Site Loader

Содержание

Как выбрать диод для выпрямителя

При выборе полупроводниковых диодов для выпрямителя следует помнить, что основными параметрами полупроводниковых диодов являются допустимый ток Iдоп (Iпрмах), на который рассчитан данный диод, и обратное напряжение Uобр (Uобрмах), выдерживаемое диодом без пробоя в непроводящий период. Выбор диодов для выпрямителей осуществляется по величине тока Iд, протекающего через диод, и максимальному напряжению Uд, которое оказывается приложенным к диоду в непроводящий период. При этом для исключения повреждений диодов должны выполняться следующие условия:

IдопIд и UобрUд.

Обычно при составлении реальной схемы выпрямителя задаются значением мощности потребителя (нагрузки) Рн, Вт, получающего питание от данного выпрямителя, и выпрямленным напряжением (напряжением на нагрузке) Uн, В, при котором работает потребитель постоянного тока. Отсюда нетрудно определить ток потребителя (нагрузки):

Вычисленное значение тока берется за основу при выборе диода по току, сравнивая ток протекающий через диод Iд с допустимым током диода Iдоп, выбирают диоды для схем выпрямителя. Следует учесть, что для различных схем выпрямителей ток, протекающий через диод (Iд)иток протекающий через потребитель (нагрузку) (Iн) связаны соотношениями:

однофазный однополупериодный выпрямительIд=Iн
однофазный двухполупериодный и однофазный мостовой выпрямителиIд=Iн/2
трехфазный однополупериодный и трехфазный мостовой выпрямителиIд=Iн/3

Очевидно, что при выборе диода, для всех выпрямителей должно соблюдаться условие:

IдопIд.

Напряжение, действующее на диод в непроводящий период Uд, также зависит от схемы выпрямления, которая применяется в конкретном случае. Для различных схем выпрямителей для напряжение, действующее на диод в непроводящий период (Uд)и выпрямленное напряжение (напряжение на нагрузке) (Uн)связаны соотношениями:

однофазный однополупериодный и однофазный двухполупериодный выпрямителиUд=π•Uн=3,14Uн
однофазный мостовой выпрямительUд=1,57•Uн
трехфазный однополупериодный выпрямительUд =2,1•Uн
трехфазный мостовой выпрямительUд =1,05•Uн

Очевидно, что при выборе диода, для всех выпрямителей должно соблюдаться условие: Uобр>Uд.

Приведенные выше соотношения следует использовать при подборе диодов для выпрямителей по току и напряжению.

В результате расчета может оказаться, что ток через диод превышает допустимое значение тока для данного типа диода. В этом случае для увеличения допустимого значения тока применяется параллельное соединение диодов, их суммарный допустимый ток (Iдоп) увеличивается во столько раз, сколько диодов параллельно соединяют.

Если в непроводящий период напряжение на диоде превышает допустимое обратное напряжение, то для увеличения допустимого обратного напряжения применяется последовательное соединение диодов, их суммарное допустимое напряжение

(Uобр) увеличивается во столько раз, сколько диодов последовательно соединяют.

При выборе полупроводниковых диодов для выпрямителя следует помнить, что основными параметрами полупроводниковых диодов являются допустимый ток Iдоп (Iпрмах), на который рассчитан данный диод, и обратное напряжение Uобр (Uобрмах), выдерживаемое диодом без пробоя в непроводящий период. Выбор диодов для выпрямителей осуществляется по величине тока Iд, протекающего через диод, и максимальному напряжению Uд, которое оказывается приложенным к диоду в непроводящий период. При этом для исключения повреждений диодов должны выполняться следующие условия:

Iдоп

Iд и UобрUд.

Обычно при составлении реальной схемы выпрямителя задаются значением мощности потребителя (нагрузки) Рн, Вт, получающего питание от данного выпрямителя, и выпрямленным напряжением (напряжением на нагрузке) Uн, В, при котором работает потребитель постоянного тока. Отсюда нетрудно определить ток потребителя (нагрузки):

Вычисленное значение тока берется за основу при выборе диода по току, сравнивая ток протекающий через диод Iд с допустимым током диода Iдоп, выбирают диоды для схем выпрямителя. Следует учесть, что для различных схем выпрямителей ток, протекающий через диод (Iд)иток протекающий через потребитель (нагрузку) (Iн) связаны соотношениями:

однофазный однополупериодный выпрямительIд=Iн
однофазный двухполупериодный и однофазный мостовой выпрямителиIд=Iн/2
трехфазный однополупериодный и трехфазный мостовой выпрямителиIд=Iн/3

Очевидно, что при выборе диода, для всех выпрямителей должно соблюдаться условие: IдопIд.

Напряжение, действующее на диод в непроводящий период Uд, также зависит от схемы выпрямления, которая применяется в конкретном случае. Для различных схем выпрямителей для напряжение, действующее на диод в непроводящий период (Uд)и выпрямленное напряжение (напряжение на нагрузке) (Uн)связаны соотношениями:

однофазный однополупериодный и однофазный двухполупериодный выпрямителиUд=π•Uн=3,14Uн
однофазный мостовой выпрямительUд=1,57•Uн
трехфазный однополупериодный выпрямительUд =2,1•Uн
трехфазный мостовой выпрямительUд =1,05•Uн

Очевидно, что при выборе диода, для всех выпрямителей должно соблюдаться условие: Uобр>Uд.

Приведенные выше соотношения следует использовать при подборе диодов для выпрямителей по току и напряжению.

В результате расчета может оказаться, что ток через диод превышает допустимое значение тока для данного типа диода. В этом случае для увеличения допустимого значения тока применяется параллельное соединение диодов, их суммарный допустимый ток

(Iдоп) увеличивается во столько раз, сколько диодов параллельно соединяют.

Если в непроводящий период напряжение на диоде превышает допустимое обратное напряжение, то для увеличения допустимого обратного напряжения применяется последовательное соединение диодов, их суммарное допустимое напряжение (Uобр) увеличивается во столько раз, сколько диодов последовательно соединяют.

Тема: как выбрать диод для получения постоянного тока из переменного.

Порой, когда дело приходится иметь с блоками питания (их ремонтом, сборкой своими руками) сталкиваешься с его выпрямительной частью, которая из переменного напряжения делает постоянное. Эта часть есть не что иное как диодный выпрямительный мост. Для технарей электротехников известно, что это такое и какова функция этого элемента электрических схем. Для непосвященных поясню — большинство электротехники содержат в своих схемах блок питания, который понижает сетевое напряжение 220 вольт в меньшее, что используется устройствами (3, 5, 9, 12, 24 вольта, это наиболее распространенные величины пониженных напряжений). В сети используется переменный ток, а практически все электронные схемы работают на постоянном. Так вот, для преобразования переменного напряжения в постоянное и используется диодный мост.

Выпрямительные диодные мосты бывают готовыми сборками в едином корпусе, а бывают и самодельными, которые спаиваются из четырех одинаковых диодов. А какие диоды нужны для самодельного диодного моста и как правильно подобрать их для выпрямителя? Все достаточно просто. Основными параметрами для выбора диодов на мост являются напряжение (обратное) и сила тока (которую они могут через себя пропускать без перегрева).

Напомню, что диоды при прямом подключении (плюс диода к плюсу прилагаемого напряжения, а минус диода к минусу прилагаемого напряжения) к питанию пропускают через себя электрический ток. В этом режиме (открытом) на них оседает небольшое напряжение в пределах около 0,6 вольт. Как и любые другие проводники они имеют свое внутреннее сопротивление (что и обуславливает это небольшое падение напряжения на них в открытом состоянии). Чем оно больше, тем меньшую силу тока диод способен через себя пропустить. Если же на диод приложить постоянное обратное напряжение (на плюс диода подать минус источника, и на минус диода подать плюс источника), то диод будет работать в режиме запирания. Он не будет через себя пропускать постоянный ток (будет закрыт).

Так вот, есть максимальная величина обратного напряжения, которую диод может выдержать не входя в режим электрического и теплового пробоя. Именно это обратное напряжение и нужно учитывать при выборе диодов на выпрямительный мост. Если на диодный мост будет подаваться напряжение 220 вольт переменного тока, значит диоды моста должны быть рассчитаны на большее напряжение (с запасом не менее 25%). А лучше вовсе брать с достаточно большим запасом. Это убережет полупроводники от попадания на них случайных скачков напряжения, идущие от сети. Сейчас на обычные, небольшие блоки питания ставят диоды серии 1n4007, у которых обратное напряжение равно 1000 вольтам, а долговременный ток они могут выдерживать до 1 ампера (при температуре 75 градусов).

Второй, и пожалуй главной характеристикой выпрямительного диода является сила тока, которую он может пропускать через себя длительное время (без перегрева). Изначально вы должны знать, на какой максимальный ток рассчитан ваш блок питания. И только после этого уже нужно подбирать выпрямительные диоды на мост. К примеру, вы решили сделать себе самодельный регулируемый блок питания с выходным напряжением до 15 вольт и максимальным током в 6 ампер. Следовательно, под такой источник питания нужно брать диоды, рассчитанные на силу тока порядка 10 ампер (плюс определенный запас по току). Ток в 6 ампер как бы относительно немалый. Он будет нагревать диоды выпрямительного моста. Значит под эти диоды, мост еще нужно предусмотреть охлаждающий радиатор.

Напомню, что большинство полупроводниковых компонентов сделаны из кремния, а этот материал имеет максимальную рабочую температуру 150—170 °C. Выход за эти пределы разрушаю полупроводник, в нашем случае диоды диодного моста. Лучше держать температуру диодов в пределах до 75 °C. Поставьте на мост небольшой радиатор и посмотрите не выходит ли температура при максимальной нагрузки блока питания за допустимые пределы.

Диодных мостов и диодов (под них) существует достаточно большое количество. При выборе сначала в поисковике найдите справочную таблицу диодов и диодных мостов, где указаны основные технические характеристики выпрямителей. Выберите наиболее подходящий компонент с учетом номинального обратного напряжения и силы тока. Если вы поставите на диодный мост диоды с большими номинальными токами и напряжениями, ничего страшного, это будет даже лучше, как бы излишний запас. Но подбирать меньшие или впритык лучше не стоит.

Видео по этой теме:

Как подобрать диод подавления переходного напряжений (TVS)?

Разработчики часто используют диод подавления переходного напряжения (TVS) для уменьшения импульсных токов (возникающих при коммутации в электрической цепи) до безопасного уровня, чтобы защитить компоненты и соседние электрической цепи от повреждения. Во многих отношениях TVS-диод ведет себя подобно стабилитрону, но с более высокой номинальной мощностью благодаря большему размеру матрицы и более прочному соединению проводов.

Зачем приложениям горячей замены нужен диод подавления переходного напряжения (TVS)?

В случае горячей замены в случае большой перегрузки по току защитная интегральная схема (IC) быстро отключит ток, чтобы защитить соседние компоненты от повреждения. Это быстрое отключение тока — от 50 A (сверхток) до 0 A (отключение для защиты) — может происходить в течение десятков наносекунд и приводит к большому переходному процессу тока (di / dt), как показано в уравнении 1:

Данный ток будет определяться, как энергия внутри дорожки печатной платы или индуктивности провода на входе. Хотя индуктивность дорожки печатной платы может быть низкой, при значении около 10 нГн, она все равно вызовет скачок на входе контроллера горячей замены на основе уравнения 2:

Скачок напряжения в -50 В будет последовательно подключен к источнику питания и будет эффективно создавать всплеск положительного напряжения на входной шине, часто превышающий номинальное напряжение интегральной схемы контроллера горячей замены или полевого транзистора на основе оксида металла и полупроводника (МОП-транзистор или MOSFET) напряжение сток-исток (VDS) (рисунок ниже). Чтобы предотвратить возникновение этого скачка напряжения, вы можете установить TVS на входе для отвода энергии от индуктивности прямо на землю. Оптимальное размещение диод подавления переходного напряжения будет после любой последовательной индуктивности на входе (например, после предохранителя).

Как выбрать диод подавления переходного напряжения (TVS)?

Самый простой способ выбрать диод TVS для приложения с горячей заменой — это выбрать тот, который соответствует следующим трем критериям:

  • Напряжения пробоя (Ubr) больше вашего максимального входного напряжения источника питания.
  • Напряжение срабатывания (Uc) ниже абсолютного максимального значения напряжения интегральной схемы контроллера горячей замены или MOSFET Uds.
  • Максимальный (пиковый) импульсный ток, Iрр, выше максимального тока, при котором контроллер горячей замены отключается. Это наихудшее значение часто является очевидным — на выходе имеется короткое замыкание и контроллер горячей замены отключается. Точное значение, которое следует использовать, будет выявлено только измерением максимального тока на реальной плате-прототипе с реалистичным коротким замыканием, приложенным к выходу.

Для 12-вольтового мощного приложения наиболее распространенным выбором TVS является 5.0SMDJ12A, который имеет переходную мощность 5 кВт.

Как выбрать обратный диод для реле?

Вопрос: Какой размер обратного диода мне нужен для индуктивной нагрузки?

Мой ответ: диоды обратного хода имеют размеры в зависимости от рассеиваемой мощности

P=1/10(I2)RP=1/10(I2)р

P: мощность рассеивается в обратном диоде

I: постоянный ток, протекающий через индуктор (обратный диод не проводит)

R: сопротивление обратного диода в проводимости

Доказательство:

Диод обратного хода будет поддерживаться при постоянной температуре; Диоды имеют постоянное сопротивление в проводимости, когда поддерживается при постоянной температуре. (если температура меняется, сопротивление диодов тоже)

Теперь проводящий диод ведет себя как резистор, поэтому возникает вопрос: сколько энергии мне нужно, чтобы рассеять внутреннее сопротивление моего диода?

T= L/RT=L/р


E= ( 1 / 2)L(I2)E=(1/2)L(я2)п= E/ Тямепзнак равноЕ/Tяме

5 ( L / R )5(L/р)( 1 / 2 ) L ( я2)(1/2)L(я2)

P= ( ( 1 / 2 ) L ( я2) R ) / ( 5 л )пзнак равно((1/2)L(я2)р)/(5L) Здесь L отменяет и п= 1 / 10 ( я2) Rпзнак равно1/10(я2)р, Мы знаем, что R — это сопротивление диода в проводимости, а I — ток, протекающий через диод во время разряда. Но каков ток диода во время разряда?

Рассмотрим схему как таковую:

смоделировать эту схему — схема, созданная с использованием CircuitLab

R1 — внутреннее сопротивление L1, а R2 — наше зарядное сопротивление. D1 действует как обратный диод, а R3 — сопротивление D1 в проводимости.

Если переключатель замкнут и мы ждем вечно, через цепь протекает ток 10 мА, а индуктор накапливает энергию 50 мкДж (50 мкДж).

Используя теорию сохранения энергии:

Если переключатель разомкнут, индуктор меняет полярность, пытаясь поддерживать ток 10 мА. Обратный диод смещен в проводимость, и энергия 50 мкДж рассеивается через сопротивление диода в5 ( L / R ) = 500 м с5(L/р)знак равно500мs, Мощность, рассеиваемая в диоде, составляет 50 мкДж / 500 мс = 100 мкВт (100 мкВт).

( 1 / 10 ) ( 10 м2) ( 10 о ч м ы ) = 100 мкм W(1/10)(10мA2)(10очасмs)знак равно100μW

Таким образом, чтобы ответить на последний вопрос: ток диода во время разряда можно считать равным току зарядки в установившемся режиме 10 мА при использовании уравнения: п= 1 / 10 ( я2) Rпзнак равно1/10(я2)р, Хотя ток во время индуктивного разряда фактически уменьшается в геометрической прогрессии и не является постоянным значением 10 мА, это упрощение позволит быстро рассчитать требуемую мощность диода в цепи, зная начальные условия.

Желаем удачи в ваших проектах и ​​никогда не используйте технологии в злых целях.

Диоды выпрямительные, принцип работы, характеристики, схемы подключения

Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.

Она имеет две ветви, соответствующие прямому и обратному включению диода.

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр. Этот ток называется прямым Iпр. Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

  • 0,7 Вольт для кремниевых диодов,
  • 0,3 Вольт — для германиевых.

Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:

  • пробой — диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
  • обрыв — здесь, думаю, пояснения излишни.

Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр, которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.

Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.

Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.

При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки Rн. Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:

Iпр=Uн/Rн — все просто — это закон Ома.

Uн=U-Uоткр — см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода.

При включении диода в цепь переменного тока, помимо прочего, на нем периодически возникает обратное напряжение Uобр. Имейте в виду, следует учитывать его амплитудное значение (Для Uпр, кстати, тоже). Например, для бытовой электрической сети привычное всем напряжение 220В является действующим, а его амплитудное значение составляет 380В. Подробнее про это можно посмотреть на этой странице.

Это самое основное, про что надо помнить.

Теперь — несколько схем подключения диодов, часто встречающихся на практике.

Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант — условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.

Далее несколько менее очевидных схем (для постоянного тока):

  1. Диоды могут выступать как «развязывающие» элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А, причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы «или».
  2. Защита от переполюсовки (жаргонное — «защита от дураков»). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод «открывается», когда напряжение на нем достигнет Uоткр, то при Uвнеш <Uвн+Uоткр питание осуществляется от внутреннего источника, иначе — подключается внешний.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Как выбрать обратный диод для реле?

Вопрос: Какой размер обратного диода мне нужен для индуктивной нагрузки?

Мой ответ: диоды обратного хода имеют размеры в зависимости от рассеиваемой мощности

P = 1/10 (I ^ 2) R. 2) R. в то время как ток во время индуктивного разряда фактически уменьшается в геометрической прогрессии и не является постоянным 10 мА, это упрощение позволит быстро рассчитать необходимую мощность диода в цепи, зная начальные условия.

Желаем удачи в ваших проектах и ​​никогда не используйте технологии в злых целях,

Ник С.

Блог » Технические характеристики мощных светодиодов CREE

Американская компания CREE является ведущим производителем твердотельных источников света. Разработанные и выпускаемые ею светодиоды семейства XLamp серий XR, XP, MC отличаются высокой эффективностью и экономичностью, что позволяет создавать на их основе современные технологичные и экологически безопасные осветительные приборы.

Итак немного расшифруем обозначения.

Например на фонаре написано: светодиод CREE XP-E R2

CREE — естественно название производителя диода

XR-E, у CREE бывает XP-E, XP-G, у других фирм встречается P4, P7 и т.д. — это обозначение самого диода.

R2 — бин яркости. Бин показывает, сколько люмен выдает светодиод при потреблении 1 ватта энергии, для светодиода это ток 350 мА. В английском языке этот параметр называется flux bin. На сегодняшний момент встречаются Q2, Q3, Q4, Q5, R2, R3, R4, R5, S2. В таблице ниже видно, сколько люмен с какого диода можно получить.

Q2-Q5 и R2 есть у XR-E диодов, у R2, R3 — есть у XP-E, R4-R5 и S2 — только у XP-G.

В чем основная разница, кроме яркости?

XR-E — самый старый и встречающийся только моделях фонарей, которые довольно давно на рынке. XR-E внешне очень легко определить, у него большая полусфера покрывает диод, сам кристалл больше чем у последующих серий (для сравнения на XP серии это такая себе капелька, размер XP-E по сравнению с XR-E был сокращён на 80%. XP-E от XP-G отличается тем, что у Е — три полоски на диоде, у G серии — четыре, получается что площадь XP-G выше.

Следовательно, в одинаковых по размеру, строению отражателях самый дальнобойный является XP-E, так как у него самый маленький кристалл, и, самый маленький источник света, так как его легко сфокусировать в узкий луч, потом XR-E, а самый широкий луч у XP-G, не из-за размера кристалла, а из-за сложности фокусировки, об этом ниже.

Если диоды расположить по энергоэффективности от самого слабого к самому яркому, то получим XR-E — XP-E — XP-G, где последний самый энергоэффективный, см. таблицу ниже.

Казалось бы, если есть самый яркий и самый новый и эффективный диод XP-G, то почему все известные и уважаемые производители фонарей не спешат переходить на этот диод. Причина проста. Каждый диод требует специально спроектированный отражатель для получения приемлемого светового пучка.

Рассмотрим все серии. Если посветить фонарем на ровную стену, то увидим следующие артефакты:

У XP-E — идеальная картинка без каких-либо недостатков: хорошо и равномерно сфокусированный центральный пучок и ровная боковая засветка без провалов.

У XP-G при фокусировке с помощью отражателя может наблюдаться так называемая дырка от бублика, когда центральный пучок света представляет собой бублик с заметным потемнением внутри. Это не вина производителей фонарей, а особенность диода. Поэтому такие фирмы как Fenix, Jetbeam, Nitecore, Zebra, 4sevens не спешили обновлять свой модельный ряд, а другие в гонке за новинками либо ставили сильно текстурированный отражатель, либо вообще просто применяли отражатели для других типов диодов. Все это негативно отражается на фокусировке луча и дальнобойности фонарей. По мнению многих экспертов фонари на этом типе диодов проигрывают по дальности старым моделям на XP-E и XR-E.

XM-L — является настоящим шедевром данной компании! Это новейшая разработка 2011 года! С момента изобретения данного светодиода 95% мощных фонарей строятся именно на нем! Данный диод обладает выдающимися характеристиками. Его яркость достигает до 1000 люмен при токе 3А !

В таблице представлены характеристики светодиодов, применяемые в фонарях.

XP-E

XP-E2

XP-G

XP-G2

XM-L

Выпрямительные диоды малой, средней и большой и мощности, справочник

Приведены электрические характеристики выпрямительных диодов отечественного производства. Рассмотрены выпрямительные диоды малой, средней и большой мощности. Справочник по отечественным полупроводниковым диодам.

Используемые в таблицах сокращения:

  • Uобр.макс. — максимально-допустимое постоянное обратное напряжение диода;
  • Uобр.и.макс. — максимально-допустимое импульсное обратное напряжение диода;
  • Iпр.макс. — максимальный средний прямой ток за период;
  • Iпр.и.макс. — максимальный импульсный прямой ток за период;
  • Iпрг. — ток перегрузки выпрямительного диода;
  • fмакс. — максимально-допустимая частота переключения диода;
  • fраб. — рабочая частота переключения диода;
  • Uпр при Iпр — постоянное прямое напряжения диода при токе Iпр;
  • Iобр. — постоянный обратный ток диода;
  • Тк.макс. — максимально-допустимая температура корпуса диода;
  • Тп.макс. — максимально-допустимая температура перехода диода.

Диоды малой мощности

Рис. 1. Выпрямительные отечественные диоды малой мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам малой мощности.

Тип
прибора
Предельные значения
параметров при Т=25С
Значения параметров
при Т=25С
Тк.мах
(Тп.)

С

Uобр.макс.
(Uобр.и.мак.)
B
Iпр.макс.
(Iпр.и.мак.)
mA
Iпрг.

A

fраб.
(fмакс.)
мГц
Uпр.

B

при
Iпр.
mA
Iобр.

mkA

1 2 3 4 5 6 7 8 9
Д2Б 10 (30) 16 150 1,0 5,0 100 60
Д2В 30 (40) 25 150 1,0 9,0 250 60
Д2Г 50 (75) 16 150 1,0 2,0 250 60
Д2Д 50 (75) 16 150 1,0 4,5 250 60
Д2Е 100 (100) 16 150 1,0 4,5 250 60
Д2Ж 150 (150) 8 150 1,0 2,0 250 60
Д2И 100 (100) 16 150 1,0 2,0 250 60
МД3 15 12 (15) 1,0 5,0 100 70
Д7А (50) 300 1,0 0,5 300 100 70
Д7Б (100) 300 1,0 0,0024 0,5 300 100 70
Д7В (150) 300 1,0 0,0024 0,5 300 100 70
Д7Г (200) 300 1,0 0,0024 0,5 300 100 70
Д7Д (300) 300 1,0 0,0024 0,5 300 100 70
Д7Е (350) 300 1,0 0,0024 0,5 300 100 70
Д7Ж (400) 300 1,0 0,0024 0,5 300 100 70
Д9Б (10) 40 40 1,0 90 250 70
Д9В (30) 20 40 1,0 10 250 70
Д9Г (30) 30 40 1,0 30 250 70
Д9Д (30) 30 40 1,0 60 250 70
Д9Е (50) 20 40 1,0 30 250 70
Д9Ж (100) 15 40 1,0 10 250 70
Д9И (30) 30 40 1,0 30 120 70
Д9К (50) 30 40 1,0 60 60 70
Д9Л (100) 15 40 1,0 30 250 70
Д10 10 (10) 16 150 100 70
Д10А 10 (10) 16 150 200 70
Д10Б 10 (10) 16 150 200 70
Д11 30 (40) 20 150 1,0 100 250 70
Д12 50 (75) 20 150 1,0 50 250 70
Д12А 50 (75) 20 150 1,0 100 250 70
Д13 75 (100) 20 150 1,0 100 250 70
Д14 100 (125) 20 150 1,0 50 250 70
Д14А 100 (125) 20 150 1,0 100 250 70
Д101 75 (75) 30 200 2,0 2,0 10 125
Д101А 75 (75) 30 200 1,0 1,0 10 125
Д102 50 (50) 30 200 2,0 2,0 10 125
Д102А 50 (50) 30 200 1,0 1,0 10 125
Д103 30 (30) 30 200 2,0 2,0 30 125
Д103А 30 (30) 30 200 1,0 1,0 30 125
Д104 100 (100) 30 600 2,0 2,0 5,0 125
Д104А 100 (100) 30 600 1,0 1,0 5,0 125
Д105 75 (75) 30 600 2,0 2,0 5,0 125
Д105А 75 (75) 30 600 1,0 1,0 5,0 125
Д106 30 (30) 30 600 2,0 2,0 30 125
Д106А 30 (30) 30 600 1,0 1,0 30 125
Д202 (100) 400 1,0 400 500 125
Д203 (200) 400 1,0 400 500 125
Д204 (300) 400 1,0 400 500 85
Д205 (400) 400 1,0 400 500 85
Д206 (100) 100 0,6 1,0 100 50 125
Д207 (200) 100 0,6 1,0 100 50 125
Д208 (300) 100 0,6 1,0 100 50 125
Д209 (400) 100 1,0 100 50 125
Д210 (500) 100 1,0 100 50 125
Д211 (600) 100 1,0 100 50 125
Д217 (800) 100 1,0 100 50 125
Д218 (1000) 100 0,7 100 50 125
МД217 800 100 1,0 100 75 125
МД218 1000 100 1,0 100 75 125
МД218А 1200 100 1,1 100 50 125
Д223 50 50 0,5 20 1,0 50 1,0 120
Д223А 100 50 0,5 20 1,0 50 1,0 120
Д223Б 150 50 0,5 20 1,0 50 1,0 120
Д226 (400) 300 1,0 300 50 80
Д226А (300) 300 1,0 300 50 80
Д226Б (400) 300 1,0 300 100 80
Д226В (300) 300 1,0 300 100 80
Д226Г (200) 300 1,0 300 100 80
Д226Д (100) 300 1,0 300 100 80
Д226Е (200) 300 1,0 300 50 80
МД226 (400) 300 0,001 1,0 300 50 80
МД226А (300) 300 0,001 1,0 300 100 80
МД226Е (200) 300 0,001 1,0 300 50 80
Д229А 200 (200) 400 10 0,003 1,0 400 50 125
Д229Б 400 (400) 400 10 0,003 1,0 400 50 125
Д229В 100 (100) 400 10 0,003 1,0 400 200 125
Д229Г 200 (200) 400 10 0,003 1,0 400 200 125
Д229Д 300 (300) 400 10 0,003 1,0 400 200 125
Д229Е 400 (400) 400 10 0,003 1,0 400 200 125
Д229Ж 100 (100) 700 10 0,003 1,0 700 200 85
Д229И 200 (200) 700 10 0,003 1,0 700 200 85
Д229К 300 (300) 700 10 0,003 1,0 700 200 85
Д229Л 400 (400) 700 10 0,003 1,0 700 200 85
Д237А (200) 300 10 0,001 1,0 300 50 125
Д237Б (400) 300 10 0,001 1,0 300 50 125
Д237В (600) 100 10 0,001 1,0 100 50 125
Д237Е (200) 400 10 0,001 1,0 400 50 125
Д237Ж (400) 400 10 0,001 1,0 400 50 125
АД110А 30 (50) 10 0,005 1,1 10 0,005 85
АД112А 50 300 3,0 300 100 250
ГД107А 15 20 1,0 10 20 60
ГД107Б 20 20 0,4 10 100 60
ГД113А (115) 15 1,0 30 250 60
КД102А 250 100 1,0 50 0,1 100
КД102Б 300 100 1,0 50 1,0 100
КД103А 50 100 1,0 50 0,4 100
КД103Б 50 100 1,2 50 0,4 100
КД104А 300 (300) 10 1,0 1,0 10 3,0 70
КД105А (200) 300 15 1,0 300 100 85
КД105Б (400) 300 15 1,0 300 100 85
КД105В (600) 300 15 1,0 300 100 85
КД105Г (800) 300 15 1,0 300 100 85
КД116А-1 100 25 (170) 0,95 25 1,0 125
КД116Б-1 50 100 (170) 1,0 50 0,4 100
КД109А (100) 300 1,0 300 100 85
КД109Б (300) 300 1,0 300 50 85
КД109В (600) 300 1,0 300 100 85
КД109Г (600) 300 1,0 300 100 85
КД204А 400 (400) 400 10 1,4 600 150 85
КД204Б 200 (200) 600 10 0,05 1,4 600 100 85
КД204В 50 (50) 1000 10 0,05 1,4 600 50 85
КД205А 500 500 0,005 1,0 100 85
КД205Б 400 500 0,005 1,0 100 85
КД205В 300 500 0,005 1,0 100 85
КД205Г 200 500 0,005 1,0 100 85
КД205Д 100 500 0,005 1,0 100 85
КД205Е 500 300 0,005 1,0 100 85
КД205Ж 600 500 0,005 1,0 100 85
КД205И 700 300 0,005 1,0 100 85
КД205К 100 700 0,005 1,0 100 85
КД205Л 200 700 0,005 1,0 100 85
КД209А 400 (400) 700 15 1,0 700 100 85
КД209Б 600 (600) 500 15 1,0 500 100 85
КД209В 800 (800) 500 15 1,0 300 100 85
КД212А 200 (200) 1000 50 0,1 1,0 1000 50 85
КД212Б 200 (200) 1000 50 0,1 1,2 1000 100 85
КД212В 100 (100) 1000 50 0,1 1,0 1000 50 85
КД212Г 100 (100) 1000 50 0,1 1,2 1000 100 85
КД212А-6 200 (200) 1000 50 0,1 1,0 1000 50 85
КД212Б-6 200 (200) 1000 50 0,1 1,2 1000 100 85
КД212В-6 100 (100) 1000 50 0,1 1,0 1000 50 85
КД212Г-6 100 (100) 1000 50 0,1 1,2 1000 100 85
КД221А (100) 700 7 0,01 1,4 700 50 85
КД221Б (200) 500 5 0,01 1,4 500 50 85
КД221В (400) 300 3 0,01 1,4 300 100 85
КД221Г (600) 300 3 0,01 1,4 300 150 85
КД257А 200 (200) 3000 0,05 1,5 5000 2,0 155
КД257Б 400 (400) 3000 0,05 1,5 5000 2,0 155
КД257В 600 (600) 3000 0,05 1,5 5000 2,0 155
КД257Г 800 (800) 3000 0,05 1,5 5000 2,0 155
КД257Д 1000 (1000) 3000 0,05 1,5 5000 2,0 155
КД258А 200 (200) 1500 0,05 1,6 3000 2,0 155
КД258Б 400 (400) 1500 0,05 1,6 3000 2,0 155
КД258В 600 (600) 1500 0,05 1,6 3000 2,0 155
КД258Г 800 (800) 1500 0,05 1,6 3000 2,0 155
КД258Д 1000 (1000) 1500 0,05 1,6 3000 2,0 155
КД503А 30 20 (200) 350 10 85
КД503Б 30 20 (200) 350 10 85
2Д101А 30 (30) 20 (300) 1,0 100 5,0 85
2ДМ101А 30 20 (300) 1,0 100 5,0 100
2Д102А 250 100 1,0 50 0.1 125
2Д102Б 300 100 1,0 50 1,0 125
2Д103А 75 (100) 100 0,6 0,02 1,0 50 1,0 125
2Д104А 300 (300) 10 1,0 0,02 1,0 10 3,0 70
2Д106А 100 (100) 300 0,05 1,0 300 2,0 125
2Д108А (800) 100 3,0 1,5 100 150 125
2Д108Б (1000) 100 3,0 1,5 100 150 125
2Д115А 100 30 0,8 1,0 50 1,0 125
2Д118А-1 200 (200) 300 3,0 0,1 1,0 300 50 100
2Д120А 100 (100) 300 0,1 1,0 300 2,0 175
2Д120А-1 100 (100) 300 0,1 1,0 300 2,0 155
2Д123А-1 100 (100) 300 3,0 0,1 1,0 300 1,0 100
2Д125А-5 (600) 300 3,0 0,2 1,5 1000 50
2Д125Б-5 (800) 300 3,0 1,5 1000 50
2Д204А 400 (400) 400 10 0,05 1,4 600 150 125
2Д204Б 200 (200) 600 10 0,05 1,4 600 100 125
2Д204В 50 (50) 1000 10 0,05 1,4 600 50 125
2Д207А (600) 500 1,5 500 150 125
2Д212А 200 (200) 1000 50 0,1 1,0 1000 50 125
2Д212Б 100 (100) 1000 50 0,1 1,0 1000 50 125
2Д215А 400 (400) 1000 10 0,01 1,2 500 50 125
2Д215Б 600 (600) 1000 10 0,01 1,2 500 50 125
2Д215В 200 (200) 1000 10 0,01 1,1 1000 50 125
2Д235А 40 (40) 1000 0,9 300 800
2Д235Б 30 (30) 1000 0,9 300 800
2Д236А 600 (600) 1000 0,1 1,5 1000 5,0 155
2Д236Б 800 (800) 1000 0,1 1,5 1000 5,0 155
2Д236А-5 600 (600) 1000 0,1 1,5 1000 5,0 155
2Д236Б-5 800 (800) 1000 0,1 1,5 1000 5,0 155
2Д237А 100 (100) 1000 0,3 1,3 1000 5,0 155
2Д237Б 200 (200) 1000 0,3 1,3 1000 5,0 155
2Д237А-5 100 (100) 1000 0,3 1,3 1000 5,0 155
2Д237Б-5 200 (200) 1000 0,3 1,3 1000 5,0 155

Диоды средней мощности

Рис. 2. Выпрямительные отечественные диоды средней мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам средней мощности.

Тип
прибора
Предельные значения
параметров при Т=25С
Значения параметров
при Т=25С


Тк.мах
(Тп.)
С

Uобр.макс.
(Uобр.и.мак.)
B
Iпр.макс.
(Iпр.и.мак.)
A
Iпрг.

A

fраб.
(fмакс.)
kГц
Uпр.

B

при
Iпр.
A
Iобр.

mA

1 2 3 4 5 6 7 8 9
Д214 (100) 10,0 100 1,1 1,2 10,0 3,0 130
Д214А (100) 10,0 100 1,1 1,0 10,0 3,0 130
Д214Б (100) 5,0 50 1,1 1,5 5,0 3,0 130
Д215 (200) 10,0 100 1,1 1,2 10,0 3,0 130
Д215А (200) 10,0 100 1,1 1,0 10,0 3,0 130
Д215Б (200) 5,0 50 1,1 1,5 5,0 3,0 130
Д231 (300) 10,0 100 1,1 1,0 10,0 3,0 130
Д231А (300) 10,0 100 1,1 1,0 10,0 3,0 130
Д231Б (300) 5,0 50 1,1 1,5 5,0 3,0 130
Д232 (400) 10,0 100 1,1 1,0 10,0 3,0 130
Д232А (400) 10,0 100 1,1 1,0 10,0 3,0 130
Д232Б (400) 5,0 50 1,1 1,5 5,0 3,0 130
Д233 (500) 10,0 100 1,1 1,0 10,0 3,0 130
Д233Б (500) 5,0 50 1,1 1,5 5,0 3,0 130
Д234Б (600) 5,0 50 1,1 1,5 5,0 3,0 130
Д242 (100) 10,0 2 (10) 1,25 10,0 3,0 130
Д242А (100) 10,0 2 (10) 1,0 10,0 3,0 130
Д242Б (100) 5,0 2 (10) 1,5 5,0 3,0 130
Д243 (200) 10,0 1,1 1,25 10,0 3,0 130
Д243А (200) 10,0 1,1 1,0 10,0 3,0 130
Д243Б (200) 5,0 1,1 1,5 5,0 3,0 130
Д244 (50) 10,0 1,1 1,25 10,0 3,0 130
Д244А (50) 10,0 1,1 1,0 10,0 3,0 130
Д244Б (50) 5,0 1,1 1,5 5,0 3,0 130
Д245 (300) 10,0 1,1 1,25 10,0 3,0 130
Д245А (300) 10,0 1,1 1,0 10,0 3,0 130
Д245Б (300) 5,0 1,1 1,5 5,0 3,0 130
Д246 (400) 10,0 1,1 1,25 10,0 3,0 130
Д246А (400) 10,0 1,1 1,0 10,0 3,0 130
Д246Б (400) 5,0 1,1 1,5 5,0 3,0 130
Д247 (500) 10,0 1,1 1,25 10,0 3,0 130
Д247Б (500) 5,0 1,1 1,5 5,0 3,0 130
Д248Б (600) 5,0 1,1 1,5 5,0 3,0 130
Д302 200 1,0 5,0 0,25 1,0 0,8 70
Д302А 200 1,0 5,0 0,3 1,0 1,2 55
Д303 (150) 3,0 4,5 5,0 0,3 3,0 1,0 80
Д303А (150) 3,0 5,0 0,35 3,0 1,2 55
Д304 (100) 5,0 12,5 5,0 0,25 5,0 2,0 80
Д305 (50) 10,0 40 5,0 0,3 10,0 2,5 80
Д332А 400 10,0 1,0 10,0 3,0 130
Д332Б 400 5,0 1,5 5,0 3,0 130
Д333 500 10,0 1,0 10,0 3,0 130
Д333Б 500 5,0 1,5 5,0 3,0 130
Д334Б 600 5,0 1,5 5,0 3,0 130
2Д201А (100) 5,0 15 1,1 1,0 5,0 3,0 130
2Д201Б (100) 10,0 100 1,1 1,0 10,0 3,0 130
2Д201В (200) 5,0 15 1,1 1,0 5,0 3,0 130
2Д201Г (200) 10,0 100 1,1 1,0 10,0 3,0 130
2Д202В 70 (100) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202Д 120 (200) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202Ж 210 (300) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202К 200 (400) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202М 350 (500) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202Р 420 (600) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
КД202А 35 (50) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Б 35 (50) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202В 70 (100) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Г 70 (100) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202Д 140 (200) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Е 140 (200) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202Ж 210 (300) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202И 210 (300) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202К 280 (400) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Л 280 (400) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202М 350 (500) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Н 350 (500) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202Р 420 (600) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202С 480 (600) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
2Д203А 420 (600) 10,0 100 1 (10) 1,0 10,0 1,5 140
2Д203Б 560 (800) 10,0 100 1 (10) 1,0 10,0 1,5 140
2Д203В 560 (800) 10,0 100 1 (10) 1,0 10,0 1,5 140
2Д203Г 700 (1000) 10,0 100 1 (10) 1,0 10,0 1,5 140
2Д203Д 700 (1000) 10,0 100 1 (10) 1,0 10,0 1,5 140
КД203А 420 (600) 10,0 30 1 (10) 1,0 10,0 1,5 140
КД203Б 560 (800) 10,0 30 1 (10) 1,0 10,0 1,5 140
КД203В 560 (800) 10,0 30 1 (10) 1,0 10,0 1,5 140
КД203Г 700 (1000) 10,0 30 1 (10) 1,0 10,0 1,5 140
КД203Д 700 (1000) 10,0 30 1 (10) 1,0 10,0 1,5 140
2Д204А 400 0,4 1,0 1,4 0,6 0,15 125
2Д204Б 200 0,6 5,0 1,4 0,6 0,1 125
2Д204В 50 1,0 2,0 5,0 1,4 0,6 0,05 125
КД204А 400 0,4 1,0 1,4 0,6 0,15 85
КД204Б 200 0,6 5,0 1,4 0,6 0,1 85
КД204В 50 1,0 2,0 5,0 1,4 0,6 0,05 85
2Д206А 400 (400) 5,0 100 1,0 1,2 1,0 0,7 125
2Д206Б 500 (500) 5,0 100 1,0 1,2 1,0 0,7 125
2Д206В 600 (600) 5,0 100 1,0 1,2 1,0 0,7 125
КД206А 400 (400) 10,0 100 1,0 1,2 1,0 0,7 125
КД206Б 500 (500) 10,0 100 1,0 1,2 1,0 0,7 125
КД206В 600 (600) 10,0 100 1,0 1,2 1,0 0,7 125
КД208A 100 (100) 1,5 1,0 1,0 1,0 0,1 85
КД208В 100 1,5 1,0 0,1 85
2Д210А 800 (800) 5,0 25 (5,0) 1,0 10,0 1,5 100
2Д210Б 800 (800) 10,0 50 (5,0) 1,0 10,0 1,5 100
2Д210В 1000 (1000) 5,0 25 (5,0) 1,0 10,0 1,5 100
2Д210Г 1000 (1000) 10,0 50 (5,0) 1,0 10,0 1,5 100
КД210А 800 (800) 5,0 25 (5,0) 1,0 10,0 1,5 100
КД210Б 800 (800) 10,0 50 (5,0) 1,0 10,0 1,5 100
КД210В 1000 (1000) 5,0 25 (5,0) 1,0 10,0 1,5 100
КД210Г 1000 (1000) 10,0 50 (5,0) 1,0 10,0 1,5 100
2Д212А 200 (200) 1,0 50 100 1,0 1,0 0,05 125
2Д212Б 100 (100) 1,0 50 100 1,0 1,0 0,1 125
КД212А 200 1,0 50 100 1,0 1,0 0,05 85
КД212Б 200 1,0 50 100 1,2 1,0 0,1 85
КД212В 100 1,0 50 100 1,0 1,0 0,05 85
КД212Г 100 1,0 50 100 1,2 1,0 0,1 85
2Д213А 200 (200) 10,0 100 (100) 1,0 10,0 0,2 150
2Д213А6 200 (200) 10,0 100 100 1,0 10,0 0,2 100
2Д213Б 200 (200) 10,0 100 (100) 1,2 10,0 0,2 150
2Д213Б6 200 (200) 10,0 100 100 1,2 10,0 0,2 100
2Д213В 100 (100) 10,0 100 (100) 1,0 10,0 0,2 125
2Д213Г 100 (100) 10,0 100 (100) 1,2 10,0 0,2 125
КД213А 200 (200) 10,0 100 (100) 1,0 10,0 0,2 140
КД213А6 200 (200) 10,0 100 (100) 1,0 10,0 0,2 100
КД213Б 200 (200) 10,0 100 (100) 1,2 10,0 0,2 130
КД213Б6 200 (200) 10,0 100 (100) 1,2 10,0 0,2 100
КД213В 100 (100) 10,0 100 (100) 1,0 10,0 0,2 130
КД213Г 100 (100) 10,0 100 (100) 1,2 10,0 0,2 130
2Д216А 100 (100) 10,0 100 1,4 10,0 0,05 175
2Д216Б 200 (200) 10,0 100 1,4 10,0 0,05 175
2Д217А 100 (100) 3,0 50 (100) 1,3 3,0 0,05 125
2Д217Б 200 (200) 3,0 50 (100) 1,3 3,0 0,05 125
2Д219А 15 (15) 10,0 250 200 0,55 10,0 10 115
2Д219Б 20 (20) 10,0 250 200 0,55 10,0 10 115
2Д219В 15 (15) 10,0 250 200 0,45 10,0 10 85
2Д219Г 20 (20) 10,0 250 200 0,45 10,0 10 85
2Д220А 400 (400) 3,0 60 10 (50) 1,5 3,0 0,045 155
2Д220Б 600 (600) 3,0 60 10 (50) 1,5 3,0 0,045 155
2Д220В 800 (800) 3,0 60 10 (50) 1,5 3,0 0,045 155
2Д220Г 1000(1000) 3,0 60 10 (50) 1,5 3,0 0,045 155
2Д220Д 400 (400) 3,0 60 10 (50) 1,3 3,0 0,045 155
2Д220Е 600 (600) 3,0 60 10 (50) 1,3 3,0 0,045 155
2Д220Ж 800 (800) 3,0 60 10 (50) 1,3 3,0 0,045 155
2Д220И 1000 (1000) 3,0 60 10 (50) 1,3 3,0 0,045 155
КД223А 200 (200) 2,0 35 1,3 6,0 10 150
КД226А 100 (100) 1,7 10 35 1,4 1,7 0,05 85
КД226Б 200 (200) 1,7 10 35 1,4 1,7 0,05 85
КД226В 400 (400) 1,7 10 35 1,4 1,7 0,05 85
КД226Г 600 (600) 1,7 10 35 1,4 1,7 0,05 85
КД226Д 800 (800) 1,7 10 35 1,4 1,7 0,05 85
КД227А 100 (150) 5,0 1,2 1,6 5,0 0,8 85
КД227Б 200 (300) 5,0 1,2 1,6 5,0 0,8 85
КД227В 300 (450) 5,0 1,2 1,6 5,0 0,8 85
КД227Г 400 (600) 5,0 1,2 1,6 5,0 0,8 85
КД227Д 500 (750) 5,0 1,2 1,6 5,0 0,8 85
КД227Е 600 (850) 5,0 1,2 1,6 5,0 0,8 85
КД227Ж 800 (1200) 5,0 1,2 1,6 5,0 0,8 85
2Д230А 400 (400) 3,0 60 10 (50) 1,5 3,0 0,045 125
2Д230Б 600 (600) 3,0 60 10 (20) 1,5 3,0 0,045 125
2Д230В 800 (800) 3,0 60 10 (20) 1,5 3,0 0,045 125
2Д230Г 1000(1000) 3,0 60 10 (20) 1,5 3,0 0,045 125
2Д230Д 400 (400) 3,0 60 10 (20) 1,3 3,0 0,045 125
2Д230Е 600 (600) 3,0 60 10 (50) 1,3 3,0 0,045 125
2Д230Ж 800 (800) 3,0 60 10 (20) 1,3 3,0 0,045 125
2Д230И 1000(1000) 3,0 60 10 (20) 1,3 3,0 0,045 125
2Д231А (150) 10,0 150 200 1,0 10,0 0,05 125
2Д231Б (200) 10,0 150 200 1,0 10,0 0,05 125
2Д231В (150) 10,0 150 200 1,0 10,0 0,05 125
2Д231Г (200) 10,0 150 200 1,0 10,0 0,05 125
2Д232А (15) 10,0 250 200(200) 0,6 10,0 7,5 100
2Д232Б (25) 10,0 250 200(200) 0,7 10,0 7,5 100
2Д232В (25) 10,0 250 200(200) 0,7 10,0 7,5 100
2Д234А 100 (100) 3,0 10 50 (50) 1,5 3,0 0,1 125
2Д234Б 200 (200) 3,0 10 50 (50) 1,5 3,0 0,1 125
2Д234В 400 (400) 3,0 10 50 (50) 1,5 3,0 0,1 125
2Д251А (50) 10,0 150 200 1,0 10,0 0,05 125
2Д251Б (70) 10,0 150 200 1,0 10,0 0,05 125
2Д251В (100) 10,0 150 200 1,0 10,0 0,05 125
2Д251Г (50) 10,0 150 200 1,0 10,0 0,05 125
2Д251Д (70) 10,0 150 200 1,0 10,0 0,05 125
2Д251Е (100) 10,0 150 200 1,0 10,0 0,05 125

Диоды большой мощности

Рис. 3. Выпрямительные отечественные диоды большой мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам большой мощности.

Тип
прибора
Предельные значения
параметров при Т=25С
Значения параметров
при Т=25С
Тк.мах
(Тп.)
С
Uобр.макс.
(Uобр.и.мак.)
B
Iпр.макс.
(Iпр.и.мак.)
A
Iпрг.

A

fраб.
(fмакс.)
kГц
Uпр.

B

при
Iпр.
A
Iобр.

mA

1 2 3 4 5 6 7 8 9
2Д2990А 600 (600) 20 200 1,4 20 11 125
2Д2990Б 400 (400) 20 200 1,4 20 11 125
2Д2990В 200 (200) 20 200 1,4 20 11 125
КД2994А 100 (100) 20 200 1,4 20 0,2 125
КД2995А 50 (50) 20 200 1,1 20 0,01 150
КД2995Б 70 (70) 20 200 1,1 20 0,01 150
КД2995В 100 (100) 20 200 1,1 20 0,01 150
КД2995Г 50 (50) 20 200 1,1 20 0,01 150
КД2995Е 100 (100) 20 200 1,1 20 0,01 150
2Д2997А 200 (250) 30 (100) 100 1,0 30 25 125
2Д2997Б 100 (200) 30 (100) 100 1,0 30 25 125
2Д2997В 50 (100) 30 (100) 100 1,0 30 25 125
КД2997А 200 (250) 30 (100) 100 1,0 30 25 125
КД2997Б 100 (200) 30 (100) 100 1,0 30 25 125
КД2997В 50 (100) 30 (100) 100 1,0 30 25 125
2Д2998А 15 (15) 30 (100) 600 200 0,6 30 150 125
2Д2998Б 25 (25) 30 (100) 600 200 0,68 30 150 125
2Д2998В 25 (25) 30 (100) 600 200 0,68 30 150 125
2Д2999А 200 (250) 20 (100) 100 1,0 20 25 125
2Д2999Б 100 (200) 20 (100) 100 1,0 20 25 125
2Д2999В 50 (100) 20 (100) 100 1,0 20 25 125
КД2999А 200 (250) 20 (100) 100 1,0 20 25 125
КД2999Б 100 (200) 20 (100) 100 1,0 20 25 125
КД2999В 50 (100) 20 (100) 100 1,0 20 25 125

Справочник по диодам отечественного производства.

Анализ цепи

— Выбор правильного диода

(опять как дежавю)

Причина выбора диода с определенными параметрами следующая:

Reverse Voltage: Выберите, чтобы быть выше максимально возможного обратного напряжения, которое может быть замечено на устройстве. (Когда диод не горит.)

Forward Current: Выберите, чтобы быть выше максимально возможного тока, который может протекать через устройство. (Когда горит диод.)

Прямое напряжение: выберите, если небольшое падение напряжения в прямом направлении должно быть на уровне или ниже определенного значения.(Когда горит диод.)

Есть несколько других параметров диодов, но они обычно менее важны, особенно в простых цепях постоянного тока.

Для схемы выше:
Обратное напряжение:
Рассчитайте максимальное напряжение, которое можно было бы увидеть, если бы в линии (между c и e) был установлен диод. Рассчитайте напряжение в направлении, обратном току диода. (Другими словами, поместите диод в схему и проведите анализ.) В вашем последнем запросе вопрос включал возможность выхода из строя других источников питания, поэтому проводите анализ с учетом этого).Анализ даст представление о необходимом обратном напряжении. Обычно вы выбираете диод с обратным напряжением выше расчетного, включая некоторый запас прочности (если он указан). Диоды часто бывают с определенными значениями обратного напряжения (что-то вроде резисторов со стандартными значениями)

прямой ток: То же, что и выше, но рассчитайте максимально возможный ток, который можно увидеть, проходя через диод в прямом направлении.

прямое напряжение: Если требуется определенное известное или минимальное значение прямого напряжения, выберите диод с этим параметром.(Например, прямое напряжение силиконового диода во включенном состоянии составляет около 0,7 В). Примечание. Этот параметр может зависеть от тока.

Стабилитрон будет использоваться только в том случае, если вы хотите, чтобы диод пропускал ток в обратном направлении при известном напряжении. Обычно они используются только в том случае, если вам нужно фиксированное напряжение в некоторой точке цепи. Например, их можно использовать для создания опорного напряжения.

диодов — как выбрать один

Диоды — это полупроводниковые устройства, обычно используемые для многих целей.В общем, вы можете представить диод как клапан, который пропускает ток в одном направлении и останавливает его обратное течение. Первое, что приходит в голову — это может быть хорошим выбором для защиты от обратного напряжения.

На самом деле все немного иначе. Во-первых, диоды — не идеальные устройства. У них есть так называемое прямое падение напряжения , которое для стандартных диодов составляет около 0,7 В. Если вставить диод в блок питания, скажем 5V, после защиты вы получите 4.3 В, где часть напряжения теряется на диоде. Если вы хотите пойти по этому пути, выберите вместо него диод Шоттки, который имеет меньшее прямое падение напряжения. Прямое падение напряжения происходит, когда диод смещен в прямом направлении , что означает протекание тока от анода к катоду.

Если диод подключен назад, это называется обратным смещением. В диодах с обратным смещением ток до пробоя составляет несколько незначительных мкА. В качестве примера рассмотрим диод общего назначения 1N4148 производства NXP.Его максимальное номинальное обратное напряжение составляет 100 В. Но если вы собираетесь использовать его в коммутационных устройствах, ищите максимальное повторяющееся пиковое обратное напряжение, которое также составляет 100 В для 1N4148. Если скорость переключения высока, проверьте, достаточно ли быстрый диод. 1N4148 максимальная скорость переключения составляет 4 нс. То же касается и тока. Вы должны следить за тем, чтобы не превышался максимальный непрерывный прямой ток (200 мА для 1N4148) и максимальный повторяющийся пиковый прямой ток (450 мА для 1N4148). По этим параметрам кремниевые диоды могут иметь определенное назначение.Вроде 1N4148 считается быстродействующим диодом общего назначения. Хорошо известный 1N4001 называется низковольтным выпрямителем, потому что его пиковое обратное напряжение составляет 60 В, но максимальный прямой ток может достигать 1 А. Идеально подходит для изготовления выпрямителей низкого напряжения. С другой стороны, 1N5404 — это высоковольтный выпрямитель, который выдерживает пиковое обратное напряжение 400 В и может пропускать 3 А. Это может быть идеальным выбором для силовой электроники.

Если погрузиться в радиоэлектронику, германиевых диодов не избежать. Они изготовлены из германия и имеют немного другие характеристики, главной особенностью которых является меньшее прямое падение напряжения, примерно равное 0.2В. Но его обратный ток растет намного быстрее, когда увеличивается обратное напряжение. Таким образом, он идеально подходит для обнаружения слабых сигналов, но не так хорош при высоком напряжении.

Германиевые диоды

— довольно редкий выбор и наиболее полезны в ВЧ, где необходимо исправлять слабые сигналы переменного тока. Германиевые диоды имеют очень низкую емкость PN-перехода, поэтому они отлично подходят для высокочастотных сигналов. Но обратная сторона этих диодов в том, что они не выдерживают больших токов. Обычно он составляет до 100 мА и меньше, потому что чем больше ток течет, тем более значительное падение напряжения и, следовательно, требуется рассеивание большей мощности.Это видно на картинке выше, где германий более плоский, чем силикон. Напряжение пробоя также намного меньше, чем у кремниевого диода. Обычно до 100В.

Закладка.

Как выбрать правильный диод

Диоды — это электронные односторонние клапаны, пропускающие ток в одном направлении, но не в обратном. Если вы разрабатываете схему, в которой они используются, вам нужно знать, что у них есть ограничения. Они могут выдерживать номинальный максимальный ток, и если вы превысите этот предел, вы повредите деталь.У них также есть предел обратного напряжения, после которого они начнут проводить, что может привести к разрушительным результатам. И диоды бывают в нескольких различных типах физических корпусов, с выводами или в корпусе для поверхностного монтажа (SMD).

Оцените схему в точке, где будет расположен диод. Определите максимальный ток, который будет протекать через эту точку, и запишите цифру. Определите максимальное напряжение, которое диод должен выдерживать. Напряжения — это разность потенциалов между двумя точками, поэтому, если на одной стороне диода 25 вольт, а на другой 5 вольт, 25-5 = 20 вольт.Запишите значение напряжения.

Умножьте значение напряжения на 1,25 и запишите его. Сделайте то же самое для текущего значения. Это будут ваши минимальные рейтинги. Умножьте значение напряжения на 2,5 и запишите его, и сделайте то же самое для тока. Это будут ваши максимальные оценки. Используемый вами диод может превышать максимально допустимые значения, если вы не можете найти диод меньшего размера. Например, если ваше максимальное напряжение в цепи составляет 15, а наименьшее значение диода, которое вы можете найти в каталоге, составляет 100 вольт, вполне безопасно использовать 100.Не используйте детали с номинальной стоимостью ниже минимальной.

Определите, как вы будете строить схему. Если диод рассчитан на ток, намного превышающий 5 ампер, возможно, потребуется установить его в металлический радиатор. Если вы используете компоненты для поверхностного монтажа, вы будете искать диодный корпус такого же типа.

Откройте каталог и выполните поиск в разделе диодов, начиная с наименьшего номинального напряжения, соответствующего вашему, затем найдите соответствующие номинальные значения тока. В каталоге будут указаны номинальные значения напряжения диодов как пиковое обратное напряжение (PIV) или пиковое обратное напряжение (PRV).В нем перечислены текущие рейтинги как средний прямой ток, рекуррентный прямой ток и прямой постоянный ток. Если диод выпрямляет переменный ток с периодом 60 циклов, используйте средний прямой ток. Если диод будет обрабатывать повторяющиеся импульсы тока, используйте Recurrent Forward Current. В противном случае используйте прямой ток постоянного тока, чтобы найти правильный диод. Убедитесь, что вы выбрали физический корпус, который соответствует вашей общей конструкции с точки зрения выводов или поверхностного монтажа.

Вещи, которые вам понадобятся:

  • Карандаш и бумага
  • Калькулятор
  • Принципиальная схема
  • Каталог полупроводников

Советы:

  • Если вы выберете диод с номиналом, намного превышающим расчетный максимум, он будет работать в ваша схема, но она может быть дорогой и физически большой.Если вы используете диоды, которые соответствуют вашим минимальным и максимальным номиналам или соответствуют им, они будут работать безопасно, и вы не потеряете деньги.

Диоды — learn.sparkfun.com

Добавлено в избранное Любимый 61

Введение

После того, как вы перейдете от простых пассивных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, пора перейти в удивительный мир полупроводников.Одним из наиболее широко используемых полупроводниковых компонентов является диод.

В этом уроке мы рассмотрим:

  • Что такое диод !?
  • Теория работы диодов
  • Важные свойства диода
  • Различные типы диодов
  • Как выглядят диоды
  • Типовые применения диодов

Рекомендуемая литература

Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем перейти к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:

Что такое схема?

Каждый электрический проект начинается со схемы.Не знаю, что такое схема? Мы здесь, чтобы помочь.

Что такое электричество?

Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!

Как пользоваться мультиметром

Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.

Хотите изучить различные диоды?

Идеальные диоды

Ключевая функция диода ideal — управлять направлением тока . Ток, проходящий через диод, может идти только в одном направлении, называемом прямым направлением. Ток, пытающийся течь в обратном направлении, заблокирован. Они похожи на односторонний клапан электроники.

Если напряжение на диоде отрицательное, ток не может течь *, и идеальный диод выглядит как разомкнутая цепь.В такой ситуации говорят, что диод выключен или смещен в обратном направлении .

Пока напряжение на диоде не отрицательное, он «включается» и проводит ток. В идеале * диод должен действовать как короткое замыкание (0 В на нем), если он проводит ток. Когда диод проводит ток, он смещен в прямом направлении (жаргон электроники означает «включено»).

Соотношение тока и напряжения идеального диода. Любое отрицательное напряжение дает нулевой ток — разрыв цепи.Пока напряжение неотрицательно, диод выглядит как короткое замыкание.

Характеристики идеального диода
Рабочий режим Вкл. (Смещение вперед) Выкл. В = 0 В
Диод выглядит как Короткое замыкание Обрыв цепи

Обозначение цепи

Каждый диод имеет две клеммы — соединения на каждом конце компонента — и эти клеммы поляризованы , что означает, что эти две клеммы совершенно разные.Важно не перепутать соединения на диоде. Положительный конец диода называется анодом , а отрицательный конец называется катодом . Ток может течь от конца анода к катоду, но не в другом направлении. Если вы забыли, в каком направлении протекает ток через диод, попробуйте вспомнить мнемонику ACID : «анодный ток в диоде» (также анодный катод — это диод ).

Обозначение цепи стандартного диода представляет собой треугольник, соприкасающийся с линией.Как мы расскажем позже в этом руководстве, существует множество типов диодов, но обычно их обозначение схемы будет выглядеть примерно так:

Вывод, входящий в плоский край треугольника, представляет собой анод. Ток течет в направлении, указанном треугольником / стрелкой, но не может идти в обратном направлении.

Выше приведены несколько простых примеров схем диодов. Слева диод D1 смещен в прямом направлении и пропускает ток через цепь. По сути это похоже на короткое замыкание.Справа диод D2 имеет обратное смещение. Ток не может течь по цепи, и она выглядит как разомкнутая цепь.

* Внимание! Звездочка! Не совсем так … К сожалению, идеального диода не существует. Но не волнуйтесь! Диоды действительно настоящие, у них просто есть несколько характеристик, которые заставляют их работать немного хуже, чем наша идеальная модель …


Реальные характеристики диода

В идеале, , диоды будут блокировать любой ток, текущий в обратном направлении, или просто действовать как короткое замыкание, если ток идет вперед.К сожалению, реальное поведение диодов не совсем идеальное. Диоды потребляют некоторое количество энергии при проведении прямого тока, и они не будут блокировать весь обратный ток. Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.

Соотношение тока и напряжения

Наиболее важной характеристикой диода является его вольт-амперная зависимость ( i-v ). Это определяет ток, протекающий через компонент, с учетом того, какое напряжение на нем измеряется.Резисторы, например, имеют простую линейную зависимость i-v … Закон Ома. Кривая i-v диода, однако, полностью не -линейна. Выглядит это примерно так:

Вольт-амперная зависимость диода. Чтобы преувеличить несколько важных моментов на графике, масштабы как в положительной, так и в отрицательной половине не равны.

В зависимости от приложенного к нему напряжения диод будет работать в одном из трех регионов:

  1. Прямое смещение : Когда напряжение на диоде положительное, диод включен, и ток может протекать через него.Напряжение должно быть больше прямого напряжения (V F ), чтобы ток был значительным.
  2. Обратное смещение : Это режим «выключения» диода, когда напряжение меньше V F , но больше -V BR . В этом режиме ток (в основном) заблокирован, а диод выключен. Очень небольшой ток (порядка нА), называемый током обратного насыщения, может протекать через диод в обратном направлении.
  3. Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.

прямое напряжение

Чтобы «включиться» и провести ток в прямом направлении, диод требует приложения определенного количества положительного напряжения. Типичное напряжение, необходимое для включения диода, называется прямым напряжением F ).Его также можно назвать либо , либо , либо , .

Как мы знаем из кривой i-v , ток через диод и напряжение на диоде взаимозависимы. Больше тока означает большее напряжение, меньшее напряжение означает меньший ток. Однако, когда напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения. Если диод полностью проводящий, обычно можно предположить, что напряжение на нем соответствует номинальному прямому напряжению.

Мультиметр с настройкой диода можно использовать для измерения (минимального) прямого падения напряжения на диоде.

V F конкретного диода зависит от того, из какого полупроводникового материала он сделан. Обычно кремниевый диод имеет напряжение V F около 0,6–1 В . Диод на основе германия может быть ниже, около 0,3 В. Диод типа также имеет некоторое значение для определения прямого падения напряжения; светоизлучающие диоды могут иметь гораздо большее V F , в то время как диоды Шоттки разработаны специально, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.

Напряжение пробоя

Если к диоду приложить достаточно большое отрицательное напряжение, он поддастся и позволит току течь в обратном направлении. Это большое отрицательное напряжение называется напряжением пробоя . Некоторые диоды на самом деле предназначены для работы в области пробоя, но для большинства нормальных диодов не очень полезно подвергаться воздействию больших отрицательных напряжений.

Для нормальных диодов это напряжение пробоя составляет от -50 В до -100 В или даже более отрицательное.

Таблицы данных диодов

Все вышеперечисленные характеристики должны быть подробно описаны в даташите на каждый диод. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):

Таблица данных может даже представить вам хорошо знакомый график вольт-амперной характеристики, чтобы более подробно описать поведение диода. Этот график из таблицы данных диода увеличивает изогнутую переднюю часть кривой i-v .Обратите внимание, как больший ток требует большего напряжения:

Эта диаграмма указывает на еще одну важную характеристику диода — максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенное количество энергии, прежде чем они взорвутся. На всех диодах должны быть указаны максимальный ток, обратное напряжение и рассеиваемая мощность. Если диод подвергается большему напряжению или току, чем он может выдержать, ожидайте, что он нагреется (или, что еще хуже, расплавится, задымится и т. Д.).

Некоторые диоды хорошо подходят для больших токов — 1 А или более — другие, например, малосигнальный диод 1N4148, показанный выше, могут подходить только для тока около 200 мА.


Этот 1N4148 — лишь крошечная выборка всех существующих типов диодов. Далее мы рассмотрим, какое удивительное разнообразие существует и для какой цели служит каждый тип.

Типы диодов

Нормальные диоды

Диоды сигнальные

Стандартные сигнальные диоды являются одними из самых простых, средних и простых членов семейства диодов. Обычно они имеют средне-высокое прямое падение напряжения и низкий максимальный ток.Типичный пример сигнального диода — 1N4148.

Очень общего назначения, он имеет типичное прямое падение напряжения 0,72 В и максимальный номинальный прямой ток 300 мА.

Слабосигнальный диод, 1N4148. Обратите внимание на черный кружок вокруг диода, который отмечает, какой из выводов является катодом.

Силовые диоды

Выпрямитель или силовой диод — стандартный диод с гораздо более высоким максимальным током. Этот более высокий номинальный ток обычно достигается за счет большего прямого напряжения.1N4001 — это пример силового диода.

1N4001 имеет номинальный ток 1 А и прямое напряжение 1,1 В.

Диод 1N4001 PTH. На этот раз серая полоса указывает, какой вывод является катодом.

И, конечно же, большинство типов диодов также выпускаются для поверхностного монтажа. Вы заметите, что у каждого диода есть способ (независимо от того, насколько он крошечный или плохо различимый), чтобы указать, какой из двух контактов является катодом.

Светодиоды (светодиоды!)

Самым ярким членом семейства диодов должен быть светодиод (LED).Эти диоды буквально загораются при подаче положительного напряжения.

Горстка сквозных светодиодов. Слева направо: желтый 3 мм, синий 5 мм, зеленый 10 мм, сверхяркий красный 5 мм, RGB 5 мм и синий 7-сегментный светодиод.

Как и обычные диоды, светодиоды пропускают ток только в одном направлении. У них также есть номинальное прямое напряжение, то есть напряжение, необходимое для их включения. Рейтинг светодиода V F обычно больше, чем у обычного диода (1.2 ~ 3 В), и это зависит от цвета, излучаемого светодиодом. Например, номинальное прямое напряжение сверхяркого синего светодиода составляет около 3,3 В, а для сверхяркого красного светодиода такого же размера — всего 2,2 В.

Очевидно, вы чаще всего найдете светодиоды в осветительных приборах. Они веселые и веселые! Но более того, их высокая эффективность привела к широкому использованию в уличных фонарях, дисплеях, подсветке и многом другом. Другие светодиоды излучают свет, невидимый человеческому глазу, например инфракрасные светодиоды, которые являются основой большинства пультов дистанционного управления.Другое распространенное использование светодиодов — оптическая изоляция опасной высоковольтной системы от низковольтной цепи. Оптоизоляторы соединяют инфракрасный светодиод с фотодатчиком, который пропускает ток при обнаружении света от светодиода. Ниже приведен пример схемы оптоизолятора. Обратите внимание на то, как схематический символ диода отличается от обычного диода. Светодиодные символы добавляют пару стрелок, выходящих из символа.

Диоды Шоттки

Другой очень распространенный диод — диод Шоттки.

Диод Шоттки

В наличии COM-10926

Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением. Этот диод Шоттки 1 А 40 В составляет…

. 1

Полупроводниковый состав диода Шоттки немного отличается от обычного диода, и это приводит к значительно меньшему на прямому падению напряжения , которое обычно находится между 0.15 В и 0,45 В. Однако они все равно будут иметь очень большое напряжение пробоя.

Диоды Шоттки

особенно полезны для ограничения потерь, когда необходимо сохранить каждый последний бит напряжения . Они достаточно уникальны, чтобы получить собственное обозначение схемы с парой изгибов на конце катодной линии.

Стабилитроны

Стабилитрон

— это странный изгой из семейства диодов. Обычно они используются, чтобы намеренно проводить обратный ток .

Стабилитрон — 5.1 В 1 Вт

Нет на складе COM-10301

Стабилитроны полезны для создания опорного напряжения или в качестве стабилизатора напряжения для слаботочных приложений. Эти диоды…

Стабилитрон

разработан для обеспечения очень точного напряжения пробоя, называемого стабилитроном или напряжением стабилитрона . Когда через стабилитрон протекает достаточный ток в обратном направлении, падение напряжения на нем будет стабильным на уровне напряжения пробоя.

За счет своих пробивных свойств стабилитроны часто используются для создания известного опорного напряжения, точно равного их напряжению стабилитрона. Их можно использовать в качестве регуляторов напряжения для небольших нагрузок, но на самом деле они не предназначены для регулирования напряжения в цепях, которые потребляют значительный ток.

Стабилитроны

достаточно особенные, чтобы иметь собственное обозначение схемы с волнистыми концами на катодной линии. Этот символ может даже обозначать, что такое напряжение стабилитрона диода.Вот стабилитрон 3,3 В, создающий надежное опорное напряжение 3,3 В:

Фотодиоды

Фотодиоды — это специально сконструированные диоды, которые улавливают энергию фотонов света (см. Физика, квант) для генерации электрического тока. Вид работы как анти-светодиод.

Фотодиод BPW34 (не четверть, да мелочь). Поставьте его на солнце, и он может генерировать около нескольких мкВт энергии !.

Солнечные элементы — главный благодетель фотодиодной технологии.Но эти диоды также могут использоваться для обнаружения света или даже для оптической связи.


Применение диодов

Для такого простого компонента диоды имеют множество применений. Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.

Выпрямители

Выпрямитель — это схема, преобразующая переменный ток (AC) в постоянный (DC).Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.

Ток в цепях переменного тока буквально чередуется — быстро переключается между положительным и отрицательным направлениями — но ток в сигнале постоянного тока течет только в одном направлении. Поэтому для преобразования переменного тока в постоянный вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!

Однополупериодный выпрямитель можно сделать всего из одного диода.Если сигнал переменного тока, такой как, например, синусоида, передается через диод, любая отрицательная составляющая сигнала отсекается.

Формы сигналов входного (красный / левый) и выходного (синий / правый) напряжения после прохождения через схему однополупериодного выпрямителя (в центре).

Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных выступов в сигнале переменного тока в положительные.

Схема мостового выпрямителя (в центре) и форма выходной волны, которую она создает (синий / правый).

Эти цепи являются критическим компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока сетевой розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. Д. Если вы разорвали стенную бородавку, вы, скорее всего, увидели бы там несколько диодов, исправляющих ее.

Можете ли вы заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?

Защита от обратного тока

Когда-нибудь вставлял батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива.Диод, расположенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.

Это применение диода полезно, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.

Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения.Это делает диоды Шоттки отличным выбором для диодов обратной защиты.

Логические ворота

Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.

Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1.Когда оба входа имеют логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.

Логический элемент И построен аналогичным образом. Аноды обоих диодов соединены вместе, где находится выход схемы. Оба входа должны иметь логическую единицу, заставляющую ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на каком-либо из входов низкий уровень, ток от источника питания 5 В проходит через диод.

Для обоих логических вентилей можно добавить больше входов, добавив только один диод.

Обратные диоды и подавление скачков напряжения

Диоды

очень часто используются для ограничения потенциального повреждения из-за неожиданных больших скачков напряжения. Диоды подавления переходных напряжений (TVS) — это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большими номинальными мощностями (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.

Обратные диоды выполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, например двигателем.Когда ток через катушку индуктивности внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.

Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.


Покупка диодов

Теперь, когда ваш текущий движется в правильном направлении, пришло время найти хорошее применение вашим новым знаниям.Независимо от того, ищете ли вы отправную точку или просто пополняете запасы, у нас есть набор изобретателя, а также отдельные диоды на выбор.

Наши рекомендации:

Диод Шоттки

В наличии COM-10926

Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением.Этот диод Шоттки 1 А 40 В составляет…

. 1

Комплект изобретателя SparkFun — версия 3.2

На пенсии КОМПЛЕКТ-12060

** Как вы, возможно, видели из [нашего сообщения в блоге] (https://www.sparkfun.com/news/2241), мы недавно перенесли нашу литьевую форму для SIK…

76 Пенсионер

Ресурсы и дальнейшее развитие

Теперь, когда вы познакомились с диодами, возможно, вы захотите продолжить изучение других полупроводников:

Или откройте для себя другие распространенные электронные компоненты:

Практическое руководство

: диоды: 6 ступеней (с изображениями)

Если вы в прошлом занимались электронными проектами, есть большая вероятность, что вы уже сталкивались с этим распространенным компонентом и без раздумий встраивали его в свою схему.Диоды имеют большое значение в электронике и служат множеству целей, которые будут рассмотрены в следующих шагах.

Во-первых, что такое диод?

Диод — это полупроводниковое устройство, которое позволяет току течь в одном направлении, но не в другом.

Полупроводник — это разновидность материала, в данном случае кремния или германия, электрические свойства которого находятся между проводниками (металлами) и изоляторами (стекло, резина). Рассмотрим проводимость: это мера относительной легкости, с которой электроны движутся через материал.Например, электроны легко проходят через кусок металлической проволоки. Вы можете изменить поведение чистого материала, такого как кремний, и превратить его в полупроводник, легируя . При легировании вы добавляете небольшое количество примеси в чистую кристаллическую структуру.

Типы примесей, добавляемые к чистому кремнию, можно разделить на N-тип и P-тип.

  • N-тип: при легировании N-типа фосфор или мышьяк добавляются в кремний в небольших количествах в долях на миллиард.И фосфор, и мышьяк имеют по пять внешних электронов, поэтому они смещаются, когда попадают в решетку кремния. Пятому электрону не с чем связываться, поэтому он может свободно перемещаться. Требуется лишь очень небольшое количество примеси, чтобы создать достаточно свободных электронов, чтобы позволить электрическому току протекать через кремний. Электроны имеют отрицательный заряд, отсюда и название N-типа.
  • P-тип — При легировании P-типа к чистому кремнию добавляется бор или галлий. Каждый из этих элементов имеет по три внешних электрона.При смешивании с кремниевой структурой они образуют «дыры» в решетке, где электрону кремния не с чем связываться. Отсутствие электрона создает эффект положительного заряда, отсюда и название P-типа. Отверстия могут проводить ток. Дыра с радостью принимает электрон от соседа, перемещая дыру в пространстве.

Диоды изготовлены из двух слоев полупроводникового материала с различным легированием, которые образуют PN переход . Материал P-типа имеет избыток положительных носителей заряда (дырок), а материал N-типа — избыток электронов.Между этими слоями, где встречаются материалы P-типа и N-типа, дырки и электроны объединяются, причем сверхэлектроны объединяются с избыточными дырками, чтобы компенсировать друг друга, поэтому создается тонкий слой, в котором нет ни положительных, ни отрицательных носителей заряда. Это называется истощенным слоем .

В этом обедненном слое нет носителей заряда, и через него не может протекать ток. Но когда на переход подается напряжение, так что анод P-типа становится положительным, а катод N-типа — отрицательным, положительные дырки притягиваются через обедненный слой к отрицательному катоду, также отрицательные электроны притягиваются к отрицательному катоду. положительный анод и ток.

Думайте о диоде как об улице с односторонним движением электричества. Когда диод находится в прямом смещении, диод позволяет трафику или току течь от анода к катодной ножке. В обратном смещении ток блокируется, поэтому электрический ток через цепь не протекает. Когда через диод протекает ток, напряжение на положительном плече выше, чем на отрицательном, это называется прямым падением напряжения на диоде . Сила падения напряжения зависит от полупроводникового материала, из которого изготовлен диод.Когда напряжение на диоде положительное, может течь большой ток, когда напряжение становится достаточно большим. Когда напряжение на диоде отрицательное, ток практически не течет.

Общие сведения о технических характеристиках, параметрах и номинальных характеристиках диодов »Примечания по электронике

Диоды

могут показаться простыми, но они имеют множество технических характеристик, параметров и номиналов, которые необходимо учитывать при выборе одного из них в качестве замены или для новой конструкции электронной схемы.


Diode Tutorial:
Типы диодов Характеристики и номиналы диодов PN переходный диод ВЕЛ PIN-диод Диод с барьером Шоттки Солнечный элемент / фотоэлектрический диод Варактор / варикап Стабилитрон


Понимание технических характеристик, параметров и номинальных характеристик диодов может быть ключом к выбору правильного электронного компонента для конкретной конструкции электронной схемы. На рынке доступно огромное количество диодов, поэтому выбор необходимого не всегда может показаться легким.

Большинство спецификаций, номинальных значений и параметров относительно просты для понимания, особенно с небольшими пояснениями, но некоторые из них могут потребовать немного большего объяснения, или они могут быть применимы к ограниченному количеству диодов.

Помимо технических характеристик, касающихся электрических характеристик, также важны физические упаковки. Диоды поставляются в различных корпусах, включая корпуса с выводами на проводах, а также мощные диоды, которые крепятся болтами к радиаторам, и с огромным количеством высокоавтоматизированных производств и сборок печатных плат, компоненты технологии поверхностного монтажа — диоды SMD используются в огромных количествах.

Технические характеристики диодов приводятся в технических паспортах и ​​содержат описание характеристик диода. Проверка рабочих параметров позволит оценить диод на предмет того, обеспечивает ли он требуемые рабочие характеристики для предполагаемой функции.

Различные параметры спецификации более применимы для диодов, используемых в различных приложениях, различных конструкциях электронных схем и т. Д. Для силовых приложений важны такие аспекты, как допустимый ток, прямое падение напряжения, температура перехода и т. Д., Но для конструкций RF емкость и напряжение включения часто представляют большой интерес.

Приведенные ниже аспекты подробно описывают некоторые из наиболее широко используемых параметров или спецификаций, используемых в технических паспортах для большинства типов диодов.

Характеристики и параметры диода

В приведенном ниже списке представлены подробные сведения о различных характеристиках диодов и параметрах диодов, которые можно найти в технических паспортах и ​​спецификациях диодов.

  • Материал полупроводника: Полупроводниковый материал, используемый в диоде с PN-переходом, имеет первостепенное значение, поскольку используемый материал влияет на многие из основных характеристик и свойств диодов.Кремний и германий — два широко используемых материала:
    • Кремний: Кремний является наиболее широко используемым материалом, как бы предлагая высокие характеристики для большинства приложений и низкую стоимость производства. Технология кремния хорошо отработана, и кремниевые диоды можно изготавливать дешево. Напряжение прямого включения составляет около 0,6 В, что является высоким показателем для некоторых приложений, хотя для диодов Шоттки оно меньше.
    • Германий: Германий менее широко используется и предлагает низкое напряжение включения около 0.От 2 до 0,3 В.
    Другие материалы обычно предназначены для более специализированных диодов. Например, светодиоды используют составные материалы для обеспечения разных цветов.
  • Тип диода: Хотя большинство диодов имеют в основе конструкции PN переход, разные типы диодов разработаны для обеспечения разных характеристик, и иногда они могут работать по-разному. Ключевым моментом является выбор правильного типа диода для любого конкретного применения.Стабилитроны

    используются для обеспечения опорных напряжений, в то время как варакторные диоды используются для обеспечения переменного уровня емкости в ВЧ-схеме в соответствии с предусмотренным обратным смещением. Выпрямительные диоды могут использовать диод с прямым PN переходом или, в некоторых случаях, они могут использовать диод Шоттки для более низкого прямого напряжения. Каким бы ни было приложение, необходимо использовать диод правильного типа для достижения требуемых функциональных возможностей и характеристик.


  • Прямое падение напряжения, Vf: Любое электронное устройство, пропускающее ток, будет развивать результирующее напряжение на нем, и эта характеристика диода имеет большое значение, особенно для выпрямления мощности, где потери мощности будут выше для высокого прямого падение напряжения.Кроме того, диодам для ВЧ-схем часто требуется небольшое прямое падение напряжения, поскольку сигналы могут быть небольшими, но их все же необходимо преодолеть.

    Напряжение на диоде с PN переходом возникает по двум причинам. Первый связан с характером полупроводникового PN перехода и является результатом упомянутого выше напряжения включения. Это напряжение позволяет преодолеть истощающий слой и протечь ток. Вторая причина возникает из-за обычных резистивных потерь в устройстве. В результате будет дана величина прямого падения напряжения при заданном уровне тока.Этот показатель особенно важен для выпрямительных диодов, через которые может проходить значительный ток.

    График прямого падения напряжения для различных уровней тока, в частности, для силовых выпрямительных диодов, обычно приводится в техническом паспорте. Он будет иметь диапазон типичных цифр, и с его помощью можно определить диапазон падения напряжения для ожидаемых уровней переносимого тока. Затем можно определить мощность, которая будет рассеиваться в области электронного перехода диода.

  • Пиковое обратное напряжение, PIV: Характеристики диода представляют собой максимальное напряжение, которое диод может выдерживать в обратном направлении. Это напряжение нельзя превышать, иначе устройство может выйти из строя.

    Это напряжение не является просто среднеквадратичным напряжением входящего сигнала. Каждую схему необходимо рассматривать по отдельности, но для простого однодидного полуволнового выпрямителя с некоторой формой сглаживающего конденсатора впоследствии следует помнить, что конденсатор будет удерживать напряжение, равное пику входящей формы волны напряжения.Тогда диод также будет видеть пик входящей формы волны в обратном направлении и, следовательно, в этих обстоятельствах он будет видеть пиковое обратное напряжение, равное размаху сигнала.

  • Напряжение обратного пробоя, В (BR) R : Это немного отличается от пикового обратного напряжения тем, что это напряжение является точкой, в которой диод выйдет из строя.

    Вольт-амперная характеристика диода PN, показывающая обратный пробой

    Диод выдерживает обратное напряжение до определенной точки, а затем выйдет из строя.В некоторых диодах и в некоторых схемах это вызовет непоправимый ущерб, хотя для стабилитронов / опорных диодов напряжения для опорного напряжения используется сценарий обратного пробоя, хотя схема должна быть разработана для ограничения протекающего тока, в противном случае диод может быть поврежден. уничтожен.

  • Максимальный прямой ток: Для конструкции электронной схемы, которая пропускает любые уровни тока, необходимо обеспечить, чтобы максимальные уровни тока для диода не превышались.По мере повышения уровня тока дополнительное тепло рассеивается, и его необходимо удалить.

  • Рабочая температура перехода: Как и все электронные компоненты, диоды имеют максимальную рабочую температуру. В техническом паспорте будет раздел с указанием максимальной температуры перехода. По мере повышения температуры перехода надежность в долгосрочной перспективе падает. При превышении максимальной температуры перехода диод может выйти из строя и даже загореться.

    Следует помнить, что температура перехода относится к самому диодному переходу внутри корпуса, а не к температуре корпуса. Между температурой упаковки и температурой перехода должен быть допустимый запас. Часто в технических паспортах приводятся кривые, позволяющие определить температуру перехода. Также можно рассчитать температуру перехода, зная ток, прямое падение напряжения и тепловое сопротивление: спецификации, которые упоминаются в технических характеристиках и также упоминаются здесь.

    Принимая во внимание аспекты долгосрочной надежности, всегда лучше всего эксплуатировать диод в пределах своих номиналов. Это дает хороший запас для обеспечения надежной долгосрочной работы и для диода, чтобы приспособиться к любым кратковременным пикам. То же самое для любого электронного компонента.

  • Переход к тепловому сопротивлению окружающей среды, Θ JA : Этот параметр спецификации диода измеряется в ° C на ватт и означает, что для каждого ватта, рассеиваемого в переходе, будет определенное повышение температуры выше температуры окружающей среды. .Это означает, что для диода с тепловым сопротивлением перехода к окружающей среде 50 ° C / Вт температура перехода будет повышаться на 50 ° C на каждый ватт рассеиваемой мощности.

    Переходное тепловое сопротивление окружающей среды на самом деле представляет собой сумму ряда отдельных областей диода: тепловое сопротивление перехода к корпусу, тепловое сопротивление между корпусом и поверхностью и тепловое сопротивление поверхности к окружающей среде, как показано на рисунке. формула: θ JA = θ JC + θ CS + θ SA .

    Эта общая спецификация является ключом к возможности определить фактическую рабочую температуру перехода — ключевой параметр, который необходимо контролировать при проектировании схемы, в которой диоды пропускают значительный ток, так что прошедший ток приведет к рассеянию мощности.

    Температуру перехода можно рассчитать по формуле:

    Где:
    T J температура перехода
    T AMB = температура окружающей среды
    Θ JA = переход к тепловому сопротивлению окружающей среды.

  • Ток утечки: Если бы был идеальный диод, то при обратном смещении ток не протекал. Обнаружено, что для реального диода с PN-переходом очень малая величина тока течет в обратном направлении из-за наличия неосновных носителей заряда в полупроводнике. Уровень тока утечки зависит от трех основных факторов. Обратное напряжение очевидно. Он также зависит от температуры и заметно повышается с повышением температуры.Также обнаружено, что это очень зависит от типа используемого полупроводникового материала — кремний намного лучше германия.

    IV характеристика PN-диода, показывающая параметр

    тока утечки. Характеристика или спецификация тока утечки для диода с PN-переходом указывается при определенном обратном напряжении и определенной температуре. Спецификация обычно определяется в микроамперах, мкА или пикоамперах, пА, поскольку уровни обычно очень низкие до того, как произойдет обратный пробой.

  • Емкость перехода: Все диоды с PN переходом обладают емкостью перехода. Область обеднения — это диэлектрический промежуток между двумя пластинами, которые эффективно формируются на краю области обеднения и области с основными носителями. Фактическое значение емкости зависит от обратного напряжения, которое вызывает изменение области обеднения (увеличение обратного напряжения увеличивает размер области истощения и, следовательно, уменьшает емкость).

    Этот факт успешно используется в варакторах или варикапных диодах, а также в ВЧ-конструкциях генераторов переменной частоты и фильтров переменной частоты. Однако для многих других приложений, особенно для некоторых радиочастотных схем, где паразитная емкость диода может влиять на характеристики, это необходимо минимизировать. Поскольку емкость имеет важное значение, она указывается. Параметр обычно описывается как заданная емкость (обычно в пФ, поскольку уровни емкости относительно низкие) при заданном напряжении или напряжениях.Также для многих ВЧ приложений доступны специальные диоды с малой емкостью.

    Для многих применений с выпрямителями мощности емкость достаточно мала, чтобы не создавать проблем. Например, емкость перехода 1N4001 и 1N4004 составляет всего 15 пФ для обратного напряжения 4 В и меньше при повышении напряжения. Диоды с более высоким напряжением могут быть меньше — 1N4007 имеет емкость перехода 8 пФ для обратного напряжения 4 вольта. Соответственно, влияние емкости замечается только при повышении частоты.Поскольку уровни емкости низкие, на частоты до 100 кГц он часто не влияет, и в большинстве случаев им можно пренебречь, вплоть до даже более высоких частот.

  • Тип корпуса: Диоды могут быть установлены в различных корпусах в зависимости от их применения, и в некоторых случаях, особенно в ВЧ приложениях, корпус является ключевым элементом при определении общих характеристик ВЧ диодов.

    Также для силовых приложений, где важно рассеивание тепла, корпус может определять многие общие параметры диодов, поскольку для мощных диодов могут потребоваться корпуса, которые можно прикрепить болтами к радиаторам, тогда как малосигнальные диоды могут быть доступны с выводами или как устройства для поверхностного монтажа. .Также мощные диоды могут быть доступны в виде мостовых выпрямителей, содержащих четыре диода в мосту, подходящих для выпрямления волн.

    Диоды для поверхностного монтажа, SMD-диоды используются в огромных количествах, потому что большая часть производства электроники и сборки печатных плат осуществляется с использованием автоматизированных методов, а технология поверхностного монтажа подходит для этого.

    Схема мостового выпрямителя и маркировка

    В дополнение к этому, диоды доступны как с выводами, так и в корпусах, использующих технологию поверхностного монтажа, в зависимости от диода.Большинство ВЧ диодов и диодов малой мощности доступны в корпусах для поверхностного монтажа, что делает их более подходящими для крупномасштабного производства.

  • Схемы кодирования и маркировки диодов: Большинство используемых диодов имеют номера деталей, соответствующие схемам JEDEC или Pro-Electron. Такие числа, как 1N4001, 1N916, BZY88 и многие другие, хорошо знакомы всем, кто занимается проектированием и производством электроники.

    Однако при использовании методов автоматизированной сборки печатных плат и технологии поверхностного монтажа выясняется, что многие устройства слишком малы, чтобы нести полное число, которое может быть использовано в паспорте.В результате была разработана довольно произвольная система кодирования, в соответствии с которой упаковка устройства содержит простой двух- или трехзначный идентификационный код.

    Обычно его можно разместить на небольших корпусах диодов для поверхностного монтажа. Однако определить типовой номер SMD-диода производителя по коду корпуса может быть непросто на первый взгляд. Есть несколько полезных кодовых книг SMD, которые предоставляют данные для этих устройств. Например, код «13s» обозначает диод для поверхностного монтажа BAS125 в корпусе SOT23 или SOT323.

Пример типовых характеристик диода

Несмотря на то, что существует множество различных диодов с большим количеством различных спецификаций, иногда помогает увидеть, каковы различные спецификации и параметры и как они выражаются в формате, аналогичном тем, которые представлены в таблицах данных.

Типовой 1N5711 Характеристики / Технические характеристики
Характеристика Типичное значение Блок Детали
Макс.напряжение блокировки постоянного тока, В 70 В
Макс.длительный ток в прямом направлении, Ifm 15 мА
Напряжение обратного пробоя, В (БР) R 70 В при обратном токе 10 мкА
Обратный ток утечки, IR 200 мкА При VR = 50 В
Прямое падение напряжения, VF 0.41

1,00

В при IF = 1,0 мА

IF = 15 мА

Емкость перехода, Кдж 2,0 пФ VR = 0 В, f = 1 МГц
Время обратного восстановления, trr 1 нС

Огромное количество диодов имеет огромное количество различных характеристик. Некоторые диоды могут быть разработаны исключительно для выпрямления, тогда как другие могут быть предназначены для излучения света, обнаружения света, действия в качестве опорного напряжения, обеспечения переменной емкости и т.п.Диоды также поставляются в различных упаковках, подавляющее большинство из которых в наши дни продаются как диоды для поверхностного монтажа для автоматизированной сборки печатных плат.

Независимо от типа диода, многие из основных технических характеристик, параметров и номиналов, упомянутых выше, будут важны. Понимание основных параметров и характеристик этих электронных компонентов при просмотре спецификаций в технических паспортах является ключом к выбору правильного диода. Понимание спецификаций позволяет принимать мудрые решения в процессе проектирования электронной схемы для любого проекта с использованием диодов.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Как правильно выбрать диод Шоттки?

Диоды Шоттки Незаменимое защитное устройство при производстве электронных изделий.Он широко используется в портативных электронных продуктах и ​​импульсных источниках питания. Он очень популярен в электронной промышленности. Однако как мы можем выбрать правильный продукт на рынке диодов Шоттки? Диоды Шоттки Что ж, это действительно очень хорошо для некоторых покупателей, которые только начали работать в электронной промышленности.
Головная боль, вы можете ошибиться, если вам все равно. Я считаю, что после прочтения следующего вы почувствуете себя как пощечину.

Во-первых, определение диода Шоттки:

Диоды Шоттки Названы в честь своего изобретателя, доктора философии (Dr.Шоттки, SBD — это аббревиатура от Schottky Barrier Diode (сокращенно SBD).

В отличие от обычных диодов, SBD не изготавливается по принципу, согласно которому полупроводник P-типа контактирует с полупроводником N-типа, образуя PN-переход, а изготавливается с использованием принципа перехода металл-полупроводник, образованного металлом-полупроводником. контакт.

Следовательно, SBD также называют диодом металл-полупроводник (контактным) или диодом с поверхностным барьером, который является диодом с горячими носителями.

Горячие носители относятся к носителям с более высокой средней кинетической энергией, чем носители в нулевом электрическом поле.

Диоды Шоттки

доступны как в корпусах с выводами, так и в корпусах для поверхностного монтажа (sMD).

Диоды Шоттки в свинцовых корпусах обычно используются в качестве высокочастотных, сильноточных выпрямительных диодов, диодов с обратным ходом или защитных диодов.

Выпускается в однотрубных и парных (двухдиодных) корпусах.

Schottky имеет три типа распиновки для лампы, которая имеет общий катод (катод двух трубок соединен), общий анод (анод двух трубок соединен) и последовательный (анод одного диода подключен к катоду другого диода).

Во-вторых, преимущества и недостатки диодов Шоттки в блоке питания:

Достоинства диода Шоттки:

1: Низкое падение напряжения, низкие потери напряжения.

2: Высокая скорость переключения и низкие потери, подходят для высокочастотных цепей.

Диод Шоттки Недостатки:

1: Обратное смещение низкое и не выдерживает чрезмерного обратного напряжения.

2: Обратная утечка — это положительный температурный коэффициент.При повышении температуры обратная ИК-утечка будет увеличиваться (это параметр, который проектировщики легко игнорировать).

В-третьих, ключевые параметры выбора диода Шоттки:

1: Постоянное обратное напряжение VR. Если обратное напряжение на Шоттки превышает это напряжение, Шоттки будет включен.

2: VF определяет падение давления. Это падение напряжения на проводимости Шоттки.

3: ЕСЛИ постоянный прямой ток.Если ток прямой проводимости Шоттки превышает это значение, Шоттки сдувается.

4: ИК обратный ток утечки. Согласно характеристикам Шоттки, этот параметр будет увеличиваться с повышением температуры. Следовательно, проектировщик должен учитывать обратную утечку в конструкции при проектировании печатной платы или с учетом окружающей среды.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *