Site Loader

Содержание

лампы всех типов с доставкой по России

Каталог товаров

  • Лидеры продаж


Отзывы о наших товарах

25.02.2023

Р 3,75-1+0,5

Отлично! Оперативно доставлено в Новосибирск, упаковка выше всяких похвал. Рекомендую.

Подробнее

03.02.2023

РН 8-20-1

Купил 2 штуки. Доставка заняла 2 дня почтой. Товар соответствует описанию.

Подробнее

14.10.2022

МН 36-0,12

Покупал для самоделки на 36 вольт, всё хорошо

Подробнее

10.12.2021

К 12-90

Добрый день. Хочу купить лампу К-12-90 .

как это сделать ? и цена на сегодня.

Подробнее

05.04.2020

Кристалл БНБ-01-11-001

Пользуюсь уже лет 10. Жалоб нет.

Подробнее

22.02.2020

КПК 4/20

Очень грубые сотрудники Не могут дать ответ по заявке Нужно звонить по несколько раз и писать Очень плохое обслуживание

Подробнее

10.11.2019

Narva 55147 6V 25W

Подходит для микмед2, горит около полугода при ежедневном использовании

Подробнее

16.05.2019

ЗК 215-225-500-1

Здравствуйте! Мне кажется вы ошиблись при проставлении размеров. Диаметр лампы 160 высота 262, а не наоборот.

Подробнее

03.05.2019

TUV-16W

Постоянно покупаю здесь эти лампочки) Всегда остаюсь доволен магазином.

Подробнее

13.02.2019

TUV-15W

Огромный выбор ламп. Лампочка была в наличии и прекрасно работает.

Подробнее

Все отзывы →

  • Новости
  • Статьи

07.07.2019

Лампы для проектора

Уважаемые покупатели. В нашем магазине имеются в наличии лампочки для проекторов К 220-230-100, К 6-30-1, К 12-90, К 12-30, КГМ 24-150, КГМ 24-250.

Спешите купить, пока они еще…

Подробнее

11.06.2019

Скидки на лампы с цоколем e12

Уважаемые клиенты, на нашем сайте действует акция на лампочки с цоколем е12. Скидка в размере 10% предоставляется на все товары категории Лампы свечи для люстр импортного стандарта с маленьким…

Подробнее

11.06.2019

Скидки на светодиодные лампы!

Уважаемые покупатели, спешим уведомить Вас, что в разделе Светодиодные лампы Feron действуют скидки 10% до 31.08.2019 включительно. Успейте приобрести всю необходимую продукцию до окончания…

Подробнее

Все новости →

Типы цоколей ламп

  • 16 Октября 2016
  • 6010

В каждом светильнике используется определенный тип патрона, в который можно установить только такую лампу, которая имеет подходящий цоколь.

Подробнее

Все статьи →

Ксеноновая дуговая лампа | это… Что такое Ксеноновая дуговая лампа?

Короткодуговая 15-киловаттная ксеноновая лампа в IMAX-проекторе

Ксеноновая дуговая лампа — источник искусственного света, в котором светится электрическая дуга в колбе, заполненной ксеноном. Дает яркий белый свет, близкий по спектру к дневному.

Ксеноновые лампы можно разделить на следующие категории:

  • Длительной работы с короткой дугой
  • Длительной работы с длинной дугой
  • Ксеноновая лампа-вспышка

Лампа состоит из колбы из обычного или кварцевого стекла с вольфрамовыми электродами с каждого конца. Колба вакуммируется и затем заполняется ксеноном. Ксеноновые лампы-вспышки имеют третий поджигающий электрод, опоясывающий колбу.

Содержание

  • 1 История и применение
  • 2 Конструкция лампы
  • 3 Принцип работы
  • 4 Варианты исполнения
    • 4. 1 Короткодуговые лампы (Шаровые лампы)
    • 4.2 Керамические лампы
    • 4.3 Длиннодуговые лампы (Трубчатые лампы)
  • 5 Требования к питанию
  • 6 Применение
  • 7 Примечания
  • 8 Ссылки

История и применение

100 Вт ксеноново-ртутная короткодуговая лампа Osram в рефлекторе

Ксеноновая лампа с короткой дугой была изобретена в 1940-х в Германии и представлена в 1951 году компанией Osram. Лампа нашла широкое применение в кинопроекторах, откуда вытеснила преимущественно угольные дуговые лампы. Лампа дает яркий белый свет, близкий к дневному спектру, но имеет достаточно невысокий КПД. На сегодняшний день практически во всех пленочных и цифровых кинопроекторах используются ксеноновые лампы мощностью от 900 Вт до 12 кВт. Лампы в проекторах IMAX могут достигать мощности в 15 кВт в одной лампе.

Конструкция лампы

15 kW лампа для IMAX. Видны отверстия для подачи охлаждающей жидкости.

Во всех современных ксеноновых лампах используется колба из кварцевого стекла с электродами из вольфрама, легированного торием. Кварцевое стекло — это единственный экономически приемлемый оптически прозрачный материал, который выдерживает высокое давление (25 атм в колбе ламп для IMAX), и температуру. Для специальных задач применяют изготовление колбы лампы из сапфира, это расширяет спектральный диапазон излучения в сторону коротковолнового ультрафиолета также приводит к увеличению срока службы лампы. Легирование электродов торием сильно увеличивает эмиссию ими электронов. Так как коэффициент теплового расширения кварцевого стекла и вольфрама различаются, вольфрамовые электроды вварены в полосы из чистого молибдена или инвара, которые вплавлены в колбу. В ксеноновой лампе анод при работе очень сильно нагревается потоком электронов, поэтому лампы большой мощности нередко имеют жидкостное охлаждение.

3 кВт лампа в пластиковом защитном транспортировочном чехле

Для повышения эффективности лампы, ксенон находится в колбе под высоким давлением (до 30 атм), что накладывает особые требования по безопасности.

При повреждении лампы осколки могут разлететься с огромной скоростью. Обычно лампа транспортируется в специальном пластиковом контейнере, который снимается с лампы только после установки лампы на место и надевается на лампу при её демонтаже. При работе лампы колба подвергается значительным перепадам температуры, в результате чего к концу срока службы колба становится более хрупкой. Из соображений безопасности производители ксеноновых дуговых ламп рекомендуют использовать защитные очки при обслуживании лампы. При замене ламп IMAX рекомендуется надевать защитный костюм.

Принцип работы

В ксеноновой лампе основной поток света излучается плазмой возле катода. Светящаяся область имеет форму конуса, причём яркость её свечения падает по мере удаления от катода по экспоненте. Спектр ксеноновой лампы приблизительно равномерный по всей области видимого света, близкий к дневному свету. В лампах высокого давления могут быть несколько пиков вблизи инфракрасного диапазона, примерно 850—900 нм, которые могут составлять до 10 % всего излучения по мощности.

Существуют также ртутно-ксеноновые лампы, в которых кроме ксенона в колбе находятся пары ртути. В них светящиеся области есть как возле катода, так и возле анода. Они излучают голубовато-белый свет с сильным выходом ультрафиолета, что позволяет использовать их для физиотерапевтических целей, стерилизации и озонирования.

Благодаря малым размерам светящейся области, ксеноновые лампы могут использоваться как точечный источник света, позволяющий производить достаточно точную фокусировку, а хороший спектр обуславливает широкое применение в кино- и фотосъёмке. Ксеноновые лампы также используются в климатических камерах — установках, моделирующих солнечное излучение для испытания материалов на светостойкость.

Варианты исполнения

Короткодуговые лампы (Шаровые лампы)

Наиболее распространены короткодуговые лампы. В них электроды расположены на небольшом расстоянии, а колба имеет шарообразную, или близкую к шарообразной форму.

Керамические лампы

Лампа Cermax для видеопроекторов

Ксеноновые короткодуговые лампы могут выпускаться в керамической оболочке со встроенным рефлектором.

Благодаря этому лампа получается более безопасной, так как из стекла сделано только небольшое окно, через которое выходит свет, а также не требуется юстировка при установке и замене. В такой лампе может быть окно, как пропускающее ультрафиолетовое излучение, так и непрозрачное для него. Рефлекторы могут быть как параболическими (для получения параллельного светового потока) так и эллиптическими (для сфокусированного)[1].

Длиннодуговые лампы (Трубчатые лампы)

По конструкции длиннодуговые лампы отличаются от короткодуговых тем, что электроды дальше разнесены друг относительно друга, а колба имеет форму трубки. Ксеноновые лампы с длинной дугой требуют балласта меньших размеров, а в некоторых случаях могут использоваться без балласта. Такие лампы нередко устанавливаются в рефлектор в виде параболического цилиндра и используются для освещения больших открытых пространств (на железнодорожных станциях, заводах, складских комплексах и т. п.), а также для моделирования солнечного излучения, например при тестировании солнечных батарей, проверке материалов на светостойкость и т.  д.

Требования к питанию

Блок питания ксеноновой лампы, мощностью 1 кВт без крышки

Ксеноновая лампа с короткой дугой имеет отрицательный температурный коэффициент. Для поджига дуги требуется зажигающий импульс 15-30 кВ

[2], а иногда и до 50 кВ. В рабочем режиме требуется точная регулировка напряжения и тока, так как по мере прогрева лампы её сопротивление значительно уменьшается, и кроме того, возможно появление колебаний плазмы. При питании выпрямленным током необходимо, чтобы уровень пульсаций не превышал 10-12 %, так как колебания напряжения ускоряют износ электродов. Существуют разновидности ксеноновых ламп для переменного тока. Лампы с длинной дугой (например, отечественная ДКсТ) не столь требовательны к качеству питания и могут использоваться без балласта, требуя лишь пускателя.

Применение

Ксеноновые лампы чаще всего применяются в проекторах и в сценическом освещении, так как имеют очень хорошую цветопередачу. Благодаря малому размеру излучающей области они нашли применение в оптических приборах.

Начиная с 1991 года широкое распространение ртутно-ксеноновые лампы нашли в автомобильных фарах. Точнее, в автомобильных лампах основной световой поток формируют ртуть, соли натрия и скандия, а в атмосфере ксенона разряд происходит только на время запуска, до испарения других компонентов. Поэтому их стоит скорее относить к металлогалогенным лампам, однако при этом возникла бы путаница в названиях, так как в автомобильной светотехнике применяются также галогенные лампы накаливания. Стоит помнить, что при установке ксеноновых ламп необходимо также установить систему автоматической регулировки угла наклона фар и фароомыватели, во избежание ослепления встречных водителей.

Примечания

  1. Cermax Guide
  2. ДРЛ.ORG.UA — Лампы ксеноновые

Ссылки

  • Ксеноновая дуговая лампа — статья из Большой советской энциклопедии

Онлайн-кампус микроскопии ZEISS | Ксеноновые дуговые лампы

Введение

Ксеноновые и ртутные короткодуговые плазменные лампы обладают самой высокой яркостью и световым излучением среди всех непрерывно работающих источников света и очень близки к идеальной модели точечного источника света. В отличие от ртутных и металлогалогенных источников освещения ксеноновая дуговая лампа отличается тем, что она дает практически непрерывный и однородный спектр во всей видимой области спектра. Поскольку профиль излучения ксеноновой лампы имеет цветовую температуру примерно 6000 К (близкую к температуре солнечного света) и не имеет заметных линий излучения, этот источник освещения более выгоден, чем ртутные дуговые лампы, для многих применений в количественной флуоресцентной микроскопии. Фактически, в сине-зеленой (от 440 до 540 нанометров) и красной (от 685 до 700 нанометров) областях спектра 75-ваттная ксеноновая дуговая лампа ярче, чем сопоставимая 100-ваттная ( ГБО 100) дуговая ртутная лампа. Подобно ртутным лампам, ксеноновые дуговые лампы обычно обозначаются зарегистрированным товарным знаком как лампы XBO ( X для Xe или ксенона; B — символ яркости; O — принудительное охлаждение). представлена ​​научному сообществу в конце 1940-х гг. Популярная XBO 75 (75-ваттная ксеноновая дуговая лампа) более стабильна и имеет более длительный срок службы, чем аналогичная ртутная лампа HBO 100, но излучение видимого света составляет лишь около 25 процентов от общего светового потока, при этом большая часть энергия попадает в менее полезную инфракрасную область спектра. Приблизительно 70 процентов выходного сигнала ксеноновой дуговой лампы приходится на длину волны более 700 нанометров, в то время как менее 5 процентов выходного сигнала приходится на длину волны менее 400 нанометров. Чрезвычайно высокое давление ксеноновых ламп во время работы (от 40 до 60 атмосфер) уширяет спектральные линии, что приводит к гораздо более равномерному распределению возбуждения флуорофоров по сравнению с узкими и дискретными линиями излучения ртутных ламп. Таким образом, дуговая ксеноновая лампа больше подходит для строгих задач, требующих одновременного возбуждения нескольких флуорофоров в широком диапазоне длин волн в аналитической флуоресцентной микроскопии.

Несмотря на то, что ксеноновые лампы производят широкополосное, почти непрерывное излучение с цветовой температурой, близкой к солнечному свету в видимом диапазоне длин волн (часто называемом белым светом ), они демонстрируют сложный линейчатый спектр в диапазоне от 750 до 1000 нанометров ближнего света. -инфракрасный спектр (см. рис. 1). Кроме того, около 475 нанометров в видимой области существует несколько линий с более низкой энергией. В диапазоне от 400 до 700 нанометров примерно 85 процентов всей энергии, излучаемой ксеноновой лампой, приходится на континуум, тогда как около 15 процентов приходится на линейчатый спектр. Спектральный выход (цветовая температура) ксеноновой лампы не изменяется по мере старения устройства (даже до конца срока службы) и, в отличие от ртутных дуговых ламп, полный профиль излучения возникает мгновенно при включении. Мощность ксеноновой лампы остается линейной в зависимости от приложенного тока и может регулироваться для специализированных приложений. Кроме того, спектральная яркость не изменяется при изменении тока лампы. Типичная лампа XBO 75 производит световой поток примерно 15 люмен на ватт, но лампе требуется несколько минут после зажигания, чтобы достичь максимальной светоотдачи из-за того, что давление газа ксенона внутри колбы продолжает увеличиваться, пока она не достигнет конечной рабочей температуры. и достигает теплового равновесия.

Максимальное распределение яркости рядом с катодом в области дуги ксеноновой лампы XBO 75 (часто называемой горячей точкой или плазменным шаром ) составляет примерно 0,3 x 0,5 мм в размере и может рассматриваться для всех практических целей. для целей оптической микроскопии, точечный источник света, который будет производить коллимированные лучи высокой интенсивности при правильном направлении через систему конденсирующих линз в фонаре. В большинстве приложений флуоресцентной микроскопии свет, собранный от дуги ксеноновой лампы, отражается на точечном отверстии или задней апертуре объектива. Типичная контурная карта лампы XBO 75 показана на рис. 2(а), а распределение силы светового потока для той же лампы показано на рис. 2(б). На контурной карте яркость дуги наиболее интенсивна на кончике катода и быстро падает вблизи анода. Картина интенсивности потока (рис. 2(b)) демонстрирует, по большей части, превосходную вращательную симметрию вокруг лампы, но затенена электродами в областях, окружающих ноль и 180° на карте, где интенсивность резко падает. В ксеноновых дуговых лампах общая выходная мощность лампы составляет более 1000 нанометров в спектральной полосе пропускания, при этом на плазменную дугу и электроды приходится примерно половина общего излучения. Существенный вклад электродов обусловлен их большой площадью поверхности и высокими температурами. Большая часть излучения с более низкой длиной волны (по сути, видимый свет) исходит от плазменной дуги, тогда как на электроды приходится большая часть инфракрасного излучения (выше 700 нанометров). Свечение и интенсивность излучения, генерируемые дуговыми лампами, являются важными элементами для инженеров при проектировании оптики и стратегии охлаждения систем распределения света для применений в оптической микроскопии.

Оптическая мощность ксеноновых (XBO) дуговых ламп

Набор фильтров Возбуждение
Фильтр
Ширина полосы (нм)
Дихроматический
Зеркальный
Граница (нм)
Мощность
мВт/см 2
ДАПИ (49) 1 365/10 395 ЛП 5,6
УФП (47) 1 436/25 455 ЛП 25,0
GFP/FITC (38) 1 470/40 495 ЛП 52,8
YFP (S-2427A) 2 500/24 ​​ 520 ЛП 35,4
ТРИТЦ (20) 1 546/12 560 ЛП 12,2
ТРИТЦ (С-А-ОМФ) 2 543/22 562 ЛП 31,9
Красный Техас (4040B) 2 562/40 595 ЛП 54,4
mCherry (64HE) 1 587/25 605 ЛП 27,9
Cy5 (50) 1 640/30 660 ЛП 22,1
gif»>

1 Фильтры ZEISS     2 Фильтры Semrock
Таблица 1

В таблице 1 представлены значения оптической выходной мощности типичного 75-ваттного источника света XBO после прохождения через оптическую систему микроскопа и выбранные наборы флуоресцентных фильтров. Мощность (в милливатт/см 2 ) измеряли в фокальной плоскости объектива микроскопа (40-кратный сухой флюорит, числовая апертура = 0,85) с использованием радиометра на основе фотодиода. Для проецирования света через объектив в датчик радиометра использовалось либо зеркало с коэффициентом отражения более 95% от 350 до 800 нанометров, либо стандартный набор флуоресцентных фильтров. Потери светопропускной способности в системе освещения микроскопа могут варьироваться примерно от 50 до 99 процентов входной мощности, в зависимости от механизма соединения источника света и количества фильтров, зеркал, призм и линз в оптической цепи. Например, для типичного инвертированного микроскопа исследовательского класса, соединенного с ламповым блоком XBO на входе эпи-осветителя, менее 70 процентов света, выходящего из системы собирающих линз, доступно для возбуждения флуорофоров, расположенных в фокусе объектива. самолет.

Ориентация ксеноновой лампы имеет решающее значение для правильной работы и долговечности. В тех лампах, которые предназначены для вертикальной работы (до угла отклонения от оси 30), анод расположен вверху, а катод находится внизу в нижней части лампы. Эта конфигурация осесимметрична и обеспечивает отличные характеристики дуги. Напротив, лампы, предназначенные для горизонтальной работы (хотя они также могут работать и вертикально), создают дугу, требующую стабилизации, чтобы уменьшить преждевременный и ускоренный износ электродов. Горизонтальная работа лампы не отличается симметрией, присущей вертикальной работе лампы, хотя такая ориентация требуется для некоторых конструкций ламповых домов. Стабилизация дуги в горизонтальных лампах проще всего достигается с помощью стержнеобразных магнитов, установленных параллельно оси лампы, непосредственно под колпаком. Магнитное поле тянет дугу вниз, повышая стабильность, которую можно точно настроить, изменяя расстояние между магнитом и оболочкой. Изменение положения лампы путем поворота на 180 градусов в период полураспада лампы позволяет более равномерно распределить испарившийся электродный материал на внутренних стенках оболочки. Следует отметить, что разумным выбором является использование вертикальной ориентации ксеноновых ламп, когда это возможно, в конфигурациях флуоресцентной микроскопии.

Срок службы ксеноновой дуговой лампы в первую очередь определяется уменьшением светового потока из-за испарения вольфрама, который со временем осаждается на внутренней стенке колбы. Распад наконечника катода и воздействие ультрафиолетового излучения на кварцевую оболочку также способствуют старению лампы и стабильности. Частые возгорания лампы ускоряют износ электродов и приводят к преждевременному почернению оболочки. Почернение постепенно снижает светоотдачу и сдвигает спектральные характеристики в сторону более низкой цветовой температуры. Почернение лампы, которое увеличивает рабочую температуру оболочки из-за поглощения энергии излучаемого света, происходит медленно на ранних стадиях срока службы лампы, но быстро увеличивается на более поздних стадиях. Другими факторами, негативно влияющими на срок службы ксеноновой лампы, являются перегрев, слабый ток, пульсации источника питания, неправильное положение горения, чрезмерный ток и неравномерное почернение оболочки. Средний срок службы лампы (рассчитанный производителями) основан на периоде горения приблизительно 30 минут для каждого случая возгорания. Обычно считается, что окончанием срока службы лампы является точка, в которой мощность ультрафиолетового излучения снижается примерно на 25 %, нестабильность дуги возрастает более чем на 10 % или лампа вообще прекращает зажигание. Как правило, ксеноновые лампы следует заменять (даже если они еще способны зажечься), когда средний срок службы превышается на 25 процентов. 9Ксеноновая дуговая лампа Конструкция

Ксеноновые дуговые лампы изготавливаются со сферическими или эллипсоидальными оболочками, состоящими из плавленого кварца, одного из немногих оптически прозрачных материалов, способных выдерживать чрезмерные тепловые нагрузки и высокое внутреннее давление, воздействующее на материалы, используемые при изготовлении эти лампы. Для большинства применений в оптической микроскопии ксеноновые лампы обычно содержат кварцевый сплав, легированный соединениями церия или диоксидом титана для поглощения ультрафиолетовых длин волн, которые служат для образования озона во время работы. Типичный плавленый кварц пропускает свет с длиной волны до 180 нанометров, тогда как легирование стекла ограничивает излучение лампы длиной волны выше 220 нанометров. Ксеноновые лампы, оборудованные для работы без озона, часто обозначаются кодом 9.0005 ОФР для указания их класса. Подобно процессу изготовления ртутных ламп, кварц, используемый для корпусов ксеноновых ламп, изготавливается из трубок высочайшего качества, которые тщательно формируются на токарном станке в готовую колбу с помощью методов расширения воздуха. Во время работы корпус лампы может нагреваться до температуры от 500 до 700°С, что требует жестких производственных допусков для сведения к минимуму риска взрыва.

Анодные и катодные электроды в ксеноновых дуговых лампах изготавливают из кованого вольфрама или специальных вольфрамовых сплавов, легированных оксидом тория или соединениями бария для снижения работы выхода и повышения эффективности электронной эмиссии. В производстве ксеноновых дуговых ламп используются только самые чистые сорта вольфрама. Высококачественный вольфрам имеет очень низкое давление паров и гарантирует, что электроды ксеноновых ламп способны выдерживать чрезвычайно высокие температуры дуги (более 2000 C для анода), возникающие во время работы, и помогает свести к минимуму накопление отложений на оболочке. Из-за сложности обработки электродов с такими высокочистыми сортами вольфрама на протяжении всего процесса требуются керамические инструменты, чтобы избежать попадания загрязняющих веществ. После изготовления катод припаивается к молибденовому стержню или пластине для поддержки, но стержень анода состоит из твердого вольфрама, поскольку он подвергается гораздо более высоким температурам из-за постоянной бомбардировки электронами, испускаемыми катодом. Оба электрода проходят ультразвуковую очистку и термообработку для удаления остатков смазки и загрязнений перед их герметизацией в колбе лампы.

Значительное внимание уделялось конструкции катодов ксеноновых ламп, направленной на повышение стабильности дуги во время работы. В обычных лампах с вольфрамовыми электродами, легированными торием, точка испускания дуги на катоде периодически смещается из-за локализованных изменений эмиссии электронов с поверхности, явление, известное как отклонение дуги (см. рис. 3(a)). Этот артефакт, усиливающийся по мере износа наконечника, приводит к мгновенным колебаниям яркости лампы, называемым 9.0005 вспыхивает , когда дуга перемещается в новую область на катоде (рис. 3(b)). Дуга флаттер описывает быстрое боковое смещение столба дуги за счет конвекционных потоков, возникающих при нагревании газообразного ксенона дугой и охлаждении внутренними стенками оболочки (рис. 3(с)). Кроме того, острые наконечники катодов, легированных торием, изнашиваются быстрее, чем катоды, изготовленные из современных сплавов оксидов редкоземельных элементов. Лампы с усовершенствованной катодной технологией часто называют сверхтихий и продемонстрировали высокую кратковременную стабильность дуги менее чем на полпроцента, а также снижение скорости дрейфа менее 0,05 процента в час работы. Долгосрочный анализ высокоэффективной работы катода показывает, что износ значительно снижается, а смещение точки дуги в течение среднего срока службы лампы практически исключено. В результате, после того, как сверхтихая ксеноновая лампа первоначально выровнена с другими элементами оптической системы микроскопа, как правило, нет необходимости в повторной регулировке положения в течение всего срока службы лампы.

На этапах герметизации сборки лампы катод и анод крепятся к полоскам очень тонкой молибденовой ленты с помощью ступенчатого уплотнения, которое компенсирует разницу в тепловом расширении между кварцевой трубкой и металлическими стержнями электродов. Функциональное уплотнение создается путем термопрессования кварцевой трубки с молибденовой фольгой на токарном станке, находящемся под вакуумом для предотвращения окисления. Высокие температуры сжатия позволяют расплавленному кварцу разрушаться вокруг молибденовой фольги, образуя газонепроницаемое уплотнение. После запайки электродов в корпусе кварцевой лампы и отжига сборки для снятия деформации в оболочку загружается высокочистый (99,999 процента) газообразного ксенона до давления 10 атмосфер через наполнительную трубку, прикрепленную к колбе колбы. Затем лампу охлаждают жидким азотом для затвердевания газообразного ксенона и удаляют наполнительную трубку, чтобы полностью запечатать оболочку. После возврата к комнатной температуре готовая лампа подвергается давлению, поскольку ксенон возвращается в газообразное состояние.

Заключительный этап процесса сборки ксеноновой лампы состоит из добавления никелированных латунных наконечников, называемых наконечниками или оснований на каждом конце колбы. Наконечники, которые должны выдерживать температуру до 300°C, выполняют двойную функцию, действуя как электрические соединения с источником питания, а также как механическая опора для точной фиксации лампы в правильном оптическом положении внутри фонаря. Многие конструкции наконечников включают в себя гибкий подводящий провод внутри основания, который соединяется с герметичными электродами, чтобы исключить возможность отказа лампы из-за напряжения или деформации между стержнем электрода и латунным наконечником. Феррулы крепятся к запаянным концам кварцевой оболочки с помощью углеграфитовой ленты или термостойкого клея. Пассивированное компрессионное кольцо также используется для обеспечения плотного соединения между наконечниками и оболочкой. После установки наконечников провод розжига наматывается на кварцевую оболочку по краям колбы эллиптической формы (см. рис. 2). Проволока состоит из тонкого чистого никеля и служит для создания локализованного электрического поля внутри оболочки, чтобы способствовать стимуляции ионизации электронов и потока при включении лампы. 9Ксеноновые лампы и источники питания

Конструкция ламп для ксеноновых дуговых ламп имеет решающее значение для долговечности и рабочих характеристик лампы. Важнейшим из конструктивных соображений является тот факт, что эти лампы работают при чрезвычайно высоком внутреннем давлении (обычно более 50 атмосфер), поэтому при выборе конструкционных материалов следует учитывать возможность взрыва. Поскольку дуговые лампы расширяются из-за избыточного тепла, выделяющегося при работе, к корпусу следует жестко прижимать только один конец лампы; другой конец можно закрепить гибкой металлической полосой или накрыть радиатором и присоединить к соответствующей внутренней электрической клемме кабелем (см. рис. 4). Ксеноновые лампы должны иметь достаточное охлаждение, чтобы ксеноновые лампы могли работать при температуре менее 750°С на поверхности оболочки и менее 250°С у основания. Чрезмерно высокие температуры быстро приводят к окислению выводов электродов, ускоренному износу оболочки и повышают вероятность преждевременного выхода лампы из строя. В случае ламп малой мощности (менее 250 Вт) обычно достаточно конвекционного охлаждения в хорошо проветриваемом помещении лампы, но для ламп большей мощности часто требуется охлаждающий вентилятор. Высокие напряжения срабатывания (от 20 до 30 кВ), необходимые для зажигания ксеноновых ламп, требуют использования качественных изоляционных материалов в электропроводке фонаря, а кабель питания должен выдерживать напряжение свыше 30 кВ. Кроме того, кабель питания должен быть как можно короче, развязан и находиться вдали от корпуса микроскопа и других металлических инструментов (таких как компьютеры, контроллеры фильтров и цифровые камеры) в непосредственной близости.

Большинство высокоэффективных ксеноновых фонарей имеют внутреннее отражающее зеркало, соединенное с системой линз выходного коллектора, которая создает коллимированный световой пучок высокой интенсивности. Конструкции собирающих отражателей варьируются от простых вогнутых зеркал до сложных эллиптических, сферических, асферических и параболических геометрических форм, которые более эффективно организуют и направляют излучение лампы на собирающую линзу, а затем через микроскоп. Использование гальванического конического отражателя может обеспечить номинальную эффективность сбора до 85 процентов, что является значительным улучшением по сравнению с обычными системами обратного отражателя, которые имеют эффективность в диапазоне от 10 до 20 процентов. Специализированные отражатели могут быть легко разработаны с помощью простых методов трассировки лучей. Покрытия на всех собирающих зеркалах должны быть дихроичными, чтобы пропускать инфракрасные (тепловые) волны. Ксеноновые лампы также выигрывают от наличия фильтров, блокирующих инфракрасное излучение, таких как Schott BG38 или BG39. стеклянный фильтр и/или горячее или холодное зеркало (в зависимости от передаваемой или отражаемой длины волны) для ослабления или блокирования инфракрасных длин волн и защиты образца (живых клеток) от избыточного тепла. Кроме того, твердотельные детекторы в электронных камерах, особенно в формирователях изображения на ПЗС, также особенно чувствительны к инфракрасному свету, который может затуманивать изображение, если на пути света не установлены соответствующие фильтры.

Ксеноновые лампы обычно имеют стандартную конфигурацию с дуговой лампой, расположенной в фокусе линзы коллектора, так что волновые фронты, выходящие из источника, собираются и примерно коллимируются, выходя из лампы в виде параллельного пучка (рис. 4). Рефлектор также расположен на той же оси, что и лампа и коллектор, чтобы гарантировать, что перевернутое виртуальное изображение дуги может быть создано рядом с лампой. Свет от отраженного виртуального изображения также собирается собирающей линзой, что увеличивает мощность освещения. Вторая система линз (называемая конденсор ), расположенный внутри осветителя микроскопа, необходим для того, чтобы сфокусировать параллельные лучи, выходящие из корпуса лампы, в задней фокальной плоскости объектива. Как правило, фокусное расстояние системы конденсирующих линз намного больше, чем фокусное расстояние коллектора, в результате чего увеличенное изображение дуги проецируется на заднюю фокальную плоскость объектива. Конечным результатом является то, что свет, выходящий из передней линзы объектива и направляющийся к образцу, идет примерно параллельно, что обеспечивает равномерное освещение поля зрения. Обратите внимание, что во время выравнивания фонаря свет, собранный собирающим отражателем, не должен быть непосредственно сфокусирован на стенках оболочки лампы (вблизи дуги), чтобы избежать прямого нагрева колбы ее собственным излучением. Это действие приведет к чрезмерному нагреву лампы. Вместо этого расположите виртуальное изображение дуги с одной или с другой стороны лампы.

Одно из основных требований к использованию ксеноновой дуговой лампы для количественной флуоресцентной микроскопии заключается в том, что выходное излучение должно быть стабильным. Выходная интенсивность излучения ксеноновой лампы приблизительно пропорциональна току, протекающему через лампу. Таким образом, для обеспечения максимальной стабильности блок питания должен быть тщательно спроектирован. Источники питания дуговых ламп также должны иметь пусковое устройство для зажигания лампы. На рисунке 5 показана принципиальная схема типичного стабилизированного источника питания для ксеноновой дуговой лампы. Помимо питания лампы стабильным постоянным током ( DC ), источник питания также заряжается с поддержанием катода при оптимальной рабочей температуре с использованием определенного уровня тока. Схема стабилизации источника питания ксеноновой дуговой лампы, в зависимости от конструкции, может стабилизировать напряжение, ток или общую мощность (напряжение x ток). Если напряжение стабилизируется, ток (и яркость лампы) будет медленно уменьшаться по мере распада электродов. Напротив, если ток стабилизирован, лампа будет продолжать излучать на постоянном уровне до тех пор, пока электроды не достигнут критической точки износа, при которой лампа не сможет зажечься. С другой стороны, поскольку для поддержания фиксированного тока требуется возрастающее напряжение, мощность, подаваемая на дугу, медленно увеличивается по мере износа электродов, что может привести к перегреву и возможности взрыва. В источниках питания, которые стабилизируют общий уровень мощности, светоотдача будет медленно падать с увеличением тока по мере увеличения напряжения, необходимого для поддержания дуги.

Когда дуговые лампы холодные (по сути, при комнатной температуре), они действуют как электрические изоляторы, и газообразный ксенон, окружающий электроды, необходимо сначала ионизировать, чтобы инициировать и установить дугу. В большинстве конструкций источников питания зажигание осуществляется с помощью высоковольтных всплесков (30–40 кВ) от вспомогательной цепи, создающей разряд между электродами. Специализированная схема часто упоминается как триггер или воспламенитель , потому что она подает мгновенный высокочастотный импульс на ламповую нагрузку посредством индуктивной связи (см. рис. 5). После образования дуги ее необходимо поддерживать постоянным источником тока от основного источника питания, величина которого зависит от параметров лампы. Типичная лампа XBO мощностью 75 Вт работает при напряжении 15 вольт и силе тока от 5 до 6 ампер, но эти цифры зависят от производителя и увеличиваются с увеличением мощности лампы. Обратите внимание, что лампа XBO работает при значительно более высоком токе, чем можно было бы ожидать при относительно низком напряжении, которое определяется размером дугового промежутка, давлением ксенона и рекомендуемой рабочей температурой. Пульсации тока от источника питания должны быть сведены к минимуму, чтобы обеспечить длительный срок службы дуговой лампы. Таким образом, качество постоянного тока, используемого для питания лампы, должно быть высоким, а пульсации должны быть менее 10 процентов (полный размах) для ксеноновых ламп мощностью до 3000 Вт.

Специализированные ксеноновые лампы, выпускаемые производителями вторичного рынка, часто включают опции выбора длины волны и связывают выходной сигнал с оптическим волокном или жидким световодом для передачи на оптическую систему микроскопа для высокоэффективного освещения в выбранных областях спектра. Примеры включают Lambda LS (Sutter Instrument), который включает ксеноновую лампу, холодное параболическое зеркало и источник питания в одном корпусе, соединенном с жидким световодом. В Lambda LS можно установить внутренний фильтрующий элемент, фильтрующие вставки и второй внешний фильтрующий элемент. Более совершенный и быстрый прибор от Sutter, DG-4, способен обеспечивать скорость переключения длин волн в диапазоне 1-2 миллисекунды, используя конструкцию двойного гальванометра, соединенную со стандартными интерференционными фильтрами. Свет от ксеноновой дуговой лампы фокусируется на первом гальванометре, который путем отражения от параболического зеркала направляет его на интерференционный фильтр. Затем отфильтрованный свет проходит через второе параболическое зеркало и гальванометр, прежде чем попасть в жидкий световод. Холодное зеркало, расположенное перед световодом, исключает попадание инфракрасного излучения на оптическую систему микроскопа. Другие производители также производят аналогичные ксеноновые осветители, многие из которых имеют выбор длины волны и световые затворы.


Соавтор

Michael W. Davidson — Национальная лаборатория сильных магнитных полей, 1800 East Доктор Пол Дирак, Университет штата Флорида, Таллахасси, Флорида, 32310.

Назад к источникам света для микроскопа

17 Xen Дуговая лампа | Ксеноновая короткодуговая лампа

  • Артикул: XSL
  • Код ТН ВЭД – 8539410000
  • MOC — ксенон, кварц, вольфрам с торием в качестве легирующей примеси
  • Инвентарный номер – от 10021 до 10024
  • Мощность – 75 Вт, 150 Вт, 350 Вт и 500 Вт
  • Рабочее напряжение — 14 В, 18 В, 22 В и 20 В
  • Рабочий ток — 5 А, 8,4 А, 16 А и 25 А
  • Общий световой поток – 1400 лм, 3200 лм, 11500 лм и 14200 лм
  • Расстояние между электродами – 1,5 мм, 2,6 мм, 3 мм и 4 мм
  • Вес – 20 г, 80 г, 110 г и 200 г
  • Скорость охлаждения — 5 м/с
  • Упаковка – герметичный защитный экран
  • Хе Чистота – 99,98%
  • Светлый цвет — ярко-белый
  • Средний срок службы – 750 часов работы
  • Хранение – В безопасной вакуумной упаковке
  • Способ доставки – Воздушный экспресс-курьер

Купить

Полное описание

Дуговая ксеноновая лампа (Xe) спроектирована и разработана для испускания высоколюминесцентного света ярко-белого цвета. Поскольку она содержит очень чистый ионизированный газ Xe, ее называют ксеноновой лампой. Он также известен газоразрядной лампой.
Дуговые ксеноновые лампы делятся на две основные категории, различающиеся составом. В одном случае трубка заполнена только газом Xe, а в другом — небольшой порцией ртути. Другая известна как ртутно-ксеноновая лампа.
Как правило, они бывают трех основных типов, таких как ксеноновая лампа с короткой дугой, ксеноновая лампа с длинной дугой и ксеноновая лампа-вспышка. В случае короткодуговой лампы анод намного больше катода. Материал конструкции в основном включает трубку из плавленого кварца (кварца), имеющую оболочку в центре, анод (положительный вывод) и катод (отрицательный вывод), изготовленные из вольфрамового сплава и дополнительной пусковой проволоки. Он спроектирован таким образом, что может выдерживать высокое давление и температуру. Воздушное охлаждение рекомендуется для безопасной работы.

Что такое ксеноновая короткодуговая лампа?

Ксеноновая короткодуговая лампа является чрезвычайно мощным источником люминесценции и используется в различных отраслях промышленности. Он предназначен для использования в спектрометрах и аналогичных оптических устройствах. Он производил значительное количество света, генерируя крошечное облако плазмы размером с булавочную головку, которое формировалось на кончиках двух электродов лампы.
Генерируемый свет имеет форму двух пересекающихся конусов, начинающихся с электродов на каждом конце короткодуговой лампы. Таким образом, интенсивность света начинает уменьшаться по мере продвижения к центру источника света. Следовательно, объем генерации света имеет конусообразную форму, а сила света экспоненциально движется от катода к аноду. Ксеноновые короткодуговые лампы излучают свет в голубовато-белом спектре, что делает их идеальными для высокоточных оптических приложений, таких как волоконная оптика и эндоскопия. Он также используется внутри корпуса и используется в качестве ксенонового источника света.

Механизм работы Ксеноновая дуговая лампа

Когда к обоим концам электрода приложено напряжение, свет излучается за счет прохождения электричества через ионизированный газ ксенон под высоким давлением. Этот процесс генерирует белый свет, похожий на естественный солнечный свет. Спектр излучения охватывает УФ и видимый свет, который похож на солнечный. Интенсивность света находится в диапазоне от 20 000 до 500 000 кд/см2 в зависимости от мощности. Диапазон длин волн измеряется между 240 нм и 850 нм. Блок питания ксеноновой лампы обязателен для долгой и непрерывной работы.

Применение ксеноновой дуговой лампы

  • Моделирование солнечной активности
  • Поглощение
  • Флуоресценция
  • Приложение для спектрального сканирования
  • индустрия моделирования дневного света
  • кинопроекторы в кинотеатрах
  • прожекторы
  • следящие точки или прожектор
  • Медицинские инструменты
  • Оптические измерительные устройства
  • Фотонагревательные устройства
  • Технология IMAX

Особенности ксеноновой дуговой лампы

  • Высокая люминесценция
  • Газ ксенон с чистотой 99,9 %
  • Высококачественный электродный материал
  • Функция горячего перезапуска
  • Высокий срок хранения
  • Постоянный поставщик света видимого спектра
  • Высокостабильная дуга
  • Мгновенное свечение при запуске
  • Разработан с использованием передовых технологий для оптимального применения

Ресурсы для загрузки

Дуговая ксеноновая лампа 75 Вт

Дуговая ксеноновая лампа 150 Вт

Дуговая ксеноновая лампа 350 Вт

Дуговая ксеноновая лампа 500 Вт

Почему Techinstro?

Techinstro уже более десяти лет является ведущим поставщиком дуговых ксеноновых ламп.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *