Site Loader

Содержание

3.2.1 Сила тока. Постоянный ток

Видеоурок 1: Электрический ток. Сила тока

Видеоурок 2: Электродвигатель постоянного тока

Лекция: Сила тока. Постоянный ток


Электрический ток

Ни один современный человек не может обойтись без использования электрического тока. Данное понятие характеризует упорядоченное движение зарядов, благодаря чему происходит их перенос из одной области пространства в другую. Такое упорядоченное движение может происходить во многих веществах — будь-то твердые тела, жидкости, газы или даже вакуум.

Например, если мы возьмем аккумулятор, полюса соединим проводниками, то начнется движение зарядов от плюса к минусу. Это является примером тока в металлических телах.

А теперь давайте представим соль, растворенную в воде. В эту воду опускаем два электрода, подключенных к электричеству.

В результате прохождения тока к одному электроду будут стремиться положительные ионы раствора, а к другому — отрицательные ионы. Это является примером тока в электролитах.

Примером тока в газовой среде является молния. В результате создания двух мощных полей происходит пробой диэлектрической среды. Это, в свою очередь, влечет за собой появление искры.

А давайте теперь рассмотрим иной пример: возьмем большое заряженное тело и начнем передвигать его в пространстве. Исходя из определения электрического тока, имеется и заряд, и его направленное движение. Это значит, что намеренное перемещение объемного заряда также является током. Он называется конвекционным.

А теперь давайте рассмотрим проводник, который нагревают. Что с ним происходит? Электроны начинают двигаться. И чем выше температура проводника, тем быстрее они двигаются. Но давайте ответим, какое это движение? Хаотическое! Основной отличительной чертой тока от любого другого движения является то, что все заряды должны двигаться направленно. Поэтому движение заряженных частиц, вызванное увеличением температуры, нельзя назвать током.

Также стоит отметить, что при любом перемещении нейтрально заряженного тела, такое движение также нельзя назвать током, поскольку не происходит перемещение заряда в пространстве.

Направление движения частиц

Все это время мы говорили о заряженных частицах, не уточняя, какой знак они имеют. Следует отметить, что все положительные частицы двигаются от положительного полюса к отрицательному. Отрицательные же частицы наоборот. Однако положительные и отрицательные частицы имеются далеко не во всех веществах. Они есть, например, в электролитах, газах и других веществах.

Однако, во всем мире, за направление тока принимают то направление, в котором двигаются положительные частицы. То есть принято считать, что ток двигается от положительного полюса к отрицательному. Данное правило противоречит движение тока в металлах, поскольку в этих веществах заряд несут именно электроны, а двигаться они должны от плюса к минусу.

Данное направление исторически выбрано А. Ампером в начале 19 века.

Действия тока

Ток используют для самых разнообразных целей. Однако существует несколько основных видов действия электрического тока.

1. Тепловое. Как нам известно, все тела, которые двигаются, обладают кинетической энергией. А чем больше данная энергия, тем больше температура тела. В данном случае движение заряженных частиц приводит к нагреванию проводника. Именно благодаря такому свойству тока мы используем утюг, фен, нагревательные печи и многие другие приборы.

2. Магнитное. Во время прохождения электрического тока вокруг тела начинает появляться магнитное поле. Это заметил Ампер, проводивший опыты с током рядом с компасом. Во время прохождения тока стрелка компаса начинала двигаться. Именно на основе данного свойства изготавливают электромагниты.

3. Химическое. В то время, когда ток проходит через произвольный электролит, происходит разделение его на положительные и отрицательные ионы. Этот принцип лежит в основе покрытия некоторых деталей или украшений медью, серебром или другими элементами.

Постоянный ток

В школьной программе используется понятие постоянного тока. Если за некоторые одинаковые промежутки времени через одинаковое сечение проводника прошло определенное равное значение тока, то такой ток называется постоянным.


Физическая величина, что характеризует величину заряда, прошедшего за определенное время называют силой тока

Сила тока измеряется в Амперах (А)


Еще одна ФВ, что характеризует ток, — это его плотность. 

Плотность показывает насколько много зарядов прошло через некоторое сечение за единицу времени.

Скорость движения зарядов

Если мы включим свет в какой-либо комнате, то нам покажется, что он загорится моментально. Однако на самом деле это не так. Между тем, как вы включили выключатель, и тем, когда заряды дойдут до лампочки, проходит некоторое время. Ток передвигается со скоростью равной скорости света, то есть

3*108 м/с.



  • 2.2 Характерные химические свойства и получение простых веществ — металлов: щелочных, щелочноземельных, алюминия; переходных элементов (меди, цинка, хрома, железа)
  • 1.2.4 Общая характеристика неметаллов IVA – VIIA групп в связи с их положением в Периодической системе химических элементов Д.И.Менделеева и особенностями строения их атомов
  • 3.2.10 Свободные носители электрических зарядов в проводниках. Механизмы проводимости твёрдых металлов, растворов и расплавов электролитов, газов. Полупроводники. Полупроводниковый диод
  • 2.1.3 «Просвещенный абсолютизм». Законодательное оформление сословного строя
  • 1.2.1 Возникновение государственности у восточных славян. Князья и дружина. Вечевые порядки. Принятие христианства
    • Вконтакте
    • Сайт

    Прямая и обратная полярность при сварке

    В литературе по методам сварки и инструкциях к сварочным аппаратам нередко встречаются выражения «прямая и обратная полярность». От выбора полярности зависит процесс сварки, качество шва, расход электрода, глубина проплавления. Начинающим сварщикам важно знать, что означает прямая и обратная полярность, чтобы правильно подбирать режимы сварки в конкретных ситуациях.

    В этой статье:

    • Дуговая сварка — режимы полярности
    • Отличия режимов сварки
    • Влияние полярности на сварку
    • Сварка полуавтоматом
    • Сварка инвертором
    • Электрододержатель
    • Сварочные электроды
    • Выбор инвертора и его эксплуатация

    Дуговая сварка — режимы полярности

    Для горения электрической дуги, которой осуществляется сварка, требуется источник тока и замыкание полюсов с небольшим воздушным зазором 3-5 мм. Источником тока может быть сварочный инвертор, преобразователь, выпрямитель, генератор. Понятие полярности возможно только у источников постоянного тока, поскольку у трансформаторов, вырабатывающих переменный ток, направление движения электронов меняется до 100 раз в секунду.

    Соответственно, заряд тоже меняется с положительного на отрицательный многократно за секунды. При такой «скачке» с хаотичным движением, постоянной полярности быть не может. На постоянном токе отрицательно заряженные электроны движутся от минуса к плюсу. Их направление постоянное, что дает определенные свойства:

  • ток более стабильный;
  • сварочная дуга горит ровно;
  • меньше разбрызгивается металл;
  • легче контролировать сварочную ванну.
  • У сварочного аппарата постоянного тока есть два гнезда для подключения кабелей держателя и массы. В держатель вставляется электрод и сварщик манипулирует им, ведя шов. Кабель массы через зажим «крокодил» крепится к изделию.

    Если держатель установить в разъем «-«, а кабель массы подключить к «+», получится прямая полярность. При подключении наоборот (держатель к «+», а массу к «-«) полярность будет обратная.

    Отличия режимов сварки

    Рассмотрим, чем отличается прямая и обратная полярность при сварке. По законам физики постоянный ток течет в одном направлении от минуса к плюсу (движение электронов с отрицательным зарядом). При этом тепло всегда концентрируется на плюсе. Соответственно, где «+», там температура будет выше.

    При сварке на прямой полярности «+» на изделии. Это обеспечивает больший нагрев поверхности и, в то же время, не перегревает электрод. На его кончике пятно тепла будет анодным. Работа дугой с обратной полярностью означает «плюс» на кончике электрода и образование катодного теплового пятна. За счет этого расходник нагревается больше, а изделие меньше. Разница в температуре составляет около 1000º С.

    Влияние полярности на сварку

    Теперь обсудим, как полярность, а именно локализация нагрева, сказываются на процессе сварки.

    Достоинства и недостатки прямой полярности

    Концентрация теплового пучка на изделии дает следующие результаты:

  • при воздушно-дуговой резке процесс выполняется быстрее;
  • можно увеличивать силу тока на аппарате без перегрева расходников;
  • достигается более глубокое проплавление корня, а сам шов при этом остается узким;
  • сварочная дуга горит особенно стабильно, легче манипулировать для накладки шва.
  • Сварка TIG цветных металлов, например меди, ведется на прямой полярности. Лучше всего применять такой режим при работах с металлами сечением от 4 мм и выше. Но тонкие листовые заготовки на прямой полярности будут прожигаться. Еще стороны может сильно «повести» при сварке и потребуется рихтовка деталей. Не получится использовать электроды для переменного тока при сварке постоянным с «плюсом» на держателе. Разбрызгивание металла при таком режиме тоже повышается.


    Достоинства и недостатки обратной полярности

    Использование обратной полярности дает следующие особенности при сварке:

  • меньше нагревается изделие;
  • меньше выгорают легирующие элементы;
  • снижается вероятность температурных деформаций;
  • присадочный металл с кончика стержня отделяется крупными каплями;
  • возможна сварка листовых металлов сечением 1-3 мм без прожогов;
  • шов широкий, но не глубокий;
  • уменьшается бурление углерода в сварочной ванне.
  • Обратную полярность лучше использовать при сварке тонких металлов, чтобы электрод не прилипал, но при этом не было прожогов. В случае ведения прерывистой дугой коротких швов тепловложение уменьшается еще больше.

    Соединение толстых заготовок 6-10 мм происходит гораздо хуже, поскольку нет нужной глубины проплавления. При «минусе» на держателе легче добиться качественного шва на нержавейке, алюминии, высокоуглеродистой стали или чугуне. Если требуется наплавить присадочный металл под последующую проточку, то на обратной полярности отделение капли происходит гораздо быстрее.

    Источник видео: Территория сварки R

    Но кончик электрода от повышенного нагрева укорачивается тоже быстро, поэтому будет перерасход по материалам. Если обмазка электрода чувствительна к перегреву, то от удержания длительной непрерывной дуги покрытие может осыпаться, и голый стержень станет не пригодным для сварки. При снижении силы тока до минимального, дуга начинает «скакать» и управлять сварочной ванной становится сложнее, поэтому при сварке тонколистовой стали пригодятся дополнительные функции в инверторе, о которых упомянем ниже.

    Сварка полуавтоматом

    Если предстоит варить самозащитной порошковой проволокой без газа, то потребуется обратная полярность. В отличие от инвертора, у которого достаточно поменять местами разъемы кабеля держателя и массы, у полуавтомата горелка крепится к рукаву. В нем проложен канал для проволоки, силовой провод, шланг подачи защитного газа и провода управления. Просто в разъем с массой горелку не вставить — не подойдет по форме.

    Для смены полярности полуавтомата есть несколько способов, в зависимости от конфигурации оборудования. У одних моделей нужно поменять местами разъемы в нижней части (силовой кабель горелки имеет отдельный выход с гнездом, как у массы). У других — открыть боковую крышку и переподключить кабеля к клеммам (обычно они разных цветов). Потребуется рожковый ключ.

    Сварка инвертором

    Сварка ведется неотрывной дугой с зазором 3-5 мм. Чем быстрее проводить электрод над одним местом стыка, тем меньше глубина проплавления. При замедлении глубина провара увеличивается. Если предстоит подряд сваривать стыки с разной толщиной сторон, можно выставить силу тока на аппарате для самого большого сечения в конструкции, а глубину провара регулировать скоростью ведения электрода. Только дугу при этом всегда держат на более толстом металле, кратковременно перенося на тонкий, чтобы избежать прожогов.

    Сварка на обратной полярности чаще всего применяется для соединения тонких листовых материалов сечением 1-3 мм. Но даже концентрирование теплового пучка на кончике электрода не всегда спасает от прожогов. Чтобы предупредить дефекты шва, используют прерывистую дугу. Ее поджигают касанием об изделие и накладывают короткие швы без отступов. Отрыв кончика электрода от изделия на высоту 2 см приводит к затуханию дуги. Затем кончик снова подносят и он загорается без постукивания. Такие паузы дают дополнительное время для остывания шва и исключают прожоги.

    Электрододержатель

    Сварочные электроды

    Выбор инвертора и его эксплуатация

    Чтобы быстро переключать полярность при работе с тонкими и толстыми металлами, у инвертора должны быть надежные разъемы силовых кабелей. Хлипкие тонкие штырьки в разъеме и невысокий бортик для фиксации быстро износятся от частых перестановок. Тогда возникнет люфт, в гнездах кабеля будут болтаться, образуется повышенное сопротивление и перегрев. Сила сварочного тока будет падать, а между разъемом и гнездом даже возможно образование электрической дуги.

    Подбирайте надежные инверторы ММА с прочными гнездами, чтобы при смене полярности ничего не изнашивалось и не болталось. Если у Вас уже есть инвертор и его разъемы изношены, их можно заменить на более крепкие, выбрав из каталога соединительных кабельных разъемов.

    Сварка тонкого металла 1.0-1.5 мм покрытым электродом — это сложная задача для новичка. Справиться с ней без прожогов помогут инверторы РДС с функцией «Антиприлипание». Когда кончик электрода погружается в сварочную ванну, аппарат «чувствует» это и выключает сварочный ток. В результате нет удерживающей силы, Вам не требуется наклонять держатель влево-вправо, чтобы оторвать электрод от поверхности. Обмазка расходника не осыпается при этом.

    Функция «Форсаж дуги» тоже помогает при сварке тонкого металла на обратной полярности. Когда электрод вот-вот прилипнет, инвертор автоматически повышает силу тока на 10 А, сохраняя электрическую дугу. Как только Вы восстановили воздушный зазор, аппарат сам понижает силу тока до прежнего значения, исключая прожоги.

    Ответы на вопросы: особенности прямой и обратной полярности при сварке

    При какой полярности шов более красивый внешне?

    СкрытьПодробнее

    При обратной. Тепло на кончике электрода выше, быстрее отделение капли, шов получается более чешуйчатым и без наплывов. Такой режим применим для лицевых сторон изделия, если толщину металла можно проплавить на обратной полярности.

    На каком режиме снижается разбрызгивание металла при работе полуавтоматом?

    СкрытьПодробнее

    На обратной полярности брызг меньше. Если сварка ведется на лицевой стороне изделия и потом предстоит зачистка всех прилипших капель, лучше переключите полуавтомат на обратную полярность.

    Как уменьшить ширину шва при обратной полярности?

    СкрытьПодробнее

    Чтобы шов был более узким при режиме обратной полярности, требуется быстрее вести электрод.

    Электрод при резке становится красным, что делать?

    СкрытьПодробнее

    Скорее всего, у Вас подключена обратная полярность. Поменяйте силовые кабеля в гнездах местами. Работа при прямом подключении («+» на изделии), экономит расход электрода на 20-40% и снижает его нагрев.

    На какой полярности варить алюминий полуавтоматом?

    СкрытьПодробнее

    На обратной. Алюминий имеет низкую температуру плавления и при перегреве потечет. Поэтому тепловой пучек концентрируют на электроде. Но для разрушения оксидной пленки нужен полуавтомат с импульсом (Pulse), иначе глубокого провара не получится.

    Остались вопросы

    Оставьте Ваши контактные данные и мы свяжемся с Вами в ближайшее время

    Обратная связь

    Вернуться к списку

    Почему ток течет от плюса к минусу?

    Ответить

    Проверено

    200,1 тыс.+ просмотров

    Подсказка: У нас есть два направления, назначенные для тока — обычное и электронное — оба важно понимать. Традиционное направление было принято задолго до открытия электронного тока и, следовательно, используется. Но мы признаем электронный ток как фундаментальное понятие в физике.

    Полный пошаговый ответ:
    Батарея отвечает за генерацию тока в цепи. Он устанавливает градиент, по которому течет ток. Этот градиент возникает из-за накопления положительных и отрицательных зарядов на каждом из выводов батареи.
    Течение тока характеризуется потоком электронов. Электроны движутся от отрицательного полюса батареи к положительному полюсу батареи. Это называется электронным током. Таким образом, направление электронного тока называется от отрицательного к положительному.
    Задолго до того, как были открыты электроны, мы знали о протонах или носителях положительного заряда. Итак, понятия электронного тока не существовало. Нам требовалось соглашение, которому можно было бы следовать при решении практических задач, и поэтому мы приняли направление тока, определяемое движением протонов. Мы принимаем, что ток движется от положительной клеммы батареи к отрицательной клемме батареи. Это называется обычным током.
    Следовательно, ток течет от плюса к минусу аккумулятора

    Примечание: Несмотря на то, что направления фактического электронного и обычного тока различны, решение численных задач и анализ цепей с традиционным направлением тока дает правильные результаты. Это происходит потому, что все теоремы и результаты уже вобрали в себя направление. Нам не нужно переопределять направление электронов, поскольку оно просто противоположно обычному направлению тока.

    Дата последнего обновления: 31 мая 2023 г.

    Всего просмотров: 200.1k

    Просмотров сегодня: 4.56k

    Недавно обновленные страницы

    Большинство эубактериальных антибиотиков получают из A Rhizobium класса 12 биологии NE ET_UG

    Биоинсектициды Salamin были извлечены из класса А 12 биология NEET_UG

    Какое из следующих утверждений относительно бакуловирусов класса 12 биология NEET_UG

    Канализационные или городские канализационные трубы не должны быть непосредственно классом 12 биологии NEET_UG

    Очистка сточных вод осуществляется A Микробами B Удобрения класса 12 биологии NEET_UG

    Иммобилизация ферментов – это A Превращение активного фермента класса 12 биологии NEET_UG

    Большинство эубактериальных антибиотиков получают из A Rhizobium класса 12 биологии NEET_UG 900 03

    Биоинсектициды Саламин экстрагированы из 12-го класса биологии NEET_UG

    Какое из следующих утверждений относительно бакуловирусов 12-го класса биологии NEET_UG

    Канализационные или городские канализационные трубы не должны относиться непосредственно к 12-му классу биологии NEET_UG

    Очистка сточных вод выполняется A Микробами B Удобрения класса 12 биологии NEET_UG

    Иммобилизация ферментов – это A Преобразование активного фермента класса 12 биологии NEET_UG

    Тенденции сомнений 900 03

    В каком направлении движутся электроны в батарее.

    | Физика Фургон

    Категория Выберите категориюО фургоне физикиЭлектричество и магнитыВсе остальноеСвет и звукДвижение вещейНовая и захватывающая физикаСостояния вещества и энергииКосмосПод водой и в воздухе

    Подкатегория

    Поиск

    Задайте вопрос

    Последний ответ: 22.10.2007

    Вопрос:

    Электроны перетекают от положительного конца батареи к отрицательному (через простую последовательную цепь) или от отрицательного конца к положительному?
    — Майк
    Pocatello, Id

    A:

    Электроны заряжены отрицательно, поэтому притягиваются к положительному концу батареи и отталкиваются от отрицательного конца. Поэтому, когда батарея подключена к чему-то, что позволяет электронам течь через нее, они текут от минуса к плюсу.

    Вы можете задаться вопросом, почему электроны просто не текут обратно через аккумулятор, пока заряд не изменится настолько, что напряжение станет равным нулю. Причина в том, что электрон не может перемещаться с одной стороны на другую внутри батареи без химической реакции. Другими словами, внутри батареи простые электроны не могут перемещаться, потому что требуется слишком много энергии, чтобы перевести простой электрон в раствор. Электроны могут перемещаться внутри батареи только через заряженные химические вещества, ионы, которые могут растворяться на электродах. Химическая реакция толкает электроны внутри к отрицательному концу, потому что электроды на двух концах сделаны из разных материалов, которые имеют разную химическую стабильность. Таким образом, электроны текут ВОКРУГ цепи, к отрицательному концу внутри батареи, подталкиваемые химической реакцией, и к положительному концу во внешней цепи, подталкиваемые электрическим напряжением.

    Электрический ток может протекать и в аккумуляторе по-другому, если аккумулятор подключен к чему-то с большей разницей напряжений (например, к зарядному устройству).

    Том (и Майк)

    (опубликовано 22.10.2007)

    Дополнение №1: Химия батареи

    Вопрос:

    схема?
    — shahzad
    pakistan

    A:

    хороший вопрос — мы изменили ответ выше, чтобы попытаться включить в него хотя бы часть ответа.

    Mike W

    (опубликовано 22.10.2007)

    Дополнение № 2: как ведут себя электроны?

    Вопрос:

    Здравствуйте. У меня было бы 3 вопроса: 1. Электроны, генерируемые в одном типе электролита (А), толкают электроны в проводнике (как в автомобилях бампер к бамперу), когда цепь замкнута, и, таким образом, начинают перемещаться от одного электрода к другому. Теперь, когда они попадают из этого электролита А через проводник, достигая электрода назначения, ПОПАДАЮТ ЛИ ЭТИ ЭЛЕКТРОНЫ В ЭЛЕКТРОЛИТ, СОЕДИНЯЯСЬ С ИОНАМИ, ИЛИ ОНИ ПРОСТО ОСТАЮТСЯ НА САМОМ ЭЛЕКТРОДЕ? что касается электролитов, я имею в виду http://en.wikipedia.org/wiki/Galvanic_cell 2. Электроны обладают энергией — они вращаются. Это своего рода сумасшедшие прыжки вокруг места внутри атома — почти кажется, что они каждый раз во многих местах. Вопрос: где, черт возьми, они берут эту энергию для этого (Большого взрыва?)? Теряют ли они эту энергию со временем? — Они устают? 3. Существуют ли разные типы электронов — в зависимости от их содержания?
    — Мартин

    А:

    Это сложный, разнообразный набор вопросов.

    1. Электроны в упомянутом вами конкретном гальваническом элементе соединяются с ионами Cu ++ из раствора, образуя простые атомы Cu, которые сидят на медном электроде.

    2. Электроны, как и все мелкие вещи, действительно представляют собой расплывчатые волны, не расположенные в одном конкретном месте. Представление о том, что они всегда прыгают, как если бы они были сначала где-то, а потом где-то еще, неверно для электронов, которые устроились в волновых структурах в атомах. Однако (и это должно показаться странным, прежде чем вы немного изучите квантовую механику) даже в этих стабильных структурах электроны обладают некоторой кинетической энергией. Что еще более важно, будь то классический или квантовый, энергия сохраняется. Он не исчезает. Его крупномасштабные организованные формы постепенно перетекают в формы меньшего масштаба, допуская большое разнообразие возможных состояний. (Это следствие второго закона термодинамики.) Как бы то ни было, вся эта энергия существует со времен Большого взрыва, как вы предполагали.

    Спин электрона — это нечто иное, часть того, что делает что-то электроном, и он остается неизменным, пока электрон не аннигилирует.

    3. Нет, электроны на самом деле все одинаковые. Это не просто философское утверждение. Электроны — это разновидность частиц, называемых фермионами, для которых никакие две идентичные частицы не могут иметь абсолютно одинаковое квантовое состояние. Если вы выберете некоторый пространственный волновой паттерн, в нем может быть только два электрона — по одному для каждого отдельного спинового состояния. Это имеет огромные последствия. Например, это единственная причина, по которой все электроны в атоме не накапливаются в скучном низкоэнергетическом шаре рядом с ядром, так что это объясняет всю химию и, следовательно, жизнь.

    Mike W.

    (опубликовано 06.05.2011)

    Дополнение №3: электроны в батарее фактическая сама ячейка, как только она подключена к зарядному устройству для зарядки аккумулятора?? я говорю о самой клетке, потому что в сети нет ничего, что могло бы дать ответ уровня, который я искал.

    Спасибо
    — Sohail (23 года)
    Австралия

    A:

    По сути, внутри батареи нет потока отдельных свободных электронов. Однако существует чистый поток электронов, поскольку ионы включают в себя электроны. Например. рассмотрим медный электрод. Когда аккумулятор заряжается, электроны поступают из зарядного устройства и Cu ++ ионов поступает из раствора. Поскольку в этих ионах все еще есть электроны, существует поток электронов. Точно так же любые отрицательные ионы, движущиеся к другому электроду, также несут электроны. Нет правила, требующего, чтобы эти два потока электронов сокращались.

    Майк В.

    (опубликовано 18.07.2012)

    Дополнение №4: электроны в аккумуляторной жидкости?

    Q:

    Я все еще думаю, почему электроны не могут течь через электролит? В случае ионно-литиевой батареи ясно, что электролит состоит из органической жидкости, которая является изолятором для электричества, но проводником для ионов, но такие батареи, как свинцово-кислотные батареи, содержат воду и серную кислоту в электролитном отсеке.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *