Site Loader

Содержание

Для чего нужен резистор в электрической цепи вентилятора охлаждения, свечи зажигания, светодиодами, отопителя салона автомобиля – Как отремонтировать ВАЗ

Практически во всех современных транспортных средствах, используются электрические вентиляторы охлаждения, которые помогают пропускать воздух через радиатор, чтобы поддерживать охлаждение двигателя.
Как только датчик температуры охлаждающей жидкости обнаружит, что температура двигателя превысила допустимый уровень, включатся охлаждающие вентиляторы, чтобы двигатель остыл.

1. Двигатель перегревается


Одним из первых и главных признаков потенциальной проблемы с резистором вентилятора охлаждения является – перегрев двигателя. Если резистор вентилятора охлаждения выходит из строя или имеет какие-либо проблемы, это может привести к отключению питания от вентиляторов охлаждения, что может привести к перегреву. Любая проблема перегрева должна быть устранена как можно скорее, чтобы избежать возможного повреждения двигателя.

Конструкция

Один контакт вентилятора нагнетателя подключен напрямую к отрицательной клемме (также называемой «землёй») аккумуляторной батареи, а второй контакт подключается к плюсовой клемме аккумулятора через резистор. Резистор подключается последовательно с электровентилятором. Это значит, что сила тока, проходящего через двигатель вентилятора, и, соответственно, скорость последнего регулируются при помощи резистора. Используя переключатель, автомобилист устанавливает необходимую ему скорость вращения вентилятора, включая в цепь тот или иной резистор из блока (каждый из резисторов имеет своё сопротивление). В системе управления есть также ещё две дополнительные опции – одна из них выключает вентилятор вообще, а вторая – устанавливает максимальную скорость вращения вентилятора. При отключении вентилятора его двигатель просто отключается от питания. При выборе максимальной скорости вращения электрический ток поступает в двигатель электровентилятора напрямую от аккумулятора, минуя блок резисторов, что означает максимальную силу тока. Чем ниже сопротивление резистора – тем выше сила тока, поступающего в двигатель вентилятора, и тем быстрее он вращается.

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относиться к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получиться. А в любом автомобиле электрических цепей при достаточно.

Схема электронного резистора для авто

Пару лет назад уже делал похожий электронный резистор для Opel Astra, добавив программный разъем и термистор, чтобы защитить от чрезмерного повышения температуры. Но тут схема будет более совершенной.

При проектировании схемы все условия были выполнены. Использовалась оригинальная резисторная база, после очистки ее контактов, потому что они слегка заржавели.

Устранение неисправностей

Каждый из резисторов внутри блока как правило представляет собой проволочную катушку, и, соответственно, он может выйти из строя из-за перегорания этой самой проволоки в процессе использования, либо из-за механических вибраций или ударов, которые характерны для автотранспорта. Если резистор нагнетателя неисправен – вентилятор обычно работает лишь на одной скорости, как правило – на максимальной. Впрочем, иногда неисправность касается лишь отдельных скоростей вращения, и остальные могут включаться нормально.

Неисправности резистора вентилятора охлаждения “Калина”

Работа электровентилятора только на высокой скорости вращения — Главный признак того, что дополнительный резистор вентилятора охлаждения “Калина” неисправен.
Электросхема подключения вентиляторов ЛАДА “Калина” предусматривает одновременное включение двух систем обдува:

  • электровентилятора охлаждения радиатора;
  • электровентилятора охлаждения кондиционера,

Если в какой-то момент времени вращается только один из них, то можно сделать вывод о разрыве цепи питания второго. Тоже происходит, когда электровентилятор радиатора не крутится после нагрева двигателя. Причин такого явления несколько. Это может быть как плохой контакт или обрыв провода, так и неисправность резистора электровентилятора.

Причины неисправности резистора вентилятора “Калина”

Основная причина поломки дополнительного резистора вентилятора “Калина” — перегорание термопредохранителя, который защищает обмотку электродвигателя и цепь питания от перегрузки. В этом случае необходим ремонт или замена резистора вентилятора охлаждения “Калина”. Выполнить работу можно самостоятельно, она не занимает много времени, не требует высокой квалификации или специального инструмента.

Что необходимо для проверки и замены

Для снятия, проверки и ремонта (замены) дополнительного резистора понадобятся:

  • омметр;
  • крестовая отвертка;
  • набор ключей;
  • паяльник;
  • канифоль;
  • припой;
  • новый резистор или его часть — термопредохранитель (16А и 180 градусов).

Если на автомобиле установлена защита двигателя (картера), снимать ее лучше с ямы или на подъемнике.

Система зажигания

Второй элемент автомобиля, где можно встретить резистор – это . Но далеко не все свечи оснащены им.

В конструкции данных элементов он начал появляться не так давно, и задача его заключается в подавлении радиопомех.

Кстати, сейчас ведется очень много споров, нужен ли он в свечах. Ведь резистор создает сопротивление, которое в конечном итоге влияет и на искру. А ведь чем сильнее последняя, тем лучше воспламеняется горючая смесь.

Но на самом деле на качестве искры наличие резистора сказывается незначительно, а вот на свечу – только положительно. Очень сильный искровой заряд приводит к разрушению электродов, а сопротивление снижает напряжение искры.

Но не в этом его главное назначение. Мощный искровой разряд создает достаточно сильные помехи в радиочастотном диапазоне, которые могут повлиять на работу аудиосистемы автомобиля, мобильного телефона и любого другого оборудования, чувствительного к помехам данного типа.

Интересно, что необязательно устанавливать на автомобиль свечи зажигания, оснащенные резисторами.

Дело в том, что во многих моделях шумоподавляющий элемент устанавливается в наконечники проводов высокого напряжения. Также некоторые виды самих проводов обладают достаточно неплохим сопротивлением, которого хватает для подавления радиопомех.

Резистор также может быть установлен и в бегунок трамблера, причем встречается он там на многих моделях. Его задача – та же, что и в свече зажигания или наконечнике.

Важно понимать, что во всех перечисленных элементах зажигания одновременно использоваться резисторы не могут.

При последовательном подключении этих элементов все сопротивление, которое они создают, суммируется.

То есть, если резистор будет установлен в бегунке трамблера, наконечнике, свече, то они будут создавать настолько сильное сопротивление, что значительно послабят искровой заряд, и он уже не сможет качественно воспламенять смесь. А это приведет к перебоям в работе двигателя, потере мощности, увеличению расхода топлива.

Поэтому принимать решение, стоит ли устанавливать на автомобиль свечи зажигания с резистором необходимо, тщательно ознакомившись с техдокументацией, идущей к авто.

Если изготовитель указывает, что необходимо использование таких свечей, то ими лучше пользоваться.

Система обогрева салона

Еще один элемент в конструкции автомобиля, где используется резистор – система отопления салона, а точнее, – управление работой электродвигателя печки.

В любом автомобиле используется переменный резистор для изменения скорости работы электромотора обогревателя.

В нем при помощи вращающегося элемента обеспечивается возможность изменения значения сопротивления.

При включении электродвигателя на 1-ю скорость вращения, резистор обеспечивает максимальное сопротивление, при переключении на 2-ю – оно уменьшается, а при переходе на 3-ю скорость — практически полностью убирается.

Осветительные приборы

В последнее время резисторы стали использоваться вместе со светодиодными лампами. Данный вид ламп все больше начал применяться на авто.

Но далеко не все машины пока идут с завода, укомплектованные светодиодными осветительными приборами, а вот отдельно их купить и установить вместо штатных ламп накаливания тех же поворотников или стоп-сигналов вполне можно и многие так делают.

Но здесь возникает проблема, которая обязывает использовать резисторы.

Дело в том, что потребление электроэнергии этими лампами очень малое, из-за чего электронный блок расценивает работу светодиодов как неисправность штатной лампы.

Чтобы исправить ситуацию, используются резисторы, создающие нагрузку на линии проводки, запитывающей те осветительные приборы, в которых установлены светодиодные лампы.

В результате ЭБУ воспринимает сопротивление элемента, как работу лампы накаливания, поэтому кода ошибки не возникает.

Интересно, что при использовании таких обманок основное достоинство светодиодных ламп – малое потребление энергии, сводится к нулю, и у них остается только одно преимущество перед обычными лампами накаливания – длительный срок эксплуатации.

Как сделать арку на кухне своими руками: все этапы


Использование арки в интерьере – одно из самых популярных вариантов оригинального оформления пространства жилого дома. Она чаще всего выступает как декорирующий элемент, однако и не лишена функциональности. Самым распространенным местом расположения арки является пространство между кухней и гостиной или коридором. В чем же секрет ее популярности?

При соблюдении определенных правил и тщательном продумывании проекта дизайна, арки можно оборудовать как элемент квартиры, оформленной в современном стиле.

Что лучше – дверь или арка в интерьере кухни

Особенности арочного проема

Многие модные веяния не всегда отвечают практичным требованиям и со временем теряют свою актуальность. Однако это не относится к такому уже привычному для всех элементу интерьера, как арка. Она давно стала «почетной гостьей» во многих современных домах. Чем же заслужила она это звание?


Очень важно перед началом работ проконсультироваться с профессиональными строителями, так как не в каждом помещении есть техническая возможность для возведения арок.

Преимущества арки:

  • С ее помощью можно добиться увеличения пространства. Она не выглядит массивно и поэтому создает атмосферу свободы и легкости.
  • Арка позволяет стереть границу между комнатами, создав при этом эффект объединенных пространств.
  • С помощью этого дизайнерского элемента можно подчеркнуть особенный стиль дома и воплотить самые необычные решения.
  • Арки являются более доступными в цене, нежели дверь. Их можно сделать своими руками, не делая больших затрат.
  • Арочный проем не требует установки дополнительной фурнитуры. Однако он может быть декорирован изящными или оригинальными и фантазийными элементами.
  • Проектирование арки между кухней и гостиной позволяет расширить обзор помещений. Это особенно удобно, когда в доме есть маленькие дети, за которыми нужно постоянно наблюдать. Так, находясь в кухне, Вы можете видеть все, что происходит в гостиной.
  • Арка прекрасно сочетается с любым стилем. Она также позволяет зонировать пространство.


Если арка обустраивается в несущей стене, то обязательно должны быть произведены расчеты прочности конструкции.

Важно! Установка арочного проема становится невозможным в случае соседства кухни с детской, спальней. Такая мини-перепланировка станет причиной плохого сна и нарушения личного пространства жителей дома.

Сравнительная характеристика: арка или дверь

АркаДверь
Не занимает много места, что позволяет сделать каждый сантиметр кухни более функциональным.Требует дополнительного пространства, даже при условии, что она раздвижная.
Является настоящей находкой для комнат с низким потолком. Она позволяет визуально сделать его выше.За счет наддверного пространства она может невыгодно подчеркнуть небольшую высоту потолка.
Запахи и дым беспрепятственно распространяются за пределы кухни. Это становится причиной того, что ими пропитываются вещи и предметы.Способствует изоляции запахов, возникающих при приготовлении пищи, от остальных комнат.
Пар, исходящий из кухни, может оседать на поверхностях соседних комнат.Защищает вещи от повышенной влажности, которая характерна для любого помещения, где находятся варочные поверхности.

Как видим, единого мнения о том, кто же является фаворитом в выборе между дверью и аркой, нет. Все зависит только от индивидуальных предпочтений и пожеланий хозяев дома. Иногда при этом приходится выбирать между практичностью и эффектностью.


Арочные конструкции обладают достаточным количеством преимуществ.



Выбираем тип арки на кухню

В зависимости от формы арки бывают таких типов.

  • Римская, классическая.

Традиционный вариант, который характеризуется правильной округлой формой. Свое название она получила от места, где впервые была использована. Именно в Риме помпезность и изысканность дому придавала такая конструкция вместо дверей.


Они, аналогично дверям, служат проходом в смежные друг с другом комнаты, не изолируя их.

Такая арка на кухню вместо привычной двери подойдет к любому стилю комнаты и размерам проема. Одним из эффектных решений станет ее применение в комнате с высокими потолками. Она поможет сделать их еще выше и подчеркнуть масштабность помещения.

Такая конструкция напоминает скорее обычный или увеличенный прямоугольный дверной проем, чем привычную для нас арку.


Позволяют отделить различные по назначению зоны, визуально расширяя пространство.

Интересная ее особенность: декоративные элементы (лепнина, резьба, вычурные или простые узоры) по краю рамы. Арка-портал отлично подойдет для маленьких комнат с низкими потолками.

Этот тип невозможно не заметить или спутать с остальными. Он отличается ассиметричными формами, многослойными композициями, сложной системой узоров и форм. Арки на кухню вместо двери в восточном стиле поражают своей колоритностью и замысловатостью.


Арочные своды придадут интерьеру стиль и оригинальность.

  • Эллипсоидная или британская.

Данная модель подойдет для широких проемов. Она характеризуется более пологим изгибом. Такой проем часто декорируют не только внешней, но и внутренней рамой.


Арочные своды, установленные в переходах в маленькую прихожую, на балкон, в коридор преобразовывают помещение, расширив пространство.

  • Фантазийная, фигурная.

Такая модель имеет множество самых разнообразных форм. Она позволяет украсить любой интерьер.


С помощью декоративных деталей арочные сооружения приближаются практически к любой стилистике интерьера.

Такой вариант характеризуется прямоугольной формой, но, в отличии от портала, имеет закругленные края.


Благодаря большому количеству конструктивных решений вы всегда можете подобрать арку под стиль своего дома.

  • Тайская или полуарка.

Данная модель представляет собой сочетание прямого угла с одной стороны и округлой ниши любого радиуса с другой. Она применяется в комнатах с узким проходом и делает интерьер очень необычным. Полуарка из гипсокартона на кухне станет хорошим решением для малогабаритных квартир и частных домов.


Простота сооружения позволяет каждому выполнить ее собственноручно.

Такой арочный проем имеет прямоугольную форму со срезанными углами. Особенно красиво и эффектно такие арки из гипсокартона на кухне смотрятся в сочетании с деревянной отделкой.


Ведь процесс создания такого элемента дизайна очень прост, хотя и имеет некоторые нюансы.

Данная арка может иметь полностью форму круга или же он плавно переходит в ровные боковые панели. Создаваемый ею эффект точно не оставит никого равнодушным. С ее помощью переход между комнатами становится мягким и уютным.


Эта конструкция может подчеркнуть особенный вкус хозяев дома, а также их высокий социальный статус.

Варианты арок

В настоящее время в дизайне кухни встречаются разнообразные формы арок. Бывают классические прямые, угловые варианты или римские арочные проемы правильной округлой симметричной конфигурации. Такие конструкции чаще всего встречаются в помещении с высоким потолком.

  • Универсальные эллипсоидные арочные проемы характеризуются презентабельным внешним обликом, отлично вписываются в любой интерьерный стиль и помещение как больших, так и маленьких габаритов.
  • Самые простые конструкции — прямоугольные порталы, которые считаются прекрасным решением для кухни в малогабаритной квартире с низким потолком. Проходы в форме прямоугольника несмотря на свою строгость и лаконичность, наполняют обстановку уютом и позволяют добиться визуального расширения пространства.
  • Для тех, кто не любит экспериментировать дверной проем можно оставить в неизменном квадратном виде.

На фото полукруглая арочная конструкция в интерьере объединенной кухни-столовой.

Полуарка — это проход одна сторона которого представляет собой прямую линию, а другая имеет округлые очертания. Подобные арки подойдут для обустройства узкого дверного проема.

Арки необычной и вычурной асимметричной формы называют восточными. Такие многогранные конструкции отличаются сложным исполнением, обладают острыми углами и выпуклыми элементами в большом количестве. Фигурные проемы всегда смотрятся очень экстравагантно.

На фото кухонный интерьер в деревенском стиле с фигурным арочным проемом.

Как оформить арку на кухне: основные моменты

Где бы не находилась арка, она всегда являет собой место входа в помещение. От ее внешнего вида частично зависит и целостное впечатление о доме. Поэтому она должна быть интересной и яркой.

Чтобы арка гармонично вписывалась в пространство кухни и при этом не снижала функциональность смежных комнат или балкона, следует придерживаться ряда рекомендаций.

  • Если помещение небольшое, то и арочный проем не должен быть слишком массивным и громоздким. Это касается не только его отделки, но и формы, и размера.
  • Устанавливая арку между коридором и кухней, следует тщательно продумать освещение. Оно не должно сильно отличаться по яркости и направленности.
  • Соединенные комнаты и сам проем лучше всего выполнить в одном стиле. Это сделает пространство более гармоничным.


Установив арку между кухней и гостиной, можно визуально стереть все преграды и таким образом сделать пространство более свободным.

Плюсы и минусы арочного проема на кухне

Начиная ремонт в квартире, мы задумываемся о том, как сделать дизайн помещения оригинальным и при этом не допустить фатальных ошибок, исправление которых приведет к большим материальным затратам. Ведь, как известно, перестраивать всегда дороже, чем строить.

Если выбор дизайна кухонного проема вы остановили на арке, нужно внимательно изучить все плюсы и минусы, с которыми вы можете столкнуться в процессе эксплуатации.

Одним из главных плюсов арочного проема является увеличение рабочей площади кухни. Ведь кухня — это помещение общего пользования, где собираются всей семьей, и, как правило, места всегда не хватает.

Не пропустите: Как обшить входную дверь дермантином своими руками? Подробная инструкция и советы


Также в пользу арки встает и факт того, что кухня не требует приватности и отсутствие двери не принесет дискомфорта в вашу личную жизнь.

ВНИМАНИЕ! Отсутствие двери в кухне сделает прилегающее к ней помещение светлее и зрительно создаст впечатление единого пространства.

Оригинальный дизайн арочного проема сделает вашу квартиру современной и запоминающейся.


Наличие арки на кухне не позволяет застаиваться воздуху и способствует быстрому проветриванию помещения.

Арочные проемы помогают визуально разбить помещение на зоны. Это очень актуально, если вы проживаете в квартире-студии.

Еще один довод в пользу арки — это экономия средств. Ведь ее оформление обойдется в разы дешевле, чем покупка и установка межкомнатной двери.


К недостаткам арочного проема между кухней и жилой площадью квартиры в первую очередь можно отнести отсутствие шумоизоляции. Отказавшись от двери в кухне, вы рискуете постоянно слышать все, что там происходит, из любой точки квартиры.

Запахи готовящейся пищи также могут преследовать вас по всему жилому помещению. Но этот недостаток отсутствия двери легко решается приобретением мощной вытяжки.

При установке арки вам следует задуматься о едином дизайне кухни и смежной комнаты, что очень важно для соблюдения эстетической стороны объединения двух помещений в одно целое. Да и беспорядок, иногда творящийся на кухне, уже не удастся спрятать за закрытой дверью.

Классическая романская арка, когда дуга арки плавно переходит в стенки проема

Несмотря на новомодные веяния, требующие все новых и новых экспериментов с формами и стилями, традиционная арка остается фаворитом и не собирается уступать свое место. Она отлично подходит для комнат разного размера. Благодаря своей форме, она будет хорошо смотреться и в просторных апартаментах, и в небольшой сталинке.

Ширина дверного проема может также быть разной. Благодаря закругленному верху пространство будет казаться большим. Такой вариант возможен при объединении кухни с любой другой комнатой.


Особенностью таких конструкций является то, что они полностью открывают пространство помещений, между которыми располагаются.

Для декора классической кухонной арки можно использовать любой из доступных материалов. Главное, чтобы он был стилизованным. Витражные стекла, книжные полки по бокам, резьба и лепнина – это далеко не весь перечень возможных декоративных элементов.

Рассматривая фото дизайна арки из гипсокартона в интерьере кухни, можно заметить, что классический вариант пользуется устойчивым спросом.

Это надо знать: важные нюансы

При самостоятельном монтаже конструкции будут полезными следующие рекомендации:

  • Выбирая арку из гипсокартона для кухни, необходимо учитывать все нюансы ее изготовления, места в интерьере, сочетаемости с потолочным, настенным и напольным покрытием, кухонным оборудованием, предметами мебели, осветительными приборами.
  • Учитывая микроклимат кухни, необходимо использовать ГКЛВ (влагостойкий гипсокартон) или ГКЛВО (влаго- и огнестойкий гипсокартон). Материалы – листы, профили, саморезы –желательно покупать с запасом.
  • Прежде чем приступить к кройке материала, нужно нарисовать эскиз или создать компьютерную модель интерьера кухни.
  • Следует обязательно провести замеры, сделать чертеж на бумаге, затем перенести на ГКЛ.
  • Монтаж сложного фигурного свода или многоуровневой потолочной композиции, включающей в себя арку, лучше доверить профессионалам.
  • После успешной установки арки следует ее декорировать.

ПОЛЕЗНАЯ ИНФОРМАЦИЯ: Дизайн двухуровневого потолка из гипсокартона для кухни: 12 фото

Арка как элемент зонирования пространства

Потребность в зонировании кухонного пространства возникает довольно часто. Несмотря на множественные попытки сделать границу между комнатами как можно менее заметной, во многих случаях ее наличие просто необходимо.

Чаще всего арка как зонирующий элемент используется в таких случаях.

  1. После объединения кухни и прихожей каждая из комнат продолжает исполнять свою первоначальную роль.
  2. Чтобы визуально разделить территорию приготовления и приема пищи.
  3. Когда совмещение кухни и гостиной оставляет потребность в функциональном разъединении.


Арки не требуют никакой фурнитуры, вы можете лишь подобрать интересный и изящный декор.

По сути, в таких случаях арка представляет собой модифицированную перегородку.

Арки и колонны в кухне – рекомендации по оформлению

Сочетание арки и колонн является одним из традиционных и аристократических. Однако если раньше последние исполняли функцию поддержки, то сейчас это скорее дизайнерский ход. С их помощью можно создать неповторимый интерьер в стиле барокко, рококо, готика.


Обустройство арочного прохода позволяет сделать квартиру более светлой, ведь солнечный свет, как и тепло, распределяются равномерно между комнатами.

Чтобы кухонные колонны и арки стали изюминкой интерьера, обратите внимание на некоторые рекомендации по их оформлению.

  • Ширина арочного прохода с колоннами не должна быть меньше 130 см. В противном случае они будут только загромождать пространство, а их дизайн просто потеряется.
  • Форма колонн зависит от особенностей арки: для классической лучше подойдут квадратные или круглые, для трапециевидной же – только первые.
  • Если колонны устанавливаются не на пол, а на стеллажи с полками, то они должны выглядеть как можно легче.
  • При использовании аркады (совокупности рядом нескольких арок) наличие колонн просто необходимо. Они сделают пространство более оформленным.
  • При ограниченном доступе естественного света в коридор или прихожую рекомендуют (если позволяют размеры и расположение комнат) установить целый ряд колонн.


Отделяя кухонную зону, дизайнеры используют более яркое освещение на кухне, а также разные виды отделочного материала для пола и стен в кухне и гостиной.

Разновидности арок

После того, как вы определились, как оформить проем, необходимо выбрать конструкцию арки и материал, из которого она будет строиться. Существует несколько видов арок на кухню, от конструкции которых будет зависеть вид помещения.

Дизайн арки из гипсокартона для кухни вместо двери

Гипсокартон является одним из самых популярных при создании арки. Его функциональные особенности позволяют придать изгибам любую форму. Гипсокартон не требует особых навыков монтажа и отличается также своей экологичностью. Последняя особенность делает его подходящим для домов, где живут маленькие дети.


Благодаря использованию гипсокартона, можно выполнить конструкцию любой формы, при этом цена материала доступна для большинства заказчиков.

Фото различных видов арок из гипсокартона на кухне находятся в свободном доступе в сети. Это поможет определиться с окончательным вариантом.Взяв за основу создания арки гипсокартон, можно смело экспериментировать над ее оформлением и дизайном. В роли декора могут выступать элементы из разного материала. Рассмотрим самые популярные из них.

Флизелиновые или виниловые они не только хорошо впишутся в любой интерьер (благодаря разнообразию цветов и текстур), но и сделают уход за проемом проще (их можно чистить, используя воду).

Водоэмульсионка без запаха и токсичных испарений – то, что надо для безопасного дома.


Огромное поле для необычных дизайнерских решений представляют собой большие кухни в частных домах.

Для арок, выполненных из гипсокартона, подойдет не натуральный (уж очень тяжелый), а искусственный вариант. По своей фактуре он может быть самый разный: гранит, мрамор, кирпич и т.д.

Узоры, выполненные в этой технике, станут истинным украшением любого дома. Как материал для нее лучше выбирать полиуретан. Он легкий и поэтому хорошо держится на гипсокартоновой основе.


Облицовка камнем будет выглядеть как самостоятельный декоративный элемент.

Использование ткани для декора стен берет начало еще в далекие времена. Однако и сегодня такой подход к дизайну не утратил своей актуальности. Для оформления арки лучше всего использовать парчу, гобелен или жаккард.

Текстиль также используется для маскировки самого проема. Как закрыть готовую арку в квартире между кухней и комнатой? Очень просто: используйте шторы из любой ткани, сетки из шариков или подвески. Этот подход сделает атмосферу кухни более домашней и уютной.

Дизайн арки в брежневке

Кухня в брежневке ненамного выигрывает в размерах в сравнении с хрущевкой, однако «лишние» 2–3 м² имеют значение при создании дизайна.

  • Дверной проем в виде арки в стиле модерн или романтика способствует визуальному расширению пространства.
  • Небольшое пустое место между окном и рабочей зоной можно выделить прямоугольной аркой-порталом или оформить фантазийную конструкцию в виде неполного полукруга. В образовавшемся уголке можно установить кофейный столик с креслами, угловой диван, стойку с комнатными растениями. Высокую мебель – шкафы-пеналы, подвесные шкафы – там лучше не использовать, чтобы не ограничивать естественное освещение.

  • Легкая изящная арка эффектно выделит обеденную зону со столом и табуретами или стульями.

  • Вход кухню из прихожей можно оформить в виде арки в стиле модерн или эллипсоидной конструкции.

ПОЛЕЗНАЯ ИНФОРМАЦИЯ: Как снять плитку с пола не повредив ее

  • В брежневках особенно популярна перепланировка с объединением зала с кухней. Эффектно смотрится широкая арочная конструкция с витражами, классическая арка с колоннами, формы с асимметричным дугообразным сводом.

Совет. Расширять площадь кухни за счет ванной или прихожей в квартирах хрущевской и брежневской застройки не стоит. В первом случае уменьшится и без того узкое и тесное пространство санузла, а переустановка оборудования может привести к нарушению коммуникаций. Во втором – уменьшение площади прихожей визуально ограничит общий интерьер квартиры.

Альтернативные способы оформления арки на кухне

Кроме уже перечисленных материалов для установки и дизайна кухонной арки, часто используют также следующие:

Такой вариант отличается не только своей прочностью, но и внушительным внешним видом. Каменная арка смотрится очень эффектно и колоритно. По цене она значительно дороже гипсокартонного аналога.


Широко используется камень для строительства арок. Учитывая сложность выполнения работ и особенности материала, с его помощью тяжело получить необычную форму.

Обратите внимание! Каменная арка подойдет для просторных помещений. В маленькой хрущевке она будет смотреться не очень гармонично.

Этот материал, довольно распространенный в оформлении арочных проемов. Он придает пространству домашний уют и немного аристократизма.


«Изюминкой» интерьера может стать деревянная конструкция с резьбой ручной работы, но цена также будет соответствующей.

Его особенностью является практичность и универсальность. Он может быть использован в комнате любого стиля. Пластик также не нуждается в особом уходе, что делает его подходящим для кухонного пространства.

Прежде, чем начинать перепланировку в доме, обратите внимание на специальные советы о том, как установить арку в дверной проем на кухне. Это поможет избежать многих ошибок. Благо, многие мастера готовы делиться своими секретами.

Отделка

Арку на кухне можно оформить штукатуркой, выложить керамической плиткой, оклеить с помощью обоев, отделать пластиком, покрасить и декорировать художественной росписью.

Придать кухонному интерьеру средневековый вид с налетом богатства и роскошности, поможет проем отделанный камнем. Разбавить дизайн кухни уместно за счет арки с брутальной и контрастной облицовкой искусственным или природным кирпичом.

С использованием мозаики из стекла, получится не только обеспечить уникальное оформление арочного проема, но и создать в помещение восхитительную игру света.

На фото дизайн кухни с круглой аркой, облицованной камнем.

Самый обычный, но благородный и изящный вариант отделки арки на кухне — дерево. Натуральная древесина благодаря своей насыщенности не нуждается в дополнительном декоре. Деревянные конструкции выгодно подчеркивают характер интерьера, делая его самодостаточным.

На фото узкий арочный портал, выложенный кирпичной кладкой в интерьере кухни.

Сочетание кухонной арки с барной стойкой

Барная стойка, как и сама арка, давно уже стали привычным элементом кухни. Их сочетание является оригинальным и удобным решением. Благодаря арочной форме само пространство сглаживается и становится более мягким. Барная же стойка поможет создать атмосферу непринужденности и легкости.


Большая кухня позволяет совместить арочный проем с барной стойкой.

Практичность такого тандема объясняется возможностью быстрого приготовления напитков и подачи их в гостиную. Однако следует учесть, что межкомнатный проем должен быть достаточно большим. Иначе барная стойка станет не оригинальным и практичным элементом интерьера, а преградой в передвижении между помещениями. Поэтому следует учесть ряд факторов, прежде чем решится на подобную перепланировку.


Для обустройства барной стойки используется глубокая арка, часто асимметричная.

Существую также варианты, когда для барной стойки выделяется отдельная ниша, которая является самостоятельной частью модифицированного дверного прохода. Он при этом может сохранять свою изначальную прямоугольную форму.

Кухонная арка – очень красивый оригинальный ответ на вопрос «Как увеличить пространство кухни и сделать его более мягким?». Она способна привнести в интерьер особенные, неповторимые акценты. Подтверждение этому – фото с разным дизайном кухни с аркой. Однако не следует пренебрегать рекомендациями и следовать только за внешним видом этой конструкции. Выбирая из множества вариантов подходящий, необходимо убедиться, что он подойдет именно вам.

Для чего в электрической цепи применяют реостат

Реостат – это аппарат, который применяется в электрической цепи для регулировки силы тока и напряжения путем изменения сопротивления с помощью поворота ручки или перемещения ползунка. Возможно, многие помнят это прибор по урокам физики, когда посредством реостата изменяли яркость свечения лампочки. В электрической цепи реостат применяют для регулировки звука в старых аудиосистемах или простом диммере для настройки яркости света осветительного прибора.

Реостат был изобретен в начале IXX в. немецким физиком Иоганном Христианом Поггендорфом. До настоящего времени этот аппарат широко применялся в электротехнике, но постепенно стал уступать современным электронным и цифровым технологиям. При этом во многих электроприборах, его роль до сих пор остается незаменимой.

Принцип работы реостата

Принцип действия прибора основан на ступенчатом или плавном изменении сопротивления. Эта функция достигается за счет изменения положения ползункового контакта, включающего в цепь необходимую часть высокоомного материала. Отличным наглядным примером является учебный реостат. В нем нихромовая проволока намотана на горизонтальный керамический стержень. Сверху на токопроводящей штанге расположен подвижный ползунок с контактными пластинками, касающимися обмотки. В начальном положении вся проволока включена в цепь и сопротивление реостата находится в максимальном режиме. Перемещая ползунок, часть проволоки исключается из цепи, так как ток проходит путь через часть проволоки, а затем по наименьшему пути сопротивления через контактные пластины и токопроводящую штангу. Таким образом, реостат в электрической цепи позволяет изменять сопротивление, делая его меньше или больше.

Применяемые в электротехнике реостаты имеют более компактную кольцевую конструкцию, то есть обмотка выполняется на кольцевом основании, а ползунок в виде поворотного механизма (движка) закреплен в центре кольца. Переменные резисторы со ступенчатым переключением представляют собой набор постоянных резисторов, включенных в цепь последовательно. При этом в схему добавлен переключатель, который, в зависимости от положения, снимает ток с определенного контакта между резисторами.

Каково значение реостата в электрической цепи

В схеме электроприбора реостат может выполнять функции регулировочного, подстроечного резистора или делителя напряжения (потенциометра). Наиболее простой пример – регулировка оборотов коллекторного электродвигателя. В этом случае аппарат используется как регулировочный и включается в цепь с обмоткой двигателя последовательно. Увеличивая сопротивление ток падает и обороты двигателя уменьшаются. Такой принцип часто используется в электродрели, шуруповерте и угловой шлифмашине.

Регулировка переменным сопротивлением также нередко выполняется для освещения и других электрических цепей с небольшим током. Для мощных электрических приборов регулировка реостатом затруднена, поскольку мощность переменных резисторов серийного производства довольно ограничена. К тому же такое сопротивление часто требует принудительного охлаждения. В этом случае более целесообразно применить автотрансформатор. При этом, стоит отметить, что существуют и сверхмощные реостаты. Одним из таких является многоканальный нагрузочный реостат общей мощностью 3000 кВт. Его применяют для реостатного испытания тепловозов новых серий. Вес такой установки несколько тонн, а габариты сравнимы с вагоном поезда.

Сухой многоканальный нагрузочный реостат с постоянным сопротивлением каждого канала мощностью 3000 кВт

Ступенчатое регулирование переменным резисторам часто встречается в электроизмерительных приборах. Так, например, используя ступенчатую схему для шунтирования вольтметра можно менять диапазон измеряемого напряжения. В этом случае сопротивление подключается к прибору параллельно и выполняет роль делителя напряжения. Последовательное подключение сопротивления со ступенчатой регулировкой можно встретить в бытовых вентиляторах, карманных фонариках и другой технике.

Еще одно назначение реостата в электрической цепи – это калибровка. В этом случае применяются маломощные подстроечные переменные резисторы.

Как правило, они скрыты под корпусом и с панели прибора не управляются. Их функция состоит в калибровке (тонкой настройке) работы схемы, которую производят на заводе-изготовителе или в ремонтных мастерских. В дальнейшем эти резисторы не регулируются и работают как постоянное сопротивление. Такие резисторы применяются в большинстве электронной техники.

Читайте также:

Использование резисторов и реостатов для регулирования силы тока в электрической цепи. Реостат и методы его включения

На практике часто приходится менять силу тока в цепи, делая ее то больше, то меньше. Так, изменяя силу тока в динамике радиоприемника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Во многих случаях для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включенного в цепь участка АС. При этом будет меняться сопротивление цепи, а, следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением, а для того чтобы длинная проволока не мешала ее наматывают спиралью.

Один из реостатов (ползунковый реостат) изображен на рисунке а), а его условное обозначение в схемах — на рисунке б).


В этом реостате никелиновая проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки.

Электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим 1. С помощью этого зажима и зажима 2, соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь.

Стрелками указано как протекает электрический ток через реостат

Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь. То есть мы увеличиваем или уменьшаем количество витков по которым протекает электрический ток (чем больше витков, тем больше сопротивление).

Каждый реостат рассчитан на определенное сопротивление (чем больше проволоки намотано, тем большее сопротивление может дать такой реостат) и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате (см. рисунок а ).

[Значения 6Ω и 3 А означают что данный реостат способен изменять свое сопротивление с 0 до 6 Ом, и ток с силой больше чем 3 Ампера пропускать по нему не стоит. ]

Теперь самое время перейти от теории к практике!

Часть 1. Регулировка силы тока в лампочке.

На видео видно, как передвигая ползунок реостата вправо и влево, лампочка горит ярче или тусклее.

Понять принцип опыта можно взглянув на схему (см. рисунок 4).


На рисунке указана схема цепи, которую мы собирали в видео. Полное сопротивление цепи состоит из сопротивления R л лампочки и сопротивления включенной в цепь части проволоки (на рисунке заштрихована) реостата. Незаштрихованная часть проволоки в цепь не включена. Если изменить положение ползунка, то изменится длина включенной в цепь части проволоки, что приведет к изменению силы тока.

Так, если передвинуть ползунок в крайнее правое положение (точка С), то в цепь будет включена вся проволока, сопротивление цепи станет наибольшим, а сила тока — наименьшей, поэтому нить лампочки будет гореть тускло или совсем не будет гореть (так как эл. ток такой силы не может разогреть спираль лампочки до свечения).

Если же передвинуть ползунок реостата в положение А, то электрический ток совсем не будет идти по проволоке реостата и, следовательно, сопротивление реостата будет равно нулю. Весь ток будет расходоваться на горение лампы, и она будет светить максимально ярко.

Часть 2. Включение лампочки от карманного фонаря в сеть 220 В.

Внимание! Не повторяйте этот опыт самостоятельно. Напоминаем, что поражение электрическим током осветительной сети может привести к смерти.

Что произойдет, если включить лампочку от фонарика в осветительную сеть напряжением 220 В? Понятно, что лампочка, рассчитанная на работу от батареек с суммарным напряжением 3,5 Вольт (3 пальчиковых батарейки), не способна выдержать напряжение в 63 раза большее — она сразу перегорит (может и взорваться).

Как тогда это сделать? На помощь придет уже известный нам прибор — реостат.

Нам нужен такой реостат, который способен был задержать бурный поток электрического тока, идущего от осветительной сети, и превратить его в тоненький ручеек электричества, который будет питать нашу хрупкую лампочку не нанося ей вреда.

Мы взяли реостат с сопротивлением 1000 (Ом). Это значит, что если эл. ток будет проходить по всей проволоке этого реостата, то на выходе из него получится ток с силой всего лишь 0,22 Ампер.

I=U/R=220 В / 1000 (Ом) = 0, 22 А

Для питания же нашей лампочки нужно даже более сильное электричество (0,28 А). То есть реостат не пропустит достаточное количество тока, чтобы зажечь нашу маленькую лампочку.

Это мы и наблюдаем во второй части видео, где в крайнем положении ползунка лампочка не горит, а при передвижении его вправо лампочка начинает загораться все ярче и ярче (подвигая ползунок мы запускаем все больше тока).

В определенный момент (на определенном положении ползунка реостата) лампочка перегорает, потому что реостат (при данном положении ползунка) пропустил слишком много электричества, которое и пережгло нить накаливания лампочки.

Так можно ли включить низковольтную лампочку в осветительную сеть? Можно! Только следует задержать все лишнее электричество реостатом с достаточно большим сопротивлением.

Часть 3. Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть 220 В.

Мы взяли лампу мощностью 60 Вт, рассчитанную на напряжение 220 В, и лампочку от карманного фонарика на 3,5 В и силу тока 0,28 А.

Что произойдет, если включить эти лампочки в осветительную сеть напряжением 220 В? Понятно, что 60-ти ваттная лампочка будет гореть нормально (она на это и предназначена), а вот лампочка от карманного фонарика немедленно перегорит при включении ее в сеть (т.к. рассчитана работать от батареек только на 3,5 Вольта).

Но в опыте видно, как при подключении лампочек друг за другом (последовательно) и включении их в сеть 220 В обе лампы горят нормальным накалом и даже не думают перегорать. Даже когда ползунок реостата в крайнем положении (т.е. он не создает никакого сопротивления току) маленькая лампочка не перегорает.

Почему так? Почему даже при выключенном реостате (при его нулевом сопротивлении) лампа не перегорает? Что не дает ей перегореть при таком большом напряжении? И действительно ли напряжение на маленькой лампочке такое большое? Будет ли работать маленькая лампа если заменить лампу мощностью 60 Вт на стоваттную лампочку (100 Вт)?

Вы уже сможете ответить на большинство вопросов, если внимательно следили за ходом рассуждений в предыдущей части статьи. В этом опыте маленькой лампочке не дает перегорать большая лампочка. Она выступает в роли реостата с большим сопротивлением и берет на себя почти всю нагрузку.

Давайте попробуем разобраться как такое может происходить, что маленькая лампочка не перегорает благодаря лампочке в 60 Вт и доказать расчетным методом, что для нормального накала обеих лампочек необходимо одна и та же сила тока.

На помощь в решении этого вопроса нам придет физика, а конкретно ее раздел электричество (изучается в 8 классе).

Реостатом именуется аппарат, состоящий из набора резисторов и устройства, при помощи которого можно регулировать сопротивление включенных резисторов и благодаря этому регулировать переменный и неизменный ток и напряжение.

Различают реостаты с воздушным и жидкостным (масляным либо водяным) остыванием . Воздушное остывание может применяться для всех конструкций реостатов. Масляное и водяное остывание употребляется для железных реостатов, резисторы могут или погружаться в жидкость, или обтекаться ею. При всем этом следует подразумевать, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Железные реостаты с воздушным остыванием получили наибольшее распространение. Их легче всего приспособить к разным условиям работы как в отношении электронных и термических черт, так и в отношении разных конструктивных характеристик. Реостаты могут производиться с непрерывным либо со ступенчатым конфигурацией сопротивления.

Тумблер ступеней в реостатах производится плоским. В плоском тумблере подвижный контакт скользит по недвижным контактам, перемещаясь при всем этом в одной плоскости. Недвижные контакты производятся в виде болтов с плоскими цилиндрическими либо полусферическими головками, пластинок либо шин, располагаемых по дуге окружности в один либо два ряда. Подвижный скользящий контакт, именуемый обычно щеткой, может производиться мостикового либо рычажного типа, самоустанавливающимся либо несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду нередкого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высочайшая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Плюсами плоского тумблера ступеней реостата являются относительная простота конструкции, сравнимо маленькие габариты при большенном числе ступеней, низкая цена, возможность установки на плите тумблера контакторов и реле для отключения и защиты управляемых цепей. Недочеты — сравнимо малая мощность переключения и маленькая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность внедрения для сложных схем соединения.

Железные реостаты с масляным остыванием обеспечивают повышение теплоемкости и неизменной времени нагрева за счет большой теплоемкости и неплохой теплопроводимости масла. Это позволяет при краткосрочных режимах резко наращивать нагрузку на резисторы, а как следует, уменьшить расход резистивного материала и габариты реостата. Погружаемые в масло элементы обязаны иметь как можно огромную поверхность, чтоб обеспечить неплохую теплопотерю. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия среды в хим и других производствах. Погружать в масло можно только резисторы либо резисторы и контакты.

Отключающая способность контактов в масле увеличивается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле растет, но сразу улучшаются условия остывания. Не считая того, за счет смазки можно допустить огромные контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для долгих и повторно-кратковременных режимов работы реостаты с масляным остыванием неприменимы ввиду малой теплопотери с поверхности бака и большой неизменной времени остывания. Они используются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редчайших запусках.

Наличие масла делает и ряд недочетов: загрязнение помещения, увеличение пожарной угрозы.

Пример реостата с фактически непрерывным конфигурацией сопротивления приведен на рис. 1. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню либо кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый с помощью изолированного стержня 8, на конец которого надевается изолированная ручка (на рисунке ручка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластинки 7 — для наружного присоединения.

Реостаты могут врубаться в схему как переменный резистор (рис. 1, а) либо как потенциометр (рис. 1,6). Реостаты обеспечивают плавное регулирование сопротивления , а как следует, и тока либо напряжения в цепи и находят обширное применение в лабораторных критериях в схемах автоматического управления.

Схемы включения пусковых и регулировочных реостатов

На рисунке 2 показана схема включения при помощи реостата мотора неизменного тока маленький мощности.

Перед включением мотора нужно убедиться в том, что рычаг 2 реостата находится на холостом контакте 0. Потом включают рубильник и рычаг реостата переводят на 1-ый промежный контакт. При всем этом движок возбуждается, а в цепи якоря возникает пусковой ток, величина которого ограничена всеми 4-мя секциями сопротивления Rп. По мере роста частоты вращения якоря пусковой ток миниатюризируется и рычаг реостата переводят на 2-ой, 3-ий контакт и т. д., пока он не окажется на рабочем контакте.

Пусковые реостаты рассчитаны на краткосрочный режим работы, а потому рычаг реостата нельзя продолжительно задерживать на промежных контактах : в данном случае сопротивления реостата перенагреваются и могут перегореть.

До того как отключить движок от сети, нужно ручку реостата перевести в последнее левое положение. При всем этом движок отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В неприятном случае могут показаться огромные перенапряжения в обмотке возбуждения в момент размыкания цепи.

При пуске в ход движков неизменного тока регулировочный реостат в цепи обмотки возбуждения следует стопроцентно вывести для роста потока возбуждения.

Для запуска движков с поочередным возбуждением используют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием толь ко 2-ух зажимов — Л и Я.

Реостаты со ступенчатым конфигурацией сопротивления (рис. 3 и 4 ) состоят из набора резисторов 1 и ступенчатого переключающего устройства.

Переключающее устройство состоит из недвижных контактов и подвижного скользящего контакта и привода. В пускорегулирующем реостате (рис. 3 ) к недвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от частей сопротивлений, пусковых и регулировочных, согласно разбивке по ступеням и другие управляемые реостатом цепи. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, также всех других управляемых реостатом цепей. Привод реостата может быть ручной (с помощью ручки) и двигательный.

Рис. 3. Схема включения пускорегулирующего реостата: Rпк — резистор, шунтирующий катушку контактора в отключенном положении реостата, Rогр — резистор, ограничивающий ток в катушке, Ш1, Ш2 — параллельная обмотка возбуждения электродвигателя неизменного тока, С1, С2 — поочередная обмотка возбуждения электродвигателя неизменного тока.

Рис. 4. Схема включения регулировочного реостата возбуждения: Rпр — сопротивление предвключенное, ОВ — обмотка возбуждения электродвигателя неизменного тока.

Реостаты по типу приведенных на рис. 2 и 3 отыскали обширное распространение. Их конструкции владеют, но, некими недочетами, а именно огромным числом крепежных деталей и монтажных проводов, в особенности в реостатах возбуждения, которые имеют огромное число ступеней.

Схема включения маслонаполненного реостата серии РМ , созданный для запуска асинхронных движков с фазным ротором, приведен на рис. 5. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10 000 операций, механическая — 45 000. Реостат допускает 2 — 3 запуска попорядку.

Реостат состоит из интегрированных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали частей и крепятся к крышке бака. Переключающее устройство — барабанного типа, представляет собой ось с закрепленными на ней секторами цилиндрической поверхности, соединенными по определенной электронной схеме. На недвижной рейке укреплены соединенные с резисторными элементами недвижные контакты. При повороте оси барабана (маховиком либо двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те либо другие недвижные контакты и тем меняют значение сопротивления в цепи ротора.

Обычно редко кто задумывается, каким образом в различных приборах регулируется уровень звука. Во многих электрических приборах регулировка громкости звука осуществляется за счет изменения силы тока. Для этого чаще всего применяется специальный аппарат, разработанный Иоганном Христианом Поггендорфом, который регулирует силу тока и напряжение электрической сети, он получил название – реостат.

Итак, реостат представляет собой прибор, основная задача которого заключается в регулировке напряжения и силы тока. Этот элемент электрической сети весьма распространен, его применяют в физике, радиотехнике, электронике.

Устройство реостата

Устройство реостата для опытного физика не вызывает трудностей и представляет собой керамический полый цилиндр с металлической обмоткой, концы которой выведены на специальные контакты, получившие название клеммы, расположенные с обеих сторон керамического цилиндра. В качестве обмотки применяется материал, обладающий большим удельным сопротивлением, за счет этого даже небольшое изменение длины отражает изменение и сопротивления. Вдоль цилиндра расположен металлический шланг, на котором закреплен движущийся контакт, который получил название ползунок.

Керамический цилиндр внутри пуст для того, чтобы происходило охлаждение прибора при прохождении через него электроэнергии. Для безопасности ряд приборов имеют специальный кожух, скрывающий все внутренности механизма.

Принцип работы

Вне зависимости от типа реостата, принцип работы у всех примерно аналогичен. Например, ползунковый реостат работает следующим образом:

  • Подключение к сети происходит через клеммы, расположенные с обеих сторон цилиндра;
  • Ток проходит по всей длине, в зависимости от места расположения ползунка. Так, если ползунок находится в центре прибора, то ток проходит только до середины; если ползунок находится в конце прибора, тогда ток проходит целиком, соответственно напряжение максимальное.

Чаще всего задействована в работе только часть прибора, т.е. ползунок не доходит до края реостата. Изменение места расположения бегунка прямо пропорционально изменению силы тока. Подключение реостата к электрической сети осуществляется последовательно.

Виды реостатов

Разновидность реостатов зависит от их основного назначения:

  • Пусковые реостаты предназначены для запуска электродвигателей с постоянным или переменным током;
  • Пускорегулирующие реостаты не только предназначены для запуска двигателей с постоянным током, но и для регулировки силы тока;
  • Балластные реостаты, еще получили название нагрузочные, поглощают энергию, которая необходима для регулирования нагрузки на электрогенераторах, т.е. создают нужное сопротивление в электрической сети;
  • Реостаты возбуждения применяются в электрических машинах для регулировки постоянного и переменного тока, они поглощают лишнюю энергию;
  • В особорую группу выделяют реостаты, предназначенные для деления напряжения, их называют потенциометрами. Они позволяют применять в одном приборе различные напряжения, не используя дополнительные приспособления, такие как трансформаторы и блоки питания. В этом случае реостат имеет 3 клеммы, где нижние клеммы используются для входа тока, а верхняя и одна нижняя – в качестве выхода. Регулировка напряжения осуществляется при движении ползунка.

Благодаря применению в электрических приборах и машинах реостатов, происходит уменьшение снижения скачков электрического тока и перегрузок двигателя, это, в свою очередь, увеличивает срок службы электрических приборов.

Реостат на электрической схеме имеет свое особое обозначение.

Виды реостатов по материалу их изготовления

Главным элементом, определяющим принцип работы реостата, является материал, из которого он изготовлен. Кроме того, при прохождении через прибор тока должно происходить его охлаждение: воздушное или жидкостное. Воздушное охлаждение происходит благодаря полому цилиндру и применимо во всех приборах. Жидкостное охлаждение используется только для реостатов, изготовленных из металла. Охлаждение происходит за счет полного погружения в жидкость или отдельных частей прибора. Жидкостные реостаты могут быть водными или масляными.

Можно выделить следующие реостаты по материалу изготовления:

  • Металлические реостаты с воздушным типом охлаждения наиболее распространены, поскольку применимы в различных сферах и для различных приборов, сопротивление в них может быть постоянным или ступенчатым. Достоинством подобных конструкций являются компактные размеры, достаточно простая конструкция, доступная ценовая стоимость. Металлические жидкостные реостаты представляют собой сосуд, наполненный жидкостью. В качестве материала изготовления могут быть использованы сталь, чугун, хром, никель, железо и др.;
  • Жидкостные реостаты применимы для регулировки силы тока;
  • Керамические – применимы при относительно небольших нагрузках;
  • Угольные на сегодняшний день применяются только в промышленной сфере и представляют собой ряд шайб из угля, сжатых друг с другом при помощи пружин. Изменение сопротивления данного типа реостата происходит при помощи изменения силы сжатия пружин.

Задаваясь вопросом, зачем в повседневной жизни нужен данный прибор, можно получить банальный ответ: ни один современный телевизор не обходится без реостата. Благодаря этому прибору, происходит регулировка уровня громкости, также он связан с возможностью переключения каналов.

Как видно, это действительно универсальный и незаменимый компонент. Стоит подчеркнуть, что разновидностей реостатов весьма много, в зависимости от их основного предназначения. На сегодняшний день реостат применяется в промышленной сфере, в автомобилестроении, в современной электронной технике. Он широко применим в радиотехнике и различных типах электродвигателей. Выход из строя реостата способен вывести из строя всю систему электросети.

Видео

Для того что бы разобраться в том, что такое реостат, давайте начнем с самого начала. Для начала давайте разберемся что такое электрические цепи, ведь реостат это одна из частей цепи. Этот прибор является основной частью цепи, в ней без этого никуда. Собственно, благодаря электрическим цепям возможна передача тока из источника в необходимую точку.

Теперь, когда мы разобрались с электрическими цепями, давайте разбираться с самим устройством. Данный аппарат представляет собой проводник. Он может быть самого разнообразного сечения и длины. С помощью этого проводника вы можете узнать силу напряжения в электрической цепи.

Принцип работы реостата

Что бы рассмотреть принцип работы этого прибора, давай рассмотрим его составляющие. Основными его компонентами являются: трубка из керамики на которую намонатана проволока, концы которой выведены на контакты; Выше этой трубки расположена металлическая штанга, с установленным на одном конце контактом. Так же закреплён подвижный контакт.

Теперь когда мы знаем как это все примерно выглядит, следует разобраться в принципе работы. Всем управляет подвижный ползунок. У него есть три фазы. От нахождения этого ползунка будет зависеть каким образом прибор будет выполнять свою работу.

Первая фаза ползунка это нахождение его в середине прибора. Таким образом ток не проходит через все устройство, а проходит только на половину прибора. Следующая фаза это нахождение его с левой стороны. В данной позиции ток протекает через реостат полностью через весь прибор. Ну и третья точка — нахождение ползунка с правой стороны. Таким образом прибор снижает сопротивление и увеличивает силу проходящего через него тока.

Так же отдельное внимание следует обратить на керамическую трубку, которая используется в аппарате. Трубка должна быть полая. Это очень важно условие которое влияет на такой важный фактор как грамотное охлаждение прибора. Так следует уточнить тот нюанс, что самые безопасные в использовании реостаты это те, которые закрыты защитным кожухом.

Если нужная курсовая по теме реостатов, то можно заказать курсовую онлайн на проверенном сайте. Материала о реостатах написано досаточно много, но в готовой курсовой работе он достаточно хорошо систематизирован, что избавляет вас от трудоемкой работы по ее написанию. Парнер сайта work5.ru всегда делает курсовые качественно и в сроки.

Как включить прибор в цепь электропитания

Для начала стоит учесть, что у включения реостата в цепь существует строгая последовательность, которую нужно строго соблюдать. Не соблюдение этой последовательности чревато различными повреждениями. Подключается к ползунку один из контактов. Во время подключения к цепи электропитания, вы можете использовать несколько схем.

На самом деле реостат сейчас является очень распространенным прибором, ведь его применение не ограничивается только измерением и изменением напряжения в цепи электропитания. Например, сейчас реостат используют и в телевизорах. Этот прибор позволяет увеличивать и уменьшать громкость звука при просмотре.

Давайте немного более подробно разберем принцип действия прибора. Предположим, что ползунковый реостат подключен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где расположен металлический стержень. Когда мы подключаем прибор в цепь, он работает таким образом что ток через нижнюю клемму проходит по виткам обмотки. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Когда все работает подобным образом, в работе задействована только часть обмотки аппарата. Как уже было описано выше, когда меняется положение движущегося ползунка, меняется сопротивление той части обмотки, которая подключена к цепи электропитания.

Так же следует отметить один не маловажный фактор. Ток с той стороны прибора, по которому он проходит, делает круг по оси всех витков, а не проходит поперек их. Такой результат достигается с помощью материала, который используют в изготовлении этих самых витков.

Стоит так же сказать что ползунок двигается по верхнему слою обмотки, который имеет созданный для этих целей защищенный участок. Это позволяет ползунку и виткам обмотки свободно контактировать между собой при необходимости.

Основные виды реостатов

Так как реостат вещь весьма универсальная и находит себе применение практически везде, где проходит электрический ток, сложилось так что появилось огромное количество видов этих приборов. В этой статье не будет рассмотрено все виды, но разберемся с основными, которые используются чаще всего.

1.Реостат в виде тора

Данный вид устроен таким образом, что два крайних зажима — это концы обмотки, а зажим который расположен посередине находится в соединении с ползуноком .

2.Рычажный

Данный вид прибора получил свое название не просто так. Сверху него имеется, как вы могли догадаться из названия вида, такое устройство как рычаг. Он используется для того, что бы можно было включать самые разные спирали резисторов. Этот тип изменяет силу напряжение тока не постепенно, а скачкообразно. Это его основное отличие от ползункового типа реостата. Стоит отметить, что если в электроцепи используется резистор, то при пользовании рычажным реостатом, то есть изменением силы тока, на концах резистора так же будет меняться напряжение.

3.Штепсельные

Этот вид состоит из различных сопротивлений, которые имеют название спирали-резисторы . Имеется специальный штепсель, при помощи которого можно включать или выключать нужные или ненужные спирали. Используя этот вид, можно получать различные сопротивления тока.

Вся приведенная выше информация является весьма обобщенной, по этому будет не лишним разобраться в вопросах реостата более подробно и изучать дополнительные материалы по этой теме.

Соберём цепь, изображённую на рисунке. Силу тока в цепи измеряют амперметром, напряжение — вольтметром. Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.

В цепь источника тока по очереди будем включать различные проводники, например, никелиновые проволоки одинаковой толщины, но разной длины. Выполнив указанные опыты, мы установим, что из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление.
В следующем эксперименте по очереди будем включать никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения). Установим, что из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше.
В третьем эксперименте по очереди будем включать никелиновую и нихромовую проволоки одинаковой длины и толщины. Установим, что никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил:

Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

Обрати внимание!

Сопротивление проводника прямо пропорционально его длине, т.е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т.е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.

Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристаллической решётки проводника. Из-за различия в строении кристаллической решётки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга. Для характеристики материала вводят величину, которую называют удельным сопротивлением.

Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной \(1\) м и площадью поперечного сечения \(1\) м².

Введём буквенные обозначения: \(ρ\) — удельное сопротивление проводника, \(l\) — длина проводника, \(S\) — площадь его поперечного сечения. Тогда сопротивление проводника \(R\) выразится формулой:

R = ρ ι S .

Из этой формулы можно выразить и другие величины:

ι = RS ρ , S = ρ ι R , ρ = RS ι .

Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является \(1\) Ом, единицей площади поперечного сечения — \(1\) м², а единицей длины — \(1\) м, то единицей удельного сопротивления будет:

1 Ом ⋅ 1 м 2 1 м = 1 Ом ⋅ 1 м, т.е. Ом ⋅ м.

Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметрах, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:

1 Ом ⋅ 1 мм 2 1 м, т.е. Ом ⋅ мм 2 м.

В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.

Обрати внимание!

Удельное сопротивление с изменением температуры меняется.

Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.

Обрати внимание!

Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.

При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы, сплав нихром имеет удельное сопротивление почти в \(40\) раз большее, чем алюминий.

Обрати внимание!

Стекло и дерево имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток и являются изоляторами.

На практике часто приходится менять силу тока в цепи, делая её то больше, то меньше. Так, изменяя силу тока в динамике радиоприёмника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включённого в цепь участка АС. При этом будет меняться сопротивление цепи, а следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением. Один из реостатов (ползунковый реостат) изображён на рисунке.

В этом реостате никелиновая проволока намотана на керамический цилиндр. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки её изолированы друг от друга. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки. От трения ползунка о витки слой окалины под его контактами стирается, и электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим \(1\). С помощью этого зажима и зажима \(2\), соединённого с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включённого в цепь.

Глава 1. Что на плате электронного устройства?

resistor

Резистор

Как и собирался, я с помощью отвертки, открутив винты, открыл испорченный стрелочный прибор, который нашел в своей «хламежке». Из него удалось извлечь несколько плат из стеклотекстолита с печатным монтажом; на платах много резисторов, есть конденсаторы, транзисторы, микросхемы – почти все, что мне нужно для рассказа.

На самой большой плате передо мной, следовало бы посчитать, но не хочется, на первый взгляд больше всего резисторов. Резистор или сопротивление, наверное, простейший для понимания компонент любого электронного устройства…

Вот так, не успев начать рассказ, я уже сделал ошибку. Больше всего на плате не резисторов, а проводников! И, пожалуй, именно проводники самые простые компоненты. Проводники соединяют все остальные элементы устройства в сложные или простые цепи, поэтому электрическую схему я буду часто называть электрической цепью. Как правило, проводники делают из металла, вещества хорошо проводящего электрический ток. Если под током понимать любое направленное движение электрических зарядов, то проводники мало сопротивляются этому движению, то есть, их сопротивление обычно невелико. Свойства проводников хорошо понятны, если рассматривать атомное строение вещества, договорившись, что атомы состоят из тяжелого электрически заряженного ядра и легких электронов, субатомных частиц противоположного знака, расположенных вокруг ядра. У разных веществ заряд ядра разный, но количество электронов такое, что в целом атом электрически нейтрален. У металлов, уж так они устроены, электроны, далеко расположенные от ядра, слабо связаны с ним и могут «бродить» по металлу от атома к атому (но не могут самопроизвольно покинуть металл). Движутся они, конечно, беспорядочно, но под действием внешнего электрического поля, которое можно создать с помощью источника питания, его еще называют источником электродвижущей силы (батарейка, аккумулятор, блок питания), их движение упорядочивается и можно говорить о протекании тока от одного полюса источника питания к другому; благодаря большому количеству носителей зарядов в металлах (электронов-бродяг) те оказываются хорошими проводниками тока. За техническое направление тока принято направление от плюса источника ЭДС (электродвижущей силы) к минусу, хотя реально в металле под действием внешнего электрического поля двигаться будут отрицательно заряженные электроны от минуса источника, поставляющего электроны в металл, к его плюсу. Если можно посчитать количество зарядов, проходящих через поперечное сечение проводника, то можно оценить силу тока – чем больше зарядов проходит через это сечение, тем больше ток. Определяется сила тока отношением количества зарядов, прошедших за определенное время через поперечное сечение, к этому времени. И еще о токе можно сказать, что если его величина и направление не меняется со временем, то мы имеем дело с постоянным током, иначе с переменным током. Батарейка – источник постоянного тока, а силовая сеть, куда мы подключаем пылесос или телевизор, источник переменного тока.

Все вещества по тому, как они проводят электрический ток, можно разделить на проводники, хорошо проводящие ток, изоляторы, вещества не проводящие ток, и полупроводники – «ни рыба, ни мясо», проводят ток много хуже проводников, но лучше изоляторов. Их оценивают по сопротивлению, маленькому у проводников и огромному у изоляторов. Единица сопротивления в электротехнике ом.

Теперь можно перейти к тому, с чего я по ошибке начал, к резисторам. Мы уже договорились, что разные вещества по-разному проводят электрический ток. Это касается и металлов. Хотя они все проводники, но одни металлы лучше проводят ток, другие хуже. Очень хорошо, например, проводят ток медь, серебро, золото. Хуже алюминий. Еще хуже сплавы металлов, как нихром, манганин, константан. Отчего зависит сопротивление проводника? От вещества, из которого он сделан, от толщины проводника и от длины проводника.

Если у вас есть мультиметр и медные провода одинаковой длины, но разного диаметра, вы можете измерить их сопротивление (провода лучше взять достаточно длинные). Если у вас найдется проводник из нихрома (от перегоревшей спирали старого нагревательного прибора) такой же длины, вы непременно заметите разницу.

Есть еще одно обстоятельство, влияющее на сопротивление проводника, это температура. При нагревании сопротивление проводника увеличивается, потому что при нагревании электроны бродяги становятся еще энергичнее в своем хаотическом движении и их труднее заставить двигаться направленно. Убедиться в том, что при нагревании сопротивление увеличивается, можно подключив к мультиметру в режиме измерения сопротивления резистор, и нагреть вывод резистора паяльником. Если интересно, можете попробовать, только аккуратно, чтобы не испортить свой прибор. И не забывайте об этом, когда, особенно в измерительных цепях, пытаетесь получить нужную величину сопротивления, подпаивая к одному резистору другой. Обязательно дайте остыть резисторам прежде, чем оценивать результат.

Резисторы для нужд электроники изготавливают по разным технологиям и из разных материалов так, что величина их сопротивления колеблется от долей ома до десятков миллионов ом (мегаом). Сопротивление в электрической цепи может быть вредно, так получается в силовых цепях, но может быть полезно при разного рода манипуляциях с электричеством. Самое простое полезное действие электрического тока – нагрев. При протекании электрического тока по проводнику, оказывающему сопротивление, проводник нагревается. В обогревателе, где используется сопротивление, изготовленное из нихрома, такой резистор нагревается до красна. А в электрической лампочке резистор (спираль лампочки накаливания) раскаляется до бела. И в том, и другом случае сопротивление мы используем для превращения электрического тока в полезные для нас тепло и свет.

Резисторы широко используются в электронике. Есть проволочные и непроволочные резисторы, есть резисторы переменного сопротивления (потенциометры), есть терморезисторы и фоторезисторы. А такое свойство резисторов, как изменение сопротивления при механическом воздействии, находит применение в тензодатчиках.

Я сейчас отпаяю несколько резисторов с платы прибора и перенесу их на макетную плату, чтобы рассказать о нескольких простых, но очень полезных правилах, которые называют законами для электрических цепей. Макетная плата у меня покупная. Такие платы применяют при создании прототипов электрических устройств. На макетной плате можно спаять устройство, проверить, наладить, а когда оно полностью готово, можно перейти к изготовлению образца. Очень часто макетная плата – это набор контактных площадок из меди с отверстиями для выводов компонентов электрической схемы. Плату можно изготовить самостоятельно из фольгированного листового материала, а при его отсутствии из любого жесткого листового изолятора, желательно термостойкого, чтобы плата не плавилась при пайке. При механической обработке стеклотекстолита — сверлении, распиливании, обработке напильником – следует соблюдать осторожность, поскольку пыль стекловолокна травмирует дыхательные пути. Можно использовать подходящий кусок фанеры. Контактные площадки для припаивания компонентов можно сделать из кусочков медного электрического провода без изоляции, продев из в два просверленных рядом отверстия и загнув с обратной стороны. Можно обойтись и без контактных площадок, просверлив отверстия, в которые продеваются выводы элементов схемы, а к выводам с обратной стороны припаиваются проводники. Если макетную плату снабдить стойками в 1-1.5 см, то работать с ней будет еще удобнее.

Для пайки используется паяльник (еще один пример полезного использования сопротивления), у меня паяльник на 25 ватт 220 вольт, изготовленный в Подмосковье. Сегодня можно купить хорошую паяльную станцию – паяльник с регулировкой температуры нагрева, с множеством насадок для пайки и удобной подставкой. Ручка моего паяльника сделана так, что его можно положить на ровную поверхность без подставки, но я привык использовать подставку, которую сегодня, думаю, тоже можно купить в магазине. Кроме паяльника для пайки нужен припой, лучше ПОС-61 в виде тонкого прутка, и паяльный флюс, например, канифоль, хотя я использую жидкий флюс ЛТИ-120, который держу в пузырьке из-под лака для ногтей с кисточкой, достаточно удобно. Флюс растекается по месту пайки, помогая припою лучше соединить детали, ведь пайка – это один из способов соединения деталей, кстати, не единственный, хотя в электронных изделиях наиболее широко применяемый. Кроме пайки можно использовать скрутку, одно время монтаж с помощью скрутки был очень популярен. При работе с паяльником тоже следует соблюдать осторожность и не только с тем, чтобы не обжечься. Припой, испаряясь, не принесет пользы при вдыхании. Не следует паяльник постоянно держать включенным, лучше лишний раз подождать, когда он нагреется, или собрать одну из простых схем, о которых мы поговорим позже.

Пока я все это рассказывал, я успел включить паяльник и выпаять резисторы из платы.

До того, как продолжить рассказ об электрических цепях, я хочу заметить, что описать электрическую цепь и все, что с ней связано, можно одними словами, не прибегая ни к чему другому, но получается длинно, и далеко не всегда понятно. Поэтому для изображения электрических схем используют графическое представление – лучше один раз увидеть, чем сто раз услышать. Каждый компонент рисуют в виде небольшой простой картинки, а провода, соединяющие элементы схемы, изображают в виде линий. Собственно, такое графическое представление и называют схемой устройства. Простые схемы можно нарисовать так, как они будут нарисованы ниже, более сложные схемы рисуются на многих листах бумаги, а для объяснения их работы используют еще один графический вид – функциональные схемы: все устройство можно, и должно, разбить на части, функциональные узлы, как, скажем, выпрямитель, усилитель, преобразователь и т.д., которые изображаются в виде прямоугольников, связанных линиями или стрелками. К таким сложным (очень полезно, если и к простым) схемам прилагают их описание, которое может занимать несколько томов.

Графическое изображение элементов электрической схемы в разных странах, в разные годы выглядело несколько по-разному. Так для изображения батарейки используют изображение из двух черточек, одна из которых длиннее другой, с перпендикулярными к ним выводами, аккумулятор изображали в виде нескольких таких батареек. Но, порой, в схеме не делается различия между этими двумя источниками ЭДС. В последнее время, особенно в программах, эти источники питания объединяют с другими источниками тока в общий класс источников (source) и изображают в виде кружка со значками плюс и минус. Подобные отличия есть в изображении резисторов в виде прямоугольников, обозначенных латинской буквой R с порядковым номером однотипных элементов, и в виде ломаной линии. Есть отличия в графическом изображении других элементов, о которых я буду рассказывать по мере их появления в книге. Обычно это не вызывает больших затруднений, но если вы будете рисовать свои схемы, лучше выбрать один стиль.

Для черчения схем и пояснения их работы я буду пользоваться компьютером, точнее демонстрационной версией программы PSIM, которую скачал с сайта производителя. Программа предназначена для разработки схем силовой электроники. Многие программы имеют свою специализацию. Если эта программа перестанет мне помогать в рассказе, я использую другую. Программа PSIM предназначена для работы на платформе Windows, но работает у меня с Linux, при этом я использую эмулятор Wine. Как это все делается я расскажу позже, а сейчас хочу заметить, что изображение резистора в программе есть только в виде ломаной линии. Второе изображение мне пришлось пририсовать в графическом редакторе.

Схема (схемы) на рисунке ниже имеют один графический элемент, о котором я еще не говорил. Это земля или общий схемный провод. Посмотрите на изображение схемы (два изображения), а потом я постараюсь ответить на вопрос об общем проводе схемы.

Рис. 1.1. Графическое изображение проводника, сопротивления и батарейки

Зачем же нужно вводить обозначение для общего провода схемы, который часто называют земляным проводом, или, просто, землей?

Забегая вперед, скажу, что в схеме удобно измерять напряжения относительно одной точки схемы, или одного общего проводника, удобно смотреть сигналы относительно этого проводника. Кроме того, если этот общий провод схемы соединить с землей – специально устраиваемым заземлением, имеющим хороший контакт именно с землей (грунтом, почвой) – схема меньше подвержена вредным влияниям внешних электрических полей, поэтому общий провод схемы часто называют «землей».

Мы пока познакомились только с тремя компонентами электронного устройства: батарейка, проводник, резистор. Можно ли с их помощью построить что-либо интересное?

Можно. Во-первых, можно провести несколько экспериментов для знакомства с тремя законами: закон Ома и два закона Кирхгофа. Все законы мы рассмотрим в простейшем виде, а более сложный их вид при необходимости можно найти в учебной литературе. Этих трех законов электротехники, я надеюсь, мне хватит на протяжении всей книги, и не появится необходимости в других. Как схемы удобнее изображать в графическом виде, так законы удобнее записывать в виде математических соотношений. Для этого используется латинская буква R для сопротивления, латинская буква I для тока, и латинские U или V для напряжения.

Закон Ома (для участка цепи) звучит, приблизительно, так:

Падение напряжения (или напряжение) на участке цепи равно произведению тока на сопротивление: U=I*R.

Не знаю, как вас, меня удивляет, вызывает чувство уважения и восторга проницательность и ум человека, который смог подметить и определить столь простую и полезную связь между этими тремя величинами. Именно его именем названа единица сопротивления.

Соотношение между этими тремя величинами с точки зрения математики можно записать в трех видах: U=R*I, I=U/R и R=U/I. Все три вида записи можно применять на практике, но не следует забывать, что, например, последнее соотношение позволяет вычислить сопротивление, однако сопротивление проводника или резистора определяется свойствами материала и геометрией проводника, а ток, вычисляемый по напряжению и сопротивлению, как упорядоченное движение носителей заряда, вызвается источником электродвижущей силы. Напряжение в этом смысле можно рассматривать, как некоторое напряжение в отношениях между током, протекающим по проводнику, и материалом проводника, оказывающим сопротивление протеканию тока.

Для экспериментальной проверки соотношения между напряжением, током и сопротивлением можно собрать схему, аналогичную изображенной на рис. 1.1, в которую следует добавить два измерительных прибора: вольтметр и амперметр (или использовать мультиметр, произведя два измерения). Вольтметр – это прибор используемый для измерения напряжения. Бывают вольтметры для измерения постоянного напряжения, которым воспользуемся мы, а бывают вольтметры переменного напряжения, о которых речь пойдет дальше. Амперметр – это прибор для измерения тока, который также бывает для измерений в цепях постоянного и переменного тока.

Эти приборы бывают очень разной конструкции. Я говорил о мультиметре. В его основе лежит работа специализированной и достаточно сложной микросхемы, называемой аналого-цифровой преобразователь (АЦП). Многие мультиметры могут кроме этой микросхемы не иметь других микросхем, лишь вспомогательные резисторы, переключатель и дисплей, отображающий цифры. Возможно, к концу книги мы рассмотрим работу такого прибора, а сейчас, все-таки опять забегая вперед, я немного расскажу о стрелочном измерителе тока и стрелочном измерителе напряжения. Правда и они бывают очень разных конструкций, и их работа может быть основана на разных принципах. Однако достаточно часто в стрелочных измерительных приборах используют следующую конструкцию: рамку с намотанным на нее проводом помещают в магнитное поле, создаваемое постоянными магнитами, и крепят с помощью спиральных пружинок на оси так, чтобы стрелка, прикрепленная к этой рамке, находилась в нулевом положении, отмеченном на шкале. Когда по рамке протекает постоянный ток, то в магнитном поле на рамку действует сила, заставляя ее вращаться. Поворот происходит до тех пор, пока сила, вызываемая током, не уравновесит возвращающую силу пружинок. Стрелка останавливается в положении, которое пропорционально протекающему току, значение которого считывается со шкалы прибора. Если у вас есть тестер со стрелочной измерительной головкой, то она может быть устроена именно так или похожим образом: часто оси вращения и пружинки возврата стрелки в ноль заменяют «растяжками». То есть, к рамке с проводом прикрепляют очень тонкую полоску из пружинящего материала. Растянутая на двух таких полосках рамка под их действием занимает «нулевое» положение, а при протекании тока поворачивается, отчего полоски упруго скручиваются, образуя силу, возвращающую рамку со стрелкой в первоначальное положение, когда ток перестает протекать по рамке. Но о механизме взаимодействия провода с током и магнитного поля я ничего вам не говорил, поэтому будем считать, что ничего не говорил и о стрелочных приборах. Хотя, пожалуй, добавлю к тому, о чем не говорил, что измеритель тока легко превратить в измеритель напряжения, добавив к нему резистор.

Итак, посмотрим, на закон Ома, который я постараюсь проиллюстрировать в программе PSIM. Кроме того, я спаяю схему на макетной плате, используя один из резисторов, которые выпаял из платы, вдруг я что-то напутал и ввел вас в заблуждение. Доверяй, но проверяй.

Рис. 1.2. Эксперимент, иллюстрирующий закон Ома в программе PSIM

Как видно из рисунка, к источнику питания 10V (10 Вольт, на схеме обозначен VDC1) подключен резистор 1 кОм (1000 Ом), параллельно которому включен вольтметр VP1, и последовательно с которым включен амперметр I1. График измерения тока показывает, что ток равен 10.00m (10 миллиампер) или 0.01 А. Если умножить сопротивление на ток, то есть, 1000 Ом умножить на 0.01 А, то получится падение напряжения в 10 вольт, которые и показывает второй график, отображающий показания вольтметра. Для получения правильных значений при расчетах следует пользоваться основными единицами, в данном случае ампер, ом и вольт.

А вот, что получилось с макетом. На батарейке, которую я использую, написано 9V, на резисторе 1к, ток должен получиться 9мА (миллиампер, 0.009А). Измеренный ток 8мА.

В чем ошибка? Во-первых, я не измерил ЭДС (напряжение на батарейке), во-вторых, не измерил сопротивление. Реальное сопротивление резистора, если его измерить, не 1 кОм (килоом, 1000 Ом), а 910 Ом. А ЭДС батарейки после подключения резистора оказывается равной 7.31 вольт. Отсюда и расхождение, скорее не в теории и практике, а в моем представлении о том, что я делаю, и тем, что делаю в действительности. Доверяй, но проверяй!

От закона Ома можно плавно перейти ко второму закону Кирхгофа. Почему ко второму, а не к первому? Мне так удобнее.

В упрощенном виде закон Кирхгофа звучит так:

ЭДС в замкнутом контуре равна сумме падений напряжений.

Действительно, на рисунке выше ЭДС (источника питания VDC1) 10 В, а напряжение на резисторе тоже 10 В. Можно изменить схему, включив последовательно два резистора, например, по 500 Ом, измерить на них напряжения и убедиться, что на каждом из них будет падение напряжения 5 В, а сумма этих напряжений получится 10 В.

Здесь уместно добавить, что более верно этот закон звучал бы так: алгебраическая сумма всех ЭДС в замкнутом контуре равна алгебраической сумме падений напряжений. Но об этом лучше почитать в учебнике.

Хотя для разговора о первом законе Кирхгофа следовало бы нарисовать другую схему (другую цепь), я использую схему рис. 1.2. Выше я говорил о том, что часто вольтметр – это тоже измеритель тока, то есть, ток протекает не только через резистор R1, но и через вольтметр. Таким образом, в точке соединения вольтметра и резистора ток разветвляется, одна его часть протекает по резистору, другая по вольтметру, а затем обе эти части соединяются и протекают через амперметр.

Сумма токов, вытекающих из узла электрической цепи при ее ветвлении, равна току, втекающему в этот узел.

Так в упрощенном виде звучит первый закон Кирхгофа. В реальной схеме это можно было бы проверить, включив еще два амперметра в ветвях схемы, одна из которых относится к резистору, а вторая к вольтметру.

На практике, проводя измерения, всегда следует помнить, что вольтметр имеет некоторое внутреннее сопротивление, которое может повлиять на результаты измерения. Так достаточно хороший вольтметр может иметь внутреннее сопротивление в 100 кОм. Много это или мало? Это не много и не мало, но ровно столько, сколько есть. Как это может повлиять на ваше понимание происходящего? Положим, у вас есть вольтметр и амперметр, и вы хотите провести измерения. Вольтметр имеет внутреннее сопротивление равное 100 кОм. Вы хотите определить, используя закон Ома, величину сопротивления, маркировка которого стерлась от времени (но это был резистор в 100 кОм, о чем ни вы, ни я не знаем). В схеме рис. 1.2 я заменю вольтметр (напряжение на резисторе R1 при измерении будет равно 10 В) сопротивлением в 100 кОм, и такое же сопротивление будет иметь резистор R1. По результату измерения тока в цепи определим величину сопротивления.

Рис. 1.3. Ток в цепи при определении величины сопротивления по закону Ома

Как видно из рисунка, ток равен 200 мкА. При падении напряжения в 10 В, величина сопротивления определится делением этого напряжения на ток и будет равна 50 кОм. Так мы измерили неизвестное сопротивление без учета сопротивления вольтметра. И ошиблись в два раза. А это уже не мало. В данном конкретном случае нам помогло бы проведение двух измерений с помощью тестера или мультиметра. Первый раз мы могли бы измерить напряжение, а второй раз ток. Думаю, мы получили бы правильный результат. Но… но только в этом случае. Если немного усложнить цепь, скажем, включив последовательно с измеряемым сопротивлением еще одно такой же величины, то и методика двух измерений может дать неверный результат.

Рис. 1.4. Измерение величины сопротивления без учета сопротивления вольтметра

По графикам трудно определить точные значения, но приблизительно это будет напряжение 3.35 В и ток 66 мкА. В результате деления получается значение около 51 кОм. Такое измерение в одних случаях может только затруднить понимание реального положения дел, но в других может привести к неприятностям, которых лучше избежать, если помнить, что каждый прибор имеет определенные параметры, и их следует учитывать при пользовании прибором.

Можно объединить все три закона в одно правило, если кому-то удобно запомнить его.

Сумма напряжений в электрической цепи, равных произведению сопротивлений на ток, протекающий через них, равна сумме ЭДС в этой цепи, а сумма токов, вытекающих из узла ко по всем ветвям цепи, равна втекающему в узел току.

И следует помнить, что на всех компонентах электронных устройств проставляют номинальное значение, которое, в зависимости от изготовления, может отличаться от реального на 5-10%, хотя есть и компоненты, изготовленные с большей точностью, 0.1-1%, но они применяются реже и стоят дороже.

Напомню, что за техническое направление протекания постоянного тока принято направление от плюса к минусу. Цифровые мультиметры, как правило, показывают знак измеряемого напряжения и тока, и они не так чувствительны к подключению с неверной полярностью, как стрелочные приборы. Последние зашкаливают «в обратную сторону» и могут от этого пострадать. Всегда следует проверять полярность подключения стрелочных приборов. Минус у тестеров при измерении напряжения и тока зачастую помечают значком в виде звездочки. В простых цепях, изображенных на рисунках, все достаточно очевидно, но в сложных цепях, когда есть много сопротивлений, включенных сложным образом, когда есть несколько источников питания, тогда определение напряжений и токов усложняется. Конечно, существуют математические методы расчета подобных цепей, описанные в учебниках, однако я сомневаюсь в их популярности в любительских кругах, поскольку удобнее измерить интересующую величину, чем рассчитать ее, но очень важно иметь ясное представление об основных процессах в электрической цепи. Подключая прибор, следует начинать измерение с безопасного для прибора предела измерения – самого большого напряжения или тока, позже его можно изменить.

Любой справочник, любая реальная схема содержит очень большое количество элементов помимо тех, о которых шла речь выше, и позже мы поговорим об этом, и я постараюсь показать, что достаточно сложные с теоретической точки зрения процессы можно в любительской практике свести к таким понятиям, как сопротивление, напряжение и ток.

При работе с электрическими цепями важно учитывать мощность, определяемую произведением напряжения на ток. Если мы измеряем ток, уходящий от источника питания, и умножаем его на ЭДС (напряжение) источника питания, то мы можем говорить о мощности, потребляемой схемой. Если мы измеряем напряжение на сопротивлении и ток, протекающий через него, то можем говорить о мощности, потребляемой этим сопротивлением и обычно выделяющейся на нем в виде тепла. Естественно, что резистор при этом нагревается, и если неправильно выбрать его параметр, допустимую мощность рассеяния, то сопротивление перегреется и может сгореть. Обычно на схеме указывается мощность любого сопротивления, или она указывается в спецификации – перечне всех элементов схемы с их параметрами. По параметру допустимой мощности сопротивления делятся на ряд значений, из которых наиболее часто употребляемые в схемах – это резисторы в четверть и половину ватта. Мощность, рассеиваемая резистором, не должна превышать этой величины. Вместе с тем, следует помнить, что нагрев сопротивления приводит к изменению его величины. Чем ближе допустимая мощность рассеивания резистора к мощности, выделяемой на нем, тем сильнее он будет разогреваться. Если вам важно сохранить величину сопротивления, то следует выбрать более мощное сопротивление. В измерительных приборах, равно как любых цепях, относящихся к измерению, там где значение сопротивления очень важно, кроме сопротивлений с более высокой допустимой мощностью рассеяния применяют специальные сопротивления, мало меняющие свое значение при нагреве.

Есть еще несколько интересных, и как мне кажется, важных моментов, относящихся к сопротивлению. Многие неисправности в электронных устройствах связаны с проблемами источников питания. Батарейки, например, со временем «садятся». Простейший способ проверить батарейку – измерить ток, который она может отдавать. Для этого достаточно включить мультиметр (или тестер) в режим измерения максимального для конкретного прибора постоянного тока, мой мультиметр измеряет токи до 10 А, и подключить амперметр к батарейке. Свежая батарейка, в зависимости от типа, покажет ток в несколько ампер, тогда как разряженная сможет дать только десятки миллиампер. Зная закон Ома, мы можем определить ожидаемый ток до проведения измерения. Положим батарейка имеет напряжение 1.5 вольта. Амперметр имеет сопротивление 0.1 Ом. Тогда мы должны получить ток 15 А. Проверим это утверждение сначала в программе PSIM.

Рис. 1.5. Проверка батарейки на пригодность

В схеме на рисунке сопротивление R1 – это сопротивление реального измерительного прибора. Как мы и рассчитали, при измерении протекает ток в 15 А. Но едва ли вы увидите такой ток, если проведете реальное измерение. И дело не в плохой батарейке. Дело в том, что реальная батарейка, как любой источник питания, это не идеальный источник ЭДС. Любой реальный источник питания имеет, как и реальный измерительный прибор, внутреннее сопротивление. Небольшое, зависящее от типа источника, но это внутреннее сопротивление есть. Оно-то и уменьшает ток через батарейку. То есть, в схеме на рис. 1.5 следовало бы нарисовать последовательно с источником питания еще одно сопротивление, а при расчете по закону Ома использовать сумму двух резисторов. Однако внутреннее сопротивление батарейки – это параметр, который не увидишь на этикетке. Плохо ли, что батарейка имеет внутреннее сопротивление, да еще и меняющееся со временем? С одной стороны плохо. А с другой… современные мобильные телефоны имеют аккумуляторы с очень низким внутренним сопротивлением. Они могут отдавать большой ток. По этой причине многие из них приходится снабжать специальным устройством, ограничивающим этот ток. И проблема не в том, что если этого не сделать, и вы коснетесь выводов аккумулятора, то вас «тряхнет» током. Нет. Проблема в том, что если этого не сделать, и вы решите почистить выводы аккумулятора безопасной бритвой, бывает такое, то при замыкании выводов бритвой большой ток через нее может расплавить бритву (вспомните про нагревание резистора), а расплавленный металл вызвать серьезные ожоги. При этом процесс происходит настолько быстро, что расплавленный металл разбрызгивается в разные стороны. Что хорошо в одних случаях, плохо в других. На практике, если внутреннее сопротивление источника на порядок меньше сопротивления цепи, то им можно пренебречь.

Коль скоро я упомянул внутреннее сопротивление батареек, хочу немного рассказать о граблях, на которые сам временами наступаю. Схему на рисунке ниже я выберу самую простую.

Вы все знаете, что часто в пультах, плеерах и т.п. ставят две батарейки, включая их последовательно. Иногда две батарейки включают параллельно, соединяя их положительные и отрицательные выводы. В этом случае они могут дать больший ток, или служат вдвое дольше. Что будет, если при параллельном включении соединить их разнополярно, положительный вывод одной батарейки соединить с отрицательным другой, а отрицательный с положительным? Согласно закону Кирхгофа сумма ЭДС должна быть равна напряжению. Но сумма ЭДС (алгебраическая, то есть, с учетом знака) равна нулю. Значит напряжение тоже будет равно нулю. А ток?

Если я отвечаю не подумав, то готов сказать – нет напряжения, нет и тока. Но это не так. Нарисуем эту схему в программе PSIM, добавив внутренние сопротивления и приборы.

Рис. 1.6. Встречное включение батареек

Как видно на рисунке напряжение (VP1) близко к нулю и равно нескольким микровольтам, тогда как ток (I1) равен 15 А. Действительно, если убрать общий провод (землю) и повернуть схему, то можно рассматривать два источника питания, как включенные последовательно и нагруженные на цепь, состоящую из резисторов (внутренние сопротивления батареек) R1 и R2. Тогда ЭДС схемы будет 3 В, сопротивление цепи 0.2 Ома, ток по закону Ома 15 А, а сумма падений напряжений U1=15A*0.1 Ом плюс такое же U2. Падение напряжения происходит на внутренних сопротивлениях источников питания. Если бы внутреннее сопротивление не было скрыто от глаз, было бы проще ответить правильно, но, что глаз не видит, того, вроде бы, и нет.

Две батарейки по 1.5 вольта в реальном эксперименте показали 0.2В. Отчего так много? Попробуйте менять внутреннее сопротивление R1 в схеме рис. 1.6.

Есть еще один интересный эксперимент, который легко провести, чтобы понять, что в электротехнике называют источником тока в отличие от источника напряжения. Представим, что внутреннее сопротивление батарейки очень велико. Скажем, 100 кОм. Напряжение батарейки для определенности пусть будет 10 В. Тогда максимальный ток, который батарейка может отдавать во внешнюю цепь будет не более, чем 10В/100кОм = 0.0001А (или 100 мкА). Если мы к такой батарейке подключим сопротивление в 1 кОм, то ток, практически, не изменится. То есть, в достаточно широком диапазоне изменений сопротивления внешней цепи ток, протекающий по этой цепи, не будет зависеть от сопротивления цепи. Конечно, напряжение такой батарейки будет меняться очень сильно, но ток нет, что и находит применение на практике.

Источник питания, напряжение которого мало зависит от сопротивления внешней цепи, мы будем называть источником напряжения, а тот, ток которого мало зависит от сопротивления нагрузки, источником тока.

Итак. Всего несколько понятий: ЭДС, напряжение, ток и сопротивление; всего три закона электротехники: закон Ома и два закона Кирхгофа, – дали нам возможность провести ряд интересных экспериментов. И это далеко не все интересные эксперименты, которые можно было бы провести. Попробуйте составлять цепи из многих батареек и сопротивлений, включая их разными способами, и попытайтесь ответить на вопрос о падении напряжения на любом из резисторов и токе через него! Уверен, вы найдете много интереснейших вариантов.

Прежде, чем продолжить рассказ, я хочу еще раз обратить ваше внимание на то, что электричество всегда несет с собой некоторую опасность. Я уже говорил, что некоторые источники питания при неаккуратном обращении с ними могут привести к травмам, как аккумулятор сотового телефона, но речь шла об ожогах при коротком замыкании. Теперь я хочу сказать о других опасностях. Некоторые аккумуляторы, источники питания многократного применения, очень похожи на батарейки. Если не обратить внимания на предостерегающие надписи, если попытаться заряжать батарейки, то это может вызывать вытекание из них электролита. А современные батарейки в качестве электролита могут использовать щелочи. Попадая на руки, электролит тоже вызовет болезненный и долго не заживающий ожог. Прежде, чем пытаться заряжать что-либо, следует проверить, подлежит ли оно заряду? И еще немного о поражении электрическим током. Если через человека проходит очень небольшой ток в несколько десятков миллиампер, то это может вызывать, если и не смертельное, то весьма опасное поражение электрическим током. Всего несколько десятков миллиампер! А батарейка для фонарика может дать ток в несколько ампер! Опасна ли она? Здесь следует вспомнить закон Ома. Если напряжение батарейки 1.5 В, а сопротивление внешней цепи (то есть, человека, который взялся одной рукой за один вывод батарейки, а другой рукой за другой вывод) несколько десятков тысяч ом, то ток будет измерятся единицами микроампер и вреда не принесет. Сопротивление человека в основном зависит от многих внешних и природных факторов и составляет несколько тысяч ом, поэтому при маленьких напряжениях можно не слишком беспокоиться о поражении электрическим током. Но такой подход может сыграть злую шутку, если небольшое напряжение, безопасное с точки зрения расчетов, пройдет через человека неудачным образом. Лучше сразу выработать привычку, даже работая с батарейками от карманного фонаря, никогда не касаться двух полюсов одновременно, если есть возможность, то не проводить измерений под напряжением. Нужно измерить напряжение в схеме, выключите питание, подключите прибор и включите питание. Небрежность, пренебрежение правилами безопасности могут навсегда отбить охоту к работе со схемами. Но небрежность, всегда небрежность. Схема здесь ни в чем не виновата.

Резюмируя свои предостережения, я хочу посоветовать начинающим использовать в экспериментах либо простейшие батарейки, либо качественные (с защитой) блоки питания, а все сомнительные эксперименты вначале проводить за компьютером, используя программы САПР, такие как PSIM.

Насколько они полезны станет понятно, когда мы начнем говорить о переменном токе.





для чего он нужен и где используется?

Резистор есть в каждом доме, да не один. Да, да, и в вашем тоже их предостаточно. Секрет в том, что любая электрическая схема содержит резистор.

Крошечный элемент играет огромную роль в работоспособности электроприбора. В чем же секрет детали?

Резистор — что это такое?

Электрический поток – вещь небезопасная и неудержимая. Но человечество научилось обманывать физические явления себе на благо.

[attention type=green]Резистор используют подобно ловушке: он собственным сопротивлением удерживает электрический ток, делит и уменьшает напряжение. [/attention]Эти параметры прочно взаимосвязаны, потому благодаря регулированию силы сопротивления, можно получать необходимые параметры тока. Чем мы успешно пользуемся сегодня.

Для измерения силы сопротивления тока в резисторе используют физическую единицу – Ом.

На какие особенности обращать внимание при выборе?

Различают множество видов таких приборов. Подбор резистора для конкретной цели зависит от сложности электрической цепи, прибора, параметра электрического тока и отрезком значений для его регулирования – снижения показателей. Существует 2 типа таких устройств – переменные и постоянные. Вместе с этим их разнообразие уже насчитывает более 10–15 видов моделей.

Главное типовое различие – постоянный или переменный поток напряжения.

Например, в схеме регулирования громкости звука всегда установлен переменный резистор. Он подстраивается под сокращение или нарастание напряжения и меняет силу сопротивления. От этого мы слышим громкий или тихий звук.

[blockquote_gray]Расчет резистора для светодиода осуществляется на основании закона Ома и соответствующих формул для параллельного и последовательного подключения LED источников света.

Для определения параметров и характеристик таких радиодеталей отечественного и импортного производства используют кодовую маркировку с задействованием буквенных и цифровых обозначений.[/blockquote_gray]

В остальном резисторы отличаются по принципу работы, соединения, мощности, материалу-проводнику и качеству. Последнее — наиболее важный критерий. Профессионалы рекомендуют приобретать модели известных производителей, проверенные многолетней продажей на рынке. Также для выбора резистора необходимо учитывать:

  • значение необходимого сопротивления;
  • минимальную мощность рассеивания резистора.

Выбор резистора по мощности рекомендуется проводить с её запасом в 1–2 раза больше от расчетной. [attention type=red]Правильно подобранный резистор – это отсутствие перегрева у самого устройства и близлежащих элементов схемы. [/attention]Он обеспечивает рассеивание и дробление энергии, постоянство удерживаемого потока. Появление помех в работе техники: шум, перегрев, скачки напряжения — означает, что резисторы не справляются с работой. Поспешите совершить диагностику и замену резисторов.

Области применения резисторов

Резисторы с каждым годом расширяют сферу влияния и использования. От низковольтных карманных приборов до высоковольтных промышленных агрегатов.

Встретить микроприбор можно в бытовых приборах, медицинском, техническом оборудовании, измерительных устройствах, системах автоматики, цепях питания, высокочастотных линиях, волноводах, робототехнике, автотранспортных технологиях, теле-, радио-, видеоаппаратуре и прочее.

[blockquote_gray]Во время самостоятельного ремонта импульсного блока питания следует сначала искать неисправности, связанные с предохранителем, а потом, в случае его рабочего состояния, искать пути решения проблемы отсутствия выходного напряжения.

Часто причиной поломки светодиодных ламп становится выход из строя блока питания, в других случаях ремонт таких источников света надо делать, исходя из обгоревшей проводки или проблем на плате. При этом полезным будет знать принцип действия таких распространенных микроустройств, как симисторы.
[/blockquote_gray]
Существуют схемы, где используют резисторы в единичном порядке или устанавливают цельные конструкции из множества таких микроприборов.

[attention type=yellow]В заключение можно сказать, что резисторы еще долгое время будут занимать главенствующую нишу в построении электросхем. [/attention]Ведь высокий КПД, доступность, простота в эксплуатации, малогабаритность позволяют внедрить микроустройство в любую деталь.

Подробный рассказ на видео: почему так широко используют резисторы

Для чего нужен реостат, принцип его работы в цепи. Видеоурок «Реостаты

Прибор, способный справляться с изменением сопротивления, принято называть реостатом. Структурно он представлен набором резисторов, которые подключены между собой ступенчато, и может обеспечивать непрерывное изменение сопротивления. В отдельную категорию выделяются устройства, осуществляющие плавное регулирование без разрыва сети. Чтобы определиться, для чего нужен реостат, нужно детальнее рассмотреть его особенности и принцип работы.

Описываемые приспособления универсальны в применении. В зависимости от непосредственного назначения их принято разделять на такие виды:

Важно! Реостаты применяются в качестве ограничителей тока в обмотках возбуждения электромашин с постоянным током.

Таким способом выравниваются сильные перепады электрического тока, а также динамические перегрузки, влекущие повреждение привода и всего механизма, подведенного к нему. Обеспечение подходящего сопротивления в момент запуска продлевает эксплуатационный срок коллектора и щеток.

В отдельную группу выделяются потенциометры. Они представляют собой делители напряжения, в основу которых заложены переменные резисторы. Такие приборы дают возможность применять в электронных схемах разное напряжение без дополнительных блоков питания, трансформаторов. Регулирование силы тока посредством реостата часто задействуется в радиотехнической сфере. Ярким тому примером выступает изменение громкости в динамиках.

Описываемые приспособления похожи по своему функциональному назначению. Конструктивно и визуально самым простым считается реостат ползункового типа. Он подсоединяется к цепи с помощью верхней и нижней клеммы. Прибор сконструирован таким способом, что ток поступает по всей длине провода, а не в поперечном направлении витков. Это осуществляется благодаря надежной изоляции проводников.

Важно! Большинство положений бегунка используют только часть реостата. При изменении длины проводника осуществляется регулировка силы электротока в рабочей цепи. С целью предупреждения преждевременного износа витков ползунок оснащается скользящим контактом (колесико или стержень из графита).

Часто реостат применяют для регулирования в цепи вместо потенциометра. В таком случае выполняется его подключение с помощью трех клемм. В нижней части две из них являются входом, соединяются с источником напряжения. Одна нижняя клемма и верхняя свободная используются в качестве выхода. Когда происходит передвижение ползунка, напряжение без труда регулируется.

Реостат имеет свойство функционировать в балластном режиме, в чем может возникнуть необходимость при создании активной нагрузки во время потребления энергии. В такой ситуации рекомендуется учитывать рассеивающие способности используемого агрегата. Если есть избыточное тепло, прибор выходит из строя. При подключении в электросеть нужно правильно рассчитать рассеиваемую мощность реостата, если требуется, создать достаточное и правильное охлаждение.

Большой популярностью пользуются реостаты, имеющие внешнее оформление в виде тора. Основная сфера их применения — электротранспорт (трамваи), промышленная отрасль. Регулирование осуществляется путем перемещения ползунка по кругу. Передвижение такой детали выполняется по обмоткам, которые расположены тороидально.

Устройство, выполненное по принципу тора, видоизменяет сопротивление практически без разрыва цепи. Его противоположностью является агрегат рычажного типа. Принцип работы такого реостата основан на том, что резисторы закреплены на специальной раме, они выбираются посредством специального рычага. При любой коммутации происходит разрыв контура.

Схемы, в которых задействуется рычажный прибор, лишены плавной регулировки сопротивления. Какие-либо переключения влекут за собой поступательное изменение показателей в сети. Что касается дискретности шагов, она зависит от диапазона регулировки и численности резисторов, присутствующих на раме.

Еще одной разновидностью выступают штепсельные реостаты, с помощью которых осуществляется ступенчатая регулировка сопротивления. Основное отличие — изменение параметров внутри сети без предварительного разрыва цепи. Когда штепсель поступает на перемычку, основная доля тока идет без сопротивления. Перенаправление тока на резистор осуществляется путем вытаскивания штепселя.

Жидкостные и ламповые приспособления относятся к специфическим видам реостатов. Ввиду наличия определенных недостатков они имеют узкую, специализированную сферу применения:

  1. Приборы жидкостного типа задействуются во взрывоопасной сфере в качестве управляющих деталей двигателя.
  2. Ламповые изделия характеризуются малой точностью и надежностью. Часто используются в учебных заведениях на уроках физики, в лабораториях, исследовательских центрах.

Определив, для чего предназначены реостаты, следует подробнее рассмотреть их составляющую сторону. В зависимости от материала, используемого на производстве, выделяются следующие установки:

  • керамические — особенность заключается в применении при небольших мощностях;
  • металлические — нашли широкое потребление в разных направлениях деятельности человека;
  • угольные — их основное использование в промышленности.

Важно! Тепло отводится масляным, водяным или воздушным путем. Если нет возможности рассеивания тепла с рабочей поверхности, задействуется жидкостное охлаждение. Теплоотдача может повышаться за счет применения вентилятора и радиатора.

Напряжение, сила тока в рабочей цепи, положение ползунка в реостате и оказываемое им сопротивление находятся в непосредственной зависимости. Такая особенность положена в основу датчика угла поворота. В подобном приборе конкретная электрическая величина соответствует определенному положению ротора.

В настоящее время подобные датчики заменяются усовершенствованными оптическими и магнитными аналогами. Причиной тому выступает неустойчивость зависимости сопротивления и угла по отношению к температурному действию. Постепенное вытеснение датчиков реостатного типа еще обусловлено переходом на цифровые, более удобные системы. Сегодня резистивные измерители задействуются в схемах, где присутствуют аналоговые сигналы.

Зная, для чего нужны реостаты электрического типа, легко можно объяснить их широкое использование в автомобилестроении, технике, промышленности. Сопротивление необходимо для работы радиотехники, при запуске электродвигателей, они применимы в виде активной нагрузки. Выход из строя небольшого прибора может повлечь сбой работы всей системы. В этом и заключается важность реостатов

Закон Ома наглядно показывает, что силу тока в цепи можно изменять путем включения в нее электрического аппарата – резистора или реостата, имеющего некоторое электрическое сопротивление. Этим свойством широко пользуются в практике для регулирования и ограничения тока в двигателях, генераторах и других электрических устройствах.

Резисторы и реостаты (рисунок 8) обычно изготовляют из проволоки или ленты, материалом для которой служат сплавы металлов, обладающие высоким удельным сопротивлением (константан, никелин, манганин, фех­раль), что дает возможность для изготовления этих аппаратов применять про­волоку наименьшей длины. В устройствах радиотехники и электроники часто применяют резисторы, выполненные из графита.

Рисунок 8 – Устройство реостатов:

а – с плавным изменением сопротивления, б – со ступенчатым изменением сопротивления, в – из чугунных пластин, г – из фехралевой ленты

Реостат r может быть включен в цепь между источником и приемни­ком r н электрической энергии (рисунок 9а ). В этом случае при изменении сопротивления реостата, например, вследствие перемещения подвижного контакта изменяется сила тока I , проходящего через источник и приемник. Этот ток протекает только по части реостата. Однако реостат можно вклю­чить в цепь таким образом, чтобы ток проходил по всему его сопротивлению, а к приемнику ответвлялась только часть тока источника. В этом случае два крайних зажима 1 и 2 реостата (рисунок 9б ) подключают к источнику элек­трической энергии, а один из этих зажимов, например 2 , и подвижной кон­такт реостата 3 присоединяют к приемнику r н . Очевидно, что при таком включении к приемнику будет подаваться напряжение U , которое зависит от сопротивления части реостата, включенной между зажимом 2 и подвижным контактом.

Рисунок 9 – Схемы включения реостатов:

а – последовательно в цепь приемника электрической энергии, б – в качестве делителя напряжения

Следовательно, передвигая подвижной контакт реостата, можно изме­нять напряжение U , подводимое к приемнику.

Реостат, включенный по схеме, показанной на рисунке 9б , называется делителем напряжения или потенциометром. Если сопротивление приемника относительно велико по сравнению с сопротивлением реостата, то напряже­ние на зажимах приемника

где r 1 и r 2 – сопротивления частей реостата.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Из чего состоит электрическая цепь?

2. Какие приборы могут выступать в качестве источников и приемников энергии?

3. Внешний и внутренний источник электрической энергии.

4. Что называется электрическим током, силой тока? Направление тока. Какой ток называется переменным, постоянным?

5. Электропроводность вещества: разделение на проводники, диэлектрики, полупроводники.

6. Что называется электрическим полем?

7. Что такое напряженность электрического поля?

8. Что такое энергия электрического поля?

9. Понятие электрического потенциала.

10. Что называется электрическим напряжением?

Для того чтобы создать электрический ток, необходимо составить замкнутую электрическую цепь из электрических приборов.
Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Самая простая электрическая цепь состоит из:
1. источника тока
2. потребителя электроэнергии — (лампа, электроплитка, электродвигатель, электробытовые приборы)
3. замыкающего и размыкающего устройства — (выключатель, кнопка, рубильник)
4. соединительных проводов

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами.
На электрических схемах все элементы электрической цепи имеют условные обозначения.

1 — гальванический элемент
2 — батарея элементов
3 — соединение проводов
4 — пересечение проводов на схеме без соединения
5 — зажимы для подключения
6 — ключ
7 — электрическая лампа
8 — электрический звонок
9 — резистор (или иначе сопротивление)
10- нагревательный элемент
11 — предохранитель

Существуют сопротивления, величину которых можно плавно изменять.
Это могут быть переменные резисторы или сопротивления, называемые реостатами.

Таким образом, реостаты — это приборы, сопротивление которых можно регулировать.
Они применяются тогда, когда необходимо менять силу тока в цепи.
Реостат отличается от переменного резистора своей конструкцией и большой мощностью.

На электрической схеме реостат имеет своё условное обозначение:

С помощью перемещаемого движка (2) можно увеличивать или уменьшать величину сопротивления (между контактами 1 и 2), включаемого в электрическую цепь.

Попробуй, глядя на рисунок, выяснить для себя в какую сторону надо перемещать движок, чтобы:
а) увеличить сопротивление, включенное в цепь?
б) уменьшить сопротивление?
Умение пользоваться реостатом пригодится тебе для проведения лабораторных работ.
Приготовься к этому заранее!

ИНТЕРЕСНО

В электрических схемах применяются символические изображения входящих в нее элементов и устройств. Физические величины также принято обозначать буквенными символами.
Немецкий профессор Г.К. Лихтенберг из Геттенгена первый предложил ввести электрические символы, обосновал их практическое применение и использовал в своих работах!
Благодаря ему, в электротехнике появляются математические знаки плюс и минус для обозначения электрических зарядов. Символы, предложенные Г.К. Лихтенбергом, прижились и известны теперь даже школьникам.
Г.К Лихтенберг родился в Германии и в 1769 году стал профессором физики. Многочисленные работы по математике, метеорологии, геодезии и электричеству способствовали избранию Лихтенберга Почетным членом Петербургской Академии наук.
В 1769 году в Геттингене он установил первый в Германии громоотвод на университетской библиотеке.

ЗНАЕШЬ ЛИ ТЫ

В 1881 году в Париже на электротехнической выставке впервые демонстрировалось самое современное для того времени изобретение. Это был обычный для нас выключатель. Публика была в восторге!

Английский ученый со смешной фамилией Кавалло, живший на рубеже 18-19 веков, первым предложил конструкцию электрических проводов. Он предлагал натянутую отожженную медную или латунную проволоку нагревать в пламени свечи или просто куском раскаленного железа, покрывать смолой и обматывать полотняной лентой, также равномерно покрытой смолой. Изолированную таким способом проволоку следовало защищать чехлом из шерсти. Ну чем не основные элементы современного кабеля: токопроводящая жила, изоляция, защитный покров. Провод предполагалось изготовлять отрезками по 6–9 м, а места соединения отрезков тщательно обматывать промасленным шелком.

А НУ-КА, СООБРАЗИ

Если у вас есть электрозвонок, питающийся от батарейки, источник тока, провода, то как соединить провода, чтобы замыкание цепи вызвало только один удар молоточка звонка?

Не забывайте выключать свет!

Резисторы. Закон Ома наглядно показывает, что силу тока в электрической цепи можно изменять, включая в нее различные сопротивления. Этим свойством широко пользуются на практике для регулирования и ограничения тока в обмотках двигателей, генераторов и других электрических потребителях. Электрический аппарат, предназначенный для включения в электрическую цепь с целью регулирования или ограничения проходящего по ней тока, называют резистором. Резисторы бывают с постоянным или регулируемым сопротивлением. Последние иногда называют реостатами.
Резисторы обычно изготовляют из проволоки или ленты, материалом для которых служат сплавы металлов, обладающие высоким удельным сопротивлением (константан, никелин, манганин, фехраль). Это дает возможность для изготовления резисторов применять проволоку наименьшей длины. В электрических цепях, по которым проходят сравнительно небольшие токи (например, в цепях управления, в устройствах электроники и радиотехники), часто применяют непроволочные резисторы, выполненные из графита и других материалов.
Реостаты могут выполняться с плавным или ступенчатым изменением сопротивления. В лабораториях для управления электрическими машинами и испытательными устройствами часто используют ползунковый реостат с плавным изменением сопротивления (рис. 16, а). Такой реостат состоит из изоляционной трубки 4, на которую навита проволочная спираль 5. К виткам этой спирали прикасается подвижной контакт 2. Зажим 1 реостата соединяется с подвижным контактом, другой зажим 3 — с одним из концов спирали. Перемещая подвижной контакт, можно изменять длину проволоки, расположенной между зажимами реостата, и тем самым изменять его сопротивление.
Для пуска и регулирования электрических двигателей станков, грузоподъемных механизмов и пр. применяют ползунковый реостат со ступенчатым изменением сопротивления (рис. 16, б). Реостат состоит из ряда одинаковых сопротивлений 9 (секций), присоединенных к контактам 8. Для включения в цепь того или иного числа секций служит ползунок 7 со штурвалом 6.
Для регулирования тока при пуске тяговых двигателей электрических локомотивов постоянного тока применяют реостаты со ступенчатым изменением сопротивления (пусковые реостаты). Отдельные секции реостата в процессе пуска замыкаются накоротко дистанционно управляемыми выключателями, называемыми контакторами.
На некоторых электровозах (например, электровозах ЧС) пусковые реостаты выполнены из чугунных литых пластин 10 особой формы, напоминающей зигзагообразно уложенную ленту. Отдельные пластины собирают на изолированных шпильках и прикрепляют к основанию 11 (рис. 16, в).

В последнее время пусковые реостаты электровозов и моторных вагонов выполняют из фехралевой ленты 12, намотанной на фарфоровые изоляторы 13 (рис. 16, г). Так же устроены и реостаты, служащие для регулирования тока возбуждения тяговых двигателей на электровозах и тепловозах. Реостаты из фехралевой ленты более

прочны, более устойчивы против тряски и вибраций и имеют меньшую массу, чем реостаты, выполненные из чугунных пластин.
Схемы включения реостатов. Реостат 2 (рис. 17) может быть включен последовательно в цепь между источником 1 и приемником 4 электрической энергии. В этом случае при изменении сопротивления реостата, т. е. при перемещении подвижного контакта 3, изменяется сила тока в приемнике. Этот ток проходит только по части сопротивления реостата.
Однако реостат можно включать в цепь таким образом, чтобы ток проходил по всему его сопротивлению, а к приемнику ответвлялась только часть тока источника. В этом случае два крайних зажима 2 и 4 реостата (рис. 18) подключают к источнику 5, а один из этих зажимов, например 4, и подвижной контакт 3 реостата — к приемнику 1. Очевидно, что при таком включении к приемнику будет подаваться напряжение U, равное падению напряжения между зажимом 4 и подвижным контактом 3 реостата. Следовательно, передвигая подвижной контакт реостата, можно изменять напряжение U, подводимое к приемнику, и силу тока в нем. Напряжение U представляет собой только часть напряжения Uи на зажимах источника.
Реостат, включенный по схеме рис. 18, называется делителем напряжения, или потенциометром.

Реостатом называется аппарат, состоящий из набора резисторов и устройства, с помощью которого можно регулировать сопротивление включенных резисторов и благодаря этому регулировать переменный и постоянный ток и напряжение.

Различают реостаты с воздушным и жидкостным (масляным или водяным) охлаждением . Воздушное охлаждение может применяться для всех конструкций реостатов. Масляное и водяное охлаждение используется для металлических реостатов, резисторы могут либо погружаться в жидкость, либо обтекаться ею. При этом следует иметь в виду, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Металлические реостаты с воздушным охлаждением получили наибольшее распространение. Их легче всего приспособить к различным условиям работы как в отношении электрических и тепловых характеристик, так и в отношении различных конструктивных параметров. Реостаты могут выполняться с непрерывным или со ступенчатым изменением сопротивления.

Переключатель ступеней в реостатах выполняется плоским. В плоском переключателе подвижный контакт скользит по неподвижным контактам, перемещаясь при этом в одной плоскости. Неподвижные контакты выполняются в виде болтов с плоскими цилиндрическими или полусферическими головками, пластин или шин, располагаемых по дуге окружности в один или два ряда. Подвижный скользящий контакт, называемый обычно щеткой, может выполняться мостикового или рычажного типа, самоустанавливающимся или несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду частого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высокая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Достоинствами плоского переключателя ступеней реостата являются относительная простота конструкции, сравнительно небольшие габариты при большом числе ступеней, малая стоимость, возможность установки на плите переключателя контакторов и реле для отключения и защиты управляемых цепей. Недостатки — сравнительно малая мощность переключения и небольшая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность применения для сложных схем соединения.

Металлические реостаты с масляным охлаждением обеспечивают увеличение теплоемкости и постоянной времени нагрева за счет большой теплоемкости и хорошей теплопроводности масла. Это позволяет при кратковременных режимах резко увеличивать нагрузку на резисторы, а следовательно, сократить расход резистивного материала и габариты реостата. Погружаемые в масло элементы должны иметь как можно большую поверхность, чтобы обеспечить хорошую теплоотдачу. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия окружающей среды в химических и других производствах. Погружать в масло можно только резисторы или резисторы и контакты.

Отключающая способность контактов в масле повышается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле возрастает, но одновременно улучшаются условия охлаждения. Кроме того, за счет смазки можно допустить большие контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для длительных и повторно-кратковременных режимов работы реостаты с масляным охлаждением непригодны ввиду малой теплоотдачи с поверхности бака и большой постоянной времени охлаждения. Они применяются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редких пусках.

Наличие масла создает и ряд недостатков: загрязнение помещения, повышение пожарной опасности.

Рис. 1. Реостат с непрерывным изменением сопротивления

Пример реостата с практически непрерывным изменением сопротивления приведен на рис. 1. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню или кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый при помощи изолированного стержня 8, на конец которого надевается изолированная рукоятка (на рисунке рукоятка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластины 7 — для внешнего присоединения.

Реостаты могут включаться в схему как переменный резистор (рис. 1, а) или как (рис. 1,6). Реостаты обеспечивают плавное регулирование сопротивления , а следовательно, и тока или напряжения в цепи и находят широкое применение в лабораторных условиях в схемах автоматического управления.

Схемы включения пусковых и регулировочных реостатов

На рисунке 2 показана схема включения с помощью реостата двигателя постоянного тока небольшой мощности.


Рис. 2 . Схема включения реостата: Л — зажим, соединенный с сетью, Я — зажим, соединенный с якорем; М — зажим, соединенный о цепью возбуждения, О — холостой контакт, 1 — дуга, 2 — рычаг, 3 — рабочий контакт.

Перед включением двигателя необходимо убедиться в том, что рычаг 2 реостата находится на холостом контакте 0. Затем включают рубильник и рычаг реостата переводят на первый промежуточный контакт. При этом двигатель возбуждается, а в цепи якоря появляется пусковой ток, величина которого ограничена всеми четырьмя секциями сопротивления Rп. По мере увеличения частоты вращения якоря пусковой ток уменьшается и рычаг реостата переводят на второй, третий контакт и т. д., пока он не окажется на рабочем контакте.

Пусковые реостаты рассчитаны на кратковременный режим работы, а поэтому рычаг реостата нельзя длительно задерживать на промежуточных контактах : в этом случае сопротивления реостата перегреваются и могут перегореть.

Прежде чем отключить двигатель от сети, необходимо рукоятку реостата перевести в крайнее левое положение. При этом двигатель отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В противном случае могут появиться большие перенапряжения в обмотке возбуждения в момент размыкания цепи.

При пуске в ход двигателей постоянного тока регулировочный реостат в цепи обмотки возбуждения следует полностью вывести для увеличения потока возбуждения.

Для пуска двигателей с последовательным возбуждением применяют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием толь ко двух зажимов — Л и Я.

Реостаты со ступенчатым изменением сопротивления (рис. 3 и 4 ) состоят из набора резисторов 1 и ступенчатого переключающего устройства.

Переключающее устройство состоит из неподвижных контактов и подвижного скользящего контакта и привода. В пускорегулирующем реостате (рис. 3 ) к неподвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от элементов сопротивлений, пусковых и регулировочных, согласно разбивке по ступеням и другие управляемые реостатом цепи. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, а также всех других управляемых реостатом цепей. Привод реостата может быть ручной (при помощи рукоятки) и двигательный.

Рис. 3 R пк — резистор, шунтирующий катушку контактора в отключенном положении реостата, R огр — резистор, ограничивающий ток в катушке, Ш1, Ш2 — параллельная обмотка возбуждения электродвигателя постоянного тока, С1, С2 — последовательная обмотка возбуждения электродвигателя постоянного тока.

Рис. 4 R пр — сопротивление предвключенное, ОВ — обмотка возбуждения электродвигателя постоянного тока.

Реостаты по типу приведенных на рис. 2 и 3 нашли широкое распространение. Их конструкции обладают, однако, некоторыми недостатками, в частности большим числом крепежных деталей и монтажных проводов, особенно в реостатах возбуждения, которые имеют большое число ступеней.

Схема включения маслонаполненного реостата серии РМ , предназначенный для пуска асинхронных двигателей с фазным ротором, приведен на рис. 5. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10 000 операций, механическая — 45 000. Реостат допускает 2 — 3 пуска подряд.

Рис. 5

Реостат состоит из встроенных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали элементов и крепятся к крышке бака. Переключающее устройство — барабанного типа, представляет собой ось с закрепленными на ней сегментами цилиндрической поверхности, соединенными по определенной электрической схеме. На неподвижной рейке укреплены соединенные с резисторными элементами неподвижные контакты. При повороте оси барабана (маховиком или двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те или иные неподвижные контакты и тем самым меняют значение сопротивления в цепи ротора.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Что делает резистор и почему это важно?

Если вы ремонтируете кондиционер, подключаете новые светодиодные лампы или подключаете реле, вы, вероятно, работаете с резистором. Резисторы можно найти почти в каждой электрической цепи, но они часто встроены в другие компоненты. Так что же на самом деле делают эти скрытые резисторы? И почему они так важны для электрических цепей, которые вы используете каждый день?


Резистор контролирует прохождение электрического тока в цепи.Резисторы сделаны из таких материалов, как медь или углерод, что затрудняет прохождение электрических зарядов через цепь. Наиболее распространенный тип резистора — это углеродный резистор, который является резистором общего назначения, лучше всего подходящим для схем с меньшей мощностью. Некоторые другие распространенные типы резисторов включают пленочный резистор и резистор с проволочной обмоткой. Резисторы необходимы для многих избирательных схем, и их можно применять во множестве различных приложений.

Защита от скачков напряжения.Резисторы также защищают компоненты от скачков напряжения. Компоненты, чувствительные к сильному электрическому току, такие как светодиодные лампы, будут повреждены, если не будет резистора для управления прохождением электрического тока. Кроме того, предохранители и автоматические выключатели также могут использоваться для защиты вашей электрической цепи от скачков напряжения.

Обеспечьте правильное напряжение. Резисторы гарантируют, что компоненты получают правильное напряжение, создавая падение напряжения, и они могут защитить компонент от скачков напряжения.Каждый компонент в электрической цепи, такой как свет или выключатель, требует определенного напряжения. Если компонент в вашей цепи требует меньшего напряжения, чем остальная часть вашей цепи, резистор создаст падение напряжения, чтобы компонент не получил слишком большое напряжение. Резистор будет создавать падение напряжения, замедляя или сопротивляясь электронам, когда они пытаются пройти через резистор. Если компонент получает слишком высокое напряжение, он может быть поврежден или работать неправильно. При замене ламп накаливания на светодиодные, для каждой лампы требуется нагрузочный резистор светодиодов, чтобы обеспечить правильную работу указателей поворота.Нагрузочный резистор светодиода создает падение напряжения, поэтому светодиоды мигают с правильной скоростью. Если светодиодный нагрузочный резистор не был установлен, светодиодный сигнал поворота будет мигать слишком быстро и в конечном итоге будет разрушен высоким напряжением. Нужно обновить? Прочтите этот пост, чтобы узнать, как перейти на светодиоды.


Хотя резисторы можно купить по отдельности, они часто встраиваются в другие электрические компоненты, такие как нагрузочный резистор светодиодов, реле и другие электрические изделия на 12 В.В реле резистор поглощает напряжение доступа, возникающее при срабатывании реле. Это защитит любые другие компоненты цепи от скачков напряжения. Реле позволяют управлять сильноточной цепью с помощью слаботочной цепи, и они созданы для различных применений.

Некоторые распространенные реле включают реле с резистором, которое помещается в стандартный блок предохранителей. Это реле идеально подходит для приложений с полным напряжением, таких как сигнальные рожки, стеклоподъемники, кондиционеры и многое другое.Хотя реле идеально подходит для приложений с полным напряжением, встроенный резистор защитит любое чувствительное оборудование от скачков напряжения.

Герметичное реле также идеально подходит для приложений с полным напряжением, но оно обеспечивает дополнительную защиту для морских применений и транспортных средств, работающих в суровых условиях. Термин «залитый» означает, что реле защищено от пыли и влаги, а внутренний резистор защищает от скачков напряжения.

Реле mini 280 с ободком и резистором аналогично стандартному реле с резистором, но реле с ободком подключается к герметичному разъему OEM в автомобиле.Это реле с юбкой также имеет контакты типа Mini 280.

Микро реле ISO 280 с резистором является уменьшенной версией стандартного реле. Площадь основания ISO 280 подходит для большинства распространенных блоков предохранителей Mini (ATM).

Они могут быть небольшими и часто встроенными в другие компоненты, но резисторы необходимы почти для каждой электрической цепи. Эти скрытые резисторы важны, потому что они контролируют поток электрического тока к чувствительным компонентам и защищают компоненты от скачков напряжения.Поэтому в следующий раз, когда вы включите кондиционер или новую светодиодную лампу, помните, что резистор работает для защиты вашего компонента и обеспечения его правильной работы.

Если вы хотите узнать больше или у вас есть вопросы о продуктах Del City со встроенными резисторами, посетите сайт www.delcity.net или позвоните по телефону 1.800.654.4757.


Источники

http: //www.explainthatstuff.com / resistors.html
http://www.electronics-tutorials.ws/resistor/res_1.html
http://sciencelearn.org.nz/Contexts/Super-Sense/Science-Ideas-and-Concepts/Resistors
http://www.autoshop101.com/forms/hweb2.pdf

Самодельные резисторы

| Sciencing

Электрические резисторы — это пассивные электрические компоненты, которые ограничивают ток в электрической цепи. Резисторы могут быть изготовлены из разных материалов. Некоторые из наиболее распространенных материалов — металл и углерод.Резисторы на основе углерода предпочтительнее резисторов на основе металла, где возникают индукционные помехи. Для многих аналоговых электрических и электронных схем можно использовать резисторы на металлической основе (например, резисторы с проволочной обмоткой) без каких-либо вредных последствий.

Как работает проволочный резистор

Протекание электрического тока объясняется физическим соотношением, обнаруженным Георгом Симоном Омом, немецким физиком девятнадцатого века. Это объяснение известно как «закон Ома».

Закон Ома объясняет, что разность напряжений в электрической цепи является произведением значения электрического тока (в Амперах) на значение сопротивления цепи (в Ом).Объясняется по-другому: электрическая цепь, у которой есть разница в 2 вольта, с протекающим по ней током в 1 ампер, имеет сопротивление 2 Ом.

Все электропроводящие материалы тоже обладают некоторым сопротивлением. Из-за этого в качестве резистора можно использовать даже хороший электрический провод, например металлическую проволоку. Сопротивление можно регулировать, ограничивая толщину провода, а также увеличивая или уменьшая токопроводящий путь через провод. Сопротивление также можно контролировать с помощью материала проволоки.Некоторые металлы, такие как золото, серебро и медь, являются отличными электрическими проводниками и имеют более низкое значение сопротивления. Другие металлы, такие как железо, олово или платина, не очень хорошо проводят электрический ток из-за их более высоких значений сопротивления.

Создание резистора с проволочной обмоткой

Чтобы создать резистор с проволочной обмоткой, один кусок проволоки должен был бы служить путем для электрического тока, протекающего от одного конца резистора к другому. Чтобы создать резистор с небольшим значением сопротивления (или Ом), используйте более толстый и короткий провод в качестве пути между двумя электрическими выводами.Чтобы создать резистор с большим значением Ом, используйте более тонкий и длинный провод.

Как следует из названия, резистор с проволочной обмоткой обычно каким-либо образом наматывают на электрически изолированный материал (например, пластик или керамику). Чтобы удлинить токопроводящий путь и повысить значение сопротивления, оберните более длинный провод вокруг изолятора несколько раз. Более прямой путь снизит значение сопротивления и пропустит больше тока.

Еще одним фактором при создании резистора с проволочной обмоткой является тип используемой проволоки.Стальная проволока не такой хороший проводник, как медная; поэтому, когда требуется большее значение сопротивления, можно использовать стальную проволоку.

Что такое резистор? — Поставка РСП

What_is_a_Resistor.pdf

Надеюсь, что к концу этого видео вы получите базовое представление о резисторах и лучше поймете некоторые из причин, по которым они широко используются. Когда говорят об электричестве, любое вещество, через которое может протекать электричество, называется проводником. Для изготовления резисторов используются очень непроводящие материалы.Резистор — это пассивный компонент с двумя выводами. Полярность не влияет при использовании резистора, это позволяет току проходить через них независимо от того, в какой ориентации они используются. Они предназначены для сопротивления потоку электричества, в частности сердечника, они сопротивляются току, протекающему в электрической цепи. Электрическое сопротивление — это измерение, которое показывает нам, насколько трудно или легко электрический ток может проходить через проводник. Это сопротивление измеряется в Ом. В зависимости от того, как резисторы используются в электрической цепи, я буду определять, какое сопротивление вы увидите в этой цепи.Резисторы, включенные последовательно (или один за другим), будут вести себя в цепи иначе, чем резисторы, которые используются параллельно (или каждый имеет свой собственный электрический путь).

При последовательном соединении все резисторы в цепи будут иметь одинаковый уровень тока. При параллельном подключении каждый резистор в цепи будет влиять на общий уровень тока для этой цепи, а также на уровень тока для каждого отдельного сегмента в этой параллельной цепи.

Два наиболее распространенных применения резисторов в электрических цепях:
Они используются для ограничения тока.
Для уменьшения или «деления напряжения» в цепи.

Кроме того, резисторы бывают разных форм, размеров и номиналов сопротивления, поэтому обратите внимание на резисторы, которые используются в ваших конкретных приложениях, чтобы убедиться, что они работают должным образом.

Выписка:

[0m: 4s] Привет, я Джош Блум, добро пожаловать в еще один видеоролик из образовательной серии RSP Supply. Если вам нравятся эти видео, это, безусловно, поможет, если вы можете поставить лайк и подписаться.
[0m: 13s] В сегодняшнем видео мы рассмотрим один из наиболее распространенных электрических компонентов, которые, как мы видим, используются почти в каждой электрической цепи:

[0м: 21с] резисторов.Я уверен, что вы слышали это имя много раз, но, возможно, не знаете, что это такое и почему мы их используем.
[0m: 27s] Мы собираемся поговорить о том, почему мы используем резисторы и почему они так важны в нашей электрической системе сегодня. Надеюсь, к концу этого видео вы получите базовое представление о резисторах и лучше поймете некоторые из причин, по которым они широко используются.
[0m: 41s] Когда говорят об электричестве, любое вещество, через которое может протекать электричество, называется проводником.Некоторые материалы проводят электричество лучше, чем другие, например металлы, поэтому они обычно используются в электрических цепях. С другой стороны, есть другие материалы, которые очень плохо проводят электричество. Эти материалы будут создавать гораздо большее сопротивление в электрическом потоке, который вы видите в цепи. Таким образом, чем выше значение сопротивления материала, тем меньше тока может проходить через этот материал.
[1м: 12сек] Эти очень непроводящие материалы используются для изготовления резисторов.
[1 м: 17 с] Резистор — это пассивный компонент с двумя выводами. При использовании резистора полярность не влияет. Это позволяет току проходить через них независимо от того, в какой ориентации они используются.
[1m: 29s] Они созданы, чтобы противостоять потоку электричества. В частности, они сопротивляются протеканию тока в электрической цепи. Они также могут использоваться для регулировки уровней сигналов и разделения напряжений между многими другими применениями из-за их резистивных свойств.
[1 м: 45 с] Электрическое сопротивление — это измерение, которое показывает нам, насколько трудно или легко электрический ток может проходить через проводник.
[1 м: 53 с] Это сопротивление измеряется в омах.
[1 м: 56 с] В зависимости от того, как резисторы используются в электрической цепи, будет определяться, какое сопротивление вы увидите в этой цепи. Резисторы, включенные последовательно или один за другим, будут вести себя в цепи иначе, чем резисторы, используемые параллельно или каждый из которых имеет свой собственный электрический путь.
[2m: 13s] Для получения дополнительной информации о разнице между последовательными и параллельными цепями, пожалуйста, обратитесь к нашему другому видео, в котором мы обсуждаем эти принципы более подробно.
[2m: 21s] Тем не менее, хорошее практическое правило заключается в следующем: при последовательном подключении все резисторы в цепи будут подвергаться воздействию одинакового уровня тока.
[2 м: 29 с] При параллельном подключении каждый резистор в цепи будет влиять на общий уровень тока для этой цепи, а также на уровень тока для каждого отдельного сегмента в этой параллельной цепи.
[2m: 39s] Итак, давайте более внимательно рассмотрим два наиболее распространенных использования резисторов в электрических цепях сегодня.
[2m: 45s] В первую очередь, они используются для ограничения тока.Из-за закона Ома мы знаем, что если наш источник напряжения остается постоянным, чтобы уменьшить количество тока в нашей цепи, нам нужно добавить большее сопротивление. Мы можем увеличить это сопротивление, просто добавив резистор.
[3m: 2s] Одна из причин, по которой мы это делаем, заключается в том, что в электрических схемах используется много общих компонентов, чувствительных к току.
[3m: 10s] Хорошим примером этого является светодиод. Если к светодиоду будет приложен слишком большой ток, это может привести к его перегоранию или преждевременному выходу из строя.Таким образом, как и светодиоды, обычно можно увидеть резисторы, подключенные последовательно с компонентами, которые могут быть более чувствительными к току.
[3м: 26сек] Еще одним распространенным применением резисторов является уменьшение или разделение напряжения в цепи.
[3 м: 32 с] Если, например, есть часть вашей схемы, которая требует меньшего напряжения, чем подаваемое, вы можете использовать комбинацию резисторов, чтобы достичь правильного напряжения для этого конкретного сегмента вашей цепи.
[3м: 46сек] Эта способность уменьшать и разделять напряжение может дать вам большую гибкость при проектировании электрических цепей.Эти два примера, которые мы обсудили сегодня, составляют подавляющее большинство случаев использования резисторов. Однако есть много других сценариев использования резисторов, которые мы не будем обсуждать сегодня.
[4 м: 4 с] Кроме того, резисторы бывают разных форм, размеров и номиналов сопротивления. Итак, обратите внимание на резисторы, которые используются в ваших конкретных приложениях, чтобы убедиться, что они работают должным образом.
[4m: 17s] Для получения полной линейки резисторов и тысяч других продуктов посетите наш веб-сайт.Для получения дополнительной информации или других обучающих видеороликов посетите RSPSupply.com, лучший в Интернете источник промышленного оборудования. Также не забывайте: ставьте лайки и подписывайтесь.

Водяной контур аналогично электрической схеме

Функция заземляющего провода в электрической цепи во многом аналогична резервуару, присоединенному к водяному контуру. Когда труба заполнена водой, насос может циркулировать воду без дальнейшего использования резервуара, и, если бы он был удален, это не оказало бы видимого влияния на поток воды в контуре.

Резервуар обеспечивает эталонное давление, но не является частью функционального контура. Точно так же батарея может передавать электрический ток без заземляющего провода. Земля обеспечивает опорное напряжение для цепи, но если бы она была нарушена, не было бы очевидных изменений в функционировании цепи. Заземляющий провод защищает от поражения электрическим током и во многих случаях обеспечивает защиту от внешних электрических помех.

Этот вид заземления не подходит для объяснения функции провода заземления прибора, потому что простого соединения с землей недостаточно для отключения автоматического выключателя в случае электрического повреждения.Чтобы эффективно предотвратить опасность поражения электрическим током, заземление устройства должно подключаться к источнику питания через нейтральный провод.

Тем не менее, образ Земли как резервуара заряда помогает понять энергетику всей системы электроснабжения. На электростанции заряд может быть получен из земли, и процесс генерации работает с зарядом, чтобы дать ему энергию. Эта энергия описывается указанием ее напряжения (1 вольт = 1 джоуль / кулон = энергия / заряд).Энергию можно транспортировать по пересеченной местности при высоком напряжении, а затем передавать конечным пользователям при более низком напряжении с использованием понижающих трансформаторов. Затем энергия может быть использована, а заряд сброшен на землю. Заряд, на котором выполняются работы на электростанции, не нужно перевозить по пересеченной местности, а «отработанные» заряды не нужно транспортировать обратно на электростанцию, а просто сбрасывать в «резервуар».

У всех таких аналогий есть свои недостатки, и вы можете инициировать оживленные дискуссии на всех уровнях знаний об аналогиях для обоснования.Некоторые возражают против резервуарного подхода, потому что он создает образ некоего безграничного запаса заряда, и что в этом есть что-то «особенное». Это также создает ошибочное впечатление, что вы можете извлечь из нее некоторый заряд, не вставляя его. Земля является просто хорошим проводником зарядов, но, как и все электрические цепи, в конечном итоге должна образовывать замкнутый путь циркуляции, чтобы сохранить заряд ( жесткий и быстрый закон сохранения).

Простая схема

Простая схема

Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает вам выявлять первопричины и устранять электрические неисправности.Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.

Помните о трех элементах электричества; напряжение, сила тока и сопротивление. Напряжение (иногда называемое электродвижущей силой) — это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, заставляющей электроны двигаться в электрической цепи.Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током. Электрический ток — это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток — это количество воды, протекающей через шланг.Напряжение — это величина давления, под которым вода проходит через шланг.

Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер — это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока. Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом.Один вольт — это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

Цепь — это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление. Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов).Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие их в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.

В замкнутой цепи напряжение источника обеспечивает электрическое давление, проталкивающее ток через цепь.Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка — это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства. Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).

ТРЕБОВАНИЯ К ЦЕПИ

Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь — это «путь» или петля, которая позволяет электричеству (току) течь. Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример — фары).После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться обратно к Источнику (Батареи). Если у вас где-то в этой цепи произойдет обрыв, у вас будет разрыв электрического тока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.

Типы цепей

Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные. Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузок.Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:

1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).

2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.

3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.

4.Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.) Преобразует электричество в работу.

5. Проводник (обратный путь, заземление) обеспечивает электрический путь к источнику питания и от него.

Цепи серии

Компоненты последовательной цепи соединены встык друг за другом, чтобы образовалась простая петля для прохождения тока через цепь. Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю.Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь нарушен, ток не течет, и никакая часть цепи не работает. Рождественские огни — хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.

Параллельные схемы

Параллельная цепь имеет более одного пути прохождения тока. На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым.Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, так что у потока тока есть выбор путей в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.

В параллельной цепи ниже два или более сопротивления (R1, R2 и т. Д.) Соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной боковая сторона.

Последовательно-параллельные схемы

Последовательно-параллельная схема включает некоторые компоненты, включенные последовательно, а другие — параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи. Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и оставшихся ветвях.

Внутреннее освещение приборной панели — хороший пример соединения резисторов и ламп в последовательно-параллельную цепь.В этом примере, регулируя реостат, вы можете увеличить или уменьшить яркость света.

Диагностические схемы

Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.

Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, приводит к перегоранию предохранителя, плавкой вставки или автоматического выключателя.

Высокое сопротивление в цепи может быть вызвано коррозией или разрывом в цепи источника или заземления.Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.

УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ

Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием. Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.

Предохранители

Предохранитель

A является наиболее распространенным типом устройства защиты от перегрузки по току. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь. Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току.Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.

Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты. Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя.Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так. Проверьте проводку к компонентам, которые выходят из строя сгоревшим предохранителем. Ищите плохие соединения, порезы, разрывы или шорты.

Предохранители

имеют разные время-токовые нагрузочные характеристики для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току.Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя даже при отсутствии неисправности. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.

Расположение предохранителей

Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью для ног или под IPDM.Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и элементы предохранителей.

Крышки блока предохранителей

Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.

Типы предохранителей

Предохранители подразделяются на основные категории: предохранители ножевого типа и патронные предохранители старого образца. Используются несколько вариаций каждого из них.

Общие типы предохранителей

Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, линейные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.

Базовая конструкция

Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую кодировку для каждого номинального тока.(Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)

Номинальный ток предохранителя, сила тока

Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.

Плавкие вставки и элементы предохранителей

Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка.Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, как правило, для цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым. Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.

Плавкие вставки

Плавкие вставки — это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току.Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки — специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг. Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки предохранителями или предохранителями Maxi.

Картридж с предохранителем

Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific.Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель. Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или привинчены на болтах, вставной тип является наиболее популярным.

Конструкция картриджа с плавким предохранителем

Конструкция элемента предохранителя довольно проста.Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.

Цветовая маркировка элемента предохранителя

Номинальные значения силы тока предохранителя

приведены ниже. Плавкая часть элемента предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.

Плавкие элементы

Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.

Плавкие элементы также могут располагаться в блоках реле / ​​предохранителей в моторном отсеке.

Автоматические выключатели

Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя. Существует три типа автоматических выключателей: тип с ручным сбросом — механический, тип с автоматическим сбросом — механический и твердотельный с автоматическим сбросом — PTC. Автоматические выключатели обычно располагаются в блоках реле / ​​предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.

Конструкция автоматического выключателя (ручного типа)

Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними. Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются автоматическими выключателями «без цикла».

Автоматический выключатель (ручной тип)

Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.

Ручной сброс Тип

Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы переустановить биметаллическую пластину, как показано.

Тип с автоматическим сбросом — механический

Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями. Этот тип автоматического выключателя используется для защиты силовых цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционер и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться из-за перегрузки по току в условиях перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.

Устройство и работа с автоматическим сбросом

Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока.Автоматические выключатели с автоматическим возвратом в исходное состояние считаются «циклическими», потому что они циклически размыкаются и замыкаются, пока ток не вернется к нормальному уровню.

Тип твердотельного накопителя с автоматическим сбросом — PTC

Полимерный прибор с положительным температурным коэффициентом (PTC) известен как самовосстанавливающийся предохранитель.

Полимерный PTC — это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры.PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.

Конструкция и эксплуатация полимеров PTC

В нормальном состоянии материал в полимерном ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе. Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое.Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока на цепь остается поданное напряжение. Он сбрасывается только при снятии напряжения и остывании полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.

УСТРОЙСТВА УПРАВЛЕНИЯ

Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи.Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора — это скорость открытия и закрытия цепи.

Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи. Устройство управления или переключатель позволяет включать или выключать электричество в цепи.Выключатель — это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей для работы требуется физическое движение, в то время как реле и соленоиды работают с электромагнетизмом.

Коммутаторы

  • Однополюсный односторонний (SPST)
  • Однополюсный, двусторонний (SPDT)
  • Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
  • Мгновенный контакт
  • Меркурий
  • Температура (биметалл)
  • Задержка по времени
  • Мигалка
  • РЕЛЕ
  • СОЛЕНОИДЫ

Переключатель — это наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.

Переключатели описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, одноходовые), SPDT (однополюсные, двухпозиционные) или MPMT (многополюсные, многоходовые).

Однополюсный одинарный бросок (SPST)

Самый простой тип переключателя — переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.

Однополюсный, двойной бросок (SPDT)

Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.

Многополюсная многоточечная (MPMT)

Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания — хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток из разных источников в разные выходные цепи одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.

Мгновенный контакт

Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, кроме случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала — хороший пример выключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.

Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты в замкнутом состоянии, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.

Меркурий

Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть — опасные отходы, с которыми следует обращаться осторожно.

Температурный биметаллический

Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предельной температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.

Время задержки

Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток течет через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, в результате чего биметаллическая полоса изгибается и размыкает контакты.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени — это обогреватель заднего стекла.

Мигалка

Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова течь через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не будет отключено питание мигающего устройства. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).

Реле

Реле — это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). У нормально разомкнутого (Н.C.) реле имеет контакты, которые «замкнуты» до тех пор, пока реле не сработает.

Работа реле

Ток протекает через управляющую катушку, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.

Соленоиды — тянущие, тип

Соленоид — это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.

Работа вытяжного типа

Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой протекает ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, протягиваясь и втягивая железный стержень в центр катушки.

Работа толкающего / толкающего типа

В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, при изменении направления тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.

УСТРОЙСТВА НАГРУЗКИ

Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.

Фары

Фонари бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.

Двигатели

Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, электродвигатель вентилятора системы отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как спроектирован двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель вентилятора для системы отопления и кондиционирования воздуха.

Нагревательные элементы

Нагревательные элементы установлены в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.

ЧТО ТАКОЕ ЗАКОН ОМА?

Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление растет, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электросети. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично … да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.

Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким, если сопротивление низкое, или ток будет низким, если сопротивление высокое. Если напряжение слишком высокое, ток будет большим.

На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет большим. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.

На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления — насколько сложно протолкнуть поток электрического заряда.

Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».Резисторы имеют разные номиналы в зависимости от того, насколько ток должен быть ограничен.

Плохое сопротивление: в большинстве случаев слишком большое сопротивление снижает ток и может привести к неправильной работе системы. Обычно причиной является грязь или коррозия на электрических разъемах или заземляющих соединениях.

Что такое резистор? Конструкция, принципиальная схема и применение

Резистор — один из наиболее важных электрических и электронных компонентов, используемых в различных электронных устройствах.Они доступны в различных размерах и формах на рынке в зависимости от области применения. Мы знаем, что любая базовая электрическая и электронная схема работает с протеканием тока. Кроме того, он также подразделяется на два типа, а именно проводники и изоляторы . Основная функция проводника — пропускать ток, тогда как изолятор не пропускает ток. Всякий раз, когда высокое напряжение подается через металлический проводник, через него проходит полное напряжение.Если резистор подключен к этому проводнику, то поток тока, а также напряжение будут ограничены. В этой статье обсуждается обзор резистора.


Что такое резистор?

Определение для резистора таково: это базовый двухконтактный электрический и электронный компонент , используемый для ограничения тока в цепи. Сопротивление потоку тока приведет к падению напряжения. Эти устройства могут обеспечивать постоянное регулируемое значение сопротивления.Величину резисторов можно выразить в Ом.

Резистор

Резисторы используются в нескольких электрических, а также в электронных схемах , чтобы получить известное падение напряжения, иначе отношение тока к напряжению (C-to-V). Когда ток в цепи идентифицируется, можно использовать резистор для создания идентифицированной разности потенциалов, которая пропорциональна току. Точно так же, если падение напряжения в двух точках в цепи идентифицировано, резистор может быть использован для создания идентифицированного тока, который пропорционален этой несходственности.Пожалуйста, перейдите по ссылке, чтобы узнать больше о:

Символ резистора

Что такое сопротивление?

Сопротивление может зависеть от закона Ома , открытого немецким физиком, а именно « Георг Симон ».

Закон Ома

Закон Ома можно определить как ; напряжение на резисторе прямо пропорционально току, протекающему через него. Уравнение закона Ома:

В = I * R

Где «V» — напряжение, «I» — ток, а «R» — сопротивление

Единицы измерения сопротивления — Ом, и несколько более высоких значений Ом включают в себя КОм (килоом), МОм (мегаом), миллиом и т. Д.

Конструкция резистора

Например, углеродный пленочный резистор используется для описания конструкции резистора .Конструкция резистора показана на схеме ниже. Этот резистор состоит из двух выводов, как обычный резистор. Конструкция углеродного пленочного резистора может быть выполнена путем размещения углеродного слоя на керамической подложке. Углеродная пленка представляет собой резистивный материал по отношению к прохождению тока в этом резисторе. Однако он блокирует некоторое количество тока.

Конструкция углеродного пленочного резистора

Керамическая подложка действует как изолирующий материал по отношению к току. Таким образом, он не пропускает тепло через керамику.Таким образом, эти резисторы могут без вреда выдерживать высокие температуры. Торцевые заглушки резистора металлические, которые размещаются на обоих концах выводов. Две клеммы подключены к двум металлическим торцевым крышкам на резисторе.

Резистивный элемент этого резистора покрыт эпоксидной смолой, предназначенной для обеспечения безопасности. Эти резисторы в основном используются из-за меньшего шума, который они производят по сравнению с резисторами из углеродного состава. Допустимые отклонения этих резисторов ниже, чем у резисторов из углеродистой стали.Значение допуска может быть определено как несходство между нашим предпочтительным значением сопротивления и истинным значением конструкции. Доступны резисторы в диапазоне от 1 Ом до 10 МОм.

В этом резисторе предпочтительное значение сопротивления может быть достигнуто путем обрезания толщины углеродного слоя по спирали в зависимости от его длины. Как правило, это можно сделать с помощью LASER . Как только необходимое значение сопротивления будет достигнуто, резка металла будет остановлена.

В резисторах этого типа, когда сопротивление этих резисторов уменьшается при повышении температуры, что известно как высокий отрицательный температурный коэффициент.

Схема резистора

Принципиальная схема простого резистора показана ниже. Эта схема может быть спроектирована с использованием резистора, батареи и светодиода. Мы знаем, что функция сопротивления заключается в ограничении прохождения тока через компонент.

Схема резистора

В следующей схеме, если мы хотим соединить светодиод напрямую с батареей источника напряжения, он немедленно выйдет из строя.Поскольку светодиод не пропускает через него большое количество тока, по этой причине между батареей и светодиодом используется резистор для управления потоком тока к светодиоду от батареи.

Значение сопротивления в основном зависит от номинала батареи. Например, если номинал батареи высокий, то мы должны использовать резистор с высоким значением сопротивления. Величину сопротивления можно измерить по формуле закона Ома.

Например, номинальное напряжение светодиода составляет 12 вольт, а номинальное значение тока — 0.1 А, иначе 100 мА, затем рассчитайте сопротивление по закону Ома.

Мы знаем, что Закон Ома V = I X R

Из приведенного выше уравнения сопротивление можно измерить как R = V / I

R = 12 / 0,1 = 120 Ом

Итак, в приведенной выше схеме используется резистор 120 Ом, чтобы избежать повреждения светодиода из-за перенапряжения батареи.

Последовательные и параллельные резисторы

Простой способ подключения резисторов последовательно и параллельно в цепи обсуждается ниже.

Резисторы в последовательном соединении

При последовательном соединении цепи, когда резисторы включены последовательно в цепь, ток через резисторы будет одинаковым. Напряжение на всех резисторах эквивалентно количеству напряжений на каждом резисторе. Принципиальная схема последовательно соединенных резисторов представлена ​​ниже. Здесь резисторы, используемые в схеме, обозначены R1, R2, R3. Суммарное сопротивление трех резисторов можно записать как

.

R Итого = R1 + R2 = R3

Резисторы в последовательном соединении

Резисторы в параллельном соединении

В соединении в параллельной цепи , когда резисторы включены в цепь параллельно, тогда напряжение на всех резисторах будет одинаковым.Поток тока через три компонента будет таким же, как величина тока через каждый резистор.

Принципиальная схема резисторов , подключенных параллельно , показана ниже. Здесь резисторы, используемые в схеме, обозначены R1, R2 и R3. Суммарное сопротивление трех резисторов можно записать как

.

R Итого = R1 + R2 = R3

1 / R Итого = 1 / R1 + 1 / R2 + 1 / R3.

В результате Rtotal = R1 * R2 * R3 / R1 + R2 + R3

Резисторы в параллельном соединении

Расчет значения сопротивления

Значение сопротивления резистора можно рассчитать с помощью следующих двух методов

    • Расчет значения сопротивления с использованием цветового кода
  • Расчет значения сопротивления с помощью мультиметра
Расчет значения сопротивления с использованием цветового кода

Значение сопротивления резистора можно рассчитать с помощью цветовых полос резистора.Перейдите по этой ссылке, чтобы узнать о различных типах резисторов и расчетах их цветовых кодов в электронике.

Цветовой код резистора
Расчет значения сопротивления с помощью мультиметра

Пошаговая процедура вычисления сопротивления резистора с помощью мультиметра описана ниже.

Мультиметр
    • Второй способ расчета сопротивления можно сделать с помощью мультиметра или омметра. Основное назначение мультиметра — вычисление трех функций, таких как сопротивление, ток и напряжение.
    • Мультиметр состоит из двух щупов, таких как черный халат и красный халат.
    • Вставьте черный щуп в COM-порт, а красный щуп вставьте в VΩmA на мультиметре.
    • Сопротивление резистора можно рассчитать с помощью двух разных щупов мультиметра.
    • Перед вычислением сопротивления вы должны поместить круглый диск в направлении ома, которое указано на мультиметре символом Ом (Ом).

Применение резистора

Применения резистора включают следующее.

    • Высокочастотные инструменты
    • Модуляторы и демодуляторы
    • Усилители обратной связи

Таким образом, это все об обзоре резистора, который включает в себя, что такое резистор, что такое сопротивление, конструкция резистора, схема резистора, резисторы, включенные последовательно и параллельно, расчет значения сопротивления и приложения.Вот вам вопрос, в чем преимущества резистора ?

Резистор

| Инжиниринг | Fandom

Пакет резисторов

Резистор представляет собой двухконтактный электрический или электронный компонент, который сопротивляется протеканию тока, создавая падение напряжения между его выводами в соответствии с законом Ома.

Электрическое сопротивление равно падению напряжения на резисторе, деленному на ток, протекающий через резистор.

Приложения []

  • Резисторы применяются в составе электрических сетей и электронных схем.
  • Обычно резистор используется для создания известного отношения напряжения к току в электрической цепи. Если ток в цепи известен, то можно использовать резистор для создания известной разности потенциалов, пропорциональной этому току. И наоборот, если известна разность потенциалов между двумя точками в цепи, можно использовать резистор для создания известного тока, пропорционального этой разнице.
  • Токоограничивающий. Посредством включения резистора последовательно с другим компонентом, например светоизлучающим диодом, ток через этот компонент снижается до известного безопасного значения.
  • Аттенюатор представляет собой сеть из двух или более резисторов (делитель напряжения), используемых для уменьшения напряжения сигнала.
  • Терминатор линии представляет собой резистор на конце линии передачи или шины последовательного подключения (например, в SCSI), предназначенный для согласования импеданса и, следовательно, минимизации отражений сигнала.
  • Все резисторы рассеивают тепло. Это принцип, лежащий в основе электрических нагревателей.

Идеальный резистор []

В системе СИ единицей электрического сопротивления является ом. Компонент имеет сопротивление 1 Ом, если напряжение в 1 вольт на компоненте дает ток 1 ампер или ампер, что эквивалентно потоку одного кулона электрического заряда (приблизительно 6,241506 × 10 18 электронов). в секунду. Также обычно используются значения, кратные килоомам (1000 Ом) и мегаомам (1 миллион Ом).

В идеальном резисторе сопротивление остается постоянным независимо от приложенного напряжения или тока, протекающего через устройство, или скорости изменения тока. Хотя настоящие резисторы не могут достичь этой цели, они спроектированы так, чтобы иметь небольшое изменение электрического сопротивления при воздействии этих изменений или изменения температуры и других факторов окружающей среды.

Неидеальные характеристики []

Резистор имеет максимальное рабочее напряжение и ток, при превышении которых сопротивление может измениться (в некоторых случаях резко) или резистор может быть физически поврежден (например, перегрев или возгорание).Хотя некоторые резисторы имеют указанные номинальные значения напряжения и тока, большинство из них рассчитаны на максимальную мощность, которая определяется физическими размерами. Обычные номинальные мощности для резисторов из углеродного состава и металлопленочных резисторов составляют 1/8 Вт, 1/4 Вт и 1/2 Вт. Металлопленочные и углеродные пленочные резисторы более устойчивы, чем углеродные резисторы, к перепадам температуры и старению. Резисторы большего размера могут рассеивать больше тепла из-за большей площади поверхности. Резисторы с проволочной обмоткой и залитые в песок (керамические) резисторы используются, когда требуется высокая номинальная мощность.

Кроме того, все настоящие резисторы также имеют некоторую индуктивность и небольшую емкость, которые изменяют динамическое поведение резистора от идеального.

Типы резисторов []

Несколько типов резисторов

Постоянные резисторы []

Некоторые резисторы имеют цилиндрическую форму с фактическим резистивным материалом в центре (составные резисторы, в настоящее время устаревшие) или на поверхности цилиндрических (пленочных) резисторов, а проводящий металлический вывод выступает вдоль оси цилиндра на каждом конце (осевой привести).Бывают углеродные пленочные и металлопленочные резисторы. На фото вверху справа показан ряд обычных резисторов. Резисторы мощности поставляются в более крупных корпусах, предназначенных для эффективного отвода тепла. На высоких уровнях мощности резисторы, как правило, имеют проволочную обмотку. Резисторы, используемые в компьютерах и других устройствах, обычно намного меньше, часто в корпусах для поверхностного монтажа без проводов. Резисторы встраиваются в интегральные схемы как часть производственного процесса с использованием полупроводника в качестве резистора.Чаще всего для получения результатов в ИС используется конфигурация транзистор-транзистор или конфигурация резистор-транзистор. Резисторы, изготовленные из полупроводникового материала, труднее изготовить и занимают слишком много ценной площади кристалла.

Переменные резисторы []

Переменный резистор — это резистор, значение которого можно регулировать поворотом вала или перемещением регулятора. Они также называются потенциометрами или реостатами и позволяют вручную изменять сопротивление устройства.Реостаты подходят для всего, что превышает 1/2 ватта. Переменные резисторы могут быть недорогими однооборотными или многооборотными со спиральным элементом. Некоторые переменные резисторы могут быть оснащены механическим дисплеем для подсчета оборотов.

Файл: Урбинный резистор glog.jpg

. Этот реостат мощностью 2 кВт используется для динамического торможения ветряной турбины.

Переменные резисторы иногда могут быть ненадежными, потому что проволока или металл могут подвергнуться коррозии или износиться. В некоторых современных переменных резисторах используются пластмассовые материалы, которые не подвержены коррозии и обладают лучшими характеристиками износа.

Вот некоторые примеры:

  • Реостат : переменный резистор с двумя выводами, фиксированным и скользящим. Используется при больших токах.
  • Потенциометр : стандартный тип переменного резистора. Одно из распространенных применений — в качестве регуляторов громкости на аудиоусилителях и других формах усилителей.

Другие типы резисторов []

  • Металлооксидный варистор ( MOV ) — это специальный тип резистора, который изменяет свое сопротивление при повышении напряжения: очень высокое сопротивление при низком напряжении (ниже напряжения срабатывания) и очень низкое сопротивление при высоком напряжении (выше напряжение срабатывания).Он действует как переключатель. Обычно он используется для защиты от короткого замыкания в удлинителях или «разрядниках» молний на уличных опорах или в качестве «демпфера» в индуктивных цепях.
  • Термистор — это резистор, зависящий от температуры. Есть два вида, классифицируемые по знаку их температурных коэффициентов:
    • A Резистор с положительным температурным коэффициентом ( PTC ) — это резистор с положительным температурным коэффициентом. Когда температура повышается, сопротивление PTC увеличивается.PTC часто встречаются в телевизорах последовательно с размагничивающей катушкой, где они используются для обеспечения кратковременного выброса тока через катушку при включении телевизора. Одной из специализированных версий PTC является полисыключатель, который действует как самовосстанавливающийся предохранитель.
    • A Отрицательный температурный коэффициент Резистор ( NTC ) также является резистором, зависящим от температуры, но с отрицательным температурным коэффициентом. Когда температура повышается, сопротивление NTC падает.NTC часто используются в простых датчиках температуры и измерительных приборах.
  • Датчик представляет собой полупроводниковый резистор с отрицательным температурным коэффициентом, полезный для компенсации температурных эффектов в электронных схемах.
  • Светочувствительные резисторы обсуждаются в статье фоторезистора .
  • Все провода, кроме сверхпроводников, обладают некоторым сопротивлением, зависящим от его площади поперечного сечения и проводимости материала, из которого он сделан.

Обозначение резисторов []

В большинстве осевых резисторов используется узор из цветных полос для обозначения сопротивления. SMT следуют числовому шаблону. Корпуса обычно коричневого, синего или зеленого цвета, хотя иногда встречаются другие цвета, такие как темно-красный или темно-серый.

4-х полосные осевые резисторы []

Основная статья: Электронный цветовой код

4-полосная идентификация является наиболее часто используемой схемой цветового кодирования на всех резисторах.Он состоит из четырех цветных полос, нанесенных на корпус резистора. Схема проста: первые два числа — это первые две значащие цифры значения сопротивления, третье — множитель, а четвертое — допуск значения. Каждому цвету соответствует определенное число, показанное в таблице ниже. Допуск для 4-полосного резистора будет 2%, 5% или 10%.

Стандартная таблица цветовых кодов EIA согласно EIA-RS-279 выглядит следующим образом:

Цвет 1-я полоса 2-я полоса 3-я полоса (множитель) 4-я полоса (допуск) Темп.Коэффициент
Черный 0 0 × 10 0
Коричневый 1 1 × 10 1 ± 1% (Ж) 100 частей на миллион
Красный 2 2 × 10 2 ± 2% (G) 50 частей на миллион
Оранжевый 3 3 × 10 3 15 частей на миллион
Желтый 4 4 × 10 4 25 частей на миллион
Зеленый 5 5 × 10 5 ± 0.5% (D)
Синий 6 6 × 10 6 ± 0,25% (К)
фиолетовый 7 7 × 10 7 ± 0,1% (В)
Серый 8 8 × 10 8 ± 0,05% (А)
Белый 9 9 × 10 9
Золото × 0.1 ± 5% (Дж)
Серебро × 0,01 ± 10% (К)
Нет ± 20% (М)

Примечание : от красного до фиолетового — это цвета радуги, где красный — это низкая энергия, а фиолетовый — более высокая энергия.

Резисторы используют определенные значения, которые определяются их допуском.Эти значения повторяются для каждого показателя степени; 6.8, 68, 680 и т. Д. Это полезно, потому что цифры и, следовательно, первые две или три полосы всегда будут иметь одинаковые цвета, что облегчает их распознавание.

Предпочтительные значения []

Стандартные резисторы производятся номиналом от нескольких миллиомов до гигом; доступен только ограниченный диапазон значений, называемых предпочтительными значениями. На практике дискретный компонент, продаваемый как «резистор», не является идеальным сопротивлением, как определено выше.На резисторах часто указывается их допуск (максимальное ожидаемое отклонение от отмеченного сопротивления). На резисторах с цветовой кодировкой [1] цвет крайней правой полосы обозначает допуск:

серебро 10%
золото 5%
красный 2%
коричневый 1%.

Также доступны резисторы с более узким допуском, называемые прецизионными резисторами .

5-полосные осевые резисторы []

5-полосная идентификация используется для резисторов с более высоким допуском (1%, 0.5%, 0,25%, 0,1%), чтобы обозначить лишнюю цифру. Первые три полосы представляют собой значащие цифры, четвертая — множитель, а пятая — допуск. Иногда встречаются 5-полосные резисторы со стандартным допуском, как правило, на более старых или специализированных резисторах. Их можно определить по стандартному цвету допуска в 4-й полосе. Пятая полоса в данном случае — это температурный коэффициент.

резисторы SMT []

На резисторах для поверхностного монтажа напечатаны числовые значения в коде, относящемся к тому, который используется на осевых резисторах.Резисторы SMT со стандартным допуском маркируются трехзначным кодом, в котором первые две цифры являются первыми двумя значащими цифрами значения, а третья цифра — степенью десяти. Например, «472» представляет собой «47» (первые две цифры), умноженное на десять в степени «2» (третья цифра), т.е. Прецизионные резисторы SMT маркируются четырехзначным кодом, в котором первые три цифры являются первыми тремя значащими цифрами значения, а четвертая цифра — степенью десяти.

Обозначение промышленного типа []

Формат: [две буквы] <пробел> [значение сопротивления (три цифры)] <пространство> [код допуска (числовой — одна цифра)]

Номинальная мощность при 70 ° C
Тип No. Мощность
номинальная
(Вт)
MIL-R-11
Стиль
MIL-R-39008
Стиль
BB 1/8 RC05 RCR05
CB 1/4 RC07 RCR07
EB 1/2 RC20 RCR20
ГБ 1 RC32 RCR32
HB 2 RC42 RCR42
GM 3
HM 4
Код допуска
Обозначение промышленного типа Допуск Обозначение MIL
5 ± 5% Дж
2 ± 20%
1 ± 10% К
± 2% G
± 1% F
± 0.5% D
± 0,25% С
± 0,1% B

В диапазоне рабочих температур различаются компоненты коммерческого, промышленного и военного назначения.

  • Товарный: от 0 ° C до 70 ° C
  • Промышленный класс: от -25 ° C до 85 ° C
  • Военный класс: от -25 ° C до 125 ° C

Расчеты []

Закон Ома []

Связь между напряжением, током и сопротивлением через объект задается простым уравнением, которое называется законом Ома:

где В, — напряжение на объекте в вольтах (в Европе — U ), I — ток через объект в амперах, а R — сопротивление в омах.(На самом деле это всего лишь упрощение исходного закона Ома — см. Статью об этом законе для получения дополнительных сведений.) Если V и I имеют линейную зависимость, то есть R является постоянным, в диапазоне значений, материал объекта считается омическим в этом диапазоне. Идеальный резистор имеет фиксированное сопротивление на всех частотах и ​​амплитудах напряжения или тока.

Сверхпроводящие материалы при очень низких температурах имеют нулевое сопротивление.Изоляторы (такие как воздух, алмаз или другие непроводящие материалы) могут иметь чрезвычайно высокое (но не бесконечное) сопротивление, но выходят из строя и пропускают больший ток при достаточно высоком напряжении.

Рассеиваемая мощность []

Мощность, рассеиваемая резистором, равна напряжению на резисторе, умноженному на ток через резистор:

Все три уравнения эквивалентны, последние два выводятся из первого по закону Ома.

Общее количество выделенной тепловой энергии является интегралом мощности с течением времени:

Если средняя рассеиваемая мощность превышает номинальную мощность резистора, тогда резистор сначала отклонится от своего номинального сопротивления, а затем будет разрушен из-за перегрева.

Последовательные и параллельные цепи []

Основная статья: Последовательные и параллельные схемы

Резисторы в параллельной конфигурации имеют одинаковую разность потенциалов (напряжение).Чтобы найти их полное эквивалентное сопротивление ( R экв. ):

Свойство параллельности можно представить в уравнениях двумя вертикальными линиями «||» (как в геометрии), чтобы упростить уравнения. Для двух резисторов

Ток через резисторы, включенные последовательно, остается неизменным, но напряжение на каждом резисторе может быть разным. Сумма разностей потенциалов (напряжения) равна общему напряжению.Чтобы найти их полное сопротивление:

Сеть резисторов, которая представляет собой комбинацию параллельного и последовательного подключения, иногда может быть разбита на более мелкие части, которые являются одним или другим. Например,

Однако многие резистивные сети не могут быть разделены таким образом. Рассмотрим куб, каждое ребро которого заменено резистором. Например, для определения сопротивления между двумя противоположными вершинами в общем случае требуются матричные методы.Однако, если все двенадцать резисторов равны, сопротивление между углами составляет 5/6 любого из них.

Технологии []

Резисторы

обычно изготавливаются путем наматывания металлической проволоки на керамический, пластиковый или стекловолоконный сердечник. Концы провода припаяны к двум заглушкам, прикрепленным к концам жилы. Сборка защищена слоем краски, формованного пластика или эмалевого покрытия, запеченного при высокой температуре. Проволочные выводы обычно имеют диаметр от 0,6 до 0,8 мм и покрыты оловом для облегчения пайки.

Фольгированный резистор []

Резисторы из фольги

обладают высочайшей точностью и стабильностью с тех пор, как они были представлены в 1958 году Берахардом Ф.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *