Site Loader

Содержание

Диод 10 ампер 12 вольт

Диоды силовые выпрямительные серии Д112 – штыревые диоды общего назначения. Предназначены для преобразования постоянного и переменного тока до 25А (в зависимости от серии) частотой до 500 Гц в цепях с напряжением 100 В – 1600 В.

Полярность диода определяется по значку на корпусе. При прямой полярности основание диода является анодом, жесткий вывод – катодом. При обратной полярности – наоборот, при этом в маркировке указывается буква «Х» – икс.

Тип корпуса диодов серии Д112 – SD1: резьба М5, масса – 6 г. «SD» означает «stud diode» – штыревой диод.

Диоды серии Д112 имеют следующие типономиналы: Д112-10, Д112-10X, Д112-16, Д112-16X, Д112-25, Д112-25X.

Для отвода тепла диоды собирают с охладителями (радиаторами) при помощи резьбового соединения. Чтобы обеспечить надежный тепловой и электрический контакт диода с охладителем, при сборке необходимо соблюдать закручивающий момент Md. Также для лучшего отвода тепла при сборке может использоваться теплопроводящая паста КПТ-8.

Применяются силовые диоды Д112 в качестве выпрямительных и размагничивающих диодов, для предотвращения пагубного воздействия коммутационных перенапряжений, в низковольтных выпрямителях сварочного и гальванического оборудования, в неуправляемых или полууправляемых выпрямительных мостах, а также в электрогенераторах промышленности и транспорта.

Диоды изготавливаются для эксплуатации в умеренном, холодном (УХЛ) или тропическом (Т) климате; категория размещения – 2.

Подробные характеристики, расшифровка маркировки, размеры, применяемые охладители, рекомендации по монтажу и эксплуатации указаны ниже. Гарантия работы поставляемых нашей компанией диодов составляет 2 года с момента их приобретения, что подкрепляется соответствующими документами по качеству.

Окончательная цена на диоды серии Д112 зависит от класса, количества, сроков поставки и формы оплаты.

Добрый вечер, мои маленькие любители светодиодов.
Сегодня я научу вас делать самый простой стабилизатор напряжения под 12 вольт для того, чтобы грамотно запитать светодиодную ленту в автомобиле.
И так, список необходимых компонентов:
Микросхема L7812
Конденсатор 330мкф16вольт
Конденсатор 100мкф16 вольт
Диод на 1 ампер (1N4001, например, или аналогичный диод Шотки)
Провода
Термоусадка 3мм

Вот микросхемка крупным планом. Отрезаем ей ногу как на фотографии.

Затем немного добавляем припоя как на фотографии.

Теперь припаиваем к ножкам конденсаторы и диод как на фотографии. При пайке конденсаторов учитывайте полярность, у микросхемы минус посередине.

Теперь лудим провода и одеваем на плюсы термоусадку.

Припаиваем провода как на фотографии

И одеваем термоусадку. Сжать ее можно зажигалкой или феном. Сам я пользуюсь феном паяльной станции. Очень удобно.

Теперь смотрим на расположение проводов относительно микросхемы. Слева вход питания, справа выход к ленте/лампочке.

Подаем питание и хлопаем в ладошки.

На входе мой блок питания выдает 12,3 вольта. На выходе получается 11.10 вольт. При запущенном двигателе в бортовой сети напряжение 13-16 вольт, что обеспечивает 12 вольт на выходе.

Специально для тех, кто только смотрит картинки и не читает — прежде чем спросить, посмотрите фотографии вместе с текстом.
Спасибо тем, кто дочитал до конца.
Потом будут еще интересности)

По традиции, всех желающих приглашаю в свое сообщество TAU tech в вконтакте, где много чего еще интересного)

Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

  • Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты. Выпрямительные диоды малой мощности
  • Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла. Выпрямительный диод средней мощности
  • Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В). Рис. 4. Выпрямительные диоды высокой мощности

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Таблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Принцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Радиолюбители и профи! Подскажите какие диоды взять.

Последовательно паять диоды полностью лишено какого-либо смысла, т.к. выигрыш по силе тока не получишь, будут те же 1А, а вот падение напряжения будет расти с увеличением числа диодов — 1 диод, около одного вольта; два диода — два вольта; пять диодов — пять вольт. При пяти вольтах падения напряжения на диодах, на лампе от 14 вольт бортсети останется только 9 вольт и гореть она в полный накал уже не будет. Последовательное включение диодов целесообразно тогда, когда требуется понизить напряжение на каком либо потребителе или при работе в цепях высоких напряжений (свыше 1000 вольт). Теперь о параллельном включении. Включить то их можно, но не простым соединением, а с помощью выравнивающих низкоомных резисторов. При простом параллельном соединении, к примеру 5 диодов, допустимый ток должен был бы по идее суммироваться, т.е. 1Ах5=5A, ан нет. Почему нет? Это связано со следующим. Каждый диод имеет свою вольт-амперную характеристику, которая хоть и немного, но отличается от характеристик своих собратьев в партии. Т.е. порог открытия у каждого диода свой, у какого-то больше, у какого меньше. Так вот диод из этой пятерки, который имеет наименьший порог открытия, откроется первым и примет на себя всю нагрузку, не дав полностью открыться оставшимся четырем. Он в скором времени сдохнет от трехкратного превышения силы тока и если уйдет в обрыв, то его место займет следующий по порогу открытия диод, который также примет на себя всю нагрузку и также в скором времени сгорит. И так далее, до последнего диода. Чтобы этого не происходило, последовательно с каждым диодом ставят уравнивающий резистор, величина сопротивления которого может колебаться от 0,01 до 1,0 ома, в зависимости от нагрузки и соответствующей ей мощности. Работает это так. Открывается первый диод и принимает на себя всю нагрузку, но на уравнивающем резисторе при этом появляется падение напряжения, которое позволяет открыться уже второму диоду, в цепи которого также стоит уравнивающий резистор, падение напряжения на, уже двух резисторах позволяет открыться третьему диоду… и так далее, пока не откроются все пять и нагрузка распределится на них поровну. Но это в твоем случае ненужное нагромождение, проще подобрать более мощные диоды. Можно, к примеру, раздербанить блок питания от компа, там во вторичных цепях выпрямления 12V стоит спаренный диод (похож на мощный транзистор, с тремя выводами), он я думаю, подойдет. Там же стоит диод выпрямителя по цепи 5 вольт, его брать не советую, хотя он и мощнее. Он может не выдержать по предельному напряжению.

Мужчины не обижаются, мужчины огорчаются.

Устройство и работа выпрямительного диода. Диодный мост

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов.

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов.

В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:

малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.

По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили

кремниевые выпрямительные диоды ввиду своих физических свойств.

Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

Технология изготовления и конструкция выпрямительных диодов.

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием

электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (

1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов.

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;

Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота, кГц;
Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде.

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

При положительных полупериодах напряжения, поступающих на анод диода диод

открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а

пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый

фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку (). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «~», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Проверка браузера

  • IP: 85.140.0.105
  • Браузер: Mozilla/5.0 (X11; Linux x86_64; rv:33.0) Gecko/20100101 Firefox/33.0
  • Время: 2021-08-13 21:09:19
  • URL: https://dip8.ru/shop/poluprovodniki/category/diody_shottki/
  • Идентификатор запроса: 2sckcm6arh39

Это займет несколько секунд…

Мы должны проверить ваш браузер, чтобы убедиться, что вы не робот.
От вас не требуется никаких действий, проверка происходит автоматически.

У вас отключён JavaScript — вы не пройдёте проверку. Включите JavaScript в браузере!

  • IP: 85.140.0.105
  • Browser: Mozilla/5.0 (X11; Linux x86_64; rv:33.0) Gecko/20100101 Firefox/33.0
  • Time: 2021-08-13 21:09:19
  • URL: https://dip8.ru/shop/poluprovodniki/category/diody_shottki/
  • Request ID: 2sckcm6arh39

It will take a few seconds…

We need to check your browser to make sure you are not a robot.
No action is required from you, the verification is automatic.

You have JavaScript disabled — you will not pass validation. Enable JavaScript in your browser!

Устройство и работа выпрямительного диода

Устройство и работа выпрямительного диода. Диодный мост.

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов .

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов.

В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой. средней и большой мощности:

малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.

По типу применяемого материала они делятся на германиевые и кремниевые. но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

Технология изготовления и конструкция выпрямительных диодов.

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными .

Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n -типа расплавляют алюминий. индий или бор. а на поверхность кристалла с электропроводностью p -типа расплавляют фосфор .

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

Кристаллы кремния или германия (3 ) с p-n переходом (4 ) припаиваются к кристаллодержателю (2 ), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7 ) со стеклянным изолятором (6 ), через который проходит вывод одного из электродов (5 ).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1 ) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1 ) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов.

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота. кГц;
Рабочая температура. С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде.

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн ), а функцию выпрямляющего элемента будет выполнять диод (VD ).

При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн ), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается. и во всей цепи будет протекать незначительный обратный ток диода (Iобр ). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (Rн ), подключенную к сети через диод (VD ), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф ) во время отрицательных полупериодов разряжается через нагрузку (Rн ). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн ) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс ) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным. а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста .

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+ », «— » или «

», указывающие, где у моста вход. а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3. нагрузку Rн. диод VD2 и к нижнему выводу вторичной обмотки (см. график а ). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4. нагрузку Rн. диод VD1 и к верхнему выводу вторичной обмотки (см. график б ). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в ). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными .

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором. то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром .

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В. Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Понравилась статья — поделитесь с друзьями:

Иван
28. Jan. 2014 в 11:53

Прочитал Вашу статью перед зачётом по электронике в Университете и открыл для себя этот материал другими глазами, более просто больше нигде не читал. Спасибо Вам.
Но у меня появился вопрос: в диодном мосту при протекании тока через VD3 к VD2 после Rн, ток не уходит ещё и на VD1 ведь он включен как и VD2 анодом к Rн?
Спасибо.

Сергей
28. Jan. 2014 в 14:49

Добрый день Иван!
Спасибо.
Вы правы. После нагрузки ток попадает и на VD1 и на VD2. Но в данный полупериод (сплошная стрелка) VD1 закрыт, так как и на катоде и на аноде присутствует положительный потенциал, и поэтому прохождения тока через него нет, и это получается уже не диод а резистор с ооогромным сопротивлением.
А так как ток идет по найменьшему сопротивлению, то он идет на VD2 и на нижний вывод вторичной обмотки.
Диод VD4 также представляет резистор с ооогромным сопротивлением — но это только в первый полупериод.
Во втором полупериоде, когда положительный потенциал пойдет снизу-вверх, диоды поменяются местами.
Удачи!

Александр
16. Apr. 2014 в 14:50

Здравствуйте, подскажите еще один момент по диодному мосту.
А как проходит ток по VD2, если -(минус) подключен к аноду диода, а анод положителен.

Сергей
16. Apr. 2014 в 19:27

Добрый вечер Александр!
На анодах диодов VD1 и VD2 отрицательное напряжение образуется, а затем снимается нагрузкой Rн.

Эдик
20. Apr. 2014 в 19:37

добрый вечер!Спасибо Вам за подробное описание основ,незнание которых непозволительное упущение, т.к.рано или поздно это может пригодиться.Я пытаюсь выпрямить 12 вольт для запуска двигателя от шуруповерта.Регулировать обороты буду при помощи ШИМ. Но вот мост,который я собрал из диодов 5408 сильно греется под нагрузкой, до 80 гр.С. Попробовал диод Д213А на 10А,нагрелся до 100.Вопрос:нагрев до такой температуры-это нормально?Или необходимо применить более мощные диоды, напр.MBR1650 и т.д.Неужели и он будет так же нагреваться? Под нагрузкой ток примерно 8-9А. ????

Сергей
20. Apr. 2014 в 20:13

Добрый вечер Эдик!
Нагрев допускается до 120 градусов, но это еще Советские стандарты.
Вы установите диоды на радиатор и проблема с нагревом отпадет.

Найдите дюралевую или алюминиевую полоску толщиной 5-7мм, благо сейчас это не проблема, и нарежьте четыре кусочка размером 80х80мм. На эти кусочки закрепите диоды. Для лучшего контакта диода с пластиной, место, где будет крепиться диод, слегка пройдите наждачной бумагой, и когда будете крепить диод, смажьте обе плоскости вазелином или машинным маслом. Смазка нужна для лучшего контакта между поверхностями.
Удачи!

Эдик
21. Apr. 2014 в 22:25

Сергей,большое спасибо.Честно говоря, я прошерстил все свои книги. Нашел и объяснение причины нагрева.Меня смутило то, что без нагрузки, т.е. на холостом ходу двигателя нагрев был терпимым,около 80.Я не могу на неделе вырваться в Радиолавку,купить сборку диода Шотки,поэтому попробую собрать мост на базе 4-х 213А,что даст в пределах 20А.Их тоже можно прикрепить для охлаждения к алюминиевой пластине с помощью хомутика,я думаю.Простите,для Вас является очевидным то, что для меня представляет китайскую грамоту.Как говорил тов.Козьма Прутков: Многие вещи нам непонятны потому, что они не входят в круг наших понятий.Постараюсь быть прилежным Вашим учеником.

Сергей
21. Apr. 2014 в 23:11

Эдик!
Вы не гонитесь за мощными диодами.
Поймите одно: если через диод или диодную сборку идет ток, больший, чем на который рассчитан холостой ход p-n перехода диода, то диод будет однозначно греться. Вы можете установить диодную сборку с меньшими параметрами, и она справиться, но ей нужно охлаждение. Как правило, выпрямительные диоды всегда устанавливаются на радиаторах.

Дмитрий
10. May. 2014 в 19:29

Сергей, посоветуйте пожалуйста, какие лучше купить диоды для диодного моста. Требуется выпрямить ток блока питания 12В. 3А.
Спасибо за статью! ????

Сергей
10. May. 2014 в 21:15

Добрый вечер Дмитрий!
Спасибо!
Из отечественных:
Д232; Д242-Д248; КД202; КД203; КД206; КД210; КД213 — с любым буквенным индексом.
Диоды в обязательном порядке устанавливайте на радиатор.
Удачи ???? !

АстролонЫч
14. May. 2014 в 10:28

Спасибо за познавательную статью. Буду рад прочесть в таком же простом и понятном изложении про другие дискретные элементы

Сергей
27. May. 2014 в 09:58

Алексей!
Если смотреть по схеме, то одно входное плечо моста подключайте к клемме «М», а второе входное на «О2» клемм бкс. С клеммы «О1» идет на аккумулятор уже выпрямленное напряжение по однополупериодной схеме, а с клеммы «О2» идет чистая переменка с генератора.
Схемы и рекомендации нарисованы правильно, а вот, что касается отсутствие обмотки возбуждения — мне это не о чем не говорит, да и спросить не у кого.
Удачи!

Алексей
27. May. 2014 в 11:11

Это понятно, но как правильно в эту цепь включить реле,у которого три контакта. И на одной из схем, после моста включена реле,но -моста на массе,диод не выгорит из-за этого? И стоит ли запитать -моста -реле -акб между собой ,или можно на массу. Извините за 101 вопрос,электрика не совсем моя стихия

Сергей
27. May. 2014 в 11:45

Алексей!
Если я правильно понял вопрос:

Алексей
27. May. 2014 в 12:09

Как бы да,вот по схеме после бкс можно так сделать?
Единственное,что у всех лампочек минус запитан на корпус. И стандартно абсолютно все приборы на массу(корпус).На одной из схем бкс отключают от корпуса и ведут отдельно провод с генератора(кольцуют якобы переменку),стоит это делать?

Сергей
27. May. 2014 в 17:14

Алексей!
Вы без корпуса (общего или минуса) ничего не сделаете. На одном плюсе работать ничего не будет, сами понимаете. Если хоть один провод откините от бкс, то работать вообще ничего не будет.
Если хотите отдельный корпус (общий или минус), то ставьте еще один генератор и от него ведите еще одну линию.

Алексей
27. May. 2014 в 17:29

Вы меня неправильно поняли.Вот что я имел ввиду http://moto-planeta.ru/forum/topic_4694/1

Сергей
27. May. 2014 в 18:02

Алексей!
Может я что-то не так понял, так как техники у меня такой нет, но схема, которую я нарисовал и которые Вы мне выслали, все соответствуют Вашему желанию. И даже на форуме это подтверждено.
Что Вас не устраивает.
Какие еще вопросы.
P.S. Запомните раз и навсегда: от одного источника питания можно получить несколько разных плюсов, но минус, общий, масса, корпус всегда будет один. Потому что он общий, он опора, от минуса к плюсу бегут электроны.
Удачи!

Алексей
27. May. 2014 в 18:12

Александр
05. Jun. 2014 в 15:14

Добрый День.
Прошу посоветовать на предмет наличия оборудования для решения сл. проблемы:
— Мне надо переменный ток на 12-25 Вольт преобразовать в постоянный на 12-25 Вольт, мощностью от 30Ватт
Спасибо.

Сергей
05. Jun. 2014 в 16:03

Добрый день Александр!
Подойдут диоды из серии 1N4001 — 1N4007. Это самые распространенные кремниевые диоды.

Иван
12. Jun. 2014 в 11:42

Замечательно написано! Хотелось бы точно также понятно о работе конденсаторов на примере работы небольших схем. Спасибо!

Сергей
12. Jun. 2014 в 16:03

Добрый день Иван!
В скором времени планирую.
Спасибо за оставленный комментарий!

Александр
25. Jun. 2014 в 16:37

Задача: переменное 220 вольт — получить постоянное 220 вольт. Вопрос можно ли в мостовой схеме использовать диоды КД-213 а,б,в с обратным напряжением 200 вольт. Ведь в мостовой схеме в одно плечо нагрузки вроде как включается последовательно два диода.

Сергей
25. Jun. 2014 в 18:03

Александр!
Эти диоды не подойдут.
Используйте диоды на обратное напряжение не менее 300 В.
В мостовой схеме ток идет через один диод.

Александр
25. Jun. 2014 в 21:05

Александр
25. Jun. 2014 в 21:29

Сергей, только что при очередном проведённом измерении, падение напряжения на диодах д-231А составило 105 вольт на каждом. Так и диодах КД-213 то же такое. Получается использование диодов на напряжение 200 вольт достаточно! Доказано ПРАПОЩИКОМ ГОЛУБЕНКО ИВАНОМ ВАСИЛЬЕВИЧЕМ В 1973 году. С уважением Александр, бывший комвзвода связи у Иван Васильевича.

Александр
25. Jun. 2014 в 21:35

Да и еще, для экономии электроэнергии и электролампочек на общий выключатель освещения лестничных клеток, я установил в своём ЖСК в 1996 году диоды КД213 (других не было под рукой) и ничего работают до сих пор.
Спасибо.

Сергей
25. Jun. 2014 в 22:18

Бывшему комвзвода Александру от бывшего библиотекаря-кинорадиомеханика Сергея!
Довелось служить в самом начале 90-х — присягал еще Советскому Союзу.
Так вот: над дверью перед входом в клуб висела лампа и с периодичностью раз в месяц перегорала. От старшины Васильева поступил приказ: ликвидировать это безобразие. В разрыв лампы, помню как сейчас, установил диод Д7Б (почти как ДМБ) — других небыло. За время моей службы лампа больше не перегорала.
На гражданке такое не прошло. Рванул так, что помял корпус выключателя.
Скорее всего, Ваши диоды «выкручиваются» за счет лошадиного тока в 10 А.
Точно ответить не могу, а в сказки уже не верю.
Удачи!

Александр
25. Jun. 2014 в 23:10

Спасибо. Смотрите второй закон Кирхгофа, а также закон Ома. Здесь начинает работать уже постоянный ток. Поэтому падение напряжения на нагрузке и диоде делится, поэтому диоды и держат. Но. если будет нагрузка больше допустимой катастрофа неизбежна!

Сергей
26. Jun. 2014 в 00:18

Александр!
В полупроводнике действуют другие законы.
Если p-n переход диода не рассчитан на обратное напряжение свыше 200 В и ток нагрузки более 300 mA, то чтобы ты не делал, а при подаче сверх лимита диод сгорит при любом раскладе. Здесь дело только во времени.
P.S. Я все думаю про армейский диод: мне кажется, что была опечатка в букве.

Александр
26. Jun. 2014 в 04:28

Спасибо за ответ. Опечатки в букве наверное нет. ПП приборы для армии с пометкой ВП или ромбиком делали более качественно. Ну да ладно время покажет.

Алишер
07. Aug. 2014 в 20:21

Пытаюсь запустить шуруповерт без батарей.
Читал что требует большие токи в работе. Наверное до 10А.
Шуруповерт 9.6V DC
Есть диоды Д247 и Д242.
Какое напряжение нужно с транса и какой кондер?
Спасибо!

Сергей
09. Aug. 2014 в 01:19

Здравствуйте Алишер!
Диоды подойдут, а на выходе с транса нужно иметь напряжение 10 Вольт. Поставьте два кондера по 500 мкф х 16 Вольт.

Алишер
10. Aug. 2014 в 09:04

Спасибо Сергей!
Как правильно оценить максимальный ток который может выдать выпрямитель?
Имею ввиду если нагрузка скажем до 25А. Напряжение 10V.
Понимаю что нужен большой транс. Но насколько большой?

Сергей
13. Aug. 2014 в 14:18

Добрый день Алишер!
Подойдет от старого цветного телевизора Советского производства, например «Электрон».
В таких телевизорах использовались трансы мощностью от 180 до 320 Вт (ТС-180, ТС-240).
Вам придется смотать или домотать вторичную обмотку.
Удачи!

Paul
25. Aug. 2014 в 18:04

Доброго времени суток, Сергей! Интересует такой вопрос. Собран мост на Д246. Питание напрямую из сети. Каково будет выходное напряжение? (Около 300В?) нужен ли фильтр и какой? Охлаждение? Нагрузка рассчитывается в пределах 200Вт. Запитываться будет блок питания компьютера на вход (он используется в качестве конвертора)

Сергей
25. Aug. 2014 в 19:03

Добрый вечер Paul!
На нагрузке Вы получите 220В.
На счет фильтра не скажу, а вот конденсатор 20 — 50мкф 400В после моста поставьте.
Диоды устанавливайте на радиаторы и обязательно делайте охлаждение.

Станислав Васильевич.
17. Sep. 2014 в 11:47

Уважаемый Сергей.
Не думал, что в таком возрасте (68 лет) придётся заниматься электротехническим конструированием. Реальная жизнь украинского пенсионера поставила передо мной такую задачу, которую и придётся мне решить. Вопрос вот в чем. Для зарядки двух 12В гелевых аккумуляторов ( 4 и 7 A/h) нужно сконструировать и собрать зарядное устройство. Оригинальным не буду — устройство должно быть, по возможности, не дорогим и соответствовать необходимым параметрам режима зарядки этого типа АКБ. В общих чертах я понимаю, какие технические средства нужны для решения поставленной задачи, но расчитать режимы этого устройства не хватает знаний. Очень надеюсь найти помощь для себя на Вашем сайте, тем более, что этот материал будет полезным и для многих других домашних умельцев в решении подобных задач.
«Надёргал» по друзьям «стартовые» компоненты:
1.Понижающий тр-р достаточной конструктивной мощности: ленточный магнитопровод, обмотки — медь, I-220В Ø-1мм, II-20В Ø-2,5мм.
2.Электролитический конденсатор для фильтра выпрямителя 10000 мкФ х 50В.
3.Две измерительные головки для контроля величины тока и напряжения режимов зарядки: ± 50mA и 50mA.
У друзей надеюсь найти или докупить фольгированный текстолит для печатной платы и остальные недостающие компоненты конструкции.
Сергей, какие нужны выпрямительные диоды для моста, которые обеспечат ток заряда от 0 и до 1,5 — 2,0А (на всякий другой случай)? Подскажите, какая схема обеспечит плавную или ступенчатую независимую регулировку зарядного напряжения и силы тока?
Очень надеюсь на «ликбез» по этой теме.
С уважением Станислав Васильевич.

Сергей
18. Sep. 2014 в 12:37

Добрый день Станислав Васильевич!
Вы еще раз доказали, что радиолюбительством можно и нужно заниматься в любые годы.
Для выпрямления тока до 2А подойдут отечественные мощные диоды, например, КД202В,Г,Д,Е,Ж,К,Л,Н.
Специально для Вас нашел очень простую схему зарядного устройства для гелевых аккумуляторов.
Вместо токозадающих резисторов можно установить проволочный переменный мощностью не менее 25Вт с номиналом до 10 — 50 Ом.
Если возникнут вопросы — задавайте. С удовольствием отвечу.
Вот ссылка:

Станислав Васильевич.
19. Sep. 2014 в 00:28

Сергей, спасибо за помощь. Вы знаете, я уже «перецепался» в И-нете через эту схему, но из-за отсутствия соответствующих знаний, оценить по достоинству её не смог. Теперь, как говорится, положил её на рабочий стол. Теперь по схеме непосредственно. Сегодня принёс от товарища 6 шт. диодов КД213Г — он сказал, что их можно тоже использовать в этой схеме. Я поинтересовался в справочнике и у меня на их счет возникли сомнения. Смутило меня сравнительно большое на них падение напряжения. Ну, в мосте, при подводимом напряжении ≈20В, я думаю, это может быть и не существенный недостаток, а вот в позиции VD5? Сергей, как Вы считаете, этим параметром можно пренебречь или всё же нужно искать КД202В… и нужно ли ставить их на теплоотводы? Вопрос следующий. Какая должна быть площадь теплоотвода для микросхемы L200C, в расчете на максимально возможный ток? Вопросы, на мой взгляд, первостепенные, т.к. нужно компоновать элементы в корпус будущей конструкции и нужно определиться с габаритами её компонентов.
С ув. Ст.Вас.

Сергей
19. Sep. 2014 в 11:53

Станислав Васильевич!
1. Диоды и микросхему обязательно ставим на радиаторы.
2. Про площадь радиаторов сказать не могу, так как всегда делаю на глаз или использую стандартные. Если смотреть фотографии к статье, то радиатор, на котором закреплена микросхема, для тока нагрузки 2 — 3 Ампер подойдет. Но если ток использовать 3,5 — 7 Ампер, то радиатор надо брать больше раза в полтора.
2. Для тока нагрузки 2 — 3 Ампер можно установить по два диода на один такой радиатор (как в статье). Но если ток будет выше, то каждый диод устанавливаем на такой радиатор. Для VD5 придется использовать отдельный радиатор. Все диоды и микросхему устанавливаем через специальные прокладки (изолируем от корпуса).
3. Диоды можно использовать любые выпрямительные (импортные или отечественные) с прямым напряжением Uпр — 50 Вольт и более, и с прямым током Iпр не менее 5 Ампер. КД213 подойдут.

Станислав Васильевич.
19. Sep. 2014 в 21:47

Сергей, спасибо за своевременные и ценные рекомендации. Купил я сегодня комплект КД202В. С L200C, вероятно, будет заминка — пока никто из моего окружения о такой не слышал. Видимо, придётся искать в И-нете и выписывать. Интересно, 100% отечественный аналог этого стабилизатора существует или нет?
Ещё раз спасибо.
С ув. Ст.Вас.

Сергей
20. Sep. 2014 в 09:34

Станислав Васильевич!
Аналогов этой микросхемы я не нашел.
Есть схема простого зарядного устройства, которая работает как часы. По этой схеме я собрал, еще в 90-х, десятка четыре зарядных устройств, и еще не один хозяин не пожаловался.
А если ее дополнить автоматом, который будет отключать заряжаемый аккумулятор? И не надо никаких мудренных микросхем. Для своего экземпляра я так и сделал, вот только его у меня уже нет, и доработку я не сохранил. Если найду источник, то обязательно напишу.
Схему возьмите по этой ссылке в комментарии №27.
Удачи Вам!

Сергей
20. Sep. 2014 в 09:46

Станислав Васильевич!
Схема зарядного устройства: Радио 1992г, №12, стр.11.
Так как у меня уже было зарядное устройство, поэтому из этой схемы я взял только участок, который отвечает за автоматическую работу зарядного устройства.
Вы ее собирайте полностью и не пожалеете. Выйдет дешевле и надежнее.
Удачи!

Станислав Васильевич.
19. Sep. 2014 в 22:09

Для тех, кого заинтересовала тема этого зарядного, ссылка с форума, по практической реализации этой конструкции: http://forum.cxem.net/index.php?showtopic=122153

Станислав Васильевич
23. Sep. 2014 в 10:18

Сергей, спасибо за рекомендации — это важная для меня информация. Решил я прислушаться к своему первому, интуитивному решению и всё-таки собрать зарядное на L200C. Пока с ней сложности, в плане приобретения. Нашел я её в продаже, но, к сожалению, там есть ограничения по минимальной сумме заказа, который превышает в шесть раз стоимость самой микросхемы. Надежды не теряю — найду всё равно.
Сергей, у меня возник вопрос по теме: зачем устанавливать в каждое плечо моста по два диода «в параллель» для тока до 3А, если диоды КД202В пятиамперные?
С ув. Ст.Вас.

Сергей
23. Sep. 2014 в 14:47

Станислав Васильевич!
Чем больший ток проходит через p-n переход выпрямительного диода, тем переход сильнее греется. И если от него не отводить тепло, то переход перегреется и произойдет его пробой.
Для мощного выпрямительного диода ток 200 — 300mA не страшен — диод будет теплый. Но ток свыше 300mA обязательно приведет диод к перегреву и выходу из строя. Вопрос только во времени нагревания. Поэтому при питании мощного потребителя, выпрямительные диоды в источниках питания обязательно устанавливают на радиаторы.

Станислав Васильевич
23. Sep. 2014 в 15:23

Сергей, спасибо за науку. В мосте, диоды я установил на заводские радиаторы, около 60 см2 каждый, а VD5 — около 100 см2. Для микросхемы установил радиатор — около 470 см2. Как считаете, достаточно? Рабочее пространство корпуса будущей конструкции, при моей компоновке (… :grin:), практически всё занято. Осталось небольшое пространство на передней панели для установки головок приборов и органов управления.

Сергей
23. Sep. 2014 в 16:46

Станислав Васильевич!
Все нормально.
В свое время меня учили: лабораторный блок питания должен состоять из мощного трансформатора и радиаторов, а для лучшего охлаждения корпус должен состоять из одних дырочек ????

Анатолий Павлович
20. Jan. 2015 в 16:07

День добрый,Сергей.Спасибо за Вашу огромную работу.Лично у меня есть вопрос такой темы:вышел из строя стабилизированный источник питания 12 в.,советского пр-ва,промышленный.Схемы нет.Есть-ли смысл им заниматься?Спасибо за ответ.

Сергей
20. Jan. 2015 в 16:12

Добрый день Анатолий Павлович!
Советское — значит надежное и отличное. Это не китайское г..но.
Проверьте на исправность полупроводники и замените все электролиты.
Обязательно посмотрите предохранитель и питающий шнур.
Удачи!

антон
30. Jan. 2015 в 21:58

Сергей,добрый день! Прочитал статью, все в принципе доступно и понятно. Еще понятней. что вы то в этом деле вообще ас)) Можно вопросик из рабочей практики? На работе возникла проблема с диодным мостиком на тормоз электродвигателя 15 кВт. Первоначально он стоит там заводского изготовления. по параметрам. входное напряжение как 380, так и 220 можно, выходное 170 постоянки, от 1 до 5 А. Диодный мостик быстро выходит из строя, китайский судя по надписям на нем. схема вся залита каким то материалом. так что разборке не подлежит. Хотим собрать свой мостик. только вот специалистов по подборке диодов нет, вы могли бы поспособствовать в этом вопросе. какие диоды нужно поставить для соблюдения необходимых нам параметров. что еще необходимо включить в схему. Если будет время. или будет интересно помочь. заранее спасибо. буду ждать ответа. любого. не важно. может и сами разберемся, но для ускорения процесса хотелось бы помощи) заранее спасибо!

Сергей
31. Jan. 2015 в 11:24

Добрый день Антон!
Спасибо!
1. В первую надо разобраться почему вылетает диодный мост. Может катушка тормоза имеет короткозамкнутые витки и из-за этого потребляет больше тока, чем может дать диодный мост. А там кроме диодов ничего не стоит?
2. Если этот диодный мост состоит только из одних диодов, то можно использовать следующие (немного перестраховался):
Д233; Д247; КД206Б-В; КД203А-Д; КД210Б, Г. Одним словом, смотрите диоды с обратным напряжением Uобр не менеее 500В и прямым током Iпр не менее 10 Ампер.
Дидоы обязательно устанавливайте на радиаторы для отвода тепла.
Удачи!

Андрей
09. Feb. 2015 в 09:52

Здравствуйте уважаемый Сергей! На самодельном зарядном устройстве для автомобильных аккумуляторов в выпрямительном мосту сгорел Д242А (стоял без радиатора). Т.к. этот диод достать оказалось сложным, то посоветовали поставить BR1010. У него допустимый ток 10А. Нужен ли ему радиатор? Корпус пластиковый без металлической вставки, поэтому возник этот вопрос. Спасибо!

Андрей
09. Feb. 2015 в 09:57

…для 80. а откуда Вы взяли что Вам нужно в этот прибор диодный мост?Или у Вас имеется схема этого прибора?

Григорий
23. Mar. 2015 в 18:18

Здравствуйте Сергей! Как я понимаю с диодами вы общаетесь на ты, подскажите пожалуйста в такой ситуации, есть транс 220/12 более подробно ОСО — 0.25 — 0.1 УХЛ З, хочу его приспособить для своей автомобильной акустики в домашних условиях, никак не могу подобрать диоды, пробовал автомобильные диодные мосты типа бпв56-65-02 диоды греются очень сильно, а что касается проводов так на них просто изоляция плавится, так вот хотелось узнать какие диоды мне нужны что бы выпрямить ток с этого транса? Что касаемо нагрузки имеется 2 усилителя которые будут подключаться к этим 12В первый Calcell bst 1000.1 в 2Ом режиме на 800Вт и 2 усилитель Calcell bst 100.4 2 канала 2Ом режиме и нагрузкой 100Вт и оставшиесы 2 канала 6Ом и нагрузкой

40Вт.
P.S. Догадываюсь без рассчетов, что на максимум мощности не хватит конечно транса, но увы что есть из того и лепим

Сергей
23. Mar. 2015 в 19:34

Добрый вечер Григорий!
1. Помимо подбора диодов их нужно хорошо охлаждать. Нужны мощные радиаторы, и возможно, придется дополнительно поставить кулер.
2. Для первого усилителя (800 Вт) используйте диоды на напряжение (Uобр) не менее 50 Вольт и ток (Iпр) не менее 30 Ампер. Например, из серии КД2997 А-В.
3. Для усилителя на 100 Вт подойдут диоды на напряжение не менее 50В и ток не менее 15А.
4. Для остальных усилителей подойдут на напряжение не менее 50В и ток не менее 10А. Например, из серии Д245, Д242.
5. Но я бы Вам посоветовал делать блоки питания именно для УНЧ, так как при их конструировании встречается много ньюансов.
6. Почитайте здесь:

1. http://radiostorage.net/?area=news/522
2. http://fcenter.ru/online/hardarticles/tower/28690

Григорий
23. Mar. 2015 в 22:22

Благодарю за информацию, есть еще одно но, имеется акб 95 A\h я собираюсь использовать эту акб как фильтр, и с нее уже черпать полностью все питание на усилители, и усилителя всего 2-а, на втором усилителе просто 4 канала

Григорий
23. Mar. 2015 в 22:42

Вот нашел такой диод КД2991А он будет в самый раз получается ?

Cергей!благодарю за статью!
Подскажите пожалуйста.Читая коменты к вашей статье промелькнуло словосочетание «холостой ход диода».Подскажите пожалуйста что это и чем характеризуется?)
Cпасибо!

Сергей
11. May. 2016 в 20:34

Добрый вечер, Владислав!
По этому вопросу ничего ответить не могу, потому как такого режима и понятия «холостой ход диода» не слышал и не знаю.
Есть, например, холостой ход трансформатора.

Владислав
11. May. 2016 в 21:03

и еще Сергей…
просмотрел ваше в конце статьи
в конце вы рассказываете как подключить диодный мост что б подключать нагрузку не учитывая полярности!Так вот.я не очень понял как получилось сее явление!Попробылал сам покумекать но тестер показывал полярность…(

Владислав
11. May. 2016 в 21:04

Сергей простите я видать не правильно понял

Сергей
11. May. 2016 в 21:20

Владислав!
Выход диодного моста («+» и «-«) к нагрузке и оставляете, а входную часть моста можете подключать без соблюдения полярности.

Владислав
11. May. 2016 в 21:33

Сергей спасибо!
последний вопрос созрел.Если случайно на диодны мост подать переменное напряжение не на те выводы(на «+» и «-«).Что произойдет?
PS:Извените за не грамотность и назойливость.Спасибо за труд!

Сергей
11. May. 2016 в 21:38

Владислав!
Ничего не будет. Диодный мост не будет работать.

Карим
12. May. 2016 в 15:30

Доброго времени. Собрал по схеме блок диодного моста. Подаю переменный ток, а на выходе совершенно не те значения какие хотелось бы видеть. В чём причина. Подскажите. Схема на радиаторах для пуско зарядного устройства.

Сергей
12. May. 2016 в 16:44

Добрый вечер, Карим!
Причин две: или неправильно собрали, или в мосту есть неисправные диоды.

Алексей
23. May. 2016 в 06:03

Доброго дня! Очень надеюсь на Вашу помощь. Нужна марка или хотя бы характеристики диода для моста к двигателю 12 В, 19 А. Заранее благодарен. С уважением Алексей С.

Сергей
23. May. 2016 в 08:52

Здравствуйте, Алексей!
http://www.chipdip.ru/product/mb2505/
http://rekshop.ru/product/3447/2-30/292/index.php

Ник
30. May. 2016 в 14:00

Добрый день, собрал преобразователь на 380 вольт 3 кв. с 6 преобразователей по 63 вольта, соединённых последовательно, для платы китайского синуса, тестирую сам преобразователь, пока без подключения платы синуса.
Не могу решить проблему выхода из строя диодов выходного моста 380 вольт, через разное время, может работать 5 минут или несколько часов.
Хаотично, может с нагрузкой, может на холостом ходу, пробивается один диод и преобразователь уходит в защиту.
Диоды ставил разные и 600 и 1200 вольт, результат один.
В чём может быть проблема, как защитить мост?

Сергей
30. May. 2016 в 19:51

Добрый вечер. Ник!
В этом я Вам не советчик, но думаю, что дело не в мосту, а в преобразователе, с которого напряжение поступает на мост.

Ник
30. May. 2016 в 20:50

Ведь есть-же способы защиты диодов, к примеру шотки, ставят паралельно диоду конденсатор…

Главная

Двухполупериодные схемы выпрямления. Проверка исправности диодов.

Самая простая двух-полупериодная схема выпрямления переменного тока получается из двух однополупериодных схем.   

    Вторичная обмотка трансформатора состоит из двух одинаковых обмоток II и III, каждая из которых выдает нужное переменное напряжение Uвых.

Через диоды проходит только положительная полуволна синусоидального переменного тока.

   Работает поочередно или обмотка II и диод VD1, или обмотка III и диод VD2. Средняя величина тока проходящего через каждую обмотку и диод, в двухполупериодном выпрямителе, равна половине выходного тока выпрямителя. В этом случае обмотки можно мотать проводом с вдвое меньшим сечением и применять диоды с меньшим допустимым током.

   Такие схемы двухполупериодного выпрямления предпочтительны тогда, когда на выходе выпрямителя нужно получить большой ток (5 — 10 ампер и более) при небольших напряжениях (5 – 20 вольт).

    Желательно применять германиевые диоды (на них меньше падение напряжения, чем на кремниевых диодах) они меньше греются. Мощные диоды, при больших токах нагрузки, нужно обязательно ставить на радиатор.

    При таком способе включения, оба диода можно ставить на один радиатор, так как аноды (плюсы) их имеют вывод на корпус, под гайку. Конструктивно это очень удобно. Два диода и радиатор составляют одну конструкцию и ее ставят на одну изолирующую подставку.

    Форма выходного напряжения двухполупериодного выпрямителя представляет собой пульсирующее напряжение: полусинусоиды положительной и, перевернутой вверх, полусинусоиды отрицательной.

   На рисунках приведены варианты таких схем получения, на выходе выпрямителя, выходного напряжения положительной (рис. 1) или отрицательной (рис. 2) полярности относительно корпуса.

   Достоинства такой схемы двухполупериодного выпрямления против одно полупериодной схемы:

— трансформатор работает без токов подмагничивания;

— частота пульсаций на выходе выпрямителя f = 100 герц;

 — коэффициент пульсаций существенно меньше.

Недостатки такой схемы:

   — обратное напряжение на каждом диоде превышает выходное напряжение выпрямителя Uвых. в два раза (напряжение обоих обмоток складывается).

   В случае, если нет возможности достать диоды на рассчитываемый ток, можно включать их параллельно по два, а то и по три в каждом плече, как на рисунке 3.

    В этой схеме все диоды можно ставить на один радиатор, без изоляционных прокладок. Резисторы ставятся для того, чтобы уравнять внутренние «тепловые» сопротивления диодов.

    Резисторы должны быть равны между собой и иметь величину соответствующую динамическому сопротивлению диода — от 0,2 до 1 Ом, и мощность 1 ватт и более.

    Недостаток схемы:  – большая потеря мощности на резисторах.

   Разберем на примере применение данных схем.

Пусть нам нужно построить выпрямитель на напряжение 12 вольт и номинальный ток до 15 ампер.

    Рассмотрим сначала схему на рис. 1. Каждая вторичная обмотка трансформатора (обмотки II и III) должна быть рассчитана на переменное напряжение 13 – 14 вольт, с учетом падения напряжения на самой обмотке и самом сопротивлении диода. 

Эти обмотки включаются последовательно – конец обмотки II с началом обмотки III. Средняя точка – общий, минусовой вывод. Два диода соединенные анодами вместе – это плюсовой вывод.

    Выходной ток двухполупериодного выпрямителя состоит из двух полуволн. Каждая из полуволн, за один период проходит сначала по одной половинке и диоду, затем по второй и диоду и имеет величину по 15 ампер. После диодов они сливаются вместе и имеют во времени форму пульсирующего напряжения.

    В каждой паре (обмотка и диод) ток, в течении одного периода, половину периода идет, половину периода не идет. Электрическая мощность, проходящая по каждой паре (обмотка — диод) в течение периода, равна половине общей мощности за это время. А следовательно, средний ток через каждую пару (обмотка — диод) равен, как бы, половине общего тока.

    Сечение провода вторичных обмоток и максимально допустимый ток диодов так же подбирается из этого расчета.

    Из этого следует, что в нашем примере сечение провода вторичных обмоток может быть рассчитано на ток в 7,5 ампер, то есть в два раза меньше. Диоды подбираются на ток до 10 ампер (всегда берутся с запасом), а не 7,5 ампер.

    Те же самые рекомендации по сечению провода относятся к схеме на рис. 2 и рис.3.

   Пример на схеме рис.3 относится к случаю, когда у нас нет в наличии диодов рассчитанных на ток 10 ампер, а есть диоды на 5 ампер. В этом случае ставим 4 диода: в «плечо» по два диода в параллель.Через каждый диод будет протекать ток  15 : 4 = 3,75 ампера.

    Определим величину омического сопротивления резисторов R1 – R4. Падение напряжения на диоде, при протекании через него максимального тока, равно около Uд = 1,0 вольта. Его динамическое сопротивление при токе I = 3,75 ампер будет примерно равно:

R = Uд : I = 1,0 : 3,75 = 0,266 Ом.

 Сопротивление каждого из резисторов R1 – R4 должно быть 1 – 2 Uд = 0,26 – 0,5 Ома.R1 – R4 д

При резисторе R = (0,26 — 0,5) Ома падение напряжения на нем будет:

   U = R х I = (0,26 — 0,5) х 3,75 = от 0,975 до 1,875 вольта.

    Электрическая мощность выделяемая на каждом резисторе равна:

   P = I х U = 3,75 (0,95 – 1,875) = от 3,56 до 7,03 ватта.

Такие резисторы изготавливают из толстого высокоомного провода, рассчитанного на ток 3,75 ампер и сильное выделение тепла.

   Это довольно существенная потеря мощности на резисторах.

 Такова расплата за использование не соответствующих току диодов.

     Если же не ставить эти уравнительные резисторы, одни диоды будут работать с перегрузкой и сильно греться (тепловой пробой), другие будут работать с малыми токами.

Основным свойством диода является односторонняя проводимость тока. Ток через диод возникает только при положительном потенциале на аноде относительно катода. При обратной полярности ток через диод практически равен нулю.

    Приборы, имеющие одностороннюю проводимость, называются электрическими вентилями. Сопротивление вентиля зависит от величины и знака приложенного напряжения. У идеального вентиля при одном (прямом) знаке напряжения сопротивление равно нулю, а при другом (обратном) — бесконечности. 

Проверка исправности полупроводникового диода

     Для проверки исправности полупроводникового диода включаем цифровой мультиметр в режим измерения сопротивления на предел, отмеченный значком (). Данный режим предназначен для тестирования P-N переходов. Его особенностью является то, что индицируемое значение сопротивления на этом пределе численно равно прямому напряжению на переходе в милливольтах.

    Далее подключать щупы к выводам диода. 

 Рис.1

    При этом у исправного диода сопротивление в прямом смещении, когда плюсовой щуп омметра подключен к аноду диода (как на Рис.1), должно быть значительно меньше сопротивления в обратном смещении, когда плюсовой щуп омметра подключен к катоду диода.

    Если сопротивления диода в прямом и обратном смещениях близки к нулю, диод неис-правен , неисправность — пробой.

    Если сопротивления диода в прямом и обратном смещениях бесконечно большие, диод неисправен , неисправность — обрыв .

    Если при замере обратного сопротивления стрелка прибора не устанавливается твердо, а все время «плавает», диод неисправен, неисправность — увеличение тока утечки .

    Полярность щупов мультиметра, подключенного при измерениях в прямом направлении укажет положение анода и катода. Красный щуп («+») в этом случае будет подключен к аноду диода, чёрный («—») — к катоду. Численные значения прямого напряжения на переходе равны:

                               • 200 – 400 мВ для германиевых диодов.

                               • 500 – 800 мВ для кремниевых диодов;

    Во избежание прогрева при измерениях не следует держать диод за корпус.

 

    Если вы пытаетесь определить исправность диода не вапаивая его из схемы, следует учитывать, что результаты измерений будут искажены из-за шунтирующего действия других элементов схемы, включённых между анодом и катодом диода. Поэтому, для однозначного определения исправности диода (кстати, это справедливо и для других элементов), необходимо одну ножку диода от схемы таки отсоединить (отпаять).

      Если вы обнаружили неисправный диод в схеме, его нужо заменить. На корпусе неисправного диода необходимо считать его марку, и подобрать точно такой же. Если вы не смогли найти для замены вышедшего из строя такой же марки, можно подобрать его аналог — другой диод, по своим параметрам не хуже вышедшего из строя.

      Для принятия технически грамотного решения при подборе аналога необходимо воспользоваться справочной информацией (даташитом), который легко найти, вбив в любой поисковик марку диода. По каким же параметрам следует подбирать аналог? А вот по таким:

 Основные параметры диодов

      Для выпрямительных диодов наибольшее значение имеют следующие параметры:

Максимально допустимый прямой ток IПР.МАКС — определяет максимальный ток нагрузки, который диоды смогут выдержать. Превышение IПР.МАКС. приводит к тепловому пробою и повреждению диода;

Максимально допустимое обратное напряжение UОБР.МАКС. – это наибольшее обратное напряжение, которое в течение длительного времени может быть приложено к диоду, не вызывая изменение его параметров. Оно должно быть как минимум в два раза больше рабочего напряжения.

​     Для диодов, работающих на высоких частотах важен такой параметр как ёмкость PN перехода, так как с увеличением частоты сопротивление этой ёмкости уменьшается и диод теряет своё основное свойство — одностороннюю проводимость.  

Для стабилитронов помимо перечисленных важны: напряжение стабилизации UСТ. и максимально допустимый постоянный ток стабилизации IСТ. МАКС..

    Для варикапов важен диапазон изменения ёмкости и соответствующий ему диапазон изменения обратного напряжения. 

Подбор блоков питания для светодиодной ленты.

Подбор блоков питания для светодиодной ленты.

Общие вопросы выбора блока питания

Для правильного подбора блока питания (БП) для системы светодиодной подсветки необходимо знать параметры подключаемой светодиодной ленты и параметры предлагаемых блоков питания.

Первый параметр ленты, влияющий на выбор БП – напряжение питания ленты. Чаще всего это 12 или 24 вольта. На какое напряжение рассчитана лента, на такое же напряжение выбирается и блок питания.

Второй параметр ленты, требующийся нам для расчета блока питания – потребляемая мощность на 1 метр ленты. Этот параметр обязательно приводится добросовестным производителем в характеристиках ленты и обычно обозначается на упаковке ленты. Мощность светодиодных лент, имеющихся в нашем ассортименте, варьируется в диапазоне от 4.2 до 31 Вт/м. Обычно, чем выше потребляемая мощность ленты, тем она ярче светит. Правда, тут вносит неоднозначность такой показатель как КПД, но на приводимый расчет блока питания он не влияет, поэтому принимать во внимание сейчас мы его не будем.

Следующий показатель – длина подключаемой к БП ленты. Тут все просто. Длина – есть длина. Измеряется в метрах.

С лентой разобрались, теперь разбираемся с блоками питания. Основные характеристики БП – выходное напряжение, максимально допустимый ток, который может длительное время отдавать блок питания в нагрузку, и выходная мощность блока питания.

С выходным напряжением все просто. Лента 12-ти вольтовая, и блок питания нужен на 12 вольт, лента на 24 вольта – блок питания берем на 24 вольта.

Следующий параметр — максимальный ток, отдаваемый блоком питания – параметр очень важный, но в стандартных расчетах для систем со светодиодной лентой используется редко. Хотя, зная его всегда можно определить выходную мощность блока питания. Нужно просто перемножить выходное напряжение в вольтах на максимальный ток в амперах и получим мощность в ваттах. Например, блок питания с выходным напряжением 12 вольт и максимальным током 5 ампер имеет выходную мощность 60 ватт.

А выходная мощность блока питания – это как раз тот параметр, который нужен для наших расчетов.

 

Для наглядности, давайте рассмотрим расчет требуемого БП на примере.

 

1.     Имеем комнату со сторонами 5х4 м. Хотим расположить ленту за карнизом по периметру комнаты. Длина периметра в таком случае составит 18 м. Соответственно, такой же длины у нас будет и лента.

2.     Выбираем ленту не самую слабую, но и не самую яркую, например, ленту  с артикулом 010346, модель RT 2-5000 24V Warm 2x (3528, 600 LED, LUX).

3.     Из обозначения видно, что это лента длиной 5 метров, с питанием 24 вольта, теплого белого цвета, двойной плотности (но не двухрядная), светодиоды 3528 (размер SMD корпуса светодиода 3.5х2.8мм), 600 светодиодов на 5 метров (или 120 светодиодов на метр).

4.     Из характеристик, имеющихся на сайте или указанных на упаковке, узнаем, что потребляемая мощность этой ленты – 48 ватт на 5 метров (9.6 Вт/м)

5.     Умножаем длину ленты на потребляемую мощность 18*9.6 = 172.8 Вт.

6.     Добавляем минимум 10-ти процентный запас по мощности, получаем 182.8 Вт.

7.     Выбираем ближайший по мощности блок питания с округлением в большую сторону. Это блок питания мощностью 200 Ватт с выходным напряжением 24 вольта (как мы помним лента у нас с питанием 24 вольта).

8.     Смотрим на сайте габариты блока питания. Артикул 013138, модель ARPV-24200 (24V, 8.3A, 200W) — 238x130x60 мм.

9.     Далее возможны варианты:

a)  нормально, габариты устраивают  – оставляем как есть;

b)  ого! куда же я его такой здоровый дену? – делим ленту на два участка, выбираем два блока питания меньшего размера и, соответственно, меньшей мощности — по 100 ватт каждый — и подключаем к каждому блоку питания по 9 метров ленты;

c)  опять не помещается — делим ленту на четыре фрагмента, ставим четыре блока питания по 50 ватт.

 

Удобнее всего монтировать оборудование, когда один блок питания устанавливается на каждые 5 или 10 метров ленты.

В рассмотренном примере мы использовали герметичный блок питания. Вы можете спросить, зачем в обычной комнате ставить герметичный блок. Ведь есть же блоки в защитном кожухе, они дешевле. Да, есть. Да, дешевле. Но они незащищены не только от влаги, но и от пыли, от попадания в них мелких предметов, домашних «животных», наконец. Все это неблагоприятно сказывается на надежности системы в целом. Кроме того, на сегодняшний момент все блоки питания для светодиодной ленты это импульсные преобразователи напряжения. Поэтому от открытых блоков питания, как бы качественно они не были сделаны, в полной тишине может быть слышен слабый «комариный» писк. Правда блоки питания в защитном кожухе бывают большей мощности, чем герметичные блоки, но и здесь есть свои подводные камни. Негерметичные блоки с мощностью более 200 ватт требуют принудительного охлаждения и снабжаются встроенными вентиляторами. Как гудит куллер системного блока компьютера у Вас под столом, слышали? Хочется Вам по ночам, при включении подсветки слышать аналогичное жужжание? В общем, делайте свой выбор.

И еще одна важная рекомендация. Монтаж блоков питания необходимо осуществлять таким образом, чтобы обеспечить циркуляцию воздуха для охлаждения блоков, а также предусмотреть возможность доступа к БП для их обслуживания или замены. Надежность применяемых блоков питания достаточно высока, но в нашей реальной жизни не исключены случаи, при которых в сети может появиться опасное для БП напряжение или пульсации, приводящие к выходу их из строя.

 

Особенности выбора блока питания для системы с регулировкой яркости или системы с многоцветной лентой.

Если в результате описанного выше расчета получилось, что мы вполне обходимся одним блоком питания и размер его нас устраивает, то никаких особенность в подборе блока для системы подсветки с управлением лентой нет.  Дальше эту статью можно не читать.

Во всех остальных случаях, нужно решить еще одну задачу. Задача заключается в следующем. Если мы хотим управлять лентой – будь то изменение яркости или изменение цвета – мы должны установить между блоком питания и лентой соответствующее устройство управления – диммер или RGB контроллер. Следовательно, если мы делим мощность на два блока питания, то должны поставить два устройства управления. Делим на четыре блока, должны поставить четыре устройства. И т.д. И все это должно срабатывать одновременно, от одного регулятора или от одного пульта. Но вопросы синхронизации – это отдельная тема и сейчас она нас не интересует. Сейчас мы занимаемся электропитанием. Можно, конечно, оставить все как есть, и поставить на каждый блок питания по отдельной управляющей коробочке, но наша цель (точнее, Ваша цель) уменьшить количество коробочек и дополнительных проводков в системе (а соответственно, уменьшить стоимость оборудования и монтажных работ).

Если мы используем 24-х вольтовую ленту, то можно прибегнуть к одной хитрости. Мы можем взять два одинаковых блока питания на напряжение 12 вольт, соединить их последовательно и получить на выходе такой системы напряжение 24 вольта и удвоенную мощность. Схема подобного соединения приведена на рисунке.

  

 

При таком включении необходимо учесть особенности конструкции блоков питания. Некоторые БП выполнены таким образом, что их металлический корпус соединен с минусовым выходом. При использовании подобных блоков в рассматриваемой схеме требуется изолировать корпуса БП друг от друга и от любых металлических поверхностей.

Некоторые «умельцы» предлагают для увеличения мощности соединять выходы блоков питания параллельно. Подавляющее большинство БП не допускают такого соединения. Это связанно с тем, что двух идеальных блоков питания с абсолютно одинаковыми выходными напряжениями не бывает. Как бы ни старался производитель, но хоть на сотые доли вольта оно будет отличаться. Напряжение на выходе блока стабилизируется специальной электронной схемой, которая  постоянно следит за выходным напряжением и в случае его отклонения от нормы, старается вернуть его в заданный диапазон. В случае соединения в параллель двух блоков  с разными напряжениями, каждый из них начнет «перетягивать одеяло» на себя. Рано или поздно это закончится выходом БП из строя. Кроме того, в момент включения такой системы один блок может мешать запуститься другому. В результате, могут появиться периодические моргания ленты при включении подсветки. Ради справедливости, следует заметить, что существуют блоки питания, допускающие параллельное соединение, но это отдельный, довольно редко встречающийся класс. Возможность такого соединения обязательно указывается в документации на блок питания.

ТОВАРЫ СВЯЗАННЫЕ СО СТАТЬЕЙ

    

12 В, 10 А диоды | Продукты и поставщики

  • Измерители / Тест диодов / Тест батареи

    Оснащен большими, легко читаемыми аналоговыми датчиками: тестер диодов 3-0-3 ампер, полевой амперметр 10-0-10, счетчик электронного регулятора 0-40 вольт для устройств 6, 12 и 24 вольт, измеритель 10-20-50 вольт, 50-150-500-1500Амперметр…

  • Измерители / Тест диодов / Зажимы

    Оснащен большими, легко читаемыми аналоговыми датчиками: тестер диодов 3-0-3 ампер, полевой амперметр 10-0-10, счетчик электронного регулятора 0-40 вольт для устройств 6, 12 и 24 вольт, измеритель 10-20-50 вольт, 50-150-500-1500Амперметр…

  • Переключатели / Тест диодов

    Оснащен большими легко читаемыми аналоговыми датчиками: тестер диодов 3-0-3 ампер, полевой амперметр 10-0-10, счетчик электронного регулятора 0-40 вольт для блоков 6, 12 и 24 вольт, измеритель 10-20-50 вольт, 50-150-500-1500Амперметр…

  • Тестеры / Аналоговые / Вольтметры / Durst

    Оснащен большими, легко читаемыми аналоговыми датчиками: тестер диодов 3-0-3 ампер, полевой амперметр 10-0-10, счетчик электронного регулятора 0-40 вольт для устройств 6, 12 и 24 вольт, измеритель 10-20-50 вольт, 50-150-500-1500Амперметр…

  • Регуляторы / Durst

    Оснащен большими, легко читаемыми аналоговыми датчиками: тестер диодов 3-0-3 ампер, полевой амперметр 10-0-10, счетчик электронного регулятора 0-40 вольт для устройств 6, 12 и 24 вольт, измеритель 10-20-50 вольт, 50-150-500-1500Амперметр…

  • Аналитическая системная динамика

    Is = 10-12 ампер, тепловое напряжение (1 / α) = 25 × 10-3 вольт, а vd напряжение на диоде.

  • Покупки в инструментах для механики — Big Bruin

    … Селекторный переключатель: подзарядка для мотоциклов, снегоходов, вездеходов, газонных и садовых тракторов и большинства других приложений для зарядки малых двигателей; 10-амперный непрерывный заряд для автомобилей… техническое обслуживание и обычные 12-вольтные батареи. Твердотельные кремниевые диоды для максимальной производительности…

  • AIAA Journal> Эксперименты с плазменным ускорителем электронного циклотронного резонанса

    (См. Рис. 2 для этого и последующих описаний) Приблизительно 10 ампер при нескольких вольтах требуется для эта нить накала … эти датчики выпрямляются кристаллическими диодами и затем отображаются… калориметр состоит из 12 8 г, 3 1…

  • Простой влажный коллектор дождя

    … 1 транзистор BC327 4 переключающих диода IN4 148 1 x 220 пФ 16 ​​В… 1 реле DPDT 5 А, катушка 6 В, 40 ф ~… 1 линейный разъем Utilux H9309 / 10 1… для пределов) Приводной двигатель заслонки 1 × 12 В 1…

  • http: // dspace.mit.edu/bitstream/handle/1721.1/41124/AI_WP_098.pdf?sequence=4

    Усилитель размещен в- вместе с диодом и использует операционный усилитель Burr-Brown 3521L с полевым транзистором для преобразователя тока в напряжение и вход Burr-Brown 3522L с полевым транзистором. операционный усилитель для дальнейшего усиления в …. раз. Считывается 10-вольтовым, 12-битным аналого-цифровым преобразователем.

  • 10A Мостовые выпрямительные диоды | Ньюарк

    GBU1010

    04AC8156

    Мостовой выпрямительный диод, однофазный, 1 кВ, 10 А, SIP, 1 В, 4 контакта

    MULTICOMP PRO

    Каждый

    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 1кВ 10А ГЛОТОК 4 контакта 150 ° С
    GBJ1010-F

    66W0912

    Мостовой выпрямительный диод, однофазный, 1 кВ, 10 А, SIP, 1.1 В, 4 контакта

    MULTICOMP PRO

    Каждый

    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 1кВ 10А ГЛОТОК 1.1В 4 контакта 150 ° С
    GBU1008

    04AC8155

    Мостовой выпрямительный диод, однофазный, 800 В, 10 А, SIP, 1 В, 4 контакта

    MULTICOMP PRO

    Каждый

    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 800 В 10А ГЛОТОК 4 контакта 150 ° С
    GBJ1006F

    16AC3255

    Мостовой выпрямительный диод, однофазный, 600 В, 10 А, SIP, 950 мВ, 4 контакта

    MULTICOMP PRO

    Каждый

    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 600 В 10А ГЛОТОК 950 мВ 4 контакта 150 ° С
    MP1004G

    04AC8654

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 400V, TH

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 400 В 10А Через отверстие 1.1В 4 контакта 150 ° С Серия MP1
    GBU1004 +

    04AC8154

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 400 В, 10 А, SIP

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 400 В 10А ГЛОТОК 1.1В 4 контакта 150 ° С GBU1 серии
    4GBJ1006F

    16AC3604

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 10A, 600V, SIP

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 600 В 10А ГЛОТОК 950 мВ 4 контакта 150 ° С
    GBU1006 C2

    99AC3971

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 800V, 10A, SIP

    ТАЙВАНЬ ПОЛУПРОВОДНИК

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 800 В 10А ГЛОТОК 1.1В 4 контакта 150 ° С GBU1x серии
    MP10005G

    04AC8653

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 50V, TH

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 50 В 10А Через отверстие 1.1В 4 контакта 150 ° С Серия MP1
    GBU1006F

    16AC3267

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 10A, 600V, SIP

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 600 В 10А ГЛОТОК 950 мВ 4 контакта 150 ° С
    GBU1006 C2G

    83Ah3299

    МОСТ-ВЫПРЯМИТЕЛЬ, 800 В, 10 А, СООТВЕТСТВУЕТ SIP ROHS: ДА

    ТАЙВАНЬ ПОЛУПРОВОДНИК

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 800 В 10А ГЛОТОК 1.1В 4 контакта 150 ° С GBU1x серии
    MP1006G

    04AC8655

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 600V, TH

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 600 В 10А Через отверстие 1.1В 4 контакта 150 ° С Серия MP1
    GBJ1006U

    16AC3256

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 10A, 600V, SIP

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 600 В 10А ГЛОТОК 900 мВ 4 контакта 150 ° С
    GBU1007 C2G

    83Ah3300

    МОСТ-ВЫПРЯМИТЕЛЬ, 1КВ, 10А, СООТВЕТСТВУЕТ SIP ROHS: ДА

    ТАЙВАНЬ ПОЛУПРОВОДНИК

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 1кВ 10А ГЛОТОК 1.1В 4 контакта 150 ° С GBU1x серии
    GBU1007 C2

    99AC3972

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 1KV, 10A, SIP

    ТАЙВАНЬ ПОЛУПРОВОДНИК

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 1кВ 10А ГЛОТОК 1.1В 4 контакта 150 ° С GBU1x серии
    GBU1004 C2

    74AC6536

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 400 В, 10 А, SIP

    ТАЙВАНЬ ПОЛУПРОВОДНИК

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 400 В 10А ГЛОТОК 1.1В 4 контакта 150 ° С GBU1 серии
    MP1008G

    04AC8656

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 800V, TH

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 800 В 10А Через отверстие 1.1В 4 контакта 150 ° С Серия MP1
    GBU1006L

    16AC3268

    ДИОД, МОСТ ПРЯМОЙ, 1-PH, 10A, 600V, SIP

    MULTICOMP PRO

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 600 В 10А ГЛОТОК 920 мВ 4 контакта 150 ° С
    GBU1004 C2G

    54AJ2762

    МОСТ-ВЫПРЯМИТЕЛЬ, 400 В, 10 А, СООТВЕТСТВУЕТ SIP ROHS: ДА

    ТАЙВАНЬ ПОЛУПРОВОДНИК

    Каждый

    Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
    Запрещенный товар

    Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 1 Mult: 1

    Один этап 400 В 10А ГЛОТОК 1.1В 4 контакта 150 ° С GBU1 серии
    GBJ1006-F.

    60AC9752

    Мостовой выпрямительный диод, 600 В, 10 А, SIP, 1,05 В, 4 контакта

    DIODES INC.

    Расширенный диапазон

    Каждый

    Запрещенный товар

    Минимальный заказ 15 шт. Только кратные 15 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 15 Mult: 15

    600 В 10А ГЛОТОК 1.05V 4 контакта 150 ° С
    BR104

    19T8948

    Мостовой выпрямительный диод, однофазный, 400 В, 10 А, BR-10, 1,1 В, 4 контакта

    ГЕНЕЗИЧЕСКИЙ ПОЛУПРОВОДНИК

    Каждый

    Не подлежит отмене / возврату не подлежит
    Запрещенный товар

    Минимальный заказ 2000 шт. Только кратные 200 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 2000 Mult: 200

    Один этап 400 В 10А BR-10 1.1В 4 контакта 150 ° С
    BR106

    19T8949

    Мостовой выпрямительный диод, однофазный, 600 В, 10 А, BR-10, 1,1 В, 4 контакта

    ГЕНЕЗИЧЕСКИЙ ПОЛУПРОВОДНИК

    Каждый

    Не подлежит отмене / возврату не подлежит
    Запрещенный товар

    Минимальный заказ 2000 шт. Только кратные 200 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 2000 Mult: 200

    Один этап 600 В 10А BR-10 1.1В 4 контакта 150 ° С
    BR102

    19T8947

    Мостовой выпрямительный диод, однофазный, 200 В, 10 А, BR-10, 1,1 В, 4 контакта

    ГЕНЕЗИЧЕСКИЙ ПОЛУПРОВОДНИК

    Каждый

    Не подлежит отмене / возврату не подлежит
    Запрещенный товар

    Минимальный заказ 2000 шт. Только кратные 200 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 2000 Mult: 200

    Один этап 200 В 10А BR-10 1.1В 4 контакта 150 ° С
    BR108

    19T8950

    Мостовой выпрямительный диод, однофазный, 800 В, 10 А, BR-10, 1,1 В, 4 контакта

    ГЕНЕЗИЧЕСКИЙ ПОЛУПРОВОДНИК

    Каждый

    Не подлежит отмене / возврату не подлежит
    Запрещенный товар

    Минимальный заказ 2000 шт. Только кратные 200 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 2000 Mult: 200

    Один этап 800 В 10А BR-10 1.1В 4 контакта 150 ° С
    KBU1010

    19T9443

    Мостовой выпрямительный диод, однофазный, 1 кВ, 10 А, SIP, 1,1 В, 4 контакта

    ГЕНЕЗИЧЕСКИЙ ПОЛУПРОВОДНИК

    Каждый

    Не подлежит отмене / возврату не подлежит
    Запрещенный товар

    Минимальный заказ 3200 шт. Только кратные 400 Пожалуйста, введите действительное количество

    Добавлять

    Мин .: 3200 Mult: 400

    Один этап 1кВ 10А ГЛОТОК 1.1В 4 контакта 150 ° С

    диод 12в 10а

    Судя по фотографиям зарядного устройства в Интернете, это либо 10a, либо…, либо Лучшее предложение. 7,45 австралийских долларов. Недавно просмотренные товары и избранные рекомендации, выберите отдел, в котором вы хотите выполнить поиск, Замена автомобильных выпрямителей генератора переменного тока, Замена автомобильного электрооборудования. Найдите это и многое другое на Jameco Electronics.Управление двигателем 12 В с 5 В Arduino и транзистором NPN в качестве переключателя управления скоростью: если вам нужно управлять двигателем постоянного тока, который превышает максимальный выход вашего микроконтроллера, следуйте этим инструкциям, и если у вас возникнут какие-либо вопросы по пути, я буду рад помощь. Я ищу диод, который может выдерживать 10А вперед при 12В. STPSC10h22B2-TR — 1200V, 10A, карбид кремния силовой диод Шоттки, STPSC10h22B2-TR, STMicroelectronics Состояние: Новое. Фактически они будут иметь чуть меньше энергии. Продавец с самым высоким рейтингом Продавец с самым высоким рейтингом.MBRF3045 30A 45V Солнечный диод SCHOTTKY MULTICOMP C Катодный ветер 12В 24В MBR3045. Стабилитрон 1Вт 1N4742 12В à§³ 5.00. Встроенный диод на 10 А, 50 В (12 В 14 В 24 В 36 В — 10 А, 10 А, 10 А — 12 14 24 36 50 В VOLT. Недавно просмотренные вами товары и избранные рекомендации, выберите отдел, в котором вы хотите искать, Замена электрического оборудования для автомобилей, Замена автомобилей Генераторные выпрямители Код продукта: 1068574. Go Tronic поставляет широкий спектр электронных устройств, интерфейсов, частей робототехники, одежды, одежды, камер и т.д.Возникла проблема с загрузкой этого меню прямо сейчас. Ook kunt u kiezen uit door het gat, поверхностный монтаж диод 12v 10a. Добавить в корзину. … 10SQ045 DIODE SCHOTTKY 45V 10A R-6 Упаковка из 10 штук. Информация о позиции. Зарядка постоянным током: аккумулятор 12 В обычно заряжается при 14,4 В или 2,40 В на элемент. Для использования радиопередатчиков в… Ни в одном из местных магазинов нет больше чем горстки 1N4004. Добавить в корзину. … Блок питания SMPS 12V 10A Импульсный блок питания для светодиодной ленты Hot AC 110-220V ৳ 650.00 ৳ 499.00. Совершенно новый. € 0,19 (вкл. Amazon.fr: pont de diode. В этом случае диод падает примерно на вольт, поэтому они будут немного тусклее, но не намного. Если вы хотите более высокий ток, замените трансформатор на 10 А и использовать диод 10A10. Светодиодный диод Montagedraad Motor Potmeter Printplaat Relais Schakelaar Signaallamp Soldeerbout Spoel Stekker Transformator Weerstand X-tal Zekering; Krachtstroom CEE Kabel … 10A, макс. 7,95 австралийских долларов. Лазерный контроллер может быть проблемой при загрузке? это меню прямо сейчас.2,61 канадского доллара. Из Китая + 5,88 канадских долларов за доставку. Винтовой клеммный блок. диод led ® oo eemet LED 12VDC … Макс.нагрузка 120 Вт / 10 A 150 Вт / 12,5 A 200 Вт / 16,67 A Класс 2 Сертифицирован Нет Нет Нет Выходное напряжение 12 В постоянного тока 12 В постоянного тока Совместимые с 12 В постоянного тока распределительные коробки * Распределительная коробка LO-PRO® (большая) DI-JBOX -LPL Meanwell ™ Распределительная коробка: DI-0940 Монтажные кронштейны (только для драйвера): DI-1733 Вот схема сильноточного источника питания 12 В / 13,8 В, 5 А, 10 А, 15 А, 20 А, 25 А и 30 А. voorwaartse охват: 1.1V. Членам Prime предоставляется БЕСПЛАТНАЯ доставка и эксклюзивный доступ к музыке, фильмам, телешоу, оригинальным аудиосериалам и книгам Kindle.MBR16100CT 16A 100V SCHOTTKY DIODE Multicomp Common Cathode Solar Wind 12V • Члены Prime получают БЕСПЛАТНУЮ доставку и эксклюзивный доступ к музыке, фильмам, телешоу, оригинальным аудиосериалам и книгам Kindle. sperstroom (25 °): 5 мкА, макс. (20 шт.) Выпрямительный диод MCIGICM 10A10, 10A 1000V R-6 Axial Electronic Silicâ € ¦ Jovana RistiÄ ‡ a 7, 18000 NiÅ¡, Srbija (018) 4520-455, 4522-814, 4522-965 (018) 4522-660 [email protected] Распродажа! Диоды, стабилитроны, трансформаторы, редукторы и т.д. nabijec 12v 10a • autonabijecka 12v 10a • motobaterie 12v 10ah • release 12v 10a • преобразователь 12v 10a • оригинальный LITEON DC 12V 5-7A Импульсный адаптер питания Подключите диод со стороны 12V Вспомогательное освещение на стороне 12 В фары.Diody led 12v на Allegro.pl — Zróżnicowany zbiór ofert, najlepsze ceny i promocje. Это зарядное устройство на 12 В с автоматическим отключением цепи после полной зарядки и обеспечивает высокий ток в 6 ампер, и его можно использовать для свинцово-кислотных аккумуляторов большого размера до 100 Ач. (20 шт.) Выпрямительный диод MCIGICM 10A10, 10 А, 1000 В, R-6, осевой электронный кремниевый диод, подавляющий диод, оптический стабилитрон (TAZ-диод), диод подавления переходных процессов (TVS-диод), генеемма, устранение превышающих допустимые размеры компонентов tegen te hoge Spanning Pulsen в дверной коробке invloeden van buitenaf zoals • Стабилитрон 1W 1N4742 12V количество.Вы видите это объявление, основываясь на релевантности продукта вашему поисковому запросу. Выпрямительный диод 50шт 1000V 10A Diode High Voltage Diodes 10A10 Rectifier Diode. Er zijn 345 12v 10a диодные выравниватели, исследованные в Азии. 7,88 австралийских долларов. Таким образом, фара по-прежнему будет получать питание, когда включены дополнительные огни. Ищете выпрямительный диод на 10А? Nous usedes des cookies et des outils similaires для фасилитатора vos achats, fournir nos services, для составления комментариев клиентов, использующих nos services afin de pouvoir apporter des améliorations, и для présenter des publicités, включая des publicités basées sur les center dâ € ™ intérêt .1N5819 40V 1A Диод Шоттки — упаковка из 15. 4 — 2 1 из 3 10A01-10A07 www.diodes.com Diodes Incorporated 10A01 — 10A07 ВЫПРЯМИТЕЛЬ Характеристики ABACD R-6 Dim Min Max A 25,40 â € ”B 8,60 9,10 C 1,20 1,30 D 8.60 9.10 Все размеры указаны в мм. Максимальные номинальные значения и электрические характеристики при TA = 25 ° C, если не указано иное. Высокий ток • Вы можете использовать готовый мостовой выпрямитель на 12 В 10 А • Зарядное устройство. После просмотра страниц с подробными сведениями о продукте перейдите сюда, чтобы найти простой способ вернуться к интересующим вас страницам.! Что покрывается: Список деталей и инструменты Определение положительного конца… Wejdź i znajdź to, czego szukasz! Сохраните этот поиск. Добавить в список желаний. К сожалению, я не могу нарисовать здесь схематическую диаграмму, но она будет выглядеть так, где R — это сборка светодиодной лампы, а «линия» на схематическом символе диода будет полосой на физическом диоде. 35 продано. Драйвер мощного лазерного диода HPLDD-10A-24V — это профессиональный драйвер, разработанный для мощных инфракрасных лазерных диодов. BOJACK 1N5349B 5 Вт, 12 В, диоды, стабилитрон мощности 1N5349, 5 Вт, 12 вольт… Бесплатная доставка.Или лучшее предложение. Бесплатная доставка. Количество: 0 в наличии / 620 проданных / Посмотреть отзывы. Товар в наличии и готов к отправке. На parle de ce que l’on appelle des effets стабилитрон или лавины для диодов Z, Qui Entraînent Un augmentation du Courant de Manière Brusque Dès Qu’une Voltage de blocage donnée est atteinte. SJOW 600V 3C # 18 SJOW 600V 3C # 18 Вторичные выводы Когда мы подключаем зарядное устройство к батарее, напряжение падает с 14,4 В до уровня напряжения, при котором батарея разряжается, и медленно повышается, в то время как ток, потребляемый от зарядного устройства, будет максимальным. (Максимальный ограниченный ток… Подходит для твердотельного сердечника до 12AWG.Вы видите это объявление, основываясь на релевантности продукта вашему поисковому запросу. Мой вопрос: могу ли я безопасно поставить односторонний диод в положительный вывод от зарядного устройства фургона к батарее, чтобы напряжение от зарядного устройства не достигало батареи, а напряжение от батареи достигало цепи 12 В прицепа, если сеть отключилась? Aussel 1000V 10A Gleichrichter Diode Axial Lead 10Amp Gleichrichter Diode 20 Stück für Solar Panel (Rectifier Diode-20PCS) 4,7 von 5 Sternen 98 7,99 € 7,99 € После просмотра страниц с подробными сведениями о продукте, посмотрите здесь, чтобы найти простой способ вернуться к интересующим вас страницам.Подключите два соединения A к одному источнику, а два соединения B — к другому источнику. Лучшие коробки для подписки — прямо к вашей двери, © 1996-2021, Amazon.com, Inc. или ее аффилированные лица. Encuentre los fabricantes de 12v 10a Diodo de alta calidad, proofedores de 12v 10a Diodo y productos 12v 10a Diodo al mejor Precio en Alibaba.com Tandis que la diode Z fonctionne dans le sens de blocage, elle fonctionne dans le sens de passcome diode обыкновенный. Dioda 12v Dioda 150 A Dioda 15a Dióda 1n Dioda 1n5402 Dióda 1n5408 Dioda 20a Dióda 6a Лучшие коробки для подписки — прямо к вашей двери, © 1996-2021, Amazon.com, Inc. или ее аффилированных лиц. En uit datasheet, foto 12v 10a диод.En подключения 12v 10a диода, защита пигмента от антионтаринга. … 4 оценки продукта — 10шт 1N4742A Стабилитрон, 12В, 1Вт, DO-41. 2355 результатов для диода 10а. Просмотрите более 30 000 продуктов, включая электронные компоненты, компьютерные продукты, электронные комплекты и проекты, робототехнику, блоки питания и многое другое. Подходит для твердого сердечника до 12AWG. e3 DS28010 Rev. Dioda 12v на Allegro.pl — ZróÅnicowany zbiór ofert, najlepsze ceny i promocje.Toshiba Satellite P200-10A (PSPB6E-02M01FGR) 12 В, 10 А, для подключения Biztosíték 10A, EW DJ10 A503, Hp 10, тонер, Hp 10, для тонера, 1P, B10A, 10, для Slb10a, XB, 10 / A, 10A. Мне это нужно, чтобы изолировать две цепи, обычно питаемые от независимых источников, когда я должен питать их от одного источника. Можно модулировать ток частотой до 50 кГц. Wejdź и znajdź to, czego szukasz! 90 продано. BOJACK 1N5349B 5 Вт, 12 В, силовые стабилитроны 1N5349, 5 Вт, 12 В, осевые диоды T-18 (упаковка из 30 шт.), Германиевый диод BOJACK 1N34A, 50 мА, 65 В, осевой 1N34A, 50 миллиампер, 65 В, электронные кремниевые диоды (упаковка из 25 штук), (20 шт.) ) Выпрямительный диод MCIGICM 10A10, осевые электронные кремниевые диоды R-6, 10 А, 1000 В, аксиальные блокирующие диоды Шоттки на 15 ампер AKOAK для панели солнечных батарей, 15SQ045 Шоттки (20 шт.), (Упаковка из 20 шт.) Выпрямительный диод Chanzon 10A10 6 10A, 1000 В Электронные кремниевые диоды на 10 ампер, 1000 вольт, Carviya 3 5 6 8 10 15 20-амперный штекерный разъем автомобильного прикуривателя / вспомогательной розетки 12 вольт с индикатором предохранительного диода (упаковка 10 А / 2), безболезненная работа 80111 Сменный диодный узел для панелей переключателей гоночных автомобилей , 20PCS 10A10 Выпрямительный диод 10A 1000V R-6 Осевой 10 Amp 1000 Volt, 5 шт., 40/30 AMP, 12 В постоянного тока, водонепроницаемое реле и жгут — сверхмощные луженые медные провода 12 AWG, 5-контактное SPDT автомобильное реле в стиле Bosch (упаковка из 20 шт.) Chanzon 15SQ045 Байпасный выпрямитель с барьером Шоттки Bl стыковочные диоды 15A 45V R-6 Axial 15 Amp 45 Volt для панели солнечных батарей, источник питания 12V 10 Amp, трансформатор FAVOLCANO DC 10A 120W, 5.Выходной разъем постоянного тока 5×2,1 мм 5,5×2,5 мм для светодиодных лент 3528 5050 5630, 3D-принтер, светодиодный драйвер, ноутбук, камеры видеонаблюдения, (упаковка из 20 штук) Chanzon 1N5349B 1N5349 Силовой стабилитрон 5 Вт 12 В T-18 (CASE17-02 ) Осевые диоды 5 Вт 12 В, Padarsey 110/220 В до 12 В постоянного тока 10 А 120 Вт Переключатель источника питания Трансформатор питания для системы безопасности камеры видеонаблюдения Светодиодная лента (12 В, 10 А), (упаковка из 10 шт.) Chanzon 20SQ045 Выпрямительные диоды с барьером Шоттки 20 А 45 В R -6 осевых 20 А 45 В, BestTong 50 А, 1000 В, однофазный алюминиевый радиатор, диодный мостовой выпрямитель QL50A, Roadmaster 792 Hy-Power Diode, (2 шт. В упаковке), набор из 30 силовых диодов 1 А, 3 А, 6 А, цифровой мультиметр AstroAI с Ом вольт Тестер напряжения усилителя и диода Тест на целостность цепи (двойной предохранитель для защиты от ожогов), выпрямительный диод BOJACK 1N4001, 1 А, 50 В DO-41 Axial 4001, 1 А, 50 В, электронные кремниевые диоды (упаковка из 125 штук).BOJACK 1N5349B, 5 Вт, 12 В, силовые стабилитроны 1N5349, 5 Вт, 12 В, осевые диоды T-18 (упаковка из 30 шт.), Германиевый диод BOJACK 1N34A, 50 мА, 65 В, осевой 1N34A, 50 миллиампер, 65 В, электронные кремниевые диоды (упаковка из 25 штук), (20 шт.) ) Выпрямительный диод MCIGICM 10A10, осевые электронные кремниевые диоды R-6, 10 А, 1000 В, аксиальные блокирующие диоды Шоттки на 15 ампер AKOAK для панели солнечных элементов, 15SQ045 Шоттки (20 шт.), (Упаковка из 20 шт.) Выпрямительный диод Chanzon 10A10 6 10A, 1000 В Электронные кремниевые диоды на 10 А, 1000 В, (упаковка из 20 штук) Chanzon 1N5349B 1N5349 Силовой стабилитрон 5 Вт, 12 В, T-18 (CASE17-02) Осевые диоды, 5 Вт, 12 В, Carviya 3 5 6 8 10 15 20 А, мужской автомобильный прикуриватель / Вспомогательный штекерный разъем 12 В с индикатором предохранительного диода (упаковка 10 А / 2), безболезненная работа 80111 Сменный диодный узел для панелей переключателей гоночных автомобилей, (упаковка из 10 штук) Chanzon 20SQ045 Выпрямительные диоды с барьером Шоттки 20A 45V R-6 Axial 20 Amp 45 В, SMD стабилитроны, ассортимент 0.5 Вт LL-34 2 В — 29 В, все значения, 300 шт., 5 шт. 10A10 Выпрямительный диод 10 А, 1000 В, R-6, осевой, 10 А, 1000 В, (упаковка из 20 шт.) Chanzon 15SQ045 Барьер Шоттки, блокирующие диоды байпаса выпрямителя 15A 45V R-6, осевой 15 Усилитель 45 В для панели солнечных батарей, выпрямительный диод BOJACK 1N4001 1 А, 50 В DO-41 Axial 4001 1 А, 50 В, электронные кремниевые диоды (упаковка из 125 штук), Roadmaster 792 Hy-Power Diode, (упаковка из 2 шт.), Dorman 85193 1-проводной универсальный линейный диодный жгут, набор из 30 силовых диодов 1A 3A 6A ампер, выпрямительный диод BOJACK 10A10 10A, 1000 В, осевой 10A10, 10-амперный, 1000-вольтный электронные кремниевые диоды (упаковка из 25 штук), цифровой мультиметр AstroAI с ом-вольт Тестер непрерывного действия измерителя напряжения усилителя и диода (двойной предохранитель для защиты от ожогов).Быстрый просмотр. BTW) Код продукта: • Подробная информация о линейном диоде на 10 А, 50 В (12 В, 14 В, 24 В, 36 В, 10 А, 10 А, 10 А — 12 14 24 36, 50 Вольт. Входной ток при полной нагрузке 0,90 А 0,78 А 2,00 А 3,10 А при полной нагрузке на выходе 12VDC 12VDC 12VDC 12VDC Первичные выводы Винтовая клеммная колодка.
    Soins Infirmiers De Base, Delf A2 Pdf, Crpcen Prime Naissance 2020, Планте Аквариум Газоннанте, Форт Comme Hercule Religion, Les Deux Coqs Анализируйте PDF, Actes Sud Poésie, Шансон Sur La Beauté D’une Femme, Поэма Première Rencontre Amour, Пролонгация Congé Pathologique, Prix ​​Construction Maison Haïti, école De Mécanique Auto Réparation, Belle Roche En 5 Lettres,

    Драйвер высокой мощности 10 А, 40 В для лазерных диодов от Maiman

    475 долларов США.00 sku / item #: RLS / SF6040 v2.0 отгружается: от 2 до 3 недель

    Основные характеристики
    • Высокий допустимый диапазон напряжений для многоэмиттеров и лазерных диодов, подключенных серией
    • Плавное изменение тока, ограничение тока, защита от обратного напряжения
    • Аналоговый сигнал управления / RS-232 / UART (USB опционально, 25 долларов США)
    • Вход термистора NTC для быстрого отключения лазера при перегреве
    • Очень высокий КПД до 95%
    • Включено бесплатное программное обеспечение управления
    • Предлагает Maiman Electronics, продавец лазерных лабораторий
    • Продается и поддерживается в Северной Америке: LaserDiodeControl.com, входит в группу
    • Laser Lab Source Marketplace
    Информация о доставке
    Стоимость доставки в Северной Америке:
    — Все продукты: 29,50 долларов США, доставка в течение 3 дней
    — Свяжитесь с нами для получения информации о тарифах на международную доставку

    Размещение заказа
    Заказы на этот продукт в Северной Америке и некоторых других регионах обрабатываются и выполняются LaserDiodeControl.com, входящая в группу Laser Lab Source Marketplace. Этот продукт произведен компанией Maiman Electronics.

    Информация о гарантии
    Этот продукт продается с полной годовой гарантией. Гарантируется отсутствие дефектов материалов и / или изготовления в течение одного года с даты отгрузки. Гарантия предоставляется и соблюдается Laser Lab Source для продуктов, покупаемых через Laser Lab Source.

    Также учтено клиентов:

    Почему ученые и инженеры выбирают лазерный лабораторный источник?

    МОДЕЛЬ RLS / SF6040 v2.0
    ЦЕНА 475,00 $
    лазерный диод ТОК И НАПРЯЖЕНИЕ
    • Диапазон выходного тока (I): 0 ~ 10 А
    • Выходное напряжение (В): 5 ~ 40 В
    • Размер шага уставки тока: 0,01 А
    • Время нарастания: (Iout = 5A) мин — 60 мкс; макс — 100 мкс
    • Время нарастания: (Iout = 10 А) мин — 60 мкс; макс — 100 мкс
    • Время спада: мин — 20 мкс; макс — 80 мкс
    • Стабильность тока:
    • Абсолютная точность уставки тока:
    Защита лазерного диода
    • Плавный пуск до заданного значения тока
    • Регулируемый пользователем предел тока
    • Защита от перегрузки по току Быстрое отключение
    • Предупреждение о перегреве и отключение
    • Защита от обратного тока
    • Crowbar Защита цепи
    • Отключение входа
    • Блокировка
    РАЗМЕРЫ И ВЕС
    • Размеры: 37 мм x 58 мм x 21 мм
    • Вес: 50 г
    ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ
    • Разъем аналогового сигнала управления
    • Цифровой интерфейс RS232 / UART
    • Включение / отключение входного сигнала
    • Регулируемый пользователем предел тока потенциометра подстройки
    • USB Дополнительно: 25 долларов США.00 (опция UART-USB)
    ВХОД
    • Диапазон входного напряжения (Vin): от 12 В до 55 В
    КОМПЛЕКТ ПОСТАВКИ (ЧАСТИ В КОМПЛЕКТЕ)
    • Драйвер лазерного диода
    • Ленточный кабель длиной 50 см с одним 8-контактным разъемом — 1 шт.
    • Ленточный кабель длиной 50 см с одним 14-контактным разъемом — 1 шт.
    • Техническое описание и руководство пользователя — 1 шт.
    ГАРАНТИЙНЫЙ СРОК
    • Годовая гарантия производителя

    Обзор продукта:

    Модуль драйвера мощного лазерного диода, 10 А, 40 В, Обзор Эти прецизионные драйверные модули обеспечивают ток смещения до 10 ампер и напряжение до 40 вольт для вашего лазерного диода.Эти компактные драйверы были разработаны для питания последнего поколения высокомощных насосов с несколькими одиночными излучателями в ближнем инфракрасном диапазоне. Они используются в лазерных системах для последовательного смещения лазеров и накачки, которые основаны на конструкции с несколькими одиночными излучателями. Эти драйверы модели SF6040 разработаны для требовательных приложений системной интеграции, требующих высочайшего уровня надежности. Они также предлагают очень доступный выбор для лабораторных исследований. Модель SF6040 была обновлена ​​встроенной схемой контроля термистора NTC для обеспечения быстрого отключения выходного тока лазера при достижении максимального предела температуры.Они также предлагают улучшенное разрешение уставки 0,01 А для точного управления выходным током.

    Обзор функций защиты лазерного диода серии SF6xxx Драйверы серии SF6xxx предоставляют функции защиты, которые просты в настройке и более чем достаточны для защиты вашего LD. Они включают в себя схему защиты от перегрузки по току с настраиваемым пользователем пределом, линейное изменение тока плавного пуска и отключение при перегреве. Дополнительные функции для защиты вашего высокомощного лазерного диода включают защиту от обратного тока и защиту лома.Цепь лома представляет собой быстро замыкающий зажим, который срабатывает при перегрузке по току, обрыве цепи и перегреве.

    Источник тока для вашего лазера и защиты зажима лома Модули изначально активируются подачей активного высокого логического входного сигнала 3,3 В ~ 5 В постоянного тока. Драйвер подает ток и начинает работать, когда на контакте разрешения входа 5 В высокий уровень. Чтобы гарантировать, что текущее разрешение применяется без перерегулирования, последовательность медленного запуска инициируется, когда контакт разрешения установлен в высокий уровень.Контакт включения также может использоваться в квазинепрерывном режиме. Выходной ток устанавливается путем подачи аналогового сигнала на текущий установленный штырь на разъеме управления. Вывод установки тока можно использовать для аналоговой модуляции, применяя знаковый сигнал, прямоугольную волну или сигнал пилообразного изменения. Выход может быть импульсным, применяя прямоугольный сигнал TTL для включения вывода. Минимальная длительность импульса 500 микросекунд.

    Эти мощные драйверы представляют собой высоконадежный зажим для лома, который закорачивает ток и отключает питание вашего лазерного диода.На разъеме управления есть штырь, который показывает состояние цепи защиты лома. Ломик закорачивает выход, когда модуль находится в режиме отключения из-за перегрузки по току или из-за перегрева.

    Несколько интерфейсов управления Модель SF6040 предлагает пользователю несколько методов интерфейса для установки и измерения параметров модулей. Для простого и быстрого запуска модуль имеет подстроечные потенциометры, к которым пользователь может получить доступ в верхней части платы управления. Этот ручной режим управления обычно используется для проверки правильности работы драйвера перед подключением лазера.Для полного контроля всех параметров пользователь может использовать разъем аналогового управляющего сигнала или цифровой интерфейс. 8-контактный цифровой интерфейс RS232 / UART и 14-контактный аналоговый управляющий разъем подробно описаны в прилагаемой брошюре.

    Блокировка безопасности водителя, контроль тока и контроль напряжения Эти блоки SF6xxx имеют блокирующий штифт, который должен быть подключен к заземлению для включения выходного тока. Защитная блокировка используется для отключения модуля с помощью высокого логического сигнала, инициированного срабатыванием внешней блокировки, например, двери в лабораторию или внешней цепи перегрева.Эти модули также имеют встроенный датчик температуры, который отключает выход, когда температура превышает предварительно установленную температуру. Выходное напряжение драйвера можно контролировать с помощью линейно масштабированного выхода монитора напряжения, 0 ~ 1 В. Напряжение измеряется между клеммой LD + и GND. Ток можно контролировать с помощью линейного выхода напряжения, 0 ~ 1 В = 0 ~ 3 А также с +/- 2%.

    Почему ученые и инженеры выбирают лазерный лабораторный источник?

    • Получите НЕПОСРЕДСТВЕННУЮ, быструю техническую поддержку от инженера по продукту, без посредников по продажам

    • Получите самую низкую цену, напрямую с завода, без наценок, поставщики указывают свою цену

    • Получите 30-дневный период оценки без риска возврата для большинства продуктов, проверьте доступность

    Блок питания 12 В / 10 А

    Мощный источник питания 12 В / 10 А требует безопасного источника питания 220 В, с помощью которого можно создавать и тестировать электронные устройства, собранные самостоятельно, а также ремонтировать устройства промышленного производства.

    Мощный блок питания 12 В / 10 ампер Детали:
    Транзисторы VT1, VT2 можно заменить на КТ808, КТ819 с любым буквенным индексом. Эти транзисторы желательно использовать в металлическом корпусе диаметром «шляпки» 23,5 мм. Они устанавливаются на радиаторах с площадью охлаждения не менее 100 см2, изолируя тепло от корпуса.

    Транзистор VT3 можно заменить на КТ815, КТ817 с любым буквенным индексом. Трансформатор
    Т1 стандарта мощностью не менее 100 Вт должен обеспечивать переменное напряжение на вторичной обмотке (нагрузке) 14-16 В.Это напряжение получается с выводов трансформатора 7 и 16 TH 54-127 / 220, и между выводами 8-9, 10-11 и 13-14 должна быть перемычка.

    Первичная обмотка трансформатора Т1 — выводы 1 и 2. АКБ — стандартный аккумулятор с номинальным напряжением 12 В. Реле К1 — на срабатывание напряжения 200-220 В с двумя и более группами контактов и током. включение не менее 3 А Сетевой предохранитель FU1 типа ВИ -1-3, ПК-30-3 на ток 3 А предохранитель FU2 на ток 10 А типа ПДК-1-2.

    Диодный мостовой выпрямитель типа КЦ405А, КЦ407А или собран из дискретных элементов — диодов Д231, Д242 с любым буквенным индексом.Диод VD6 можно заменить на КД202, КД213, КД258 с любым буквенным индексом и т.п.

    Стабилитрон

    VD2-VD5 желательно установить в соответствии с таковыми на схеме Powerfull 12 В / 10 Ампер. От их параметров зависит и стабилизация выходного напряжения. Конденсаторы КИ, С2 типа К40-У9, К10-17 или аналогичные, рассчитанные на рабочее напряжение не менее 250 В. Конденсаторы оксидные типа К50 типа СТ, К50-24 или аналогичные.

    Постоянные резисторы R2, R3 типа МЛТ-0, 5. Резисторы Rl, R4 типа SEW-10 Exp-S.

    Теги: Блок питания 10 А Блок питания 12 В Блок питания 12 В / 10 А Мощный блок питания

    диодов — RadioShack

    диодов — RadioShack

    Воскресенье, Понедельник, Вторник, Среда, Четверг, Пятница, Суббота

    Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

    Недостаточно товаров.Осталось только [макс].

    Просмотреть список желанийУдалить список желаний Выпрямители и блоки питания постоянного тока

    | 12 В постоянного тока | 24 В постоянного тока | 48V DC | 150 — 1000 Вт | Крепление в стойку | Настенное крепление | Настольное крепление

    AC-DC

    Напряжение / мощность :
    Вход 120/240 В переменного тока
    Выход 12, 24, 48 В постоянного тока
    150-1000 Вт

    Компоненты:
    Выпрямители
    Зарядные устройства
    Модули питания
    Управление питанием
    Источники питания

    Конфигурации:
    Крепление в стойку
    Настенное крепление
    Настольное



    Выпрямители для монтажа в стойку и компоненты управления


    Силовой модуль

    Вход: 120/230 В переменного тока
    Выход: 12, 24 или 48 В постоянного тока, 560-2200 Вт

    Эти универсальные выпрямительные модули работают как источники питания или как зарядные устройства для систем на 12, 24 или 48 вольт; положительная, отрицательная или плавающая земля.Их можно использовать по отдельности или в комбинации, что позволяет установщику масштабировать систему от 500 до 10 000 Вт на стойку. Блоки могут быть подключены параллельно для резервирования N + 1, а контакты сигнализации позволяют осуществлять локальный или удаленный мониторинг. Дополнительный комплект проводки для быстрого подключения постоянного тока позволяет легко заменять модули без отключения системы.

    Подробнее о силовых модулях серии



    Менеджер функций питания

    Вход: 12, 24 или 48 В постоянного тока
    Общая допустимая нагрузка по току: 500 А

    Power Function Manager — это системный интегрирующий компонент, который преобразует обычные источники питания (или силовые модули) в полностью интегрированную и многофункциональную систему питания.Устройство обеспечивает управление, мониторинг, параллельное включение и защиту источников питания 12, 24 или 48 В постоянного тока, положительного отрицательного полюса или заземления с плавающей точкой.

    Подробнее о Power Function Manager



    Интегрированные энергосистемы

    Вход: 115/230 В переменного тока
    Выход: 12, 24 или 48 В постоянного тока
    11-40 А с внутренней батареей

    The Integrated Power System (IPS) — это уникальный многофункциональный источник питания, который включает в себя встроенную резервную батарею и множество аксессуаров питания в одном корпусе 2RU (3.5 ″), что исключает необходимость трудоемкой системной интеграции, поиска компонентов и установки, а также экономит драгоценное место в стойке — идеально подходит для любых приложений с низким и средним энергопотреблением, требующих отказоустойчивой работы переменного тока.

    Подробнее о серии Integrated Power System



    Мобильные, настенные и настольные блоки питания


    Источники питания — серия для тяжелых условий эксплуатации

    Вход: 115/230 В переменного тока
    Выход: 12 или 24 В постоянного тока, 5-35 А

    Эти сверхпрочные блоки питания постоянного тока идеально подходят для питания оборудования связи 12 и 24 В на базовых станциях, удаленных объектах и ​​в приложениях мобильной связи, где надежность важна.Проверенная конструкция линейной схемы обеспечивает чистый бесшумный выход и длительный срок службы.

    Подробнее Источники питания для тяжелых условий эксплуатации серии



    Серия Power-Pac

    Вход: 115/230 В переменного тока
    Выход: 12 В постоянного тока, 5 А
    Резервная батарея: 7–14 А / ч

    Этот блок питания 12 В, 10 А имеет встроенные резервные батареи, которые заряжаются во время нормальной работы, а затем продолжают питать радиостанции при отключении переменного тока.Выберите аккумулятор емкостью 7 или 14 ампер-часов.

    Подробнее о серии Power-Pac





    Система электроснабжения площадки

    Вход: 115/230 В переменного тока
    Выход: 12, 24 или 48 В, 250-500 Вт

    Серия Site Power System (SPS) представляет собой законченное решение для питания постоянного тока, которое быстро интегрируется с батареями, нагрузками и мониторами.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *