другие электрические единицы связаны с метром, килограммом и секундами базовой единицы через эту важную константу.

В письменных языках, без акцентированных букв (а именно, на английском), стало нормой писать единицы как Ampere, а при конфиденциальном общении сокращать это слово до amp. Нет необходимости использовать заглавную букву «А» в начальном значении Ампера, как это подразумевают физики.Здесь Ampere (или amp) предлагает единицу измерения.

Это алгебраическая ссылка, а не определение. Ампер является жизненно важной единицей в Международной системе, в то время как другие единицы получаются из нее. Здесь фундаментальные единицы определяют это исследование. В случае Ampere испытание носит электромагнитный характер.

Некоторые стандартные электрические единицы измерения

Помимо Ампера, существует множество стандартных единиц измерения, используемых для определения электрических свойств, таких как напряжение, мощность, емкость, сопротивление, индуктивность, электрическое поле, электрический заряд, частота, магнитный поток, который связан с электрическим током.

Сопротивление 9007

09

9 0085

Частота

Электрический параметр

Измерительный блок

Символ

Напряжение

Вольт

0

9239 В или E

Ом

R или Ом

Емкость

Фарад

C

Заряд

09

09

0

0

0

Индуктивность

Генри

L или H

Мощность

Ватт

Вт

Ом

Герц

Гц

Проводимость

Симен

G или ℧

Как измерить единицу измерения?

Амперметр, обычно известный как амперметр, представляет собой электрическое устройство, используемое для измерения электрического тока в амперах.Электрический ток на нагрузке количественно определяется с помощью амперметра, подключенного последовательно к нагрузке. Он имеет нулевое сопротивление, поэтому расчетная схема остается неизменной.

[Изображение будет загружено в ближайшее время]

Амперметр нельзя подключить параллельно к нагрузке из-за его минимального сопротивления. Если он подключен параллельно, он становится коротким замыканием, через которое проходит весь ток, что может привести к сгоранию счетчика из-за повышенного значения тока.Абсолютный амперметр имеет нулевой импеданс, так что отключение питания в приборе равно нулю. Но эта идеальная ситуация практически недостижима.

Типы амперметра

Классификация амперметра основана на конструкции здания и типе тока, протекающего через него.

В зависимости от схемы конструкции он классифицируется следующим образом:

В зависимости от типа тока, который протекает через него, он классифицируется следующим образом:

Амперметры постоянного тока в основном представляют собой тип с постоянной подвижной катушкой амперметры.Амперметры других типов могут измерять как переменный, так и постоянный ток.

Количества и единицы | Клуб электроники

Количества и единицы | Клуб электроники

Кол-во

В таблице указаны электрические величины, которые используются в электронике.

Связь между величинами может быть записана словами или символами (буквами), но символы обычно используются, потому что они намного короче; например V используется для напряжения, I для тока и R для сопротивления.

Например, это словесное уравнение:

напряжение = ток × сопротивление

И то же уравнение с использованием символов:

Во избежание путаницы мы обычно используем один и тот же символ (букву) для каждого количества. и эти символы показаны во втором столбце таблицы.

Для получения дополнительной информации о количестве перейдите по ссылкам в таблице.


Шт.

В приведенной выше таблице показаны единицы измерения (и обозначения единиц), которые используются для измерения каждого количества.Например: заряд измеряется в кулонах, а символ кулона — C.

Некоторые блоки имеют удобный размер для электроники, но большинство из них тоже большие или слишком маленькие для непосредственного использования, поэтому они используются с префиксами.

Показанные префиксы увеличивают или уменьшают единицу измерения на указанное значение.

Некоторые примеры:

  • 25 мА = 25 × 10 -3 A = 25 × 0,001 A = 0,025 A
  • 47 мкФ = 47 × 10 -6 F = 47 × 0,000001F = 0.000047F
  • 270 тыс. = 270 × 10 3 = 270 × 1000 = 270000
Префикс Значение
милли м 10 -3 = 0,001
микро µ 10 -6 = 0,000 001
нано n 10 -9 = 0.000 000 001
пик с. 10 -12 = 0,000 000 000 001
кг к 10 3 = 1000
мега M 10 6 = 1000000
гига г 10 9 = 1000000000
тера т 10 12 = 1000000000000

Почему бы не изменить единицы измерения на более точные?

Может показаться хорошей идеей сделать фарад (F) намного меньше, чтобы избежать использования мкФ, нФ и пФ, но если бы мы сделали это, большинство уравнений в электронике должны быть включены коэффициенты 1000000 или более, а также количества.В общем и целом гораздо лучше иметь единицы с их нынешними размерами, которые определены логически из уравнений.

Фактически, если вы часто используете уравнение, вы можете использовать специальные наборы единиц с префиксом, которые более удобны.

Например: закон Ома, В = I × R

Стандартными единицами измерения являются вольт (В), ампер (А) и ом (), но вы можете использовать вольт (В), миллиампер (мА) и килоом (к), если хотите.

Однако будьте осторожны, вы никогда не должны смешивать наборы единиц измерения: используйте V, A и k в законе Ома даст вам неправильные значения.


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Основные и производные единицы

Международная система единиц

Справочная информация

«Создание десятичной метрической системы во время Французской революции и последующее депонирование двух платиновых эталонов, представляющих метр и килограмм, 22 июня 1799 года в Архиве Республики в Париже, можно рассматривать как первое шаг в развитии нынешней Международной системы единиц.. читать дальше …

Определения:

Количество в общем смысле — это свойство, приписываемое явлениям, телам или веществам, которые могут быть количественно определены или отнесены к конкретному явлению, телу или веществу. Примеры — масса и электрический заряд.

Количество в конкретном смысле — это поддающееся количественной оценке или присвоению свойство, приписываемое определенному явлению, телу или веществу. Примерами являются масса Луны и электрический заряд протона.

A физическая величина — это величина, которая может использоваться в математических уравнениях науки и техники.

Единица — это определенная физическая величина, определенная и принятая по соглашению, с которой сравниваются другие конкретные количества того же вида, чтобы выразить их значение.

Все физические величины могут быть выражены в семи основных единицах.

Производные единицы

Другие величины, называемые производными величинами, определяются в терминах семи основных величин с помощью системы количественных уравнений.Производные единицы СИ для этих производных величин получаются из этих уравнений и семи основных единиц СИ. Примеры таких производных единиц СИ приведены в таблице 2, где следует отметить, что символ 1 для величин размерности 1, таких как массовая доля, обычно опускается.

Производное количество Имя Выражение в единицах СИ
площадь квадратных метров кв.м
объем куб.м. м3
скорость, скорость метр в секунду м / с
ускорение метр в секунду в квадрате м / с2
массовая плотность килограмм на кубический метр кг / м3
сила сеть (N) м · кг · с-2
давление паскаль м-1 · кг · с-2
энергия, работа джоуль (Дж) Н-м м2 · кг · с-2
электрический потенциал вольт (В) м2 · кг · с-3 · А-1
плотность тока ампер на квадратный метр А / м-2
электрическое сопротивление Ом м2 · кг · с-3 · А-2
динамическая вязкость паскаль-секунда м-1 · кг · с-3
поверхностное натяжение ньютон / метр м · кг · с-2 / м
Напряженность магнитного поля ампер на метр А / м
электрический заряд Кулумб (К) с · A

Другие производные единицы от NIST.gov

Таблица для электрических и магнитных единиц СИ

Можно найти аналогии между электрической цепью и магнитной цепью. Таким образом, в соответствии с омическим сопротивлением в магнитной цепи определяется магнитное сопротивление. В электрической цепи напряжение является причиной электрического тока. Магнитное поле электромагнита создается магнитодвижущей силой рабочей катушки.Таким образом, магнитодвижущая сила соответствует магнитному напряжению.

Символ Наименование количества Производные единицы Блок Уравнение
U Напряжение Вольт В
Q Магнитодвижущая сила Ампер А Q = I * N
Я Электрический ток Ампер А
Ф Магнитный поток Вебер Вт (против)
Дж Плотность электрического тока Ампер / Квадратный метр А / м 2
В Плотность магнитного поля тесла Т B = F / A
с Электропроводность Сименс / Измеритель См / м
мкм Проницаемость Генри / метр Г / м µ = µ 0 * µ r
R Электрическое сопротивление Ом 1Ú2
R м Электрическое сопротивление Ампер / Вебер A / Wb R м = л / (µ * A)
G Электропроводность Сименс S G = 1 / R
л Магнитная проницаемость Вебер / Ампер Вт / A L = 1 / R м
Закон Ома U = I * R Q = F * R м
л Индуктивность Генри H
С Емкость Фарад F
п. Реальная мощность Ватт Вт
S Комплекс мощности Вольтампер VA
Q Реактивная мощность Вольт / реактивный var
E Электрическое поле Вольт / метр В / м
Q Электрический заряд Кулон С
Д Электрическое поле вытеснения Кулон / квадратный метр С / м 2
H Магнитное поле Ампер / метр А / м
«Назад

Электрические блоки

Ампер —

А

Ампер — это ток, который — если он поддерживается в двух прямых параллельных проводниках бесконечной длины — с пренебрежимо малым круглым поперечным сечением и помещен на расстоянии 1 метра в вакууме, будет производить между ними проводники усилие, равное 2 x 10 -7 Ньютон на метр длины.

Электрический ток равен количеству электричества в движении или количеству в единицу времени:

I = Q / t (1)

где

I = электрический ток (ампер, А)

Q = количество электричества (кулон, C)

t = время (с)

  • 1 ампер = 1 кулон в секунду.

Ампер можно измерить «амперметром», включенным последовательно с электрической цепью.

Кулон —

C

Стандартная единица измерения в электрических измерениях. Это количество электричества, передаваемое за одну секунду током, создаваемым электродвижущей силой в один вольт, действующей в цепи с сопротивлением в один Ом, или количеством, передаваемым одним ампером за одну секунду.

Q = I t (2)

  • 1 кулон = 6,24 10 18 электронов

Фарад —

F

Фарад — это стандартная единица измерения емкости.Приведенный к основным единицам СИ, один фарад эквивалентен от одной секунды до четвертой мощности в амперах в квадрате на килограмм на квадратный метр ( с 4 A 2 / кг м 2 ).

Когда напряжение на конденсаторе 1 F изменяется со скоростью один вольт в секунду ( 1 В / с, ), получается ток 1 А, . Емкость 1 Ф дает 1 В разности потенциалов для электрического заряда один кулон (1 Кл) .

В общих электрических и электронных схемах используются единицы микрофарад мкФ (1 мкФ = 10 -6 Ф) и пикофарад пФ (1 пФ = 10 -12 Ф) .

Ом —

Ом

Производная единица измерения электрического сопротивления в системе СИ — сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт между ними создает ток 1 ампер .

Генри —

H

Генри — это единица измерения индуктивности.В единицах СИ один генри эквивалентен один килограмм-метр на секунду в квадрате на квадратный ампер (кг · м 2 с -2 A -2 ) .

Индуктивность

Катушка индуктивности — это пассивный электронный компонент, который накапливает энергию в виде магнитного поля.

Стандартная единица индуктивности — Генри , сокращенно H . Это большая единица измерения, и чаще всего используются единицы микрогенри , сокращенно мкГн (1 мкГн = 10 -6 H) и миллигенри , сокращенно мГн (1 мГн = 10 -3 H) .Иногда используется наногенри , сокращенно нГн (1 нГн = 10 -9 Гн) .

Джоуль —

Дж

Единица энергии, работа или количество тепла, произведенное, когда сила ньютон на н прикладывается к перемещению один метр . Один джоуль эквивалентен одному ватту мощности, излучаемой или рассеиваемой в течение одной секунды .

В британских единицах измерения Британская тепловая единица (Btu) используется для выражения энергии. Один британских тепловых единиц эквивалентен приблизительно 1055 джоулей .

Siemens —

S

Единица электропроводности S = A / V

Ватт

Ватт используется для определения скорости рассеивания электрической энергии или скорости излучения электромагнитной энергии. , абсорбируется или рассеивается.

Единица мощности Вт или джоуль в секунду

Weber — Wb

Единица магнитного потока.

Поток, который при соединении цепи с одним витком создает электродвижущую силу — ЭДС — 1 вольт , поскольку она уменьшается до нуля с постоянной скоростью за одну секунду .

  • 1 Weber эквивалентно 10 8 Maxwells

Tesla —

T

Единица плотности магнитного потока Tesla равна 1 Weber на квадратный метр площади цепи .

Вольт

Вольт — В — это международная стандартная единица измерения электрического потенциала или электродвижущей силы.Потенциал в один вольт появляется на сопротивлении один ом, , когда через это сопротивление протекает ток один ампер, .

Преобразовано в базовые единицы СИ,

1 (В) = 1 (кг · м 2 / с 3 A)

«Вольтметр» может использоваться для измерения напряжения и должен быть подключен параллельно часть цепи, напряжение которой требуется.

Электрический ток — Веб-формулы

Электрический ток определяется по формуле:

I = В / R

Соответствующие единицы:
ампер (А) = вольт (В) / Ом (Ом)

Эта формула выводится из закона Ома. .Где у нас:
В: напряжение
I: текущий
R: сопротивление

Если электрическая мощность и полное сопротивление известны, то ток можно определить по следующей формуле:

I = √ ( P / R )

Соответствующие единицы:
Ампер (А) = √ (Ватт (Вт) / Ом (Ом))

Где P — электрическая мощность.


Электрический ток
Скорость потока заряда через поперечное сечение некоторой области металлической проволоки (или электролита) называется током через эту область.

Если скорость потока заряда непостоянна, тогда ток в любой момент задается дифференциальным пределом: I = dQ / dt.

Если заряд Q проходит по цепи в течение времени t, то
I = Q / t.

Единица измерения тока S.I называется ампер (А) (кулон в секунду).
1 ампер = 6,25 × 10 8 электронов / сек

В металлических проводниках ток возникает из-за движения электронов, тогда как в электролитах и ​​ионизированных газах и электроны, и положительные ионы движутся в противоположном направлении.Направление тока принимается за направление движения положительных зарядов.

В проводимости, хотя ток возникает только за счет электронов, ранее предполагалось, что ток возникает из-за положительных зарядов, протекающих от положительного полюса батареи к отрицательному. Поэтому направление тока считается противоположным потоку электронов.

Если ток постоянный: Δq = I.Δt

функция времени:

Заряд = Площадь под графиком = ½ × t 0 × I 0

До Найти ток в электрической цепи
Для простой цепи или одиночного провода мы имеем:

Для сложной цепи с более чем одним проводом мы можем определить ток с помощью двух законов Кирхгофа

Первый закон: Этот закон основан на принципе сохранения заряда и утверждает, что в электрической цепи (или сети проводов) алгебраическая сумма токов, встречающихся в точке, равна нулю.

Стрелка, отмеченная на схеме, представляет направление обычного тока, то есть направление потока положительного заряда, тогда как направление потока электронов дает направление электронного тока, которое противоположно направлению обычного тока.
I 1 + I 4 + I 5 = I 3 + I 2 + I 6

Второй закон: Алгебраическая сумма произведения тока и сопротивление в любом замкнутом контуре цепи равно алгебраической сумме электродвижущих сил, действующих в этом контуре.
Математически.

Электродвижущие силы — ЭДС () источника определяется как работа, совершаемая на единицу заряда при прохождении положительного заряда через гнездо ЭДС от конца с низким потенциалом к ​​концу с высоким потенциалом. Таким образом,
𝜖 = w / Q

Когда ток не течет, ЭДС источника в точности равна разности потенциалов между его концами. Единица ЭДС такая же, как и у потенциала, то есть вольт.

Средний поток электронов в проводнике, не подключенном к батарее, равен нулю, т.е. количество свободных электронов, пересекающих любой участок проводника слева направо, равно количеству электронов, пересекающих участок проводника справа налево. ток не течет по проводнику, пока он не будет подключен к батарее.

Скорость дрейфа свободных электронов в металлическом проводнике

В отсутствие электрического поля свободные электроны в металле беспорядочно вращаются во всех направлениях, поэтому их средняя скорость равна нулю.При приложении электрического поля они ускоряются в направлении, противоположном направлению поля, и поэтому имеют общий дрейф в этом направлении. Однако из-за частых столкновений с атомами их средняя скорость очень мала. Эта средняя скорость, с которой электроны движутся в проводнике под действием разности потенциалов, называется дрейфовой скоростью .

Если E — приложенное поле, e — заряд электрона, m — масса электрона и τ — временной интервал между последовательными столкновениями (время релаксации), то ускорение электрона равна

Поскольку средняя скорость сразу после столкновения равна нулю, а непосредственно перед следующим столкновением это τ, скорость дрейфа должна быть:

Если I — ток через проводник и n — это количество свободных электронов на единицу объема, тогда можно показать, что:

подвижность µ носителя заряда определяется как скорость дрейфа на единицу электрического поля:

Плотность тока (J)
(i)
(ii) S.I Единица J = Am -2 .
(iii) Плотность тока — это векторная величина, ее направление — это направление потока положительного заряда в данной точке внутри проводника.
(iv) Размеры плотности тока = [M 0 L -2 T o A 1 ]

Носители тока: заряженные частицы, поток которых в определенном направлении составляет электрический ток, являются носителями тока. . Носители тока могут иметь положительный или отрицательный заряд.Ток переносится электронами в проводниках, ионами в электролитах, электронами и дырками в полупроводниках.

Пример 1: Частица с зарядом q кулонов описывает круговую орбиту. Если радиус орбиты равен R, а частота орбитального движения частиц равна f, то найти ток на орбите.

Решение: Через любой участок орбиты заряд проходит f раз за одну секунду. Следовательно, через этот участок общий заряд, проходящий за одну секунду, равен fq.По определению i = fq.

Пример 2: Ток в проводе изменяется со временем в соответствии с уравнением I = 4 + 2t, где I — в амперах, а t — в секундах. Вычислите количество заряда, прошедшего через поперечное сечение провода за время от t = 2 с до t = 6 с.

Решение: Пусть dq будет изменением, которое произошло за небольшой интервал времени dt.
Тогда dq = I dt = (4 + 2t) dt

Следовательно, общий заряд, прошедший за интервал t = 2 с и t = 6, равен
q = ∫ 6 2 (4 + 2t) dt = 48 кулонов

Пример 3: Дан токоведущий провод неоднородного сечения.Что из следующего является постоянным по всей сети?
(a) Только ток
(b) Ток и скорость дрейфа
(c) Только скорость дрейфа
(d) Ток, скорость дрейфа

Решение : (a)

Пример4 : Когда разность потенциалов на данном медном проводе увеличивается, скорость дрейфа составляет
носители заряда:
(а) Уменьшается
(б) Увеличивается
(в) Остается прежним
(г) Уменьшается до нуля
Решение : (б)

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *