Site Loader

Содержание

Диоды катоды аноды: для чего нужны

Что такое диод? Для того чтобы ответить на этот вопрос, надо копнуть вглубь, в самое начало, а именно, с чего начинается полупроводник.

Вакуумная двухэлектродная лампа

Вступление из теории

Проводник

Попробуем представить себе кусок материала проводника, например, меди. Чем он характеризуется: в нем есть свободные носители заряда – электроны. Причем таких отрицательных частиц в нем очень много.

Если на эту область подать плюс, то все эти отрицательные элементы устремятся к нему, то есть потечет ток через медь. Это известный факт, поэтому в качестве токопроводящих материалов применяют именно медь. К проводникам также относятся такие элементы периодической таблицы Менделеева, как алюминий, железо, золото и многие другие.

Диэлектрик

Диэлектрик – это материал, который свободных носителей заряда не имеет и, следовательно, ток не проводит.

Полупроводник

Полупроводник – это и металл, и неметалл. Материал, который и проводит ток, и не проводит. В нем мало свободных носителей заряда. Типичными полупроводниками являются кремний, германий.

Что такое диод

Кремний является четырехвалентным элементом. Чтобы его превратить в проводник, к нему подмешивают пятивалентный мышьяк. В результате этого соединения появляются лишние электроны, то есть свободные носители заряда. А если добавить к кремнию трехвалентный индий, в материале появятся позитроны, частицы с нехваткой электрона. Из таких областей и состоит диод.

Полученная структура называется PN элементом или PN-переходом. P – позитивная часть, N – негативная. Одна часть материала обогащена плюсовыми позитронами, другая – минусовыми электронами.

Как работает диод

Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов.

Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод. Схема подключения электродов к источнику может работать следующим образом:

  • подача напряжения с батарейки к электроду N обеспечивает притяжение позитронов, соответственно к P электроду – электронов;
  • отсутствие напряжения все возвращает в исходное состояние;
  • смена полярности подаваемого напряжения обеспечивает притяжение электронов в обратном направлении к плюсовой пластине, а позитронов – к минусовой.

В последнем случае избыточные заряды скапливаются на металлических обкладках, тогда как в центре самого материала образуется мертвая изолирующая зона. Таким образом, центральный участок материала становится диэлектриком. В таком направлении устройство не пропускает ток.

Для информации. Слово происходит от di (double) + -ode.  Определение терминов катод и анод диода, относящихся к контактам, известно каждому человеку. Катод – отрицательный электрод, анод – положительный. Если подать на анод плюс, а на катод – минус, то диод откроется, и электроток по нему потечет.

Таким образом, диод – это устройство, которое имеет два электрода: катод и анод. Простое нелинейное электронное устройство, состоящее из двух разных полупроводников. Как устроен диод, хорошо видно на изображении.

Принцип работы диода

Диоды – это полупроводники, состоящие из областей P и N. Благодаря свойствам PN-перехода диод проводит ток только в одном направлении. Таков принцип действия этих устройств. Для чего нужны они?

Назначение диодов

Диоды бывают различного исполнения: от громоздких советских до миниатюрных современных. Может устройство быть одной и той же мощности, но из-за времени выпуска различаться по габаритам. Диоды на большой ток нуждаются в охлаждении, поэтому производятся с креплением под радиатор. Соответственно, устройства без радиатора рассчитаны на малый ток.

Применение диодов

Устройства диодов могут быть ориентированы на ограничение или приостановление движения тока. Чрезвычайно распространенным приложением является его использование в качестве выпрямителя.

Полупроводниковый диодный ограничитель

Выпрямители

Поскольку диод позволяет току течь лишь в одном направлении, то переменный ток проходит через диод только положительную или отрицательную часть напряжения синусоидальной волны. Это означает, что можно эффективно преобразовывать переменный ток в постоянный ток, применяя диоды, расположенные в виде полноволнового выпрямителя.

Например, имеется источник переменного тока. На выходе из него в цепь поставлен диод, через который подключена нагрузка. Что получится? Если источник дает синусоиду, то на выходе диода пройдет только положительная полуволна. И так до следующей полуволны. Но если развернуть диод другой стороной, то на выходе получится отрицательная полуволна, то есть устройство пропускает ток только в одном направлении.

Если поставить на место диода мост, состоящий из четырех диодов, то на выходе будет сигнал в форме полуволн, напоминающих верблюжий горб. Полуволны будут развернуты все в одном направлении. При установке после диодов дополнительного конденсатора получатся те же полуволны, только сглаженные.

Мостовой выпрямитель

Варикапы

Графический значок варикапа очень напоминает условное изображение полупроводникового диода. Варикап – это и есть обыкновенный диод. Работа устройства основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения. Если напряжение подается маленькое, емкость получается большая, если подается большое напряжение – емкость становится маленькой. Реально варикапы изменяют свою емкость в несколько раз (до 7 раз).

Стабилитроны

Стабилитрон – это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. Выбирают стабилитрон с большим запасом рассеиваемой мощности, потому что он постоянно работает в режиме пробоя. Основное назначение стабилитронов – стабилизация напряжения.

Основной целью стабилизатора напряжения является поддержание постоянного напряжения на нагрузке, независимо от изменений входного напряжения и тока нагрузки. При изменяющихся условиях тока нагрузки стабилитрон может использоваться для получения стабилизированного выходного напряжения. Это основная причина использования стабилитрона в качестве стабилизатора напряжения.

Диоды Шоттки

Диод Шоттки – это низковольтное устройство, в котором используются в качестве электродов металл и обогащенный электронами полупроводник. Напряжение такого диода составляет примерно 0,2-0,4 В, в сравнение с обычным диодом эта величина в два раза меньше.

Зона применения диода Шоттки ограниченная, поскольку он не может работать без стабилитрона. В основном диоды Шоттки используются в устройствах, работающих в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.

Диодный прибор Шоттки

Светодиоды

Светоизлучающие диоды в настоящее время широко применяются в качестве диодных блоков легких энергосберегающих лампочек. Они становятся незаменимыми для жизни людей, поскольку способствуют снижению возрастающих цен на электроэнергию.

Для информации. Мигающие светодиоды часто применяют в различных сигнальных цепях, для украшения домашнего интерьера. Существуют схемы, с помощью которых можно заставить мигать светодиоды. Сделать мигающие светодиоды – вполне выполнимая задача.

Светодиоды LED

Можно совсем кратко ответить на вопрос, что такое диоды, и зачем они нужны. Именно этот элемент способен остановить свободное движение электронов в определенном направлении.

Видео

Оцените статью:

Что такое диод и как он работает? | ASUTPP

Меня несколько раз спрашивали — что такое диод?

Диод — это электронный компонент, который проводит ток в одном направлении и блокирует ток в другом направлении.

Символ диода выглядит так:

Символ диода выглядит так:

Как подключить диод?

Давайте посмотрим на пример.

В цепи выше диод подключен в правильном направлении. Это означает, что ток может течь через него, так что светодиод загорается.

Но что произойдет, если мы подключим его наоборот?

В этой второй цепи диод подключен неправильно. Это означает, что ток не будет течь в цепи, и светодиод будет выключен.

Для чего нужен диод?

Диоды очень часто используются в источниках питания. От электрической розетки в стене вы получаете переменный ток (переменный ток). Многие устройства, которые мы используем, нуждаются в постоянном токе (DC). Чтобы получить постоянный ток от переменного тока, нам нужна схема выпрямителя. Это схема, которая преобразует переменный ток (переменный ток) в постоянный ток (постоянный ток). Диоды являются основными компонентами в выпрямительных цепях.

Как работает диод?

Диод создан из PN-перехода . Вы получите PN-соединение, взяв полупроводниковый материал с отрицательным и положительным добавлением и соединив его.

На пересечении этих двух материалов появляется «область истощения». Эта область истощения действует как изолятор и отказывается пропускать ток.

Когда вы прикладываете положительное напряжение с положительной стороны к отрицательной стороне, «обедненный слой» между этими двумя материалами исчезает, и ток может течь с положительной на отрицательную сторону.

Когда вы прикладываете напряжение в другом направлении, от отрицательной к положительной стороне, область истощения расширяется и сопротивляется любому протекающему току.

Что нужно знать о диодах?
  1. Вы должны приложить достаточное напряжение в «правильном» направлении — от положительного к отрицательному — чтобы диод начал проводить проводку. Обычно это напряжение составляет около 0,7 В.
  2. Диод имеет ограничения и не может проводить неограниченное количество тока.
  3. Диоды не являются идеальными компонентами. Если вы подадите напряжение в неправильном направлении, будет течь немного тока. Этот ток называется «током утечки».
  4. Если вы подадите достаточно высокое напряжение в «неправильном» направлении, диод сломается и пропустит ток и в этом направлении.

Типы диодов

Есть много разных типов диодов . Наиболее распространенными являются сигнальные диоды, выпрямительные диоды, стабилитроны и светодиоды (светодиоды) . Сигнальные и выпрямительные диоды — это одно и то же, за исключением того, что выпрямительные диоды рассчитаны на большую мощность.

Стабилитроны — это диоды, которые используют напряжение пробоя при подаче напряжения «неправильным» образом. Они действуют как очень стабильные опорные напряжения.

Поделитесь своими комментариями или вопросами ниже!

Что такое диод, зачем он нужен и из чего он состоит?

Диод является одним из самых популярных электронных компонентов, который используется как в простых схемах выпрямителей, так и в сложных электронных системах. А что это такое и зачем он там нужен, спросите вы?

Итак, диод – это полупроводниковый элемент с двумя выводами, один из которых носит название анод (А), а другой катод (К). По типу исполнения различают дискретные диоды в виде отдельного элемента, который заключается в свой собственный корпус и предназначен для монтажа на печатной плате, и интегральные диоды, изготавливаемые вместе с другими элементами схемы на общей полупроводниковой подложке. У интегральных диодов имеется третий вывод. Он необходим для соединения с общей подложкой. Иногда его называют субстратом (S), но он не играет важной роли в самом процессе функционирования диода.

Устройство диода

Диоды состоят из электронно-дырочного перехода p-n или перехода металл-полупроводник и носят название диод с p-n переходом или диод Шоттки. Зона n обогащена электронами, а зона p – дырками. Условное графическое представление диода на электрических схемах и его структура показаны на рисунке ниже.

Как правило, зоны диода n и p изготавливаются из кремния. Кроме того, существуют диоды на основе германия. Им свойственно малое прямое падение напряжения, однако они уже устарели. В диодах Шоттки зона p заменена слоем металла, что также приводит к малому прямому падению напряжения, поэтому они довольно часто используются вместо германиевых диодов с p-n переходом.

На практике кремниевые диоды с p-n переходом называют просто диодами. На электрических схемах разные типы диодов отображаются одинаково, за исключением элементов особого типа. Типы диодов различаются по техническим данным и по маркировке на корпусе.

Режимы работы диода

В процессе работы диод может находиться в области проводимости, запирания и пробоя.

Диоды, назначение которых выпрямление напряжения, называют выпрямительными. Они работают в областях проводимости и запирания попеременно. Диоды, которые работают в области пробоя, называют

стабилитронами (диоды Зенера). Назначение стабилитронов – стабилизация напряжения.

Еще один, не менее важный класс диодов – варикапы. Они работают в режиме запирания и благодаря зависимости емкости запорного слоя (барьерной емкости) от приложенного напряжения могут быть использованы для настройки колебательных контуров на нужную частоту. Также существует множество других диодов, которые мы рассмотрим в других статьях.  

устройство и принцип действия разных видов, работа в схемах

Диод — это элемент, имеющий различную проводимость. Такое его свойство имеет применение в различных электротехнических и радиоэлектронных схемах. На его основе создаются устройства, имеющие применение в различных областях.

Типы диодов: электровакуумные и полупроводниковые. Последний тип в настоящее время применяется в подавляющем большинстве случаев. Никогда не будет лишним знать о том, как работает диод, для чего он нужен, как обозначается на схеме, какие существуют типы диодов, применение диодов разных видов.

Электровакуумные диоды

Приборы этого типа выполнены в виде электронных ламп. Лампа выглядит как стеклянный баллон, внутрь которого помещены два электрода. Один из них анод, другой катод. Они находятся в вакууме. Конструктивно анод выполнен в виде тонкостенного цилиндра. Внутри расположен катод. Он имеет обычно цилиндрическую форму. Изолированная нить накала проложена внутри катода. Все элементы имеют выводы, которые соединены со штырьками (ножками) лампы. Ножки лампы выведены наружу.

Принцип работы

При прохождении электрического тока по спирали она нагревается и разогревает катод, внутри которого находится. С поверхности разогретого катода электроны, покинувшие его, без дополнительного ускоряющего поля накапливаются в непосредственной близости от него. Часть из них затем обратно возвращается на катод.

При подаче на анод положительного напряжения электроны, испускаемые катодом, устремляются к нему, создавая анодный ток электронов.

Катод обладает пределом эмиссии электронов. При достижении этого предела анодный ток стабилизируется. Если на анод подать небольшое отрицательное напряжение по отношению к катоду, то электроны прекратят своё движение.

Материал катода, из которого он изготовлен, обладает высокой степенью эмиссии.

Вольт- амперная характеристика (ВАХ)

ВАХ диодов этого типа графически показывает зависимость тока анода от прямого напряжения, приложенного к выводам катода и анода. Она состоит из трёх участков:

  • Медленное нелинейное нарастание тока;
  • Рабочая часть характеристики;
  • Область насыщения тока анода.

Нелинейный участок начинается после области отсечки анодного тока. Его нелинейность связана с небольшим положительным потенциалом катода, который покинули электроны при его разогреве нитью накала.

Активный участок определяет из себя почти вертикальную линию. Он характеризует зависимость анодного тока от возрастающего напряжения.

Участок насыщения представляет собой линию постоянного значения тока анода при увеличивающемся напряжении между электродами лампы. Электронную лампу на этом участке можно сравнить с проводником электрического тока. Эмиссия катода достигла своего наивысшего значения.

Полупроводниковые диоды

Свойство p — n перехода пропускать электрический ток одного направления нашло применение при создании приборов этого типа. Прямое включение — это подача на n -область перехода отрицательного потенциала, по отношению к p -области, потенциал которой положительный. При таком включении прибор находится в открытом состоянии. При изменении полярности приложенного напряжения он окажется в запертом состоянии, и ток сквозь него не проходит.

Классификацию диодов можно вести по их назначению, по особенностям изготовления, по типу материала, используемого при его изготовлении.

В основном для изготовления полупроводниковых приборов используются пластины кремния или германия, которые имеют электропроводность n -типа. В них присутствует избыток отрицательно заряженных электронов.

Применяя разные технологии изготовления, можно на выходе получить точечные или пластинчатые диоды.

При изготовлении точечных приборов к пластинке n -типа приваривают заострённый проводник (иглу). На его поверхность нанесена определённая примесь. Для германиевых пластин игла содержит индий, для кремниевых пластин игла покрыта алюминием. В обоих случаях создаётся область p — n перехода. Её форма напоминает полусферу (точку).

Для плоскостных приборов применяют метод диффузии или сплавления. Площадь переходов, получаемых таким методом, варьируется в широких пределах. От её величины зависит в дальнейшем назначение изделия. К областям p — n перехода припаивают проволочки, которые в виде выводов из корпуса готового изделия используют при монтаже различных электрических схем.

На схемах полупроводниковые диоды обозначаются в виде равностороннего треугольника, к верхнему углу которого присоединена вертикальная черта, параллельная его основанию. Вывод черты называется катодом, а вывод основания треугольника анодом.

Прямым называется такое включение, при котором положительный полюс источника питания соединён с анодом. При обратном включении «плюс» источника подключается к катоду.

Вольт- амперная характеристика

ВАХ определяет зависимость тока, протекающего через полупроводниковый элемент, от величины и полярности напряжения, которое приложено к его выводам.

В области прямых напряжений выделяют три области: небольшого прямого тока и прямого рабочего тока через диод. Переход из одной области в другую происходит при достижении прямым напряжением порога проводимости. Эта величина составляет порядка 0,3 вольт для германиевых диодов и 0,7 вольт для диодов на основе кремния.

При приложении к выводам диода обратного напряжения ток через него имеет очень незначительную величину и называется обратным током или током утечки. Такая зависимость наблюдается до определённого значения величины обратного напряжения. Оно называется напряжением пробоя. При его превышении обратный ток нарастает лавинообразно.

Предельные значения параметров

Для полупроводниковых диодов существуют величины их параметров, которые нельзя превышать. К ним относятся:

  • Максимальный прямой ток;
  • Максимальное обратное напряжение пробоя;
  • Максимальная мощность рассеивания.

Полупроводниковый элемент может выдержать прямой ток через него ограниченной величины. При его превышении происходит перегревание p-n перехода и выход его из строя. Наибольший запас по этому параметру имеют плоскостные силовые приборы. Величина прямого тока через них может достигать десятков ампер.

Превышение максимального значения напряжения пробоя может превратить диод, имеющий однонаправленные свойства, в обычный проводник электрического тока. Пробой может иметь необратимый характер и варьируется в широких пределах, в зависимости от конкретного используемого прибора.

Мощность — это величина, напрямую зависящая от тока и напряжения, которое приложено при этом к выводам диода. Как и превышение максимального прямого тока, превышение предельной мощности рассеивания приводит к необратимым последствиям. Диод просто выгорает и перестаёт выполнять своё предназначение. Для предотвращения такой ситуации силовые приборы устанавливают приборы на радиаторы, которые отводят (рассеивают) избыток тепла в окружающую среду.

Виды полупроводниковых диодов

Свойство диода пропускать ток в прямом направлении и не пропускать его в обратном нашло применение в электротехнике и радиотехнике. Разработаны и специальные виды диодов для выполнения узкого круга задач.

Выпрямители и их свойства

Их применение основано на выпрямительных свойствах этих приборов. Их используют для получения постоянного напряжения путём выпрямления входного переменного сигнала.

Одиночный выпрямительный диод позволяет получить на его выходе пульсирующее напряжение положительной полярности. Используя их комбинацию, можно получить форму выходного напряжения, напоминающую волну. При использовании в схемах выпрямителей дополнительных элементов, таких как электролитические конденсаторы большой емкости и катушки индуктивности с электромагнитными сердечниками (дроссели), на выходе устройства можно получить постоянное напряжение, напоминающее напряжение гальванической батареи, столь необходимое для работы большинства аппаратуры потребителя.

Полупроводниковые стабилитроны

Эти диоды имеют ВАХ с обратной ветвью большой крутизны. То есть, приложив к выводам стабилитрона напряжение, полярность которого обратная, можно с помощью ограничительных резисторов ввести его в режим управляемого лавин пробоя. Напряжение в точке лавинного пробоя имеет постоянное значение при значительном изменении тока через стабилитрон, величину которого ограничивают в зависимости от применённого в схеме прибора. Так получают эффект стабилизации выходного напряжения на нужном уровне.

Технологическими операциями при изготовлении стабилитронов добиваются различных величин напряжения пробоя (напряжения стабилизации). Диапазон этих напряжений (3−15) вольт. Конкретное значение зависит от выбранного прибора из большого семейства стабилитронов.

Принцип работы детекторов

Для детектирования высокочастотных сигналов применяют диоды, изготовленные по точечной технологии. Задача детектора состоит в том, чтобы ограничить одну половину модулированного сигнала. Это позволяет в последующем с помощью высокочастотного фильтра оставить на выходе устройства только модулирующий сигнал. Он содержит звуковую информацию низкой частоты. Этот метод используется в радиоприёмных устройствах, принимающих сигнал, модулированный по амплитуде.

Особенности светодиодов

Эти диоды характеризуются тем, что при протекании через них тока прямого направления кристалл испускает поток фотонов, которые являются источником света. В зависимости от типа кристалла, применённого в светодиоде, спектр света может находиться как в видимом человеческим глазом диапазоне, так и в невидимом. Невидимый свет — это инфракрасное или ультрафиолетовое излучение.

При выборе этих элементов необходимо представлять цель, которую необходимо достигнуть. К основным характеристикам светодиодов относятся:

  • Потребляемая мощность;
  • Номинальное напряжение;
  • Ток потребления.

Ток потребления светодиода, применяемого для индикации в устройствах широкого применения, не более 20 мА. При таком токе свечение светодиода является оптимальным. Начало свечения начинается при токе, превышающем 3 мА.

Номинальное напряжение определяется внутренним сопротивлением перехода, которое является величиной непостоянной. При увеличении тока через светодиод сопротивление постепенно уменьшается. Напряжение источника питания, используемое для питания светодиода, необходимо применять не меньше напряжения, указанного в паспорте на него.

Потребляемая мощность — это величина, зависящая от тока потребления и номинального напряжения. Она увеличивается при увеличении величин, её определяющих. Следует учесть, что мощные световые диоды могут иметь в своём составе 2 и даже 4 кристалла.

Перед другими осветительными приборами светодиоды имеют неоспоримые преимущества. Их можно перечислять долго. Основными из них являются:

  • Высокая экономичность;
  • Большая долговечность;
  • Высокий уровень безопасности из-за низких питающих напряжений.

К недостатку их эксплуатации относится необходимость наличия дополнительного стабилизированного источника питания постоянного тока, а это увеличивает стоимость.

Применение диодов

Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.

1. Нелинейная обработка аналоговых сигналов

В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.

2. Выпрямители

Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.

3. Стабилизаторы

Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.

4. Ограничители

Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого типа широко применяются диоды, которые имеют прекрасные ограничительные свойства. В сложных устройствах могут использоваться и другие элементы, но большинство ограничителей базируются на самых обычных диодных узлах стандартного типа.

5. Устройства коммутации

Диоды нашли применение и в устройствах коммутации, которые используются для того, чтобы переключать токи или напряжения. Диодные мосты дают возможность размыкать или замыкать цепь, которая служит для передачи сигнала. В работе применяется некоторое управляющее напряжение, под воздействием которого и происходит замыкание или размыкание. Иногда управляющим может быть сам входной сигнал, такое бывает в самых простых устройствах.

6.Логические цепи

В логических цепях диоды применяются для того, чтобы обеспечить прохождение тока в нужном направлении (элементы «И», «ИЛИ»). Подобные цепи используются в схемах аналогового и аналогово-цифрового типа. Здесь перечислены только основные устройства, в которых применяются диоды, но существует и много других, менее распространенных.

Светодиоды

Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.

1. Одиночные светодиоды

Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.

2. 7’Segment

Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.

3. Матрица светодиодов

Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.

4. LED телевизоры

LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.

Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.

ПРИНЦИП РАБОТЫ ДИОДА

   Все мы прекрасно знаем что такое полупроводниковый диод, но мало кто из нас знает о принципе работы диода, сегодня специально для новичков я поясню принцип его работы. Диод как известно одной стороной хорошо пропускает ток, а в обратном направлении — очень плохо. У диода есть два вывода — анод и катод. Ни один электронный прибор не обходится без применения диодов. Диод используют для выпрямлении переменного тока, при помощи диодного моста который состоит из четырех диодов, можно превратить переменной ток в постоянный, или с использованием шести диодов превратить трехфазовое напряжение в однофазовое, диоды применяются в разнообразных блоках питания, в аудио — видео устройствах, практически повсюду. Тут можно посмотреть фотографии некоторых видов диодов. 

   На выходе диода можно заметить спад начального уровня напряжения на 0,5-0,7 вольт. Для более низковольтных устройств по питанию используют диод шоттки, на таком диоде наблюдается наименьший спад напряжения — около 0,1В. В основном диоды шоттки используют в радио передающих и приемных устройствах и в других устройствах работающих в основном на высокой частоте. Принцип работы диода с первого взгляда достаточно простой: диод — полупроводниковый прибор с односторонней проводимостью электрического тока. 

   Вывод диода подключенный к положительному полюсу источника питания называют анодом, к отрицательному — катодом. Кристалл диода в основном делают из германия или кремния одна область которого обладает электропроводимостью п — типа, то есть дырочная, которая содержит искуственно созданный недостаток электронов, друггая — проводимости н — типа, то есть содержит избыток электронов, границу между ними называют п — н переходом, п — в латыни первая буква слова позитив, н — первая буква в слове негатив. Если к аноду диода подать положительное напряжение, а к катоду отрицательное — то диод будет пропускать ток, это называют прямым включением, в таком положении диод открыт, если подать обратное — диод ток пропускать не будет, в таком положении диод закрыт, это называют обратным подключением. 

   Обратное сопротивление диода очень большое и в схемах его принимают ка диэлектрик (изолятор). Продемонстрировать работу полупроводникового диода можно собрать простую схему которая состоит из источника питания, нагрузки (например лампа накаливания или маломощный электрический двигатель) и самого полупроводного диода. Последовательно подключаем все компоненты схемы, на анод диода подаем плюс от источника питания, последовательно диоду, то есть к катоду диода подключаем один конец лампочки, другой конец той же лампы подключаем к минусу источника питания. Мы наблюдаем за свечением лампы, теперь перевернем диод, лампа уже не будет светится поскольку диод подключен обратно, переход закрыт. Надеюсь каким то образом это вам поможет в дальнейшем, новички — А. Касьян (АКА).

   Форум для начинающих

   Форум по обсуждению материала ПРИНЦИП РАБОТЫ ДИОДА




ПРИМЕНЕНИЕ МОТОРА ОТ HDD

Куда применить отжившие свой век моторы от винчестеров ПК — подключение такого двигателя и варианты идей.



УСИЛИТЕЛЬ К ЭЛЕКТРОГИТАРЕ

Высококачественный усилитель для электрогитары — полное руководство по сборке и настройке схемы на JFET и LM386.


для чего применяются, принцип действия, ВАХ

Выпрямительный диод особая разновидность диодов, созданные для трансформации переменного тока, если необходимо получить постоянный на входе или выходе. Это не единственная работа, которую выполняют данные диоды. Они нашли свое применение во всех сферах и направлениях радиоэлектроники. Они применяются для создания цепей управления, для коммутации, контроля напряжения, в цепях, где протекает сильный ток. От номинального значения тока, производится классификация выпрямительных диодов. Они бывают следующих видов:

  • малой;
  • средней;
  • высокой.

По сфере применения на диоды из элементов германия (Gr) или кремния (Si). В статье будут описаны все особенности, технические характеристики устройства этих радиодеталей. Также читатель найдет познавательные видеоролики и интересный материал из научной статьи по данной теме.

Выпрямительные диоды.

Технология изготовления и конструкция

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными. Технология изготовления таких диодов заключается в следующем. На поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором.

Германиевые диоды.

Электрические параметры

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

  • Iобр – постоянный обратный ток, мкА;
  • Uпр – постоянное прямое напряжение, В;
  • Iпр max – максимально допустимый прямой ток, А;
  • Uобр max – максимально допустимое обратное напряжение, В;
  • Р max – максимально допустимая мощность, рассеиваемая на диоде;
  • Рабочая частота, кГц;
  • Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Материал в тему: Что такое кондесатор

Схема простого выпрямителя переменного тока на одном диоде

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Силовой выпрямительный диод.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Диодный мост

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус. Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «—» или «~», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово. На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста. Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения. Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Диодный мост.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Выпрямительные диоды.

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.

Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Диоды высокого тока.

Заключение

В статье описаны все тонкости и нюансы работы и устройства выпрямительных диодов и схема их устройства. Более подробно о них можно узнать из стать Что такое диоды. 

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.go-radio.ru

www.electrik.info

www.gaw.ru

www.sesaga.ru

Предыдущая

ПолупроводникиКак устроен туннельный диод?

Следующая

ПолупроводникиМаркировка различных видов диодов

Полное руководство по диодам

Диод — это специализированный электронный компонент, который действует как односторонний переключатель. Он проводит электрический ток только в одном направлении и ограничивает ток в противоположном направлении. Диод смещен в обратном направлении, когда он действует как изолятор, и смещен в прямом направлении, когда он пропускает ток. Диод имеет два вывода: анод и катод. Диоды используются в переключателях, модуляторах сигналов, смесителях сигналов, выпрямителях, ограничителях сигналов, регуляторах напряжения, генераторах и демодуляторах сигналов.

Диод в прямом смещении

Напряжение, приложенное к аноду, положительно по отношению к катоду. Кроме того, напряжение в диоде выше порогового напряжения, поэтому он действует как короткое замыкание и пропускает ток.

Диод в обратном смещении

Если катод положительный по отношению к аноду, диод имеет обратное смещение. Тогда он будет действовать как разомкнутая цепь, в результате чего ток не будет протекать.

Для чего используются диоды?

Защита от обратного тока

Блокирующий диод используется в некоторых схемах для защиты в случае случайной проблемы с обратным подключением, такой как неправильное подключение источника постоянного тока или изменение полярности.Поток тока в неправильном направлении может повредить другие компоненты схемы.

Диод для защиты от обратного тока

На рисунке выше показано, что блокирующий диод включен последовательно с нагрузкой и с положительной стороной источника питания. В случае обратного подключения ток не будет течь, потому что диод будет иметь обратное смещение. Тогда нагрузка будет защищена от обратного тока. Однако, если полярность правильная, диод будет в прямом смещении, поэтому ток нагрузки может протекать через него.

Простые регуляторы напряжения

Стабилизатор напряжения используется для понижения входного напряжения до требуемого уровня и поддерживает его неизменным, несмотря на колебания напряжения питания. Его также можно использовать для регулирования выходного напряжения. Стабилитрон обычно используется в качестве регулятора напряжения, поскольку он предназначен для работы в условиях обратного смещения. При прямом смещении он ведет себя как нормальный сигнальный диод. С другой стороны, напряжение остается постоянным в широком диапазоне токов, когда к нему прикладывается обратное напряжение.

Стабилитрон как регулятор напряжения

На рисунке выше ток в диоде ограничивается последовательным резистором, подключенным к цепи. Поскольку диод подключен к положительной клемме источника питания, он работает как обратное смещение, которое также может работать в условиях пробоя. Обычно используется диод с высокой номинальной мощностью, поскольку он может выдерживать обратное смещение, превышающее его напряжение пробоя. Ток стабилитрона всегда будет минимальным, если приложены минимальное входное напряжение и максимальный ток нагрузки.Учитывая входное напряжение и необходимое выходное напряжение, мы можем использовать стабилитрон с напряжением, примерно равным напряжению нагрузки.

Стабилизаторы напряжения

Ток, протекающий через стабилитрон, уменьшается в пользу тока нагрузки, когда нагрузочный резистор подключен параллельно стабилитрону. Величина протекающего в нем тока важна, потому что это ключ к стабилизации. Глядя на кривую вольт-амперной характеристики стабилитронов, вы заметите резкое увеличение напряжения выше напряжения пробоя, что доказывает, что он лучше всего подходит для стабилизации небольших постоянных напряжений.Ток увеличивается, а сопротивление диода уменьшается. Поэтому напряжение на стабилитроне практически одинаковое. Обычно резистор подключается, чтобы убедиться, что максимально допустимая рассеиваемая мощность не превышена.

Преобразование переменного тока в постоянный

Диоды

обычно используются для построения различных типов выпрямительных схем, таких как полуволновые, двухполупериодные, центральные и полные мостовые выпрямители. Одно из его основных применений — преобразование переменного тока в постоянный.

Во время положительного полупериода входного питания анод становится положительным по отношению к катоду. Диод будет находиться в прямом смещении, что приведет к протеканию тока к нагрузке. Однако во время отрицательного полупериода входной синусоидальной волны анод становится отрицательным по отношению к катоду. Таким образом, диод будет иметь обратное смещение, и ток на нагрузку не будет течь. Выходное напряжение будет пульсирующим постоянным током, если и напряжение, и ток на стороне нагрузки имеют одну полярность.Нагрузка является резистивной в положительном полупериоде, и напряжение на нагрузочном резисторе будет таким же, как и напряжение питания. Ток нагрузки будет пропорционален приложенному напряжению, а входное синусоидальное напряжение будет на нагрузке.

Как работает диод?

Диод считается полупроводниковым устройством, имеющим два вывода и выполняющим функцию односторонней двери для электрического тока. Полупроводники могут быть проводниками или изоляторами. Его сопротивление можно контролировать, увеличивая или уменьшая его сопротивление, называемое легированием.Легирование — это процесс добавления примесных атомов в материал.

Есть два типа полупроводниковых материалов:

  • Материал N-типа — добавление мышьяка, фосфора, сурьмы, висмута и других пятивалентных элементов позволяет получить полупроводниковый материал N-типа. В нем есть лишние электроны. Его дополнительные отрицательно заряженные частицы перемещаются из отрицательно заряженной области в положительно заряженную.
  • Материал P-типа — добавление алюминия, галлия, бора, индия и других количеств позволяет получить полупроводниковый материал P-типа.Есть лишние отверстия.

Наличие дырок означает отсутствие электрона и положительный заряд. Каждый раз, когда электрон движется в дыру, он создает новую дыру позади себя, поскольку они движутся в противоположном направлении электронов. Комбинация материалов N-типа и P-типа образует соединение P-N. Вы можете увидеть обедненные области по обе стороны от диодного перехода. Эта область обеднена свободными электронами и дырками. Электроны со стороны N-типа заполняют отверстия со стороны P-типа.

Что такое зона истощения?

Область обеднения образуется, когда на диод не подается напряжение, поэтому электроны из материала N-типа заполняют отверстия в материале P-типа вдоль перехода между слоями.В этой области материал N-типа или P-типа возвращается в исходное изоляционное состояние. Электричество не может течь в область истощения, поскольку все дыры заполнены, и нет свободных электронов или пустых пространств для электричества.

Вы увидите переход P-N, когда отверстия перемещаются со стороны P на материал N-типа и обнажают отрицательные заряды. Затем вы увидите дырки и электроны, диффундирующие на другую сторону. После этого начинает формироваться область истощения.

Диоды с прямым смещением и диоды с обратным смещением

Диоды специального назначения

Стабилитроны

Стабилитрон

состоит из сильно легированного PN перехода, который проводит в обратном направлении при достижении определенного заданного напряжения.Он также позволяет току течь в прямом или обратном направлении. Он обычно используется для ограничителей перенапряжения, регулирования напряжения, опорных элементов и любых других коммутационных приложений и схем ограничителей.

Диоды Шоттки

Диоды Шоттки

имеют низкое прямое падение напряжения, но очень быстрое переключение. Между металлом и полупроводником образуется переход полупроводник-металл, который создает барьер Шоттки. Когда через диод протекает ток, на выводах диода наблюдается небольшое падение напряжения.Чем меньше падение напряжения, тем выше эффективность системы и выше скорость переключения. Наиболее распространенные применения диода Шоттки — это радиочастота, выпрямитель в некоторых силовых приложениях и смеситель.

Выпрямительные диоды

Выпрямительные диоды могут быть смещенными или несмещенными. Выпрямительный диод становится несмещенным, когда на него не подается напряжение. В это время на P-стороне находится большинство дырок носителей заряда и очень мало электронов, тогда как на N-стороне больше всего электронов и очень мало дырок.С другой стороны, он становится смещенным в прямом направлении, когда положительный вывод источника напряжения подключается к стороне P-типа, а отрицательный вывод подключается к стороне N-типа. Он будет иметь обратное смещение, когда положительный вывод источника напряжения подключен к концу N-типа, а отрицательный вывод источника подключен к концу P-типа диода. Через диод не будет тока, кроме тока обратного насыщения, потому что истощающий слой перехода становится шире с увеличением напряжения обратного смещения.Выпрямительные диоды обычно используются в качестве компонента в источниках питания, который преобразует напряжение переменного тока в напряжение постоянного тока.

Сигнальные диоды

Сигнальные диоды обычно используются для обнаружения сигналов. Обычно они имеют низкий максимальный ток и среднее или высокое прямое напряжение. Одно из наиболее распространенных применений сигнального диода — это основной диодный переключатель.

Германиевые диоды

Германиевые диоды имеют низкое прямое падение напряжения, обычно 0.3 вольта. Низкое прямое падение напряжения приводит к низким потерям мощности и более эффективному диоду, что делает его во многих отношениях лучше, чем кремниевый диод. Это более важно в средах с очень низким уровнем сигнала, например, при обнаружении сигналов от аудио до частот FM и в логических схемах низкого уровня. Германиевые диоды имеют больший ток утечки для германия при обратном напряжении, чем для кремния.

Переходные диоды

Переходные диоды — одни из самых простых полупроводниковых приборов.Но в отличие от других диодов, они не ведут себя линейно по отношению к приложенному напряжению. Диоды имеют экспоненциальную зависимость тока от напряжения. Он образуется, когда полупроводник P-типа объединяется с полупроводником N-типа, создавая потенциальный барьер через диодный переход.

Три возможных условия «смещения» для стандартного переходного диода

1. Прямое смещение — потенциал напряжения связан отрицательно с материалом N-типа и положительно с материалом N-типа на диоде, что уменьшает ширину диода с PN-переходом.

2. Обратное смещение — потенциал напряжения соединен положительно с материалом N-типа и отрицательно с материалом P-типа на диоде, что увеличивает ширину диода с PN-переходом.

3. Нулевое смещение — на диод PN-перехода не подается внешнее напряжение.

Надеюсь, эта статья помогла вам лучше понять диоды и то, как они работают. Не стесняйтесь оставлять комментарии ниже, если у вас есть вопросы по чему-либо!


Объяснение

диодов — Инженерное мышление

Узнайте, как работают диоды, а также почему и где мы их используем.

Прокрутите вниз, чтобы просмотреть руководство YouTube.

Что такое диод

Пример диода

Диод выглядит примерно так, как на изображении выше, и бывает разных размеров. Обычно они имеют черный цилиндрический корпус с полосой на одном конце, а также несколько выводов, которые позволяют нам подключить его в цепь. Этот конец известен как анод, а этот конец — катод, и мы увидим, что это значит, позже в видео.

Вы также можете получить другие формы, такие как стабилитрон или даже светодиод, который представляет собой светоизлучающий диод, но мы не будем рассматривать их в этой статье.

Другие примеры диодов

Диод позволяет току течь только в одном направлении.

Представим себе водопровод с установленным поворотным клапаном. Когда вода течет по трубе, она толкает распашную заслонку и продолжает течь. Однако, если вода меняет направление, вода закроет заслонку и не сможет течь. Следовательно, вода может течь только в одном направлении.

Водопроводная труба Это очень похоже на диод, мы используем их для управления направлением тока в цепи.

Теперь мы анимировали это с помощью электронного потока, в котором электроны перетекают от отрицательного к положительному. Однако в электронике традиционно используют обычный поток, который изменяется от положительного к отрицательному. Обычный ток, вероятно, легче понять, вы можете использовать любой, на самом деле это не имеет значения, но просто помните о двух и о том, какой из них мы используем.

Пример светодиода

Итак, если мы подключим диод к простой схеме светодиода, подобной приведенной выше, необходимо отметить, что светодиод будет включаться только тогда, когда диод установлен правильно.Это позволяет току течь только в одном направлении. Таким образом, в зависимости от того, как он установлен, он может действовать как проводник или изолятор.

Полосатый конец подсоединяется к минусу, а черный конец соединяется с плюсом, чтобы он действовал как проводник. Это позволяет току течь, мы называем это прямым смещением. Если перевернуть диод, он будет действовать как изолятор, и ток не будет течь. Мы называем это обратным смещением.

Прямое смещение и обратное смещение

Как работает диод?

Как вы знаете, электричество — это поток свободных электронов между атомами.Мы используем медные провода, потому что в меди много свободных электронов, что облегчает пропускание электричества. Мы используем резину, чтобы изолировать медные провода и обезопасить себя, потому что резина является изолятором, что означает, что ее электроны удерживаются очень плотно и поэтому не могут перемещаться между атомами.

Если мы посмотрим на базовую модель атома металлического проводника, у нас есть ядро ​​в центре, и оно окружено множеством орбитальных оболочек, удерживающих электроны. Каждая оболочка содержит максимальное количество электронов, и электрон должен иметь определенное количество энергии, чтобы попасть в каждую оболочку.Электроны, расположенные дальше всего от ядра, обладают наибольшей энергией. Самая внешняя оболочка известна как валентная оболочка, и проводник имеет от 1 до 3 электронов в своей валентной оболочке.

Атом меди

Электроны удерживаются на месте ядром. Но есть еще одна оболочка, известная как зона проводимости. Если электрон может достичь этого, он может вырваться из атома и перейти к другому. У атома металла, такого как медь, зона проводимости и валентная оболочка перекрываются, поэтому электрону очень легко перемещаться.

Самая внешняя оболочка уплотнена изолятором. Электрону практически нет места для присоединения. Ядро плотно захватывает электроны, а зона проводимости находится далеко, поэтому электроны не могут добраться до нее, чтобы убежать. Следовательно, электричество не может проходить через этот материал.

Однако есть еще один материал, известный как полупроводник. Кремний — это пример полупроводника. В этом материале слишком много электронов во внешней оболочке, чтобы быть проводником, поэтому он действует как изолятор.Однако следует отметить; что, поскольку зона проводимости довольно близка; если мы предоставим некоторую внешнюю энергию, некоторые электроны получат достаточно энергии, чтобы совершить прыжок из баллона в зону проводимости, чтобы стать свободными. Следовательно, этот материал может действовать как изолятор, так и как проводник.

Чистый кремний почти не имеет свободных электронов, поэтому инженеры добавляют в кремний небольшое количество других материалов, чтобы изменить его электрические свойства.

Изолятор, проводник, полупроводник. Пример

Мы называем это легированием P-типа и N-типа.Мы объединяем эти легированные материалы в диод.

Итак, внутри диода есть два вывода, анод и катод, которые подключаются к тонким пластинам. Между этими пластинами имеется слой легированного кремния P-типа на анодной стороне и слой легированного кремния N-типа на катодной стороне. Все это покрыто смолой для изоляции и защиты материалов.

Пример диода

Давайте представим, что материал еще не легирован, так что внутри находится чистый кремний. Каждый атом кремния окружен четырьмя другими атомами кремния.Каждому атому нужно 8 электронов в своей валентной оболочке, но атомы кремния имеют только 4 электрона в своей валентной оболочке, поэтому они тайком делят электрон со своим соседним атомом, чтобы получить 8 желаемых. Это известно как ковалентное связывание.

Ковалентное связывание

Когда мы добавляем материал N-типа, такой как фосфор, он займет положение некоторых атомов кремния. В валентной оболочке атома фосфора 5 электронов. Так как атомы кремния делятся электронами, чтобы получить желаемое 8, им не нужен этот дополнительный электрон, поэтому теперь в материале есть дополнительный электрон, и поэтому они могут свободно перемещаться.

Добавление фосфора

При легировании P-типа мы добавляем такой материал, как алюминий. У этого атома всего 3 электрона в валентной оболочке, поэтому он не может предоставить своим 4 соседям один электрон, поэтому одному из них придется обойтись без него. Таким образом, создается дыра, в которой электрон может сидеть и занимать ее.

Итак, теперь у нас есть два легированных куска кремния, один со слишком большим количеством электронов, а другой с недостаточным количеством электронов.

Два материала соединяются, образуя соединение P-N.На этом стыке мы получаем так называемую область истощения. В этой области часть избыточных электронов со стороны N-типа переместится, чтобы занять дырки со стороны P-типа. Эта миграция образует барьер с скоплением электронов и дырок на противоположных сторонах. Электроны заряжены отрицательно, а дырки считаются положительно заряженными. Таким образом, нарастание приводит к образованию слегка отрицательно заряженной области и слегка положительно заряженной области. Это создает электрическое поле и предотвращает перемещение большего количества электронов.В типичных диодах разность потенциалов в этой области составляет около 0,7 В.

Пример истощения

Когда мы подключаем источник напряжения через диод с анодом (P-типа), подключенным к плюсу, а катод (N), соединенным с минусом, это создаст прямое смещение и позволит току течь. Источник напряжения должен быть выше барьера 0,7 В, иначе электроны не смогут попасть в перемычку.

Источник напряжения должен быть больше, чем барьер

Когда мы меняем местами источник питания, положительный полюс подключается к катоду N-типа, а отрицательный — к аноду P-типа.Отверстия тянутся к отрицательному полюсу, а электроны притягиваются к положительному положению, что вызывает расширение барьера, и поэтому диод действует как проводник, предотвращая протекание тока.

Технические характеристики

Пример символа

Диоды представлены на технических чертежах символом, подобным изображению выше. Полоса на корпусе обозначена вертикальной линией на символе, а стрелка указывает в направлении обычного тока.

Когда мы смотрим на диод, мы видим эти цифры и буквы на корпусе.Они идентифицируют диод, поэтому вы можете найти технические подробности в Интернете.

I-V Diagram

У диода будет I-V диаграмма, как показано выше. На этой диаграмме показаны характеристики тока и напряжения диода, которые построены в виде изогнутой линии. Эта сторона должна работать как проводник, а эта сторона — как изолятор.

Вы можете видеть, что диод может действовать как изолятор только до определенной разницы напряжений на нем. Если вы превысите это значение, он станет проводником и позволит току течь.Это приведет к выходу из строя диода и, возможно, вашей схемы, поэтому вам необходимо убедиться, что размер диода соответствует применению.

Точно так же диод может выдерживать только определенное напряжение или ток при прямом смещении. Значение разное для каждого диода, вам нужно будет просмотреть эти данные, чтобы узнать подробности.

Диод требует определенного уровня напряжения для открытия и пропуска тока в прямом смещении. Большинство из них около 0,6 В. Если мы подадим напряжение меньше этого, он не откроется, чтобы позволить току течь.Но по мере того, как мы увеличиваем это значение, величина тока, который может протекать, будет быстро увеличиваться.

Пример напряжения диода

Диоды также будут обеспечивать падение напряжения в цепи. Например, когда я добавил этот диод в простую светодиодную схему, установленную на макетной плате, я получил значение падения напряжения 0,71 В.

Почему мы их используем

Как уже упоминалось, мы используем диоды для управления направлением тока в цепи. Это полезно, например, для защиты нашей цепи, если источник питания был подключен сзади на переднюю.Диод может блокировать ток и обеспечивать безопасность наших компонентов.

Мы также можем использовать их для преобразования переменного тока в постоянный. Как вы, возможно, знаете, переменный или переменный ток перемещает электроны вперед и назад, создавая синусоидальную волну с положительной и отрицательной половинами, но постоянный или постоянный ток перемещает электроны только в одном направлении, что дает плоскую линию в положительной области.

Если мы подключим первичную сторону трансформатора к источнику переменного тока, а затем подключим вторичную сторону к одному диоду, диод пропустит только половину волны и заблокирует ток в противоположном направлении.Таким образом, цепь проходит только положительную половину цикла, поэтому теперь это очень грубая цепь постоянного тока, хотя ток пульсирует, но мы можем это улучшить.

Первичный пример

Один из способов сделать это — если мы подключим четыре диода к вторичной стороне, мы создадим двухполупериодный выпрямитель. Диоды контролируют, по какому пути может течь переменный ток, блокируя или позволяя ему проходить. Как мы только что видели, разрешена прохождение положительной половины синусоидальной волны, но на этот раз разрешено прохождение и отрицательной половины, хотя это было инвертировано, чтобы превратить ее также в положительную половину.Это дает нам лучшую подачу постоянного тока, поскольку пульсация значительно снижается. Но мы все еще можем улучшить это, мы просто добавляем несколько конденсаторов, чтобы сгладить пульсацию и в конечном итоге получить плавную линию, чтобы точно имитировать постоянный ток.

Четыре подключенных диода

Мы подробно рассмотрели, как работают конденсаторы в нашей предыдущей статье, проверьте, что ЗДЕСЬ .

Как проверить диод

Для проверки диода нам понадобится мультиметр с настройкой проверки диодов, символ будет выглядеть так.Мы настоятельно рекомендуем вам иметь в своем наборе инструментов хороший мультиметр, который поможет вам как в обучении, так и в диагностике проблем.

Итак, берем наш диод и мультиметр. Подключаем черный провод к концу диода линией. Затем к противоположному концу подключаем красный провод. Когда мы это сделаем, на экране должно появиться значение.

Например, диод модели 1N4001 дает показание 0,516 В. Это минимальное напряжение, необходимое для открытия диода и протекания тока.

Если теперь поменять местами провода, подключенные к диодам, мы должны увидеть на экране OL, что означает выход за пределы.Это говорит нам о том, что он не может измерить, это хорошо, потому что он не может замкнуть цепь, поэтому диод выполняет свою работу.

Если мы получаем сообщение о соединении в обеих конфигурациях, значит, компонент неисправен и не должен использоваться.

Неисправный компонент

Чтобы проверить диод в цепи на падение напряжения, мы просто переводим мультиметр в функцию постоянного напряжения, а затем помещаем черный щуп к концу полосы, а красный щуп к черному концу. Это даст нам значение, например, 0.71V, что является падением напряжения.


Введение в диоды — что это и как работает

Если вы знакомы с конденсаторами и резисторами, то знаете, что диод — это, по сути, простейший полупроводник, который может выполнять множество функций, поэтому они также бывают разных форм. Сегодня мы рассмотрим все, что вам нужно знать о диодах.

Однако, прежде чем мы перейдем непосредственно к нашей основной теме дня, давайте рассмотрим основные концепции, которые вы должны знать, которые помогут вам лучше понять диоды:

  • Напряжение : Разница в электрическом потенциале между двумя точками.
  • Резистор : Пассивный двухконтактный электрический компонент, реализующий электрическое сопротивление как элемент схемы.
  • Конденсатор : пассивный компонент, накапливающий электрическую энергию в электрическом поле.
  • Транзистор : полупроводниковое устройство, состоящее из трех выводов для усиления или переключения электронных сигналов и подачи электроэнергии.

Если вам нужна дополнительная информация об этих концепциях, обязательно загляните в эти блоги, чтобы узнать:


С учетом сказанного, давайте посмотрим, что будет освещено в этом блоге:

  • Обзор диодов
  • Варианты диодов
  • Символы и расчеты диодов
  • Применение диодов
  • Проекты диодов

Обзор диодов

Что такое диод?

Диод — это полупроводниковый прибор с двумя выводами, который пропускает ток только в одном направлении.Он в основном имеет незначительное сопротивление на одном конце и высокое сопротивление на другом, чтобы предотвратить протекание тока в обоих направлениях. Таким образом, диод подобен вентилю в электрической цепи.

Конструкция диода

На самом деле существует много типов диодов, но здесь мы будем говорить о конструкции основного полупроводникового диода.

Как мы уже упоминали, диод — это полупроводник, поэтому он сделан либо из кремния, либо из герани. На изображении выше вы также можете видеть, что диод имеет два вывода: анод и катод, P-переход и N-переход.В то время как область обеднения предназначена для прохождения электронов.

Как работает диод?

Принцип работы диода зависит от взаимодействия между P- и N-переходами. В нормальном сценарии P имеет высокую концентрацию дырок и низкую концентрацию свободных электронов, в то время как N имеет более низкую концентрацию дырок и более высокую концентрацию свободных электронов, электроны будут двигаться к P и позволить току течь только через P. .

Приведенное выше объяснение применимо только к тому, что обычно происходит, теперь давайте рассмотрим некоторые из особых сценариев:

Диод с прямым смещением

Это может произойти, когда положительный вывод источника подключен к P-переходу, а отрицательный вывод источника подключен к N-переходу диода при медленном увеличении напряжения от нуля.

Из-за потенциального барьера вначале не будет протекать ток. Однако, если внешнее напряжение, приложенное к диоду, больше, чем прямой потенциальный барьер, диод будет действовать как короткозамкнутый путь, в то время как ток будет ограничиваться только внешними резисторами.

Диод с обратным смещением

Это может произойти, когда источник напряжения подключен к отрицательной клемме P-перехода, а источник напряжения подключен к положительной клемме N-перехода.

Как вы уже могли заметить, это имеет противоположный эффект, чем диод с прямым смещением. Из-за электростатического притяжения дырки в P-переходе будут смещаться дальше от обедненной области, оставляя больше открытых отрицательных ионов в этой области. Когда это происходит, ток будет заблокирован, что не позволит току течь через цепь.

Несмещенный диод

Когда P- и N-переходы соприкасаются друг с другом, отверстия начнут диффундировать от P-перехода к N-переходу и наоборот.Это связано с разницей в концентрации дырок, как упоминалось ранее. В конце концов, электроны будут рекомбинированы в области обеднения, и диффузия зарядов больше не будет.


Варианты диода

Как известно, вариантов диодов на рынке очень много. Но сегодня мы будем говорить только о трех общих типах, чтобы облегчить понимание.

Стабилитрон

Стабилитроны

— это специальные сильно легированные полупроводниковые диоды, которые позволяют току течь в противоположном направлении при достаточном напряжении, в отличие от обычных диодов.Он специально разработан для неразрушающего пробоя напряжения. Из-за сильно легированного полупроводникового материала он позволяет сделать обедненную область очень тонкой для увеличения напряженности электрического поля.

Строительство:

Выпрямительный диод

Выпрямительные диоды

— это двухпроводные полупроводники, которые, как и другие диоды, пропускают ток только в одном направлении. Они сделаны из кремния и могут преобразовывать переменный ток (AC) в постоянный (DC), что называется выпрямлением.

Популярные выпрямительные диоды:
Диод Максимальный ток Максимальный обратный ток
1N4001 1A 50V
1N314002 903 1N3152 903 1000V
1N5401 3A 100V
1N5408 3A 1000v

Ref: Electronicsclub1, наиболее подходящее для использования с низким напряжением.

Диод Шоттки

Диоды Шоттки — это металлические полупроводниковые диоды, также известные как диоды с барьером Шоттки (SBD). Хотя они выглядят довольно похоже на выпрямительные диоды, но SBC обычно больше и в них не используется полупроводниковый переход P-N.

Строительство:

Другие варианты диодов:

  • Сигнальные диоды
  • Лазерные диоды
  • Светодиоды
  • Фотодиоды
  • Тестовые диоды

Обозначения и расчеты диодов

Узнав немного больше о вариантах диода и его справочной информации, давайте посмотрим на символы и расчеты.

Условное обозначение базовой схемы

Вот как будет выглядеть типичное схематическое обозначение диода с P-N переходом и представлено в принципиальной схеме, а вот схематические обозначения других диодов для справки:

Уравнение тока диода

Уравнение тока Didoe показывает взаимосвязь между током, протекающим через диод, в зависимости от приложенного к нему напряжения.

Где,

  • I = ток, протекающий через диод
  • I 0 = ток темнового насыщения (относится к плотности тока утечки, протекающего через диод в отсутствие света)
  • q = заряд электрона
  • V = приложенное напряжение через диод
  • η = экспоненциальный в идеале множитель (рассматривается как 1, если его гераневые диоды, 2, если кремниевые диоды)
  • T = абсолютная температура (в Кельвинах)
  • Постоянная Больцмана:

Если это условие с прямым смещением , уравнение тока диода будет:

Если это перевернутое состояние , уравнение тока диода будет:


Применение диодов

Цепи выпрямителя

Как мы уже упоминали в разделе выпрямительных диодов, наиболее распространенным применением диодов является выпрямление переменного тока в постоянный и построение выпрямительных цепей.Они используются в полуволновых и полноволновых выпрямителях. В типичных приложениях преобразования мощности используются один или комбинация из четырех диодов.

Защита от обратного тока

В случае, если пользователь изменил полярность питания постоянного тока или неправильно подключил батарею, когда через цепь протекает большой ток, можно последовательно подключить защитный диод, чтобы предотвратить проблему обратного подключения.


Проекты диодов

Пройдя всю теоретическую часть диодов, мы можем наконец перейти к некоторым интересным проектам, которые вы можете делать с диодами!

Сделайте солнечную панель из диодов!

Ссылка: Instructables

Заинтересованы в создании собственной солнечной панели? Этот проект показывает вам, как вы можете построить его, используя диод 1N4148, который проводит ток, когда индуцируется светом! Хотя это всего лишь прототип для экспериментов, вы можете приступить к его доработке и использовать свои солнечные батареи на самом деле!

Что вам понадобится :

  • Много кремниевого диода
  • Макетная плата
  • Вольтметр
  • Провода
  • Фонарик или свет для проверки

Идите и нажмите здесь, если зеленая энергия вас вдохновляет!

Лазерная ручка для выжигания по дереву

Вы хотите поэкспериментировать с чем-то немного опасным? Вы сможете построить свою лазерную ручку для выжигания по дереву, используя только лазерный диод высокой мощности и механический карандаш! Не забывайте надевать защиту для глаз во время экспериментов!

Что вам понадобится :

  • Мощный волоконный лазерный диод
  • Механический карандаш.
  • Радиатор и немного термической смазки
  • 2 батарейки AA или D или «чистый» блок питания
  • Лазерная защита глаз (очень важно!)

Похоже на то, что вам нравится? Посмотрите этот проект здесь!


Сводка

И все на диодах! Вы узнали что-то новое о диодах? Мы надеемся, что с этими знаниями вы сможете экспериментировать и использовать диоды в своих будущих проектах!

Продолжить чтение

Как работают и используются диоды | Тех

Как работают диоды

Диод — это электронный компонент, который направляет электрический ток в одном направлении.Их называют «активными компонентами», так же, как транзисторы и ИС. Это основной компонент из полупроводников. Он может регулировать поток электричества, поддерживать постоянное напряжение и обнаруживать волны.

Во-первых, давайте рассмотрим свойства «полупроводника», используемого в диодах. «Может ли этот материал проводить электричество?» Он подразделяется на «проводник», «полупроводник» и «изолятор» на основе вопроса. «Полупроводник» — это материал со свойствами между проводником, который хорошо проводит электричество, и изолятором, который этого не делает.

В общем, металлы хорошо проводят электричество, потому что электроны каждого атома становятся свободными электронами, когда металлические элементы связываются друг с другом. Когда подается напряжение, свободные электроны в металлическом кристалле перемещаются и несут электрический заряд, по которому течет электричество.

Полупроводники могут вести себя как проводники или изоляторы в зависимости от состояния протекающего через них электричества. В полупроводниках не так много свободных электронов, как в металлах.Когда подается напряжение, электроны по очереди движутся, чтобы заполнить недостающие дыры, или они переносят электричество с меньшим количеством свободных электронов, чем металлические связи.

Полупроводники делятся на полупроводники P-типа и полупроводники N-типа в зависимости от различий в механизме потока электричества; Полупроводники P-типа — это те, в которых электроны первых движутся последовательно, чтобы заполнить недостающие дырки. Четырехвалентный элемент, такой как кремний, смешанный с трехвалентной добавкой, такой как бор или бор, становится полупроводником P-типа.Поскольку в нем отсутствует один электрон, он считается заряженным положительно.

Полупроводники N-типа — это те, которые переносят электричество с меньшим количеством свободных электронов, чем последние металлические связи. Четырехвалентный элемент, такой как кремний, смешанный с одновалентной добавкой, такой как фосфор, становится полупроводником N-типа. Поскольку у него есть один дополнительный электрон, он считается отрицательно заряженным.

В PN-диоде электрод, подключенный к полупроводнику P-типа, называется анодом (A), а электрод, подключенный к полупроводнику N-типа, называется катодом (K).(Рисунок 1)

Когда «-» подключен к анодной стороне, а «+» подключен к катодной стороне PN-диода, электричество в полупроводнике притягивается к стороне электрода, и на PN-переходе генерируется пустая зона электричества. . В результате нет электричества. (Рисунок 2)

И наоборот, если «+» подключен к анодной стороне, а «-» — к катодной стороне, «+» и «-» электричество в полупроводнике будут склеиваться в P- и N-переходах и нейтрализовать друг друга, но следующее электричество будет отправлено от электрода, поэтому электричество будет течь.(Рисунок 3)

Таким образом, диоды обладают свойством проводить электричество только в фиксированном направлении. Светодиоды, которые мы часто видим в повседневной жизни, спроектированы так, чтобы излучать свет, когда электричество проходит через PN-переход. Диоды также используются в различных местах, где мы их не видим, поддерживая нашу повседневную жизнь.

Роль диодов

Диоды выполняют следующие четыре основные функции.

(1) Исправление

Направление тока всегда меняется из-за переменного тока в обычных источниках питания.Диоды имеют свойство пропускать электричество только в определенном направлении, поэтому из переменного тока можно извлечь только прямой ток. Это называется выпрямляющим действием диода.

(2) Обнаружение радиоволн

Диоды играют роль в извлечении звуковых сигналов из радиоволн. Это называется обнаружением волн. Радиоволны создаются путем объединения высокочастотных сигналов, используемых для связи, с низкочастотными сигналами, такими как голос.

(3) Контроль напряжения

Обычно диоды пропускают ток только в определенном направлении, но когда напряжение в противоположном направлении превышает определенное значение, напряжение начинает течь.Однако, когда напряжение в обратном направлении превышает определенное значение, напряжение начинает течь, и даже если ток увеличивается, напряжение не изменяется. Это называется явлением пробоя, а напряжение, при котором происходит явление пробоя, называется «напряжением пробоя» или «напряжением стабилитрона».
Явление текучести используется при контроле напряжения диодов, и используемые таким образом диоды называются стабилитронами.

(4) Конверсия тока

Когда свет попадает на PN-переход, электроны на стороне N рядом с переходом перемещаются.В результате электричество будет продолжать течь, пока светит свет. Это то, из чего сделан солнечный элемент.
Когда внешнее напряжение не подается, он действует как батарея, но при подаче напряжения действует как диод. Некоторые диоды реагируют на видимый свет, тогда как те, которые реагируют на невидимый свет, используются в таких приложениях, как светоприемная часть инфракрасных пультов дистанционного управления.

Типы диодов

Существуют различные типы диодов. Ниже приводится список некоторых из наиболее распространенных типов.

Кремниевые диоды
Самый распространенный тип PN диода. Чаще всего относится к выпрямительным диодам.
Германиевые диоды
Как и кремниевые диоды, это диоды, сочетающие в себе PN. Они часто используются для обнаружения волн из-за их низкого прямого падающего напряжения, особенно в области, где протекающий ток составляет всего 0,1 мА. Однако из-за высокой стоимости германия в настоящее время широко используются диоды с барьером Шоттки.
Диод Шоттки
Это диод, сделанный путем соединения металла и полупроводника. Эти диоды имеют превосходные характеристики переключения по сравнению с кремниевыми диодами и поэтому используются в высокоскоростных схемах.
Диод переключения
Диод, используемый для размыкания и замыкания силовой цепи, например выключателя. Он включается, когда напряжение подается в направлении потока мощности, и выключается, когда напряжение подается в направлении, где мощность не течет.
Диод Эсаки
Диод, в котором используется туннельный эффект, открытый лауреатом Нобелевской премии Леона Эсаки. Эффект туннелирования — это свойство диодов с PN-переходом с высокой концентрацией примесей, которое позволяет току течь, даже если этого не должно происходить из-за квантово-механических эффектов. Из-за чрезвычайно быстрого времени отклика они используются для генерации микроволн.
Светодиод (LED)
Диод, в котором переход излучает свет при протекании тока через PN переход.Когда электричество проходит через полупроводник, дырки и электроны в полупроводнике P-типа объединяются, и энергия излучается в виде света. Иногда его используют и как силовую лампу, и как выпрямитель.
Стабилитрон
Диод, используемый для подачи напряжения в направлении, противоположном тому, в котором обычно течет ток. Он используется для получения постоянного напряжения, а также для защиты схемы от перенапряжения.

Соответствующие технические знания

Как диоды используются в нашей повседневной жизни?

Диод — это электронный компонент с двумя выводами, который проводит электричество только в одном направлении и только тогда, когда к его двум выводам приложена определенная минимальная разность потенциалов или напряжение.Первые диоды использовались для преобразования переменного тока в постоянный и для фильтрации сигнала в радиоприемниках. С тех пор диоды стали повсеместными, они используются для защиты электроники, освещения наших домов и отправки сигналов дистанционного управления.

Базовая структура

Чтобы понять основы использования диода, полезно взглянуть на стандартную структуру диода. Стандартный p-n-диод имеет два полупроводника, которые входят в контакт, образуя интерфейс. Чистые полупроводники не проводят, поэтому добавляются металлические примеси. В одном полупроводнике p-n-диода загрязняющий металл легко отдает электрон; другой также легирован (загрязнен) металлом, который легко принимает электрон.На границе раздела электроны перемещаются из одной стороны в другую, делая атомы, оставленные электронами, положительно заряженными, а принимающие атомы — отрицательными. Это отклонение от нейтралитета происходит только на интерфейсе. Он создает электрическое поле, так что электроны, поступающие от внешнего тока, в основном идут со стороны, принимающей электроны, на сторону, отдающую электроны.

Ранние диоды: радио

Это свойство однонаправленности было впервые использовано в радиоприемниках AM. Радиосигнал колеблется взад и вперед, создавая в антенне переменный ток.Перед усилением сигнал необходимо сделать однонаправленным. Следовательно, радиодиод пропускает половину сигнала, перемещая электроны в одном направлении, но не другую половину. Короче говоря, переменный ток превращается в постоянный ток. Затем конденсаторы отфильтровывают высокие частоты, оставляя только аудиосигнал, готовый к усилению.

LED

Если вы подаете напряжение на диод, электроны из электрического тока, движущегося по электрической цепи, будут излучать свет определенной длины волны при присоединении к примеси, которая принимает электрон.Вот как светодиоды (LED) производят свет. Затем электроны перемещаются через границу раздела полупроводников из-за электрического поля между ними, пересекают полупроводник, который отдает электроны, и продолжают движение к задней части источника напряжения, чтобы замкнуть цепь.

Фотодиоды и светочувствительные диоды

Так же, как диоды могут излучать свет, они также могут создавать ток, когда получают его. Эти два типа работают вместе в устройстве дистанционного управления, например, для вашего телевизора.Именно так работают фотоэлектрические панели. Два диода излучают свет от вашего пульта дистанционного управления: один излучает видимый свет, чтобы вы знали, что сигнал отправляется; другой излучает двоичный сигнал на невидимой длине волны (отсюда и необходимость в видимом фотодиоде). Фотоны попадают в электронодонорный полупроводник, освобождая электроны и передавая им кинетическую энергию. Кинетическая энергия может передаваться только в одном направлении, поскольку допускается только одно направление электрического тока. Таким же образом работают солнечные панели, преобразующие солнечные фотоны в электрический ток только в одном направлении.

Защита цепи

Диод может защитить схему от неправильно вставленных батарей. Полярность будет неправильной, но это не повредит схему за диодом, который пропускает только слабый ток. Диоды также играют роль в устройствах защиты от перенапряжения. Так называемые «лавинные» диоды ведут к заземляющему проводу, но они не пропускают постоянный ток из-за своей однонаправленной ориентации. При достаточно высоком напряжении диод пропускает напряжение. Когда скачки напряжения намного превышают рабочие уровни, лавинный диод открывается и пропускает дополнительное напряжение через заземляющий провод.

Диоды Интернет-магазин | Будущее электроники

Что такое диод?

Диод — это электронный компонент с двумя выводами и асимметричной передаточной характеристикой. Он имеет низкое сопротивление току в одном направлении и высокое сопротивление току в другом направлении. Полупроводниковый диод — это кристаллический кусок полупроводникового материала, содержащий p-n переход, который подключен к двум электрическим выводам. Диоды позволяют электрическому току проходить в прямом направлении, блокируя электрический ток в обратном направлении.Это однонаправленное поведение называется выпрямлением и используется для преобразования переменного тока в постоянный. Полупроводниковые диоды начинают проводить электричество при приложении определенного порогового напряжения в прямом направлении.

Типы диодов

В Future Electronics существует несколько различных типов диодов. У нас есть многие из наиболее распространенных типов, которые классифицируются по нескольким параметрам, включая максимальное время обратного восстановления, максимальный обратный ток, максимальный средний выпрямленный ток, прямое напряжение, максимальное обратное напряжение, рассеиваемую мощность, максимальный средний прямой ток, максимальный пиковый ток и тип упаковки, среди прочего другие.Наши параметрические фильтры позволят вам уточнить результаты поиска в соответствии с необходимыми спецификациями.

Диоды от Future Electronics

Future Electronics предлагает широкий спектр программируемых диодов от нескольких производителей. После того, как вы решите, нужны ли вам мостовые выпрямители, токоограничивающие диоды, быстрые выпрямители, диоды Шоттки, выпрямители Шоттки, малосигнальные диоды, стандартные выпрямители, переключающие диоды, настраивающие / варакторные диоды, сверхбыстрые выпрямители или стабилитроны, вы сможете выбрать одно из их технические характеристики и результаты поиска будут сужены в соответствии с потребностями конкретного применения диодов.

Приложения для диодов:

Нелинейная вольт-амперная характеристика полупроводниковых диодов может быть изменена путем изменения и модификации полупроводниковых материалов. Стабилитроны используются для регулирования напряжения. Настроечные / варакторные диоды используются для электронной настройки радио и ТВ-приемников. Другие диоды могут использоваться для защиты цепей от скачков высокого напряжения, генерации радиочастотных колебаний или получения света. Диоды можно найти в широком спектре приложений, включая радиодемодуляцию, преобразование мощности, логические вентили, детекторы ионизирующего излучения, измерение температуры и управление током.

Выбор правильного диода:

С помощью параметрического поиска FutureElectronics.com при поиске нужных диодов вы можете фильтровать результаты по категориям. У нас есть следующие категории диодов:

  • Мостовые выпрямители
  • Токоограничивающие диоды
  • Быстрые выпрямители
  • Диоды Шоттки
  • Выпрямители Шоттки
  • Малосигнальные диоды
  • Стандартные выпрямители
  • Диоды переключения
  • Tuning / Varactor Сверхбыстрые выпрямители
  • Стабилитроны

Выбрав категорию диодов, вы можете сузить их по различным атрибутам: по максимальному обратному току, максимальному среднему выпрямленному току, прямому напряжению, максимальному обратному напряжению и максимальному пиковому току, и это лишь некоторые из них. .Используя эти фильтры, вы сможете найти подходящие диоды-ограничители тока, стандартные выпрямители, переключающие диоды, быстрые выпрямители, диоды Шоттки, мостовые выпрямители, выпрямители Шоттки, малосигнальные диоды, стабилитроны, настроечные / варакторные диоды или сверхбыстрые выпрямители.

Диоды в упаковке, готовой к производству или в количестве для НИОКР

Если количество диодов, которое вам требуется, меньше, чем полная катушка, мы предлагаем нашим клиентам несколько наших диодов в лотке, трубке или отдельных количествах, которые помогут вам избежать ненужных излишек.

Future Electronics также предлагает своим клиентам уникальную программу складских запасов, предназначенную для устранения потенциальных проблем, которые могут возникнуть из-за непредсказуемых поставок продуктов, которые могут содержать необработанные металлы, и продуктов с нестабильным или длительным сроком поставки. Поговорите с ближайшим отделением Future Electronics и узнайте больше о том, как вы и ваша компания можете избежать возможного дефицита.

Что такое диоды? | Полупроводник

Что такое диоды?

p-n-переход, созданный на кремнии с помощью электродов, представляет собой диод.Диоды, использующие p-n переход, называются обычными выпрямительными диодами. Обычные выпрямительные диоды с улучшенными характеристиками переключения называются быстровосстанавливающимися диодами (FRD), которые отличаются от обычных выпрямительных диодов.
Диод, в котором вместо полупроводника p-типа используется металл, называется диодом с барьером Шоттки (SBD).

Прямое смещение

Когда напряжение подается (в прямом направлении) от A к K, течет ток.
В это время между A и K возникает прямое напряжение V F . Потеря мощности возникает из-за V F , и меньший V F является идеальным.

Обратное смещение

Даже если напряжение приложено (в обратном направлении) от K к A, ток не течет.
Однако на самом деле протекает небольшой обратный ток I R . Потеря мощности происходит из-за I R , и меньший I R идеален.

Планарный тип и тип Mesa

Структура диодной микросхемы

Реальный чип состоит из тонкого p-слоя и толстого n-слоя.

n– layer:
Поскольку концентрация примесей мала, обедненный слой легче растет при наличии обратного напряжения.
Эта концентрация и толщина определяют необходимое выдерживаемое напряжение.
n + слой:
Концентрация примесей высока, что облегчает прохождение тока.
Толщина пластины должна быть достаточной для сохранения прочности пластины.

При подаче обратного напряжения

На реальном кристалле используется защитное покрытие для выдерживания напряжения, потому что конец кристалла обнажен, и ток легче протекает в области от p до n + вдоль торцевой поверхности, что снижает его способность выдерживать напряжение. Необходимо разработать метод добавления защитной пленки перед нарезкой кубиками, поскольку добавление защитной пленки после нарезания кубиками нецелесообразно.

Существует два типа структур для добавления защитной пленки перед нарезкой стружки

Планарный тип

Нет необходимости делать канавку на плоском типе, но стружка становится больше и процесс диффузии также усложняется.

Тип Mesa

Процесс создания канавки требуется на типе мезы, но стружка становится меньше, и процесс диффузии также прост.

Основные характеристики диода

Статические характеристики диода

Падение напряжения, возникающее при протекании прямого тока I F , называется прямым напряжением V F , и меньшее напряжение V F является идеальным.
Кроме того, небольшой ток, который протекает при приложении обратного напряжения V R , называется обратным током I R , и меньший ток I R является идеальным.

Динамические характеристики диода (коммутационные характеристики)

Как показано на рисунках ниже, когда состояние диода изменяется с текущего на внезапное обратное смещение, происходит большой выброс обратного тока. Этот ток называется током восстановления, а время, в течение которого протекает ток восстановления, называется временем обратного восстановления trr.

Меньший trr идеален, потому что ток восстановления вызывает шум или потерю мощности.

Типы диодов

p-n переход
  • Общие выпрямительные диоды
  • Диоды быстрого восстановления (FRD)
переход Шоттки типа
  • Диоды с барьером Шоттки (SBD)

Обычно все диоды представляют собой диоды с p-n переходом.
Однако диоды с p-n переходом имеют и недостатки. Чтобы компенсировать эти недостатки, были разработаны диоды с быстрым восстановлением (FRD) и диоды с барьером Шоттки (SBD). Тем не менее, нет специального названия для диодов с p-n переходом, поэтому их называют обычными выпрямительными диодами.

На основе кремния

Выбор и использование диодов в импульсных цепях питания

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *