Блок питания усилителя мощности | РадиоГазета
Казалось бы, что может быть проще — взял блок питания, подключил его двумя или тремя проводами к усилителю и всё… должно запеть? Оказывается не всегда. Как мы уже выяснили в первой части этого цикла статей, тут существует множество подводных камней.
Продолжим разбираться в хитросплетении питающих усилитель проводов. И как ни странно, больше всего проблем может доставить общий (земляной) проводник.
Для начала исправим одну оплошность. В первой части статьи была опубликована схема двухполярного блока питания усилителя, но отсутствовала его монтажная схема.
Вот вам и то, и другое:
Двухполярный блок питания усилителя мощности.
Монтажная схема двухполярного блока питания усилителя мощности
По сути здесь два «отзеркаленных» однополярных блока.
Обратный ток акустической системы
Как известно, акустическая система является реактивной нагрузкой. А значит, она может возвращать ток усилителю. Этот ток, протекая по проводникам, создаёт разность потенциалов, что может привести к появлению положительной обратной связи и как следствие нестабильности усилителя.
Для избежания этого, земляную клемму громкоговорителя следует подключать к общему выводу конденсаторов фильтра питания. Часто вывод громкоговорителя подключают к общему выводу микросхемы, как показано на рисунке:
Такое подключение замыкает отрицательную полуволну сигнала в локальном контуре, исключая фильтрующий конденсатор, который мог бы снизить излучаемые помехи и повысить стабильность системы.
На рисунке показано, как ток утечки на землю одной полуволны сигнала может навести неприятные помехи и искажения, если общий провод громкоговорителя подключен к выводу выходного каскада микросхемы:
Аналогично, если на плате усилителя в цепях питания есть байпасные конденсаторы (а они обычно есть) довольно большой ёмкости в несколько сотен микрофарад, то импульсы зарядного тока также создадут на общем проводнике разность потенциалов. Поэтому, повторимся ещё раз, наилучшая точка подключения общего провода акустической системы — это общий вывод конденсаторов фильтра питания.
Чем больше мощность, тем хуже…
Часто радиолюбители стараются сделать свой усилитель как можно мощнее (типа, так круче), да и аудиофилы зачастую оснащают свои системы усилителями с мощностью в разы превышающей необходимую для озвучивания обычной комнаты до нормального уровня громкости, мотивируя тем, что так получается больший динамический диапазон. Такие усилители (большой мощности) порой решают одни проблемы, но создают другие.
Индуктивность проводников питания является основным «слабым звеном» усилителей мощности класса АВ. В таких усилителях выходные транзисторы включаются и выключаются поочередно, соответственно по плюсовой и минусовой шинам питания протекают полуволны зарядных токов.
Если эти импульсы через емкостные и индуктивные связи попадут в звуковой тракт это приводит к ужасному размытому звучанию.
Такое происходит, если какая-то чувствительная дорожка (проводник) проходит рядом с шиной питания. Бифилярная свивка проводов питания эффективно подавляет излучаемые помехи за счёт взаимной компенсации положительной и отрицательной полуволн.
На печатной плате этот метод можно реализовать, если шины питания расположить друг над другом с двухсторон платы (требуется двухсторонняяя печатная плата)
Достойный образец проектирования печатной платы для усилителя мощности — это конструкция Ultra-LD 200W, представленная в одном из номеров журнала «Практическая электроника каждый день». На печатной плате этого усилителя реализованы все рекомендации по монтажу, представленные в данном цикле статей. И во многом за счёт этого удалось получить уровень шумов -122 дБ и уровень нелинейных искажений ниже 0,001%.
Примечание редакции РадиоГазеты: если нашим читателям интересно, пишите в комментариях и мы опубликуем описание этого усилителя.
Заземление одной стороны печатной платы хорошо работает в высокочастотных и слаботочных конструкциях. Для усилителей мощности это не подходит, потому как трудно предсказать протекание токов в зависимости от выбора точек заземления.
В современных ламповых усилителях часто общую шину делают в виде отрезка тостого лужёного провода. Многие гуру проповедуют разводку звездой с единственной точкой подключения. Бывают случаи, когда при таком подходе усилители плохо работают. Сказывает большое количество длинных проводов, которые снижают стабильность конструкции.
Как правило, в хорошем усилителе есть несколько точек заземления.
Развязка
При использовании двух фильтрующих конденсаторов при двухполярном питании надо следить, чтобы две полуволны сигнала суммировались
Часто применение одного конденсатора, включенного между плюсом и минусом питания, позволяет решить эту проблему. Этот метод хорошо работает с операционными усилителями типа 5532, и для усилителей мощности типа LM3886.
Когда питание драйверного каскада и выходного каскада подключено раздельными проводами, это может вызвать некоторую нестабильность усилителя на высоких частотах. Проблема решается подключением керамического конденсатора небольшой ёмкости между выводами питания микросхемы:
увеличение по клику
Если ёмкость байпасных (блокировочных) конденсаторов больше 100мкФ, их общий провод должен подключаться к «грязной» земле, так как большие зарядные токи могут создавать ощутимые помехи, если конденсаторы будут подключены к сигнальной земле.
Цепь Цобеля
Цепь Цобеля на выходе усилителя предотвращает его возбуждение на высоких частотах. Импульсы тока в этой цепи могут вызвать проблемы, поэтому должны замыкаться на «грязную» землю, то есть на общий вывод конденсаторов фильтра или байпасных конденсаторов.
Для некоторых микросхем усилителей мощности длинные провода в цепях Цобеля вызывают нестабильность на отрицательных полуволнах сигнала.
Пример монтажа моно-усилителя
Обычно «звезда» в усилителе с однополярным питанием бывает трёхлучевой: сигнальная земля, земля конденсаторов фильтра питания и «грязная» земля. Пример представлен на рисунке:
увеличение по клику
Здесь под усилителем следует понимать как интегральное исполнение, так и усилители на дискретных элементах.
Как видно, к одному лучу подключена сигнальная земля — здесь токи очень малы, поэтому подключать все элементы отдельными проводниками нет необходимости. Ко второму лучу отдельными проводниками подключены выводы сильноточных цепей: выходного каскада, цепи Цобеля, общий вывод акустической системы и байпасных конденсаторов. К третьему лучу подключен общий вывод фильтрующего конденсатора блока питания.
Правильное подключение общего провода к выводам микросхем показан на рисунке:
Вариант «с» — это неправильный вариант. Из-за сопротивления дорожки большой ток поднимет потенциал слаботочного общего провода относительно вывода микросхемы, что приведет к росту искажений.
Продолжение следует…
Статья подготовлена по материалам журнала «Практическая электроника каждый день»
Автор: Джек Розман
Вольный перевод: Главный редактор «РадиоГазеты»
Похожие статьи:
Переделка компьютерного БП в двухполярный источник питания
В очередной раз встает вопрос о переделке компьютерного блока питания. На этот раз в двухполярный источник питания. Возникла нужда в таком источнике питания для усилителя. Но железный трансформатор мотать не хочется, а сборка с нуля импульсного блока питания занимает слишком много времени. Вот и было решено получить нужное напряжение из компьютерного блока питания. Сам источник питания был необходим для усилителя на микросхеме TDA7294.
TDA7294И стоит заметить, что многие начинающие радиотехники сталкиваются с такой проблемой – собрали усилитель, но не могут определиться с блоком питания.
На самом деле это сложно назвать переделкой, поскольку компьютерный блок питания без всяких разных переделок может отдавать нужное напряжение для подобных целей. И для этого прежде всего необходимо раздобыть рабочий блок питания абсолютно любой мощности и формата.
Про силовые шины и выходные напряжения должно быть все понятно из следующего рисунка:
По идее, необходимо соединить зеленый провод с любым из черных, чтобы запустить блок питания.
Затем нужно взять пару многожильных проводов и припаять их к тем выводам трансформатора, которые изображены на рисунке ниже:
Ничего сложного! А вся хитрость в том, что в компьютерном блоке питания все выпрямители однополярного типа со средней точкой.
То есть все обмотки, по сути, двухполярные, и если использовать концы этих обмоток и пустить их на отдельный диодный выпрямитель, то можно получить напряжение в 2 раза больше, чем с однополярным выпрямителем, который задействован в компьютерном блоке питания.
Земля блока питания останется самой собой и в этом случае, то есть средней точкой.
Остается подобрать только диодный мост.
В предлагаемом варианте необходимо использовать диоды с обратным напряжением не меньше 100 В. Они обязательно должны быть импульсного типа. Можно также задействовать диоды Шоттки.
Идеальным вариантом являются отечественные КД213. Они довольно мощные и к тому же без проблем работают на таких частотах.
После переделки получается двухполярное напряжение, а если быть точнее, двухполярные 30 В. Это как раз то, что нужно для микросхем типа TDA7294.
И самое важное – будет работать защита. При коротком замыкании блок попросту уйдет в защиту. Чтобы снять ее, необходимо на короткое время разъединить зеленый и черный провода, а затем соединить снова. Если блок будет постоянно использоваться, то стоит поставить выключатель.
В зависимости от блока питания 12-вольтовые шины на трансформаторе могут быть с разных сторон, поэтому, чтобы не путаться, необходимо отследить путь желтого выходного провода и найти диодную сборку на шине 12 В.
Потом нужно припаять провода к крайним выводам этой сборки.
Не будет работать только стабилизация, но, в принципе, для питания усилителя она вовсе не нужна.
Автор: Алексей Алексеевич. Мурманск.
Двуполярный ИИП для УМЗЧ — Меандр — занимательная электроника
Предлагается схема простого двуполярного импульсного источника питания для УМЗЧ. В основе данного источника питания находится специализированная микросхема — драйвер IR2153.
IR2153 – улучшенная версия драйвера IR2155 и IR2151, которая содержит драйвер высоковольтного полумоста с генератором аналогичным промышленному таймеру NE555 (К1006ВИ1). IR2153 отличается лучшими функциональными возможностями и более прост в использовании по сравнению с предыдущими микросхемами. Функция выключения в данном устройстве совмещена с выводом СТ, при этом выключение обоих каналов происходит при подаче управляющего сигнала низкого уровня.
Кроме того, формирование выходных импульсов связано с моментом пересечения увеличивающегося напряжения на Vcc порога схемы блокировки от понижения напряжения, тем самым была достигнута более высокая стабильность импульсов при запуске.
Стойкость к шумам была значительно улучшена за счет уменьшения скорости изменения тока драйверов (di/dt) а также за счет увеличения гистерезиса схемы блокировки от понижения напряжения (до 1В). Наконец, существенное внимание было уделено повышению стойкости защелок и обеспечению всесторонней защиты от электростатических разрядов на всех выводах.
Документация на микросхему IR2153
Принципиальная схема импульсного источника питания представлена на рис. 1.
Рис. 1
Детали подобраны так, что частота импульсов генерируемых микросхемой составляет 40 кГц.
Мощность источника в основном зависит от параметров трансформатора. При использовании трансформатора ETD39 можно получить около 400 Вт мощности.
Печатная плата показана на рис. 2.
Рис. 2
Детали для сборки источника питания:
Конденсаторы | 0.47 мкф 400В Переменка 1шт 0.15 мкф 400B Переменка 1шт 0.68 мкф 400в Неполярный 1шт 470 мкф 200в Электролит 2шт 100 мкф 16в Электролит 1шт 910 пф 50в Многослойный 1шт 0.47 мкф 50в Многослойный 3шт 1000 пф 50в Многослойный 1шт 1.0 мкф 250в Неполярный 1шт 2200 мкф 50в Электролит 2шт |
Резисторы | 100 кОм 1Вт 2шт 18 кОм 1Вт 3шт 27 Ом 1Вт 2шт 100 Ом 2Вт 1шт |
Транзисторы | IRF740 2шт |
Микросхема | IR2153 1шт |
Диоды | FR207 2шт MBR20200CT 2шт GBU25M 1шт |
Трансформатор | ETD 39 или любой другой из БП ATX |
Печатная плата в формате .lay:
[hidepost] Скачать [/hidepost]
Блок питания для настройки усилителей
Тем, кто профессионально занимается изготовлением или ремонтом УНЧ, рекомендуем собрать эту схему безопасного источника двухполярного питания с защитой от перегрузки по току, который специально предназначен для запуска большинства схем усилителей, особенно транзисторных.
Принципиальная схема блока питания
Внимание! При питании выше +/-80В, следует вместо транзисторов BC546/556 применять их аналоги на более высокое напряжение.
Характеристики БП
- Два симметричных, независимых выхода регулируются в диапазоне +/-15-100V
- Полная защита по току 100-700 мА
- Стабилизация питания с хорошей фильтрацией
- Светодиодные индикаторы выходного напряжения, короткого замыкания и ограничения тока
- Функция подачи переменного напряжения сети (50 Гц) для измерения PSRR
Варианты исполнения
Также есть возможность независимой работы в связке блок питания с трансформатором или сам стабилизатор, как электронный предохранитель для безопасного запуска усилителей мощности.
Блок питания в корпусе — передняя панельЧто касается корпуса — тут кому как понравится. В авторском варианте БП был собран как приставка-переходник между трансформатором (или вот таким импульсным ИП) и схемой, в пластиковой коробке, внутри которой разместились платы стабилизаторов и радиаторы, а на переднюю панель выведены стрелочные индикаторы тока и напряжения обоих каналов. Думаем не нужно объяснять, насколько удобно видеть сразу все эти 4 параметра в процессе настройки УНЧ. Вот файлы с печатными платами. Всем успешного аудиостроя и чистого звука!
Блок питания для TDA7293 и TDA7294
Любой усилитель делает только одно – передает электрическую энергию от источника питания в нагрузку (колонки). В результате при плохом блоке питания и весь усилитель работает плохо. При этом радиолюбители грешат на схему усилителя, объявляя ее «плохо звучащей». И им совершенно невдомек, что не схема тут виновата. Усилитель по своей идее очень похож на водопроводный кран. Как кран позволяет регулировать количество воды, поступающей из трубы, так и усилитель регулирует количество электрической энергии, поступающей из источника питания в нагрузку. Только он это делает так, что форма напряжения на нагрузке максимально точно повторяет форму сигнала на входе усилителя. Таким образом эту большую выходную мощность создает не сам усилитель, а его блок питания, поэтому если блок питания работает недостаточно хорошо – никакой усилитель не поможет.
Этот материал предназначен в большей степени для «очень начинающих», которые затрудняются даже с довольно простыми вещами. Но кое-что будет полезно и более опытным, кроме того, здесь есть числовые значения напряжений, токов и мощностей трансформатора, отвечающие на вопрос: «Сколько чего брать?» В принципе, разных тонкостей и нюансов в блоках питания очень много. У меня вышла книга по блокам питания для звуковых усилителей объемом 160 страниц, и то я там сказал далеко не все. Здесь приведен только маленький кусочек из нее (больше в виде «кулинарных рецептов»). Так что, если хотите начать разбираться в этом деле – читайте книгу. Она как раз ориентирована на начинающих, хотя и опытный народ находит там интересное для себя.
Огромная просьба – не надо пытаться что-либо здесь усовершенствовать. На самом деле кардинально ничего не улучшишь, но можно и напортачить (особенно если знаний и опыта мало). Особенную страсть к «доработкам» питают некоторые «чайники», наслушавшись всяких аудиофилов, которые на самом деле в большинстве своем сами ни разу не грамотные. И ладно бы они ограничивались только применением проводов по 100 долларов за метр. Или дорогущих конденсаторов Black Gate. Так нет же, лезут и в другие места. По моему опыту, примерно 40% таких «доработок» реально ничего не меняют. Еще 10% несущественно что-либо улучшают. Остальные 50% ведут к ухудшению чего-либо. Это не потому, что я такой умный и непогрешимый (нет, я умный и непогрешимый – это же и так очевидно). А потому, что тут и вправду мало что можно существенно улучшить. А «советы из интернета» – это как надписи на заборе: пишут все и всё, что угодно. Но к таким «советам» следует относиться также как и к надписям на заборе – не все, что написано правда.
Схема источника питания приведена на рис.1 и рис. 2. На каждом рисунке один вариант схемы с диодным мостом, а другой вариант – с отдельными диодами в выпрямителе. Принципиальной разницы – никакой. Но один цельный мостик стОит дешевле, чем четыре отдельных диода, его проще монтировать и труднее перепутать «+» и «-».
Рис. 1. Рис. 2.На самом деле это одна и та же схема, различия в трансформаторе. В первом случае используется транс с двумя отдельными вторичными обмотками, а во втором с отводом от середины обмотки. Разница между этими схемами на самом деле небольшая, что бы там не говорили на интернет-форумах. Если хотите узнать, в чем эта разница заключается, какой выпрямитель лучше и почему, читайте статью Правильный выпрямитель.
В обоих случаях важно правильно подключить трансформатор. Как это сделать – показано на рис. 3.
Рис. 3.При правильном включении вольтметр (переменного тока) должен показать удвоенное напряжение вторичной обмотки.
Сетевой предохранитель F1 – вещь обязательная! Без него нельзя! Он должен быть рассчитан на ток 0,5А…1А. Чем меньше ток предохранителя, тем надежнее. Но предохранители, рассчитанные на малые токи, могут сгорать в момент включения – при включении блок питания в течение долей секунды потребляет от сети повышенный ток – заряжаются конденсаторы фильтра. От этого тока предохранитель и сгорает. Но ставить этот предохранитель на большой ток (2…3 ампера) нельзя, а то при коротком замыкании (КЗ) он ничего не предохранит. Лучше использовать обычный стеклянный предохранитель – бывают еще в керамических корпусах, они более «быстрые», и легче сгорают от пускового тока усилителя. А стеклянный предохранитель этот ток выдерживает лучше.
Все, что подключается в первичной обмотке дополнительно (конденсаторы, варисторы и проч.) должно подключаться после предохранителя.
Можно поставить дополнительные предохранители в цепи вторички (или на выходе блока питания) – их надо брать ампер на 5…7. Это даст больше безопасности при всяких там нечаянных замыканиях и неправильном монтаже. Я себе их не ставлю, т.к. нечаянные замыкания не делаю.
В цепь земли (общего провода) предохранитель ставить нельзя! |
Выключатель питания S1 должен быть рассчитан на напряжение 250 вольт и ток не менее 1 ампер. В какой именно вывод трансформатора ставить предохранитель и выключатель – абсолютно все равно. Можно в один и тот же провод, можно в разные. Главное – хорошо все заизолировать, чтобы невозможно было дотронуться до провода, находящегося под напряжением сети.
Все, что подключено к сети должно быть надежно заизолировано! |
Кстати, не имеет значения, какой из выводов трансформатора подключен к фазе сети, а какой – к нулю. Иногда на интернет-форумах некоторые говорят, что разница есть: она есть только в их воспаленных мозгах. И в слабом знании электротехники. На самом деле, некоторые «тонкие эффекты» все же существуют, но они проявляются при изготовлении какого-нибудь коллайдера. А в усилителе (если его правильно сделать) вообще никак не заметны. А вот ошибки, совершаемые начинающими, дают примерно в миллион раз более заметный результат (миллион – это не преувеличение!).
Хорошие результаты дает подключение конденсатора Сф к первичной обмотке трансформатора (рис.4). Он не только борется с помехами из сети, но и ослабляет помехи, проникающие в сеть из усилителя. А также уменьшает ЭДС самоиндукции трансформатора при его включении-отключении.
Рис. 4.Конденсатор Сф (рис. 5) может быть либо К73-16, К73-17 на напряжение 630 вольт (справа), либо специальный для работы на переменном токе (слева) – он лучше! – тогда для него указывается действующее напряжение 250…270 вольт переменного тока (об этом говорит знак «~» возле значения напряжения на корпусе конденсатора). В принципе можно использовать и высоковольтные конденсаторы (такие, как на 1600 вольт), но уж очень они большие. Тогда может лучше вообще без него.
Рис. 5.В принципе, в первичную обмотку можно добавить и варистор.
Широко рекламируются всякие там устройства для очистки напряжения сети, в том числе и от постоянного напряжения. В 99,99% случаев эти устройства только лишь помогают изъять крупные суммы из кошельков тех, кто их покупает: потому как надо быть очень-преочень неграмотным инженером, чтобы сконструировать аппаратуру (в основном блок питания) так плохо, что на нее влияло бы все то, от чего эти устройства «предохраняют».
Мощность трансформатора, напряжение на вторичных обмотках, емкость конденсаторов фильтра – все это определяется по графикам на рисунках 6 и 7. Графики предназначены для стереоусилителей на микросхемах TDA7294 и TDA7293 при разном сопротивлении нагрузки. Графики, показанные пунктиром относятся к микросхеме TDA7293, которая рассчитана на бОльшую мощность. Микросхему TDA7294 в этом режиме лучше не использовать. Напряжения обмоток трансформатора и емкость конденсатора фильтра даются на одно плечо блока питания (т.е. только для “+” или для “-“). Для второго плеча все должно быть таким же.
Рис. 6. Рис. 7.На первый взгляд кажется, что мощность трансформатора маловата. Однако для воспроизведения реального звука ее достаточно. Почему это так, описано здесь и здесь. И я сам для себя это все успешно применяю уже почти 10 лет.
Тип трансформатора (тороидальный, стержневой, броневой) в общем-то неважен. Хороший повар отлично приготовит любой транс, а плохой повар испортит даже самые лучшие продукты. Так что проблема не в типе трансформатора, а в умении. Трансформатор меньшей мощности, чем получается по рис. 6, лучше не использовать. Большей – можно, но увеличивать мощность транса более чем в 2 раза смысла нет: будет намного дороже и всего на 2% лучше. Увеличивать мощность трансформатора больше чем в 3 раза против заданной вообще нежелательно – можете огрести кучу проблем, причем иногда они скрыты, и фиг их найдешь (а я подсказать не всегда смогу – не все болезни лечатся дистанционно). От напряжения трансформатора зависит максимальная выходная мощность (чем больше напряжение, тем больше мощность). Помните, что повышенное напряжение питания может спалить микросхему, поэтому больше, чем на графике (рис. 6) лучше не подавать. В принципе, TDA7293 выдерживает напряжение до 45 вольт (у меня в одном усилителе она работает при питании +-43 вольта), но тут надо быть очень-очень осторожным, и для начинающих я бы такое напряжение крайне не советовал. И охлаждение микросхеме требуется гораздо лучшее, если напряжение питания велико. Если напряжения обмоток трансформатора разное, то такой транс использовать нельзя (а если вы достаточно опытны для использования такого транса, то тут вам читать нечего).
Максимальное обратное напряжение диодов должно быть не меньше тройного напряжения (по переменному току) одного плеча (трансформатора). Тип диода значения не имеет, но диоды Шоттки дают немного меньшую просадку напряжения под нагрузкой и позволяют получить чуть-чуть больше выходную мощность. Быстрые диоды никакой пользы не приносят (у начинающих – это наверняка), зато они более дорогие и более нежные. Брать диоды на ток больший, чем по рис. 7 можно, но дружите с головой: диоды на 500 ампер будут больше и дороже, чем весь усилитель. Максимальное обратное напряжение диодов тоже может быть больше требуемого: это напряжение, выше которого диоды сгорают. Если диоды выдерживают 600 вольт, в мы на них подаем 120, то они не сгорят наверняка.
Конденсаторы фильтра – электролитические алюминиевые (обычные). Их рабочее напряжение должно быть не менее чем в 1,7 выше напряжения обмотки трансформатора (одного плеча). Тип конденсаторов в принципе не важен. Старые конденсаторы (выпуска до 2000 года) лучше не использовать – они от времени высыхают. БУ конденсаторы (даже сравнительно свежие) также могут быть высохшими – скорость их деградации сильно зависит от температуры, поэтому если конденсатор перегревается, то может сдохнуть очень быстро. А кто знает, как грелся конденсатор, который откуда-то выпаяли? Вздувшиеся конденсаторы использовать нельзя. «Породистость» конденсаторов роли не играет. Можно использовать любые. Российские тоже, но они обычно крупнее по габаритам, чем импортные. Всякие дорогие аудиоконденсаторы на самом деле ничего не улучшат (у начинающих – так наверняка!), а денег потребуют в 5…20 раз больше. Конденсаторы Low ESR и Low Impedance в принципе немного лучше, но можно с ними и не заморачиваться – и без них можно организовать отличное питание, гораздо важнее не наделать ошибок, которые на звук повлияют гораздо сильнее, чем такие конедснаторы. Если же у вас уже есть конденсаторы Low ESR или Low Impedance, то лучше всего поставить их на плату усилителя (500…1000 мкФ х 35…50 В) – там они принесут наибольшую пользу, ведь сопротивление и индуктивность проводов на плате от них к микросхеме минимальна. Не забывайте, что для электролитов очень важно куда подключить «плюс», а куда «минус».
Емкость конденсаторов задана примерно, так что можно взять немного больше или немного меньше. Меньше чем в 2 раза емкость конденсаторов делать не следует – искажения и фон заметно возрастут, а максимальная мощность усилителя снизится. Больше чем в 2…3 раза больше емкость брать тоже нехорошо – качество питания не увеличится, а вот качество звука может даже ухудшиться (да, действительно можно ухудшить качество звучания усилителя, сильно завысив емкость фильтра!). Причем с емкостями от 60 000 мкФ и выше справится только хороший профи.
Пример печатной платы блока питания (под диодный мост) приведен на рис. 8. Это не догма, а руководство к действию. Подробно все описано в книге.
Рис. 8.В принципе вполне достаточно поставить по одному конденсатору в каждое плечо. Так будет хорошо работать, учитывая, что на плате усилителя уже стоят дополнительные электролиты и, что очень важно, пленочные конденсаторы. Но если нет одного конденсатора на нужную емкость (или проблемы с габаритами), то можно подключать конденсаторы параллельно (2…4 штуки), при этом их емкость складывается. В обоих плечах надо делать одинаковый набор одинаковых конденсаторов. Иногда советуют вместо одного конденсатора 10 000 мкФ подключать 100 штук по 100 мкФ. Это фигня. Обычно получается только хуже. Почему – подробно описано в книге. Точно также нет смысла подключать параллельно конденсатору большой емкости конденсатор малой емкости – он не поможет, все хорошее, что он в принципе мог бы сделать, уже делают конденсаторы, установленные на плате усилителя. Но от этого вот маленького конденсатора вреда не будет. Только не используйте танталовые, ниобиевые и оксидно-полупроводниковые конденсаторы. Не столько из-за их «худшего звучания», сколько из-за того, что они намного более нежные, и очень легко сгорают, если что не так.
Ко мне обращаются с просьбой выслать печатную плату для блока питания. Скажу сразу – я не делаю печатные платы блоков питания промышленным способом. Вот почему:
- В зависимости от условий, емкость конденсатора может быть от 4700 мкФ до 15000 мкФ. А у них габариты различаются в 3 раза.
- У разных типов конденсаторов одинаковой емкости разные габариты.
- Кто-то ставит по одному конденсатору в плечо, а кто-то по четыре.
- И диоды могут быть разные, как мосты, так и отдельные диоды в совершенно различных корпусах.
И как прикажете развести одну плату, которая удовлетворит всех? А делать что-то “суперуниверсальное” нет смысла: плата получится огромная и дорогая. А сделать 100 штук разных – тоже не выход (и дорого). Я всегда делаю отдельную плату для каждого случая. И даже не сохраняю файлы с разводкой – каждый раз все получается сильно по-другому, так что от старой разводки нет никакой пользы. Ни разу не случалось так, чтобы для разных устройств получились одинаковые платы. Так что тут уж самостоятельно, лазерно-утюжная технология поможет, а плата довольно простая, сделать ее самостоятельно легко.
Ставить в блок питания всякие там конденсаторы МБМ или МБГО в принципе можно – возможно они ничего и не ухудшат. Но и ничего не улучшат, а места займут много. Дело в том, что неэлектролиты полезны на плате усилителя, где индуктивность и сопротивление соединительных проводов минимальны (такие конденсаторы в моем усилителе есть и подключены самым лучшим образом). А если их ставить в блоке питания, то всю их пользу съедят провода, идущие к усилителю. Кроме того, “бумажность” конденсаторов на звук никак не повлияет (ее не слышно даже в тех конденсаторах, через которые проходит сигнал). Большие размеры таких конденсаторов только повредят: из-за них увеличится длинна соединительных проводов, что увеличит их индуктивность, сопротивление и излучение помех. Вот пример такого маньячества:
Рисунок без номера.На вид выглядит очень солидно, поэтому начинаешь верить, что и на звук получается тоже хорошо. На самом деле пользы никакой, особенно учитывая тоненькие проводки, соединяющие конденсаторы. Но и толстый провод не очень-то и поможет. Польза может быть только одна – испытывать чувство глубокого удовлетворения собой, глядя на эту громадину. Только при этом нельзя проводить слепое сравнение с точно таким же усилителем, но без этой батареи конденсаторов: скорее всего усилитель без конденсаторов будет на самом деле звучать лучше, тогда вы этого не переживете!
Важным делом является подключение всего этого добра. На самом деле самые большие проблемы у начинающих создает именно неправильное подключение (а некоторые при этом сосредоточенно меняют кабели). Вот пример правильного подключения, причем моя плата усилителя именно на него и рассчитана и при этом однозначно не возникают никакие земляные петли (рис. 9). Но и тут не должно быть никаких «лишних» проводов. Резисторы Rл и Rп – регуляторы громкости, этот узел может быть и другим.
Рис. 9.Входные цепи надо выполнять экранированными проводами, корпус резистора регулятора громкости соединить с общим проводом (входным) любого одного (но только одного!) из каналов.
“Кошерность” и “направленность” проводов на самом деле роли не играют. По крайней мере в слепом тесте еще никому не удалось заметить разницу, “так хорошо слышимую” в тесте зрячем. А вот сечение проводов значение имеет: токи в импульсе достигают десятка ампер и более и на слишком тонком проводе (имеющем сравнительно большое сопротивление) падает довольно большое напряжение. Это приводит к тому, что усилитель не может на большой громкости воспроизвести пики амплитуды сигнала. Что делает звучание менее натуральным. Поэтому сечение проводов должно быть порядка 0,5…1,5 мм2 (сетевого 0,25…0,5 мм2). Больше сечение брать не стоит – лучше станет совсем чуть-чуть (нулевого сопротивления не бывает), а проблем с пайкой и укладкой толстого кабеля прибавится. Кроме того, у толстого кабеля при скрутке помехи ослабляются не так сильно. Так что при очень толстом проводе выигрыш в сопротивлении будет мизерным, а проблемы прибавятся заметно. Кроме того, на плате усилителя (на моей уж точно) установлены дополнительные конденсаторы в цепь питания, которые помогабт бороться с сопротивлением и индуктивностью проводов питания: при импульсе потребляемого тока они подпитывают усилитель, а потом подзаряжаются в паузе между импульсами. От высокого сопротивления провода эти конденсаторы не спасут, но от ненулевого – запросто. Благодаря этим конденсаторам (электролиты имеют большой запас энергии, а пленочные работают на высоких частотах) и получается, что все работает отлично при не очень толстых проводах питания.Провода, идущие к блоку питания надо скрутить, или сплести «косичкой», но не супер туго, все в меру. Провода, идущие к колонкам, также должны быть скручены. Скручиваются и провода, идущие от трансформатора в сеть, и от трансформатора к выпрямителю. Причем, если у трансформатора две раздельные вторичные обмотки, и точка их соединения образуется на плате в блоке питания (от транса на плату идут 4 провода), то скручиваются попарно провода каждой обмотки. Если у транса три вывода, или общая точка обмоток образуется на самом трансе (т.е. от него идет 3 провода), то их сплетаем «косичкой». Следите, чтобы при скрутке проводов не было замыкания! Экранировать силовые провода большого смысла нет: помехи проходят и через экран (ослабляются совсем немного). Гораздо лучше ослабляет помехи скрутка проводов. Если же провода идут каждый по отдельности да еще и на большом расстоянии друг от друга, то это получается отличная антенна, излучающая в усилитель кучу мощных помех. И тогда уже ничего не поможет, звук будет убит намертво.
Ни в коем случае нельзя прокладывать рядом параллельно входные провода и провода питания или колонок! Провода питания должны идти подальше от входных цепей усилителя.
А вот трансформатор дает вообще немеряно помех. Вот его можно экранировать (только осторожно, чтобы не замкнуть ничего ненароком). Магнитный экран (жесть, сталь) намного эффективнее медного (латунного, алюминиевого). Экран электрически соединяется с чем-то одним: либо с корпусом усилителя, либо со средней точкой трансформатора (если корпус усилителя не металлический). Но только с одним! Если помехи дает трансформатор, то прежде чем его экранировать, попробуйте поменять его расположение. Иногда результаты дает даже поворот трансформатора в другую сторону.
Некоторые помехи слышны в колонках как фон в паузах сигнала. Отчасти понять идут ли они от трансформатора-проводов, или, например, от входных цепей, можно так. Вы обращали внимание, что при выключении питания, усилитель некоторое время (пару секунд) продолжает играть, пока не разрядятся емкости фильтров? Так вот. Не подавая сигнал на вход (все входные провода должны быть включены), выключите питание и послушайте: если помехи при выключении питания мгновенно исчезают – причина в трансформаторе, проводах (помехах от них), или недостаточной емкости фильтра (бракованные конденсаторы). Если некоторое время продолжаются – дело во входных цепях (например, плохое экранирование).
Трансформатор лучше расположить подальше от входных цепей и плат усилителей. И входные разъемы подальше от выходных и цепей питания. Дело в том, что весь блок питания: трансформатор, провода, диоды, все это дает массу помех, причем не только в виде фона переменного тока сетевой частоты. Помехи идут и довольно высокочастотные. И эти высокочастотные помехи синхронизированы с сигналом, поэтому проявляются на слух не как какой-нибудь фон или шум, а «встраиваются» в сигнал, отчего звук делается «плохим». Иногда на интернет-форумах пишут, что поменяли конденсаторы фильтров (или диоды), и звук изменился. Зачастую это все обычное самовнушение. Но бывает и правда. Так вот, если от замены конденсаторов звук действительно меняется, то в 99,99% случаев это происходит из-за неправильного изготовления блока питания. Чаще всего из-за влияния помех. При замене конденсаторов-диодов характер помех меняется, и они по-другому воздействуют на звук. Т.е. люди рассуждают о «высоких материях», а на самом деле слушают помехи. И занимаются фигней, вместо того, чтобы эти помехи найти и устранить.
«Земля» схемы (ее общая точка) соединяется с корпусом усилителя только в одном месте. Чаще всего возле входного разъема. И надо тщательно следить, чтобы больше соединений «земли» с корпусом не было. Заземлять корпус не обязательно, усилители отлично работают и без него. Более того, зачастую заземление дает больше проблем, чем пользы, так что я бы его вообще запретил. Я имею в виду – запретил бы соединять корпус с планетой Земля. Соединять корпус с «нулем» сети вообще нельзя! А вот соединять между собой корпуса различных аудиоустройств – можно и даже хорошо (только следите, чтобы кто-нибудь «шибко грамотный» не заземлил бы один из этих корпусов). И помните, что даже в трехпроводной розетке «с заземлением» может быть не заземление, а зануление. Будьте с этим очень осторожны! Я бы советовал третий контакт розетки не использовать вовсе. Зато третий (земляной) контакт удлиннителя, в который включены все аудиоустройства будет полезен – он соединит все их корпуса. Только надо чтобы этот самый третий контакт не подключался к сети. Даже если вы на 200% уверены, что земляной контакт розетки действительно качественно заземлен, то все равно при подключении к нему аудиоустройств могут возникнуть проблемы.
Очень хорошие результаты дает подключение на сетевой кабель феррита. Причем не только на сетевой, а на все вообще кабели – входные, выходные, сетевой. Польза в каждом конкретном случае своя, ее может и не быть, но вот вреда от феррита не бывает никогда. А защищает феррит от высокочастотных помех, проходящих по кабелю (подробнее см. здесь). И кто его знает, какие помехи водятся у вас? Феррит устанавливается поближе к усилителю (можно даже внутри), рис. 10.
Рис. 10а. Рис. 10б.На самом деле блок питания – не такая простая штука, в нем много всяких хитростей. Так что если хотите разобраться в нем получше, отсылаю вас к книге.
20.02.2011
Блок питания для усилителя, схема
Блок питания для усилителя низкой частоты из доступных деталей. УНЧ, часть 3.
Эта публикация продолжает цикл статей посвящённых постройке любительского усилителя низкой частоты.
В статье описана конструкция блока питания, собранного из доступных деталей и предназначенного для питания стерео усилителя мощностью 10 Ватт в канале.
Статьи пишутся по мере изготовления того или иного блока. https://oldoctober.com/
На очереди блок регуляторов и блок оконечного усилителя.
Самые интересные ролики на Youtube
Другие статьи посвящённые постройке этого УНЧ.
Как рассчитать и намотать силовой низкочастотный трансформатор для блока питания УНЧ? FAQ.
Самодельный усилитель и колонки для компьютера, плеера или мобильного телефона из доступных деталей. УНЧ, часть 1.
Блок питания для усилителя низкой частоты из доступных деталей. УНЧ, часть 3.
Блок электронной регулировки громкости, стереобазы и тембра. УНЧ, часть 4.
Блок оконечных усилителей низкой частоты. УНЧ, часть 5.
Простые технологии обработки пластмассы и металла. УНЧ, часть 6.
Финальная сборка, наладка и испытание. УНЧ, часть 7.
Принципиальная схема блока питания.
Блок питания собран по одной из стандартных схем. Для питания оконечных усилителей выбрано двухполярное питание. Это позволяет использовать недорогие высококачественные интегральные усилители и устраняет ряд проблем связанных с пульсациями напряжения питания и переходными процессами возникающими при включении. https://oldoctober.com/
Блок питания должен обеспечивать питание трёх микросхем и одного светодиода. В качестве оконечных усилителей мощности используются две микросхемы TDA2030, а в качестве регулятора громкости, сетеробазы и тембра – одна микросхема TDA1524A.
О том, как рассчитать мощность трансформатора и входное напряжение блока питания для УНЧ очень подробно написано здесь.
Электрическая схема блока питания.
IC1 – LM317 VD1 – КД208 VD2 – КД103 VD3… VD6 – КД226 HL1 – АЛ307 FU1 – 0,15A |
C1 – 680mkFx25V C2 – 20mkF C3… C6 – 1000mkFx25V R1 – 500E R2 – 1,2k R3* – 7,5k |
На диодах VD3… VD6 собран двухполярный двухполупериодный выпрямитель со средней точкой. Такая схема включения снижает падение напряжения на диодах выпрямителя в два раза по сравнению с обычным мостовым выпрямителем, так как в каждый полупериод ток течет только через один диод.
В качестве фильтра выпрямленного напряжения применены электролитические конденсаторы С3… С6.
На микросхеме IC1 собран стабилизатор напряжения для питания схемы электронного регулятора громкости, стереобазы и тембра. Стабилизатор собран по типовой схеме.
Применение микросхемы LM317 обусловлено лишь тем, что она оказалась в наличии. Здесь можно применить любой интегральный стабилизатор.
Защитный диод VD2, обозначенный пунктирной линией, при выходном напряжении на микросхеме LM317 ниже 25 Вольт применять не обязательно. Но, если входное напряжение микросхемы 25 Вольт и выше, а резистор R3 подстроечный, то лучше диод всё же установить.
Величина резистора R3 определяет выходное напряжение стабилизатора. Во время макетирования, я впаял вместо него подстроечный резистор, установил с его помощью напряжение около 9 Вольт на выходе стабилизатора, а затем измерил сопротивление этого подстроечинка, чтобы можно было установить вместо него постоянный резистор.
Выпрямитель, питающий стабилизатор, выполнен по упрощённой однополупериодной схеме, что продиктовано чисто экономическими соображениями. Четыре диода и один конденсатор стоят дороже, чем один диод и один конденсатор чуть большей ёмкости.
Ток, потребляемый микросхемой TDA1524A всего 35мА, поэтому такая схема вполне оправдана.
Светодиод HL1 – индикатор включения питания усилителя. На плате блока питания установлен балластный резистор этого индикатора – R1 с номинальным сопротивлением 500 Ом. От сопротивления этого резистора зависит ток светодиода. Я использовал зелёный светодиод рассчитанный на 20мА. При использовании красного светодиода типа АЛ307 на ток 5мА, сопротивление резистора можно увеличить в 3-4 раза.
Печатная плата.
Печатная плата (ПП) спроектирована, исходя из конструкции конкретного усилителя и имеющихся в наличии электроэлементов. У платы есть всего одно отверстие для крепления, расположенное в самом центре ПП, что обусловлено не совсем обычной конструкцией корпуса.
Для увеличения сечения медных дрожек и экономии хлорного железа, свободные от дорожек места на ПП были залиты с использованием инструмента «Полигон».
Увеличение ширины дорожек также предотвращает отслаивание фольги от стеклотекстолита при нарушении теплового режима или при многократной перепайке радиодеталей.
По чертежу, приведённому выше, была изготовлена печатная плата из фольгированного стеклотекстолита сечением 1мм.
Для присоединения проводов к печатной плате в отверстиях платы были расклёпаны медные штырьки (солдатики).
This movie requires Flash Player 9 |
||
А это уже собранная печатная плата блока питания.
Чтобы увидеть все шесть видов, потяните картинку курсором или используйте кнопочки со стрелками, расположенными в нижней части картинки.
Сеточка на медных дорожках ПП, это результат использования вот этой технологии.
Когда плата собрана её желательно испытать ещё до подключения оконечных усилителей и блока регуляторов. Для испытания блока питания нужно подключить к его выходам эквивалент нагрузки, как на приведённой схеме.
В качестве нагрузки выпрямителей +12,8 и -12,8 Вольт подойдут резисторы типа ПЭВ-10 на 10-15 Ом.
Напряжение на выходе стабилизатора, нагруженного на резистор сопротивлением 100-150 Ом, неплохо посмотреть осциллографом на предмет отсутствия пульсаций при снижении переменного входного напряжения с 14,3 до 10 Вольт.
P.S. Доработка печатной платы.
Во время пусконаладочных работ печатную плату блока питания пришось немного доработать.
При доработке пришлось разрезать одну дорожку поз.1 и добавить один контакт поз.2 для подключения обмотки трансформатора, питающей стабилизатор напряжения.
Дополнительные материалы к статье.
Скачать чертёж печатной платы в формате LAY (18КБ).
Портативная программа Sprint Layout 6.0 для рисования, редактирования и вывода на печать печатных плат. Интерфейс русский. (4,4МБ).
БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ
Ничто так не выдаёт консерватизм, чем изготовление ламповых усилителей звука. А может это просто признак особого изысканного вкуса настоящих аудиофилов? В любом случае собрать такой УНЧ представляется прикольным и теоретически выгодным занятием. Как знать, сколько подобный шедевр будет стоить спустя 20 лет. Тут один только внешний вид лампового усилителя уже делает достойной установку его на самом видном месте кабинета. А звук.. Ну это каждый решит после прослушки для себя сам. В общем приступая к сборке самого усилителя, вначале продумайте сам блок питания. Это вам не 12В взятые из БП ATX. Здесь должны присутствовать минимум два напряжения разной величины и мощности. Напряжение накала берётся в пределах 5,5 — 6,5В и чаще всего подаётся на схемы переменным, сразу с обмоток трансформатора, а питание анодов достигает 300 и даже 500В. При уже постоянной форме тока.
Несмотря на то, что в последнее время наметилась стойкая тенденция к импульсным источникам питания всего и вся, рекомендую всё-же забыть на время про электронные трансформаторы и задействовать старый добрый ТС180 (ТС160) от любого чёрно-белого лампового телевизора. Тому есть две причины. Во-первых обычный трансформатор прощает невнимательность монтажа и не взорвётся, как электронный, при случайных боках и замыканиях, а во-вторых цена ЭТ может быть весьма и ввесьма, в отличии от обычных ТС, коих у многих хватает в закромах. Представляется правильным собрать один универсальный блок питания с анодным и накальным напряжением, и питать от него или один конкретный ламповый усилитель (спрятав сам БП подальше), или собирая другие ламповые схемы переключать его при необходимости на них. На каждый ламповый УНЧ блоков питания не напасёшся:)
Смотрим схему простого блока питания лампового усилителя:
По питанию 220В ставим модный пластмассовый тумблер 250В 5А с зелёной подсветкой. Не забываем про предохранители — один на пару ампер по сети, второй трёхамперник по накалу, и третий по высоковольтному напряжению анода. В отличии от электронных трансформаторов, где предохранители сгорают последними, здесь они выполнят свою миссию, так как даже и без них блок питания выдержит кратковременные замыкания выходов. За что я и уважаю трансы в железе. Диоды для двухполупериодных мостов или собираем из советских КД202 с нужной буквой, или берём готовый диодный мост на подходящее напряжение и ток. Если у вас усилитель на пару ламп типа 6П14П с небольшой мощностью выхода, диодный мост выпрямителя пойдёт и советский коричневый КЦ405 или КЦ402. Накал выпрямлять следует только для входных ламп первого одного — двух каскадов. Дальше влияние постоянного накала сводится к нулю и это будет только расход тепла на диодах.
Можно питать накал от моста с конденсатором 4700 — 10000мкФ, а можно и КРЕН5 поставить. и не стремитесь на входные лампы подавать строго 6,3В — лучше питать их немного заниженным напряжением вплоть до 5В. Так что обычная пятивольтовая КРЕНка и всё будет ОК. Обязательно советую поставить пару светодиодов — индикаторов напряжения анода и накала. Во-первых красиво, а во-вторых информативно, сразу видны возможные проблемы с питанием.
Корпус лучше делать делезный, точнее из листового алюминия — он обрабатывается очень удобно. Или просто взять готовый подходящих размеров, где просверлить гнёзда под кнопку сети, светодиоды и разъёмы. Сеть тоже вводите в корпус не просто через дырку, а подключив штеккером к специальному сетевому гнезду. Лично я делаю только так на всех конструкциях — это удобно.
Конденсаторы фильтров анода берём чем больше — тем лучше. Минимум два по 300 микрофарад. Напряжение на них должно быть на 100В выше, чем напряжение на выходе БП. Если у вас схема рассчитана на 250В, то берём конденсатор на 350. Конечно я это правило выполняю далеко не всегда, а бывает вообще ставлю один к одному, но вы так не делайте и в этом с меня пример не берите. Резистор на 47 Ом 5 ватт уточняем по конкретной схеме лампового усилителя. Для простого однотактного его хватит, а для мощного двухтактника надо вообще ставить дроссель. Выдиратся он из любого лампового телевизора и называется ДР-0,38. Трансформатор питания перед установкой в БП обязательно послушайте на предмт гудения и жужжания. А то купите, рассчитете и соберёте под него корпус, а он гудит громче вечернего Пинк Флойда. Будет большой облом. И напоследок порекомендую все диоды шунтировать конденсаторами на 0,01-0,1 мкФ с соответствующими напряжениеми.
Все вопросы — на форум по БП
Обсудить статью БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ