Site Loader

Содержание

Магнитный двигатель своими руками | Земля Мастеров

МАГНИТНЫЙ ДВИГАТЕЛЬ — RU, НОВЫЙ ВАРИАНТ

Действующий макет магнитного двигателя МД-500-RU со скоростью вращения до 500 об/мин.

 

Ивестны седующие варианты магнитных двигателей (ДМ):

1. Магнитные двигатели, работающий только за счет силвзаимодействия магнитных полей, без устройства управления (синхронизации), т.е. без потребления энергии от внешнего источника.«Perendev», Wankel и др.

2. Магнитные двигатели, работающие за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которых требуется внешний источник питания.

Применение устройств управления позволяет получить на валу МД повышенную величину мощности, в сравнении с МД, указанными выше. Этот вид МД легче в изготовлении и настройке на режим максимальной скорости вращения.
3. Манитные двигатели использующие 1 и 2 варианты, например МД Нarry Paul Sprain,  Минато и другие.

***

Макет доработанного варианта работающего магнитного двигателя (МД-RU)

с устройством управления (синхронизации),обеспечивающий скорость вращения до 500 об/мин.

1. Технические параметры двигателя МД_RU:.

Число магнитов 8, 600Гс.
Электромагнит 1 шт.
Радиус R диска 0,08м.
Масса m диска 0,75 кг. 

Скорость вращения диска 500 об/мин.

Число оборотов в секунду 8,333 об/сек.. 
Период вращения диска 0.12 сек. ( 60сек/500 об/мин= 0,12сек).
Угловая скорость диска ω = 6,28/0,12 = 6,28/(60/500) = 52,35 рад./sec.
Линейная скорость диска V = R* ω = 0,08*52,35 = 4,188 m/сек.
2.Вычисление основных энергетических показателей МД.
Полный момент инерции диска:
Jпми = 0,5 * mкг *R2 = 0,5*0,75*(0,08) 2 = 0,0024[кг *m2]. 

Кенетическая энергия Wke на валу двигателя:
Wke = 0,5*Jпми* ω2 = 0,5*0,0024*(52,35) 2 = 3,288 дж/сек= 3,288 Вт*сек. 
При вычислениях использовался «Справочник по физике», Б.М.Яворский и А.А. Детлаф, и БСЭ. 

 

3. Получив результат вычисления кинетической энергии на валу диска (ротора) в Ваттах (3,288), для вычисления энергетической эффективности этого вида МД, необходимо вычислить мощность, потребляемую устройством управления (синхронизации).  Мощность потребляемая устройством управления (синхронизации) в ваттах, приведенная к 1 секунде:

в течение одной секунды устройство управления потребляет ток напротяжении 0,333 сек, т.к. за проход одного магнита электромагнит потребляет ток в течении 0,005сек., магнитов 8, за одну секунду происходит 8,33 оборота, поэтому время потреблен ия тока устройством управления равно произведению:

0,005*8*8,33 об/сек = 0,333сек.
-Напряжения питания устройства управления 12В.
-Ток, потребляемый устройством 0,13 А.
-Время потребления тока на протяжении 1 секунды равно — 0,333 сек. 
Следовательно мощность Руу, потребляемая устройством за 1 секунду непрерывного вращения диска составит:
Pуу = U* A = 12 * 0,13А * 0,333 сек. = 0,519 Вт*сек.

Это в (3,288 Вт*сек) /(0,519 Вт *сек) = 6,33 раз больше энергии потребляемой устройством управления.


Фрагмент конструкции МД.

 4. ВЫВОДЫ: 
Очевидно, что магнитный двигатель, работающий за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которого требуется внешний источник питания, потребляемая мощность от которого значительно меньше мощности на валу МД.  

 

5. Признаком нормальной работы магнитного двигателя является то, что если его, после подготовке к работе, слегка подтолкнуть, — он, далее, сам начнет раскручиваться до своей максимальной скорости.

 

6.Изготовление магнитного двигателя требует наличие материально – технической и инструментальной базы, без которой, практически, не возможно изготовление устройств подобного рода. Это видно из описания  патентов и других источников информации по
рассматриваемой теме.

При этом, наиболее походящие виды NdFeB — магнитов можно найти на сайте http://www.magnitos.ru/.

Для подобного вида МД наиболее подходящими являются магниты «средний квадрат»
К-40-04-02-N (длиной до 40 x 4 x 2 mm) с намагничиванием N40 и сцеплением 1 — 2 kg.
***

7. Рассмотренный вид магнитного двигаеля с устройством синхронизации

(управления включением электромагнита) отностися к наиболее доступному в изготовленении  вида  МД, которые называют импульсными магнитнами двигателями.

  На рисунке приведен  один  из  известных  вариантов импульсных МД с электромагнитом, «выполняющим роль поршня»,  похожий на  игрушку. В реальной полезной  модели  диаметр колеса (маховика), например, велосипедного колеса,  должен  быть не менее метра  и, соответственно,   длинее  путь  перемещения  сердечника  электромагнита.

Создание импульсного МД — это только 50% пути  до достижения  цели — изготовления  источника электрической энергии с повышенным кпд. Скорость и момент вращения на оси МД должены быть достаточными для вращения генератора постоянного или переменного тока и получения максимального значения получаемой мощности на выходе,  которая  так  же зависит и  от скорости вращения.

 

8. Аналогичные МД:
1. Magnetic Wankel Motor,http://www.syscoil.org/index.php?cmd=nav&cid=116
Мощность этой модели достаточна только для того,  чтобы колыхать воздух, тем не менее, она подсказывает путь к достижению цели. 

2. НARRY PAUL SPRAIN
http://www.youtube. com/watch?v=mCANbMBujjQ&mode=related&search;

Это двигатель, аналогичный Magnetic Wankel Motor, но значительно большего размера  и  с устройством управления (синхронизации) с  мощностью на валу 6 Вт*сек.

3. Вечный двигатель «PERENDEV»
Многие не верят, а он работает! 
См: http://www.perendev-power.ru/ 
Патент МД «PERENDEV»:
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2006045333&F=0

Download Patent WO2006045333A1 May 4, 2006. http://www.freeenergynews.com/Directory/Perendev/MagneticMotor/Perendev Magnet Motor Patent WO2006045333A1.pdf (PDF, 23 pp.).

Двигатель — генератор на 100 кВт стоит 24 000 евро. 
Дорого, поэтому некоторые умельцы изготавливают его своими руками в масшабе 1/4 (фото приведено выше).

Рисунок действущего макета  разработанного  импульсного магнитного двигателя МД-500-RU,  дополненного  асинхронным генераторм  переменного тока.

 

Новые конструкции вечных магнитных двигателей: 

 

1.

Из перевода комментарий и ответов автора следует:

Автор магнитного двигателя (perpetuum) использует двигатель вентилятора, на ось которого насажено колесо с постоянными магнитами и две или три неподвижныекатушки, которые наматывается в два провода.

 

К выводам каждой катушки подключен транзистор. Катушки содержат магнитный сердечник. Магниты колеса, проскакивая мимо катушек с магнитами, наводит в них эдс, достаточную для возникновения генерации в цепи катушка-транзистор, далее напряжение генератора через,  предположительно,   согласующее устройство поступает на обмотки двигателя,  вращающего колесо и т.д.

Подробности своего perpetuum автор изобретения не раскрывает, за что его называют шарлатаном. Ну как обычно.

2.

Магнитный двигатель LEGO (perpetuum).

Он выполнен на базе элементов из набора для конструирования LEGO.

При медленной прокрутки видео – становится понятным почему эта штуковина вращается  непрерывно.

 

 

3. «Запрещённая конструкция» вечного двигателя с двумя поршнями.  Вопреки известному «не может быть», медленно, — но вращается.

 

http://rutube.ru/tracks/2280408.html?v=18170172833e160e33264c8a6cf50706

 

В нем одновременное использование гравитации и взаимодействия магнитов.

4.Гравитационно-магнитный двигатель.

 

На вид очень простое устройство, но не известно, потянет ли оно генератор постоянного или переменного тока ? Ведь простого вращения колеса не достаточно.

Приведенные виды магнитных двигателей (с пометкой: perpetuum), если даже они работают, — очень маломощны. Поэтому, чтобы они стали эффективными дляпрактического применения их размеры неизбежно придется увеличивать, при этом, они не должны потерять свое важное свойство: непрерывно вращаться.


+++

Странная «качалка» сербского изобретателя В.Милковича , которая, как ни странно, — работает.


http://www.veljkomilkovic.com/OscilacijeEng.html

Краткий перевод:
Простой механизм с новыми механическими эффектами, представляющим собой источник энергии. Машина имеет только две основных части: огромный рычаг на оси и маятник. Взаимодействие двухступенчатого рычага умножает входную энергию удобную для полезной работы (механический молот, пресса, насос, электрический генератор…). Для полного ознакомления с научными исследованиями смотрите видио.

1 — «Наковальня», 2 — Механический молот с маятником, 3 – Ось рычага молота, 4 — Физический маятник.
Наилучшие результаты были достигнуты, когда ось рычага и маятника находятся на одной и той же высоте, но немного выше центра массы, как показано на рисунке.
В машине используется различие в потенциальной энергии между состоянием невесомости в положении ( вверху) и состоянием максимальной силы (усилия) (внизу) в течение процесса генерации энергии маятником. Это истина для центробежной силы, для которой сила равна нулю в верхней позиции и достигает наибольшего значения в нижней позиции, в которой скорость максимальна. Физический маятник использован как главное звено генератора с рычагом и маятником.
После многих лет испытаний, консультаций и общественных презентаций, много было сказано об этой машине. Простота конструкции для самостоятельного изготовления в домашних условиях.
Эффективность модели может быть за счет повышения массы, как отношение веса (массы) рычага к поверхности молота, ударяющего по «наковальне».
Согласно теории генерации, колебательные перемещения «качалки» трудно поддаются анализу.
***
Испытания указали на важное значение процесса синхронизации частоты в каждой модели. Генерация физического маятника должна происходить с первого запуска и далее поддерживаться самостоятельно, но только при определенной скорости, в противном случае входная энергия будет затухать и исчезнет.
Молот более эффективно работает с коротким маятником (в насосе), но длительно (наиболее долго) работают с удлиненным маятником.
Дополнительное ускорение маятника является следствием силы тяжести. Если обратиться

к формуле: Ек = М(V1 +V 2)/2

и провести вычисления избытока энергии становится понятным, что он обусловлен потенциальной энергией гравитации. Кинетическая энергия может быть повышена  путем увеличения тяжести (массы).

Демонстрация работы устройства.
***

РУССКАЯ  КАЧАЛКА (резонансная качалка RU)

http://www.001-lab.com/001lab/index.php?topic=140.0 
Cм.
RE Магнитогравитационные установки 
Reply #14 : Март 02, 2010, 05:27:22
Видео: Работа в резонансе.rar (2955.44 Кб — загружено 185 раз.)
Работает!!!

ГЕНЕРАТОРЫ С ИЗБЫТОЧНОЙ ЭНЕРГИЕЙ (TORS TT) 
НОВОЕ НАПРАВЛЕНИЕ В СОЗДАНИИ ГЕНЕРАТОРОВ СВОБОДНЙ ЭНЕРГИИ

1. Известная схема устройства на базе изобретения Эдвина Грея, которое заряжает аккумулятор Е1 от которого оно и питается или внешний акккумулятор Е2, переключением элемента S2а — S2б. Т1,Т2 — мультивибратор (можно выполнить на ИМС), запускающий гнератор высоковольтных колбений на Т3, Т4 и Т5. 
L2, L3 — понижающий трансформатор, далее выпрямитель на D3, D4.
и трансформатр L2 — L3 можно вставит ферритовый сердечник (600 -1000 мп).
Элементы, заключенные в зеленый прямоугольник похожи на так называемую «конверсионную элементную трубку». В качестве искрового разрядника можно использовать обычную автомобильную свечу, а в качестве автотрансформатора (L1) – автомобильную катушку зажигания.
Другие схемные решения можно найти  на youtube.com  в видеоматериалах  по генераторам «свободной энергии», т.н. TROS,  amplifier  и  др.  со  схемами  этого вида генераторов энергии.  Схемы генераторов избыточной энергии TORS TT, это когда потребляемая генератором мощность, предположительно, значительно меньше энергии выделяемой в нагрузке. 

2. Очень интересный генератор Joule Thief избыточной энергии, работает от 1,5В, а питает лампы накаливания.

http://4.bp.blogspot. com/_iB7zWfiuCPc/TCw8_UQgJII/AAAAAAAAAf8/xs7eZ4680SY/s1600/Joule+Thief+Circuit+-2___.JPG

3. Наибольший интерес представляет генератор свободной энергии, работающий от источника постоянного тока 12 — 15В, который на выходе «тянет» несколько ламп накаливания на 220В. 

http://www.youtube.com/watch?v=Y_kCVhG-jl0&feature=player_embedded
Однако, автор не раскрывает технические особенности изготовления этого вида генератора электрической энергии, с так называемой самозапиткой. 
Кадр из этого видео ролика.

 

Для кого создают талантливые искатели «свободной энергии» подобные устройства?


Для себя, для потенциального инвестора или для кого — то еще ? Работа, как правило, закачивается известной формулировкой: получил «техническое чудо», но никому не скажу как. 
Тем не менее над этим видом герератора с самозапиткой стоит поработать. 
Он содержит источник постоянного тока на 15-20 В, конденсатор 4700мкФ, включенный параллельно источнику питания, транзисторный генератор высокого напряжения (2-5кВ), резрядник и катушку, содержащую несколько обмоток, намотанных на сердачник собранный из ферритовых колец (D~ 40мм). С ней придется разбираться, искать аналогичную конструкцию из множества подобных. Естественно, если будет желание.
Катушку, аналогичную используемой можно посмотреть на: http://jnaudin.free.fr/kapagen/replications.htm
http://www.001-lab.com/001lab/index.php?topic=24.0
УСПЕХОВ!

4. Достоверная схема генератора Капанадзе
Подробности на http://www.youtube.com/watch?v=tyy4ZpZKBmw&feature=related

5. Ниже набросок СхЭ генератора Naudin. Анализ схемы вызывает некоторые сомнения. Возникает естественный вопрос: какую мощность потребляет транс, например, от микроволновой печи (220/2300В), вставленный в генератор «свободной энергии» и какую мощность получаем на выходе в виде свечения ламп накаливания? Если транс от микроволновки, то его входная потребляемая мощность 1400 Вт, а выходная по СВЧ 800 — 900 Вт, при кпд магнетрона порядка 0.65. Поэтому, подключенные ко вторичной обмотке (2300В) через разрядник и небольшие индуктивности — лампы могут полыхать и только от выходного напряжения вторичной обмотки и весьма прилично.  

С этим варианотом схемы могут быть затруднения с достижением положительного эффекта. 
Элемент, обозначаемый буквами МОТ — это сетевой трансформатор 220/2000 … 2300В, в большинстве сучаев от микроволновой печи, Рвхода до 1400Вт, Рпо выходу (СВЧ) 800Вт. 
 

ПОЛУЧЕНИЕ ВОДОРОДА C ИСПОЛЬЗОВАНИЕМ ЧАСТОТЫ РЕЗОНАНСА  ВОДЫ

             ВОДОРОД МОЖНО ПОЛУЧАТЬ ОБЛУЧЕНИЕМ ВОДЫ ВЧ КОЛЕБАНИЕМ.

http://peswiki.com/index.php/Directory:John_Kanzius_Produces_Hydrogen_from_Salt_Water_Using_Radio_Waves
John Kanzius
The authors have shown that NaCl-h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised RF radiofrequency beam at at room temperature, generate an intimate mixture of hydrogen and oxygen which can be ignited and burned with a steady flamePatent of John Kanzius…

Преревод:
John_Kanzius показал, что раствор NaCl-h3O с концентрацией, колеблющейся от 1 до 30%, когда его облучают направленным поляризованным (polarised radiofrequency) ВЧ излучением с частотой, равной резонансной частоте раствора, порядка 13,56 МГц, при комнатной температуре начинает выделять водород, который в смеси с кислородом, начинает устойчиво гореть. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия.
Удельная теплота сгорания водорода: 120 Мдж/кг или 28000 ккал/кг.

Пример схемы ВЧ генератора:

Катушка диаметром 30-40 мм изготавливается из одножильного изолированного провода диаметром 1 мм, число витков 4-5 (подбирается экспериментально). Питание 15 – 20В подключить у правому концу дросселя 200 мкГ. Настойка в резонанс производится переменным конденсатором. Катушка наматывается поверх  сосуда с соленой водой  цилиндрической формы. Сосуд  на 75-80% заливается соленой водой и плотно закрывается крышкой  с патрубком для отвода водорода, у  выхода,  трубказаполняется ватой для предотвращения  свободного проникновения  кислорода в сосуд.

***
Подробнее можно посмотреть на:
http://www.scribd.com/doc/36600371/Kanzius-Hydrogen-by-RF
Observations of polarised RF radiation catalysis of dissociation of h3O–NaCl solutions 
R. Roy, M. L. Rao and J. Kanzius. The authors have shown that NaCl–h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised radiofrequency beam at 13,56 MHz…

Ответ на вопрос читателя:
Я получал водород, заливая водным раствором едкого натра (Na2CO3) пластину алюминия (100 х100 х 1мм). В воде кальцинированная сода реагирует с водой 
2CO3− + h3O ↔ HCO3− + OH−   и образует гидроксил ОН, который очищает алюминий от пленки. Далее начинается известная реакция: 
2Аl + 3Н2О = A12О3 + 3h3  с выделением тепла  и  интенсивным выделением водорода, схожая с кипением воды. Реакция проходит без электролиза! 

Эксперимент следует проводить осторожно, чтобы не произошло возгорание и взрыв водорода. Или сразу предусмотреть отвод водорода из накрытого крышкой сосуда с рабочими компонентами. В процессе реакции выделения водорода, через некоторое время, алюминиевая пластина начинает покрывается отходами реакции хлоридом кальция CaCl2 и окисью алюминия A12О3. Интенсивность химической реакции через некоторое время начнет снижаться.  
Для поддержания её интенсивности следует удалить отходы, заменить раствор едкого натра и алюминиевую пластину на другую. Использованную, после очистки можно, применять снова и т.д. до полного их разрушения. Если применять дюраль, реакция протекает с выделением тепла. 
***
Аналогичная разработка:
Your house can be warmed up this way. (Ваш дом может быть обогрет этим способом) 
Изобретатель Mr. Francois P. Cornish. Европейский патент №0055134А1 от 30.06.1982, применительно к бензиновому двигателю,  он позволяет  машине  нормально двигаться, используя вместо бензина,  воду и небольшое количество алюминия. 
Mr. Francois P   в своем устройстве, использовал электролиз (при 5-10 кВ) в воде с алюминиевой проволокой, которую предварительно очищал от окиси до введения её в камеру, из которой по трубке отводил водород и подавал его в велосипедный двигатель. 


Здесь отходом реакции является A12О3. 

 

 
       
Возник вопрос, что дороже на 100 км пути — бензин или алюминий с высоковольтным источником и аккумулятором? 
Если «люмнь» со свалки или из отходов куханной посуды, то будет дешево.
***
Дополнительно, можете посмотреть  подобное устройство здесь: http://macmep.h22.ru/main_gaz.htm
и здесь: «Простой народный способ получения водорода»
http://new-energy21.ru/content/view/710/179/,
а здесь http://www.vodorod.net/  — информация о генераторе водорода за 100 баксов. Я бы не покупал, т.к. на видео не видно явного возгорания водорода на выходе бидона с компонентами для электролиза.

 

миф или реальность, устройство, виды

Содержание:

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась идея о вечном двигателе? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного магнита и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

Майкл Брэди в 2002 году создавая двигатель Перендева на магнитах

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного электрического мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя.

Конструктивные особенности

Из каких элементов состоит магнитный двигатель:

  1. Статор, выполненный как один постоянный магнит на пружинной основе.
  2. Ротор. Диск, обязательно выполненный из материала, который не подвержен намагничиванию. По поверхности диски расположены небольшие постоянные магниты определённых размеров. Все магниты на диске необходимо разместить в определённой форме и последовательности.
  3. Балласт. В магнитном двигателе это отдельный элемент, он обеспечивает разгон ротора и его постоянное вращение при работе.

Это пример самой простой конструкции магнитного двигателя. Мастера вроде Николы Тесла или Василия Шкондина создавали куда более изощрённые модели, а многие из конструкторов в данной сфере электротехники даже получили патенты на свои изделия.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Разновидности магнитных двигателей и их схемы

Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.

Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Двигатель Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

Василия Шкондина

Получить вечный генератор Василию Шкодину не удалось, КПД такого магнитного двигателя и сегодня не превышает 83%. Но и этого более чем достаточно, чтобы его повсеместно применяли для велосипедов, байков и самокатов. Он может эксплуатироваться как в режиме тяги, так и для рекуперации электроэнергии.


Двигатель Шкондина

На рисунке приведена конструкция магнитного двигателя Шкодина. Как видите, и ротор и статор представляют собой кольца. Из магнитных деталей он содержит 11 пар неодимовых магнитов. Ротор устройства содержит 6 электромагнитов, смещенных на одинаковое расстояние друг относительно друга.

Джона Серла

От электрического мотора такой магнитный двигатель  отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии  в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.


Двигатель Серла

Полюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.

Свинтицкого

Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.

Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.

Алексеенко

Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.


Двигатель Алексеенко

Как видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.

Модель Лоренца

Чтобы сделать вечный двигатель на магнитах Лоренца, необходимо использовать пять пластин. Расположить их следует параллельно друг другу. Затем по краям к ним припаиваются проводники. Магниты в данном случае крепятся на внешней стороне. Чтобы диск свободно вращался, для него необходимо установить подвеску. Далее к краям оси прикрепляется катушка.

Управляющий тиристор в данном случае устанавливается на ней. Чтобы увеличить силу магнитного поля, используется преобразователь. Вход охлажденного агента происходит вдоль кожуха. Объем сферы диэлектрика зависит от плотности диска. Параметр кулоновской силы, в свою очередь, тесно связан с температурой окружающей среды. В последнюю очередь важно установить статор над обмоткой.

Говарда Джонсона

В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:


Двигатель Джонсона

Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении  расстояний и зазоров между основными элементами мотора.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.

Руководствуясь такой схемой, можно своими силами создать магнитный агрегат.

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Среди преимуществ таких агрегатов, можно отметить следующие:

  1. Полная автономность с максимальной экономией топлива.
  2. Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  3. Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  1. Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  2. Большое количество моделей не может эффективно работать в бытовых условиях.
  3. Есть небольшие сложности в подключении даже готового агрегата.
  4. Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Миф или всё же реальность?

Магнитный двигатель – это реальность. Конструкторы Игорь Свитницкий и Говард Джонсон это доказали, создав моторы, которые работали за счёт постоянного магнитного потока. Но решить основную проблему – увеличить КПД до положенных 100%, они, к сожалению, не смогли.

Поэтому магнитные двигатели существуют, а теория их массового производства вполне реальна. А вот трактовка магнитного мотора как вечного двигателя с совершенным КПД – это вымысел, незаслуживающий внимания. Вечных двигателей не существует, это доказано, но всё же не мешает появляться на свет «конструкторам», желающим данный факт оспорить.

Рекомендации

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид,год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделятькорпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Предыдущая

РазноеДля чего и в каких случаях измеряют сопротивление изоляции. Измерение сопротивления изоляции мегаомметром

Следующая

РазноеСистемы заземления TN-C, TN-S, TN-C-S, TT, IT со схемами (ПУЭ). Системы заземлений — преимущества и недостатки

Мотор в разобранном виде: научная деятельность в области электричества и магнетизма

Катушка проволоки становится электромагнитом, когда через нее проходит ток. Электромагнит взаимодействует с постоянным магнитом, заставляя катушку вращаться. Вуаля! Вы создали электродвигатель.


Тема: 

Инженерия и технологии

Реальные проблемы и решения

Физика

Электричество и магнетизм

Ключевые слова: 

электромагнит

Мотор

на основе выставок

NGSS и EP & CS:

PS

PS2

PS3

CCCS

УЗИ

Причина и следствие

и системные модели

Energe и Matter

.




Инструменты и материалы

  • Около 2 футов (60 см) цельного (не многожильного) эмалированного или изолированного медного провода калибра 20–24.
  • Инструмент для зачистки проводов (если вы используете изолированный провод) или наждачная бумага (если вы используете эмалированный провод).
  • Черная перманентная маркерная ручка
  • Обычная бумага, пенопласт или пластиковый стаканчик
  • Минимум 2 дисковых или прямоугольных керамических магнита
  • Две большие скрепки
  • Изоляционная лента
  • Алюминиевая фольга
  • Одна или две батареи размера C или D

Сборка

  1. Смотайте медную проволоку в катушку диаметром около 1 дюйма (2,5 см). Сделайте четыре-пять петель.
  2. Оберните концы проволоки вокруг катушки пару раз с противоположных сторон, чтобы скрепить катушку. Оставьте примерно 2 дюйма (5 см) выступающими с каждой стороны катушки и обрежьте все лишнее (щелкните, чтобы увеличить фото ниже).
  3. Если вы используете изолированный провод, снимите изоляцию с концов провода, выступающих из катушки. Если вы используете эмалированную проволоку, удалите эмаль наждачной бумагой.
  4. Используйте перманентный маркер, чтобы покрасить одну сторону одного из выступающих концов в черный цвет. ( Примечание. Очень важно, чтобы ориентация окрашенной стороны соответствовала ориентации, показанной на изображении ниже. Если катушка удерживается в вертикальной плоскости, покрасьте верхнюю половину одного из проводов в черный цвет. )
  5. Отрежьте или оторвите две полоски алюминиевой фольги шириной 1 дюйм (2,5 см).
  6. Разверните один конец каждой скрепки. На развернутую часть каждой скрепки оберните и приклейте конец полоски алюминиевой фольги. Убедитесь, что фольга плотно прилегает к зажиму.
  7. Переверните чашку вверх дном. Прикрепите скрепки к противоположным сторонам дна чашки так, чтобы развернутые концы скрепок были направлены вниз, а алюминиевая фольга отходила от чашки.
  8. Держа чашку вверх дном, поместите один магнит в центр дна чашки, а затем приложите палец к магниту, чтобы зафиксировать его на месте.
  9. Теперь переверните чашку правой стороной вверх. Прикрепите один или несколько магнитов к внутренней части чашки, непосредственно под оригинальным магнитом. Это создаст сильное магнитное поле, а также удержит внешний/верхний магнит на месте. Ваш вид на внутреннюю часть чашки должен выглядеть, как на фото ниже (нажмите, чтобы увеличить).
  10. Поместите концы катушки с медной проволокой в ​​держатели, образованные петлями в скрепках. Отрегулируйте высоту канцелярских скрепок так, чтобы при вращении катушки она выходила за пределы магнита примерно на 1/16 дюйма (1,5 мм).
  11. Отрегулируйте катушку и зажимы так, чтобы катушка оставалась сбалансированной и центрированной, свободно вращаясь на зажимах. Хороший баланс важен для правильной работы двигателя. При необходимости обрежьте лишний провод с торчащих концов катушки. (Длина, необходимая для двух концов катушки, зависит от расстояния между держателями скрепки, которое, в свою очередь, зависит от ширины основания используемой вами чашки.)
  12. Убедитесь, что две задние полоски алюминиевой фольги не касаются друг друга. Поставьте аккумулятор на одну из полосок фольги так, чтобы она опиралась на фольгу и соприкасалась с ней. Теперь прикоснитесь другой полоской фольги к другому концу батареи.

Действия и уведомления

Дайте катушке вращение, чтобы она начала вращаться. Если он не крутится сам по себе, убедитесь, что катушка в сборе хорошо сбалансирована при вращении, что эмаль тщательно соскоблена (если вы использовали эмалированную проволоку), что выступающий конец окрашен в черный цвет. маркером, и что катушка и магнит находятся близко друг к другу, но не ударяются друг о друга. Вы также можете попробовать отрегулировать расстояние, разделяющее держатели скрепки: это может повлиять на качество контакта между катушкой и держателями. Возможно, вам придется сжать развернутые концы скрепок, чтобы убедиться, что алюминиевая фольга обеспечивает хороший электрический контакт.

Продолжайте вносить коррективы, пока двигатель не заработает. Иметь терпение! Уровень успеха с этим дизайном был довольно хорошим.


Что происходит?

Ток течет через батарею, алюминиевую фольгу и скрепки в проволочную катушку, создавая электромагнит. Одна сторона катушки становится северным полюсом; другой южный полюс. Постоянный магнит притягивает противоположный полюс к катушке и отталкивает одноименный полюс, заставляя катушку вращаться.

Другой способ описать работу двигателя — сказать, что постоянные магниты воздействуют на электрические токи, протекающие по проволочной петле. Когда проволочная петля находится в вертикальной плоскости, силы на верхней и нижней проволоках петли будут направлены в противоположные стороны. Эти противоположно направленные силы создают скручивающую силу, или крутящий момент , на проволочную петлю, заставляющую ее вращаться.

Почему так важно покрасить половину выступающего провода в черный цвет? Предположим, что постоянные магниты установлены северными полюсами вверх. Северный полюс постоянного магнита будет отталкивать северный полюс петлевого электромагнита и притягивать южный полюс. Но как только южный полюс петлевого электромагнита окажется рядом с северным полюсом постоянного магнита, он останется там. Любое нажатие на петлю просто заставит ее раскачиваться вокруг этого положения равновесия.

Окрашивая половину одного конца в черный цвет, вы предотвращаете протекание тока в течение половины каждого вращения. Магнитное поле петлевого электромагнита на этот полуоборот выключено. Когда южный полюс петлевого электромагнита приближается к постоянному магниту, краска отключает электрический ток. Инерция вращающейся катушки проносит ее через пол-оборота мимо изолирующей краски. Когда электрический ток снова начинает течь, скручивающая сила действует в том же направлении, что и раньше. Катушка продолжает вращаться в том же направлении.

Вы можете поэкспериментировать с этим устройством, переключая клеммы на батарее, добавляя батарею или переворачивая магниты. Попробуйте добавить больше магнитов или измените положение магнитов. Смотрите, что происходит!


Дальше

В этом двигателе скользящий электрический контакт между концами катушки провода и скрепками отключает ток на половину каждого цикла. Такие скользящие контакты известны как коммутаторы 9.0085 . В большинстве электродвигателей постоянного тока используются более сложные коммутаторы, которые меняют направление тока, протекающего по контуру, каждые полпериода. Более сложные двигатели в два раза мощнее описанного здесь двигателя.

Этот двигатель также можно использовать для демонстрации работы генератора. Попробуйте подсоединить концы скрепок к чувствительному гальванометру вместо батарейки. Вращайте катушку и смотрите, регистрируется ли какой-либо ток на счетчике.



Похожие закуски

Моторный эффект

Магнит действует на провод с током с силой.

Генератор в разобранном виде

Встряхните как раз, чтобы увидеть свет.

Легкий ветер

Соберите простой ветрогенератор.




Эта работа находится под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Атрибуция: Педагогический институт Exploratorium

Линейный шаговый двигатель с постоянными магнитами

Особенности
  • Доступен с внешним диаметром от 25 до 35 мм
  • Линейный ступенчатый ход: от 0,05 мм до 0,0254 мм.
  • Возможен ходовой винт
Области применения
  • Клапаны умных кранов
  • Клапаны управления расходом газа
  • Регулировка/позиционирование антенны


Установите один или несколько флажков рядом с названием серии, чтобы увидеть доступный инвентарь справа. Щелкните одно из названий серий, чтобы отфильтровать номера деталей по сериям.

Название серии

Ширина кадра

Высота рамы

Угол шага

Технический паспорт

PL25

25

25

15

ПДФ

PL35

35

35

15

ПДФ

Установите один или несколько флажков ниже, чтобы получить образец или купить сейчас.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *