Промышленный микроскоп 1.3Mpx на штативе и с объективом C-Mount
Ранее уже пользовался дешёвым цифровым микроскопом, который отыскивается по запросу «Mustool G600». По мере его использования, пришёл к выводу, что в нём слишком много мелочей, которые в совокупности не дают мне на нём комфортно работать: штатив, тряска конструкции при фокусировке, низкое VGA-разрешение, некорректное авто-экспонирование, малый динамический диапазон. Помимо прочего, его никак нельзя кастомизировать. Поэтому пришёл к выводу, что нужно присмотреть что-то более серьёзное с перспективой на модификацию. Так поиски меня привели к так называемому промышленному микроскопу, где разные детали — будь то матрица, объектив, штатив — меняются по отдельности. Посмотрев пару обзоров и сравнив цены со скидками, сделал заказ. (
Внимание, трафик!)
Технические характеристики
Разрешение матрицы — 1/3″ 1.3Mpx 1280x1024px
Частота кадров — 60к/c
Вывод — VGA, HDMI
Байонет — C-Mount
Объектив — 130х
Подсветка — 56 светодиодов (AC110-240В)
Внешний вид
Транспортировочный пакет содержал такой свёрток с несколькими коробками внутри
В одной коробке лежали составные части штатива с подставкой
В двух других коробках — съёмная подсветка, модуль с матрицей и блок питания 5В
Теперь пройдёмся подробнее по комплектации
Кольцевая подсветка с 56-светодиодами. Питается отдельно от сети 220В, вилка сразу наша, — впрочем на лоте с товаром как раз она и выбирается.
Внутри центрального отверстия, предназначенного для установки на объектив, — 3 винтовых зажима для фиксации на корпусе объектива
Из управления доступны — кнопка ВКЛ/ВЫКЛ и плавная резистивная регулировка яркости света
Комплект из коробки побольше содержит комплектующие кронштейна с подставкой, объектив, переходник под наши розетки и HDMI-кабель
Полотно подставки — анодированный металл
С краю есть резьба под вертикальную штангу
Основная часть корпуса — пластик, причём как вы заметили с пустыми отверстиями под органы управления, т.е. в будущем можно при желании произвести модификацию и внедрить например регулировку подсветки, либо спрятать аккумуляторы для автономного питания и плату-стример для видеозахвата и записи картинки в память. По крайней мере у меня это в планах.
Объектив весь металлический, оптика — стекло, байонет — C-Mount, увеличение 130х, дистанция фокусировки 50-155мм. Оба конца закрыты пластиковыми заглушками. Сборка не вызывает вопросов — она сбитая и ничего не люфтит.
Кольцо с накаткой посередине «тела» объектива — фокусировочное
Кронштейн, соединительная часть между штангой и объективом. Целиком сделано из металла. Из органов управления есть только боковое колесо с накаткой, регулирующее высоту объектива от нижней поверхности.
Из мелких комплектующих — винтовые зажимы 3 штуки, кольцо, крышка для штанги на резьбе.
Блок питания 5В/1А, с плоской вилкой и 3.5мм DC-штекером
Матрица на модуле также прикрыта заглушкой
Характеристики матрицы — 1/3″ 1.3Mpx 1280x1024px
Выходные интерфейсы — HDMI, VGA с резьбой
6 кнопок — органы управления, отвечающие за настройку вывода картинки
Из оставшегося — DC-вход 3.5мм 5В, LED-индикатор активности с двумя состояниями — зелёный (активно), красный (выключено)
Небольшой разбор модуля с матрицей.
Приступаю к сборке. Сначала закручиваю объектив на модуль
Прикручиваю штангу к подставке. Общая высота — 32см
Закрепляю оставшиеся части при помощи винтовых зажимов
Ну и дело за малым — подать питание и подключить вывод картинки на внешний монитор.
Сразу покажу крайние и среднее положение микроскопа, которые регулируются боковым колесом
Для вывода изображения я использовал недавно купленный IPS-монитор с диагональю 7″ (если и на него нужен отдельный обзор — маякните)
Степень увеличения прямо пропорциональна диагонали монитора, на котором выводится картинка. Поскольку я использую 7″-вариант, то посчитаем — во сколько. на помощь приходят две линейки. 1 миллиметр в натуральную величину — это 1 миллиметр. А вот на экране этот 1 миллиметр будет уже в увеличенном виде — вот и посчитаем, сколько натуральных миллиметров поместится в одном увеличенном миллиметре на разных дистанциях фокусировки.
Дистанция фокусировки 117мм
1мм вмещает 14мм = увеличение 14раз
Дистанция фокусировки 134мм
1мм вмещает 12мм = увеличение 12раз
1мм вмещает 32мм = увеличение 32раз
Фокусироваться можно как при помощи фокусировочного кольца на объективе
так и при помощи банального поднятия-опускания конструкции путём вращения бокового колеса
Задержка трансляции картинки — на минимальном уровне
Меню и настройки
Вызываются по кнопке MENU на модуле с матрицей.
Picture: яркость, резкость, насыщенность, автоэкспозиция, чёрно-белый режим, подавление мерцания 50гц, WDR, автоматический баланс белого, OneKeyAWB — неизвестно, подтяжка красного/синего/зелёного канала по отдельности, сброс настроек.
Setup: язык (eng/cn), отзеркаливание по вертикали/горизонтали, сравнение фрагментов, настройки отображения сетки на экране.
Сравнение фрагментов — это когда в статичное состояние захватывается вид (он в левой части экрана), а правая сторона по-прежнему остаётся активной в реальном времени:
Тест увеличения на мониторе 7″
Поразглядываем чего-нибудь мелкое.
Так как на текущий момент у меня нет способа захватить и сохранить поток, то последующие образцы будут сфотографированы прямо с монитора. Мошка, которая меньше спичечной головки
PCB-плата, SMD-детали
голова Аполлона и мелкие цифры с купюры
крестовая бита PH000
ушатанный USB C разъём
нормальный USB C разъём
Иероглиф с корейской монеты
Конь с 50коп. монеты
Отличие между изображениями, выведенными по VGA и HDMI действительно присутствует.
Картинка по VGA — более тускловатая, она хоть и сохраняет чёткость, но визуально видится некая «аналоговость» изображения. Помимо прочего у правого края экрана появляется чёрная незанятая полоса — она есть, если матрица микроскопа физически подключена к монитору одновременно по VGA и HDMI.
По HDMI — более светлое отображение, предпочтение отдаю ему.
Итоги
Если в будущем планируется модификация, то из всех цифровых микроскопов это пожалуй наиболее подходящий вариант. Это может быть банальная замена объектива на более сильный/слабый, и предполагаю, что не только C-Mount, но и от фотоаппарата, если подыскать подходящее переходное кольцо. Я позже почитал про байонет C-Mount, и узнал, что это довольно распространённое резьбовое крепление, часто применяемое на 16-мм узкоплёночных кинокамерах и камерах видеонаблюдения.
Также доступен и супер-апгрейд в виде покупки «тушки» тринокулярного микроскопа, куда можно прикрутить модуль с матрицей и попутно также выводить изображение на монитор. Многие, кто в прошлом пользовались МБС, переходят в дальнейшем именно на такие. В этом раскладе мне нравится не только то, что изображение будет объёмным через стереоокуляры, но и также можно поставить линзу Барлоу и значительно увеличить рабочее расстояние. Но это всё, повторюсь, — тема на далёкое будущее, потому что всё это великолепие стоит немалых денег
Особенность конструкции обозреваемого набора — это то, что объектив всегда расположен перпендикулярно по отношению к столику. У супер-дорогих микроскопов я видел необычное оптическое приспособление, которое крепится в нижней части основного объектива и его можно вращать вокруг оси, меняя тем самым ракурс (компоненты на плате можно будет смотреть уже под углом). В общем, посмотрите на анимации ниже. Вряд ли это вещь первой необходимости, поэтому даю информацию просто для расширения кругозора:
Недостатков конкретно обозреваемой матрицы вижу два — всего лишь HD-разрешение и невозможность штатно записать эфир на сменный носитель — тут потребуется отдельный стример.
К недостаткам, или корректнее сказать, особенности комплектного объектива — относятся хроматические аберрации. Это такие красно-синие ореолы на контрастных объектах по краям кадра. На образцах выше — вы могли их заметить.
В целом величины ГРИП хватает для работ. Однако стоит учесть, что если например навести чёткий фокус на дорожки платы, то маркировка микросхем уже будет в лёгком расфокусе, но по-прежнему читаемыми.
Помимо прочего, следует помнить, что комплект не самодостаточный и придётся искать дополнительно внешний монитор с VGA/HDMI и чем монитор больше, тем увеличение будет выше. У меня уже был в наличии IPS 7″ монитор с питанием всего от 5В.
В работе
Выглядит так. Запаял на плате SMD-конденсатор. Работать можно, но потребуется сноровка, поскольку картинка, повторюсь, плоская. Я использую принцип — прицелиться и ткнуть. Картинка в этом примере, кстати, передаётся по VGA-соединению. Когда готовил примеры к обзору, меня отвлекли, и после этого забыл переключиться на HDMI-линию. Я продолжил проводить тест, как ни в чём не бывало. В общем, на VGA, несмотря на некую тускловатость, тоже можно работать и с течением времени на это уже не обращаешь внимания.
В ближайших планах:
— поставить модуль, монитор и подсветку на одну шину питания, чтобы не занимать 3 разъёма/розетки. Разумеется с возможностью запитывания этой «компании» от внешнего аккумулятора (повербанка). В идеале — встроить во внутреннюю полость «столика» свои аккумуляторы, — 18650 по толщине туда подойдут. Только распределить их нужно будет ближе к краям — туда, где меньше всего будет происходить нагрев от паяльника/фена. Шнур питания модуля/экрана/подсветки можно будет пропустить через алюминиевую трубку — она как раз полая и позволяет это сделать.
— организовать крепление для плат на полотне подставки — оно металлическое, поэтому склоняюсь к таким маленьким магнитам. Можно закреплять небольшие платы устройств. На мой взгляд — довольно элегантное решение, по сравнению с гантельными блинами 🙂
— закрепить монитор на всей конструкции (обычно крепят сбоку, но склоняюсь, чтобы было прямо перед собой)
______________
Во всём остальном сборка устраивает, буду по мере использования дорабатывать. Если что-то упустил, спрашивайте. Спасибо за внимание.
Основные оптические термины | Labomet
Давайте ознакомимся с основными терминами, используемыми в оптике.
Ахроматический объектив. При прохождении света через стеклянную призму или линзу, он изгибается или преломляется. Одни цвета преломляются сильнее, чем другие, в результате чего фокусируются в разных точках, уменьшая этим разрешение. Чтобы уменьшить такое негативное влияние, применяются ахроматические объективы. Они составлены из линз, изготовленных из разных сортов стекла с различными показателями преломления. В результате разные цвета сводятся в фокус гораздо лучше (хотя и не идеально), давая более четкое изображение.
Бинокулярый тубус – головка микроскопа с двумя окулярами, для каждого глаза. Обычно применяется с составными микроскопами, дающими высокое увеличение. Для микроскопов с малым увеличением чаще используется термин «стереонасадка», поскольку в таких микроскопах могут использоваться два объектива, дающие каждый свое изображение для каждого глаза. В составных микроскопах может быть два окуляра, но один объектив, и они не дают стереоизображения.
Головка — верхняя часть микроскопа, имеющая окулярные трубки и призмы. Монокулярная головка имеет один окуляр, бинокулярная – два (для каждого глаза), сдвоенная – два, но разнесенных в разные стороны, а тринокулярная имеет три трубки, на одну из которых обычно устанавливается камера.
Грубая фокусировка – маховики предварительной фокусировки микроскопа, перемещающие объектив ближе или дальше от препарата (см. Точная фокусировка).
Диафрагма – диск, расположенный под предметным столиком микроскопа высокого увеличения, имеющий обычно пять отверстий разного диаметра. Поворачивая диск, можно изменять количество света, проходящего через отверстие в столике. Это помогает правильно осветить препарат, увеличить контраст и разрешение изображения.
Диоптрийная подстройка. При наблюдении в микроскоп с бинокулярной головкой, необходимо иметь возможность подстройки фокусировки одного из окуляров, чтобы компенсировать отличия в зрении глаз друг от друга. Это достигается с помощью кольца диоптрийной подстройки. Правильный способ подстройки заключается в следующем. Сначала прикройте глаз, расположенный над окуляром с кольцом диоптрийной подстройки, и сфокусируйте микроскоп обычным способом, чтобы открытый глаз видел четкое изображение. Далее откройте закрытый глаз и прикройте открытый и, трогая ручки фокусировки микроскопа, сфокусируйте изображение кольцом диоптрийной подстройки. Теперь откройте оба глаза, изображение должно быть четким для обоих глаз (такая же техника используется при работе с биноклем).
Зеркало – простой осветитель, направляющий свет через отверстие в столике на образец.
Зубчато-реечный механизм – система, состоящая из рейки с зубьями и шестерни. Поворотом маховика можно заставить шестерню двигаться вдоль рейки. Такие системы используются в фокусировочных устройствах, в креплении конденсоров Аббе и механизированных предметных столиках для перемещения препарата.
Иммерсионное масло – специальное масло, используемое с объективами 100х (обычно при полном увеличении 1000х). Капля масла помещается на покровное стекло и объектив опускается, чтобы коснуться капли. Масло работает связывающей средой между покровным стеклом и линзой объектива и таким образом увеличивает разрешение изображения. В световой микроскопии используются два типа масла – «A» и «B», отличающиеся вязкостью («B» более вязкое).
Иммерсионный объектив – объектив (обычно 100х или более), сконструированный для работы с каплей специального масла, помещенного между ним и препаратом. Приэтомзаметноповышаетсяразрешениеизображения. См. Иммерсионное масло.
Коаксиальная фокусировка – фокусировочная система, использующая соосно (коаксиально) расположенные маховики грубой и точной подстройки фокуса. Обычно маховик грубой настройки больше по диаметру, а точной – меньше. В некоторых коаксиальных системах маховик точной настройки прокалиброван и дает возможность фиксировать значение относительного перемещения фокуса.
Кольцевой осветитель – отдельный осветитель, обычно закрепляемый на корпусе микроскопа и дающий кольцо света.
Конденсор – линза, расположенная под предметным столиком и предназначенная для фокусировки света на препарат. Объективы большого увеличения имеют очень маленькие диаметры и требуют для работы большого количества света. Использование конденсора помогает увеличить освещенность и разрешение. Для микроскопов малого увеличения конденсоры не требуются.
Конденсор Аббе – специальная линза, расположенная под предметным столиком и обычно имеющая возможность перемещения по вертикали. Оснащена ирисовой диафрагмой, задающей диаметр светового пучка, входящего в объектив. Изменяя размер диафрагмы и перемещая конденсор ближе или дальше от предметного столика, можно управлять диаметром и фокусировкой проходящего через препарат конуса света. Конденсор Аббе особенно полезен на увеличениях свыше 400х. Линза конденсора должна иметь числовую апертуру равную или превышающую числовую апертуру используемого объектива. Во многих микроскопах с увеличением до 1000х используются конденсоры Аббе с апертурой 1,25. Оправа бывает двух типов – один тип перемещается вверх-вниз при повороте оправы, другой тип оснащен реечным механизмом и управляется специальным маховичком.
Контрастная пластинка – круглая непрозрачная пластинка, расположенная на предметном столике микроскопа малого увеличения. Одна ее сторона белая, а другая черная. Пластинка может переворачиваться в зависимости от окраски препарата.
Корпус – термин, в основном использующийся для обозначения основы стереомикроскопа, включая окуляры и объективы, но исключая основание, осветитель и блок фокусировки.
Матовая пластина – круглая матовая стеклянная пластина, закрывающая нижний осветитель в микроскопах с малым увеличением. См. также Контрастная пластинка.
Межзрачкового расстояния регулировка. Используя стерео- или бинокулярный микроскоп, необходимо иметь возможность регулировать расстояние между окулярами. У детей межзрачковое расстояние невелико, у взрослых оно больше. Соответственно, окуляры должны менять расстояние между собой, чтобы подходить для разных людей и этот параметр – первый, который нужно проверить для комфортных наблюдений двумя глазами.
Механизированный предметный столик – предметный столик с органами механического перемещения препарата. Включает держатель препаратов и два маховика, перемещающих держатель в двух направлениях. Поскольку изображение перевернуто, требуется небольшое время на освоение регулировок, но такой столик очень удобен при наблюдении простейших и мелких животных в капле воды из пруда. Микроскопы могут иметь приспособления для установки устройства перемещения препарата дополнительно, или же оно встраивается в предметный столик изготовителем.
Микрометр или микрон – единица измерения размеров, используемая в микроскопии. В одном миллиметре 1000 микрометров, соответственно, длина образца 1,8 мм также может быть выражена как 1800 микрон.
Монокулярная головка – головка микроскопа с одним окуляром.
Муфта скольжения – устройство, защищающее шестерни фокусировочного устройства при попытке повернуть маховики фокусировки дальше установленных пределов.
Наклонное соединение – конструкция крепления тубусодержателя к основанию, которая позволяет наклонять микроскоп для более удобного наблюдения. При этом, правда, возможно стекание жидких препаратов с предметного столика.
Объектив – линза, расположенная вблизи объекта. В стереомикроскопе (с малым увеличением) два объектива, каждый для своего окуляра. Это дает трехмерное изображение. На микроскопах большого увеличения работает только один объектив.
Объективы с плоским полем («Semi-Plan»). Объективы никогда не бывают идеальными. Если посмотреть на что-то, имеющее совершенно плоскую поверхность, можно увидеть, что изображение в центре поля сфокусировано, а по краю немножко размыто. Объективы с плоским полем значительно лучше передают периферийную часть изображения. Они лучше обычных ахроматических объективов, но и несколько дороже стоят.
Окуляр – линзовый элемент на верхней части микроскопа, через которую и рассматривается изображение. Типичное увеличение окуляра 10х, возможны также 5х, 15х и 20х. Широкоугольные окуляры имеют больший диаметр и дают широкое поле зрения.
Оптика стандарта DIN. Оптические детали, производящиеся по немецкому стандарту DIN. Оптические качества таких деталей такие же, как и у не-DINоптики, но соответствие одному стандарту дает возможность использовать детали одного микроскопа на другом. Оптика настроена на использование тубуса длиной 160 мм и имеют одинаковую резьбу. В большинстве качественных микроскопов используется стандарт DIN.
Осветитель – источник света, закрепленный под предметным столиком. Распространены три основных источника – лампы накаливания, флуоресцентные и галогенные. Лампы накаливания самые доступные и распространенные. Флуоресцентные – яркие, дают белый свет и почти не греются. Галогенные очень яркие, белые, но, как и лампы накаливания, выделяют много тепла.
Основание – нижняя часть штатива микроскопа (см. Тубусодержатель).
Парцентрированная конструкция – указание на то, что при смене объектива объект остается в центре поля зрения. Проверяется путем смены объективов и проверки положения объекта в поле зрения. Практически все микроскопы парцентрированы.
Парфокальная конструкция – указание на то, что при смене объектива изображение остается сфокусированным или очень близким к сфокусированному, и требует лишь небольшой подстройки. Большинство микроскопов парфокальны.
Покровное стекло – очень тонкий стеклянный или пластиковый квадратик, располагаемый поверх препарата на предметном стекле. При использовании жидких препаратов покровное стекло создает плоскость, на которую настраивается фокус микроскопа.
Поле зрения (FOV) – диаметр кружка света, который можно увидеть в окуляр. Чем выше увеличение, тем меньше поле зрения. Его можно измерить, поместив прозрачную линейку на предметный столик и подсчитав количество миллиметров, умещающихся поперек поля зрения. Типичное значение около 4,5 мм при 40х, 1,8 мм при 100х, 0,45 мм при 400х и 0,18 мм при 1000х. См. Микрометр.
Предметное стекло – плоская прямоугольная пластинка из стекла или пластика, на которой размешается препарат. Может иметь углубление для удержания нескольких капель жидкости.
Предметные зажимы закрепляют предметное стекло на столике.
Предметный столик – плоская пластина, на которой располагаются предметные стекла с препаратами.
Разрешение – характеристика линзовой системы, показывающая, насколько тонкие детали объекта она может передать.
Револьверная головка или турель – часть микроскопа, на которой закреплены объективы.
Регулировка усилия фокусировки выполняется производителем таким образом, чтобы микроскоп можно было легко сфокусировать, но при этом исключалось самопроизвольное движение предметного столика или тубуса под собственным весом, приводящее к расфокусировке.
Реечный ограничитель обычно устанавливается изготовителем и служит для предотвращения слишком низкого опускания объектива и повреждения его или препарата. Иногда он мешает сфокусироваться, если предметное стекло слишком тонкое. В этом случае нужно или отрегулировать фиксатор или подложить под предметное стекло еще одно такое же, чтобы приблизить его к объективу.
C-крепление (C-mount) – адаптер, применяющийся в различных типах видеокамер. Обычно устанавливается вместо объектива. После этого адаптер соединяется с трубкой тринокулярного микроскопа.
Сдвоенная головка. Часть конструкции микроскопа (обычно высокого увеличения) с одним окуляром с одной стороны и второй окулярной трубкой сверху или с противоположной стороны. Сдвоенная головка удобна для контроля преподавателем того, что наблюдает учащийся или для установки видео- или фотокамеры. Не рекомендуется использовать такие микроскопы для совместной работы двух учащихся, поскольку длительные наблюдения в верхнюю окулярную трубку неудобны.
Сетка окулярная – очень маленькая сеточка, устанавливаемая в окуляре. Позволяет проводить измерения размеров объектов, наблюдаемых через микроскоп.
Стерео – применительно к микроскопии означает наблюдение обоими глазами через окуляры, связанные каждый с собственным объективом. Два объектива дают ощущение объема, трехмерного зрения. См. также Бинокулярная головка.
Столбовой штатив – тип штатива, используемый в микроскопах с малым увеличением. Состоит из вертикального столба, закрепленного на основании. Корпус микроскопа может вращаться вокруг столба и перемещаться по нему вверх и вниз.
T-резьба – тип соединения адаптера для фотокамеры (обычно 35 мм) с микроскопом.
Точная фокусировка – маховик, используемый для точной фокусировки микроскопа. Также используется для фокусировки на разных слоях препарата. Обычно предварительная фокусировка выполняется маховиками грубой настройки фокуса, а маховиками точной фокусировки достигается наиболее четкое изображение.
Тринокулярный тубус – применяется и с микроскопами малого увеличения и с микроскопами высокого увеличения. Имеет три выхода – два под окуляры для двух глаз, а третий – порт для установки фото- или видеокамеры. В некоторых микроскопах присутствует возможность регулировки количества света, отправляемого в третий порт, например, весь свет или половину, или треть. На некоторых стерео тринокулярных головках с двойным увеличением, третий порт передает изображение с отдельного набора объективов, не используемого стереоокулярами.
Тубусодержатель – часть микроскопа, соединяющая тубус и основание. Перенося микроскоп, держите его одной рукой за основание, а другой – за тубусодержатель.
Турель – см. Револьверная головка.
Указатель – некоторые окуляры оснащены стрелкой-указателем, которую можно установить на ту или иную деталь изображения. Вращениеокуляраповорачиваетуказатель.
Универсальный штатив – длинный штатив типа «журавль», используемый для закрепления корпуса микроскопа малого увеличения. Имеет несколько регулировок положения и позволяет расположить микроскоп множеством различных способов. Обычно с ним используется внешний осветитель (например, оптоволоконный).
Фиксированный тубусодержатель – тип штатива, используемый в микроскопах малого увеличения. Корпус и тубус микроскопа являются единым целым и жестко скреплены с основанием.
Фокусировка – процесс перемещения препарата ближе или дальше от объектива, чтобы получить четкое изображение. На некоторых микроскопах перемещается предметный столик, на других – тубус. Наиболее популярна и надежна конструкция фокусировочного узла на основе зубчатой рейки.
X – обозначение множителя увеличения на объективе или окуляре, например, 200Х – двести крат увеличения. Полное увеличение микроскопа определяется произведением увеличения объектива на увеличение окуляра.
XR – обозначение множителя увеличения на объективе (см. выше), с указанием того, что его передняя оправа подпружинена и складывается при случайном опускании объектива на предметное стекло. Это предотвращает поломку объектива или предметного стекла.
Числовая апертура (N.A.) – число, отражающее способность объектива разрешать тонкие детали наблюдаемого объекта. Оно определяется по сложной математической формуле и связано с угловой апертурой объектива и показателем преломления среды между объективом и препаратом. Чтобы получить наилучшее изображение, требуется конденсор, с числовой апертурой, совпадающей или превышающей числовую апертуру объектива микроскопа с самым большим увеличением. Числовая апертура имеет важное значение только для микроскопов с большим увеличением.
Шарнирное основание. Тип основания микроскопа, которое закрепляется на столе и дает возможность перемещать тубус микроскопа в трех измерениях.
Широкоугольные окуляры — окуляры с линзами большого диаметра, дающие более широкое поле зрения при наблюдении препарата.
Штатив – тип соединения корпуса микроскопа и основания в микроскопах малого увеличения. Различают три типа штативов – столбовой, жесткий (фиксированный) держатель и универсальный настраиваемый штатив.
| John Yarwell English Штатив для микроскопаВ конце семнадцатого века преобладали мотивы дизайна английских штативных микроскопов, которые продавались владельцами магазинов по всему Лондону. Модель, показанная ниже, была построена Джоном Ярвеллом около 1680 года и была перерисована с фотографий оригинального микроскопа, представленного на 9-й странице.0242 Джерард Тернер превосходная книга Коллекционные микроскопы том в Международная серия для коллекционеров Christie’s книг по антиквариату. Для фокусировки микроскопа тубус корпуса необходимо ввинчивать и вывинчивать из деревянного кольца, которое поддерживается штативом, прикрепленным к точеному деревянному основанию. Микроскоп имеет три линзы: маленькую линзу объектива в носике на передней части револьверной насадки, линзу внутреннего поля в верхней части внутренней трубы и линзу для глаза, помещенную в деревянный окуляр. При хранении окуляр защищен деревянным контейнером, предназначенным для размещения дополнительных глазных линз. Материалы, используемые для изготовления микроскопа: lignum vitae, придающий глубокую богатую деревянную текстуру; картон, который используется для изготовления внутренней и внешней труб корпуса; и обработанная золотом кожа, украшающая внешнюю поверхность обеих труб корпуса. Чтобы наблюдать за образцом в проходящем свете, его плотно прикрепляют к круглому отверстию в деревянном предметном столике, а затем подносят микроскоп к источнику света (солнцу или лампе) и наблюдают за образцом через окуляр. МИКРОСКОПЫ НАЗАД В ШЕСТНАДЦАТОМ-СЕМНАДЦАТОМ ВЕКАХ Вопросы или комментарии? Отправить нам письмо.© 1998-2022 автор Майкл В. Дэвидсон и Государственный университет Флориды. Все права защищены. Никакие изображения, графика, сценарии или апплеты не могут быть воспроизведены или использованы каким-либо образом без разрешения владельцев авторских прав. Использование этого веб-сайта означает, что вы соглашаетесь со всеми правовыми положениями и условиями, изложенными владельцами.Этот веб-сайт поддерживается нашей командойGraphics & Web Programming Team . в сотрудничестве с Optical Microscopy в Национальной лаборатории сильного магнитного поля. Последнее изменение: пятница, 13 ноября 2015 г., 13:19Число обращений с 3 января 2000 г.: 60462Для получения дополнительной информации о производителях микроскоповиспользуйте кнопки ниже для перехода на их веб-сайты: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| Английский штатив для микроскопаНекоторые из самых ранних известных британских микроскопов состоят из концентрического набора цилиндрических трубок, закрытых на одном конце колпачком для окуляра и сужающихся на другом в резьбовую насадку, содержащую объектив, при этом весь узел поддерживается набором ножек штатива. . Изображенный выше микроскоп был перерисован с фотографии реплики конца семнадцатого века из коллекции доктора Джеймса Б. Маккормика. Неясно, кто на самом деле разработал и построил этот микроскоп, но наиболее вероятным кандидатом является британский производитель инструментов и оптик Джон Ярвелл. Внешняя трубка корпуса изготовлена из картона, обтянутого красным сафьяном, а внутренняя трубка — из картона, обтянутого зеленым пергаментом. Обе трубки украшены богато украшенными золотыми инструментами, очень похожими на книжные переплеты того времени. Для изображения образцов используются три линзы: одиночная линза в окуляре, двояковыпуклая полевая линза, расположенная в верхней части внутренней трубки корпуса, и сменный объектив в деревянном креплении, привинченном к концу револьверной насадки. В круглом деревянном ящике слева от микроскопа есть место для хранения четырех деревянных объективов, а весь узел привинчивается к верхней части окуляра, когда микроскоп упакован. Фокусировка достигается за счет ввинчивания двухдюймовой револьверной головки с резьбой в кольцо штатива и из него. Подставка микроскопа сделана из очень темной твердой древесины, которая превратилась в круглое основание, на котором установлен латунный штатив. Образцы помещают над отверстием в основании, а затем микроскоп подносят к источнику света для микроскопии в проходящем свете. Непрозрачные образцы помещаются поверх вставки из слоновой кости (показана на основании), которая вставляется в отверстие основания. МИКРОСКОПЫ НАЗАД В ШЕСТНАДЦАТОМ-СЕМНАДЦАТОМ ВЕКАХ Вопросы или комментарии? Отправить нам письмо.© 1998-2022 автор Майкл В. Дэвидсон и Государственный университет Флориды. Все права защищены. Никакие изображения, графика, сценарии или апплеты не могут быть воспроизведены или использованы каким-либо образом без разрешения владельцев авторских прав. Использование этого веб-сайта означает, что вы соглашаетесь со всеми правовыми положениями и условиями, изложенными владельцами. |