Site Loader

Проводники и диэлектрики в электростатическом поле

Как вы знаете из курса физики восьмого класса, все тела можно классифицировать, в соответствии с их способностью проводить электрический ток. Тело может являться проводником, полупроводником или диэлектриком. Проводниками называют тела, проводящие электричество, а диэлектриками называют тела, не проводящие электричество.

Полупроводники — это тела, которые меняют свои свойства проводимости в зависимости от внешних условий. Но о полупроводниках мы поговорим позже, а сегодня мы рассмотрим проводники и диэлектрики. Рассмотрим, что происходит с проводником, помещенным в электростатическое поле. Конечно, к проводникам, в первую очередь, относятся металлы, в которых существуют, так называемые, свободные заряды. Свободные заряды — это электрические заряды, способные перемещаться внутри проводника. Как вы знаете, в металлах наблюдается металлическая связь. Нейтральные атомы металла начинают взаимодействовать друг с другом, в результате чего, некоторые электроны отрываются от атомов и становятся свободными. Эти электроны начинают участвовать в тепловом движении и могут перемещаться по всему проводнику в случайных направлениях. Иными словами, свободные электроны в проводнике ведут себя подобно молекулам газа. Поскольку все атомы изначально электрически нейтральны, если они теряют электрон, они становятся положительно заряженными ионами.

Таким образом, в проводниках наблюдается следующая картина: положительно заряженные ионы оказываются окружены так называемым электронным газом. Конечно, не надо думать, что электроны образуют какой-то реальный газ. Просто их движение очень напоминает хаотическое движение молекул газа.

Рассмотрим случай, когда металлический проводник находится в однородном электростатическом поле.

Как вы знаете, под действием электрического поля свободные электроны приходят в упорядоченное движение (то есть, в проводнике возникает электрический ток). В результате одна сторона проводника заряжается отрицательно, а другая — положительно. Это явление называется электростатической индукцией. То есть

электростатическая индукция — это явление наведения собственного электростатического поля под воздействием внешнего электрического поля.

Итак, из-за электростатической индукции, возникает другое электростатическое поле, создаваемое появившимися зарядами. По принципу суперпозиции полей, это поле накладывается на внешнее поле и компенсирует его. Из этого мы можем сделать очень важный вывод: напряженность электростатического поля внутри проводника равна нулю:

Этот факт используется для создания электростатической защиты: чувствительные к электрическому полю приборы, помещаются в металлические ящики. В настоящее время даже некоторые виды спецодежды включают в себя современные электропроводящие материалы, которые создают внутри костюма замкнутое пространство, защищенное от воздействия электрических полей.

Впервые, эксперимент, подтверждающий отсутствие электростатического поля внутри проводника, провел Майкл Фарадей еще в 1836 году. По его указанию большую деревянную клетку оклеили листами оловянной фольги (которая является проводником). Предварительно клетку изолировали от земли и сильно зарядили ее (так что при приближении к ней тел, с ее поверхности вылетали искры).

Тем не менее, сам Фарадей совершенно спокойно находился внутри данной клетки. Более того, в его руках был исправный электроскоп, который показывал полное отсутствие электрического поля. Впоследствии, подобные конструкции получили название «клетка Фарадея».

Необходимо отметить еще один важный факт: вблизи поверхности (вне проводника) линии напряженности электростатического поля перпендикулярны этой поверхности.

Если бы это было не так, и какая-то линия напряженности была бы не перпендикулярна поверхности, то это привело бы к движению свободных зарядов. Такое движение продолжается до тех пор, пока все силовые линии не станут перпендикулярны поверхности проводника. Надо сказать, что весь статический заряд любого проводника находится на поверхности этого проводника. В этом легко убедиться, поскольку мы уже выяснили, что напряженность электростатического поля внутри проводника равна нулю. Следовательно, внутри проводника никакого заряда нет, поскольку в противном случае, он создавал бы отличную от нуля напряженность.

Теперь давайте поговорим о диэлектриках. Диэлектрики в электростатическом поле ведут себя иначе, чем проводники. Диэлектрики, наоборот, не проводят ток, но внутри них может существовать электрическое поле.

Дело в том, что в диэлектриках не возникают свободные заряды, поскольку между ядрами атомов и электронами существует довольно сильная связь. Приведем два классических примера распределения электрического заряда. Как вы знаете, ядро водорода состоит из одного протона, а вокруг этого протона вращается один электрон. В целом, атом электрически нейтрален. Электрон вращается вокруг протона с очень большой скоростью: за одну секунду он делает порядка 10

15 оборотов. Это говорит нам о том, что каждую микросекунду электрон оказывается в любой точке своей орбиты миллионы раз. Поэтому, смело можно считать, что в среднем по времени центр распределения отрицательного заряда находится в центре атома, то есть совпадает с положительно заряженным ядром.

Тем не менее, есть и другие случаи. Например, молекула поваренной соли состоит из атома натрия и атома хлора. Из курса химии вы знаете, что атом хлора имеет 7 валентных электронов, а у атома натрия всего один валентный электрон. Поэтому, в процессе образования молекулы, атом хлора захватывает электрон натрия, в результате чего образуется система из двух ионов. Теперь центр распределения отрицательного заряда приходится на ион хлора, а центр распределения положительного заряда приходится на ион натрия. Тем не менее, в целом молекула остается электрически нейтральна. Подобные системы называются электрическими диполями.

Электрический диполь

В связи с этим, разделяют два вида диэлектриков: неполярные и полярные. Неполярные диэлектрики — это диэлектрики, состоящие из атомов или молекул, у которых центры распределения положительных и отрицательных зарядов совпадают.

И наоборот, полярными диэлектриками называются диэлектрики, состоящие из атомов или молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают.

О поляризации диэлектриков мы поговорим более подробно в одном из следующих уроков. А сейчас давайте рассмотрим величину, характеризующую свойство диэлектрической среды, которая называется

диэлектрической проницаемостью. Эта величина показывает, во сколько раз кулоновская сила взаимодействия между двумя точечными зарядами в данной среде меньше, чем кулоновская сила взаимодействия этих же зарядов в вакууме:

Таким образом, мы можем записать закон кулона для произвольной среды:

В формулу добавляется диэлектрическая проницаемость, то есть, характеристика среды. Диэлектрические проницаемости многих сред измерены и сведены в таблицы. Эти величины измерены экспериментально, например, с помощью измерения кулоновских сил тех же зарядов в различных средах.

Проводники и диэлектрики. Виды проводников

  

Наименьшим отрицательным зарядом обладает электрон.

 

Для справки: заряд электрона равен e0 = -1,6021766208*10-19 Кулон

 

Электрон (если он слабо связан с ядром атома) может покинуть атом, перейти в междуатомное пространство, попасть в пределы другого атома и т. д. Это явление наиболее характерно для металлов. В металлах всегда имеется огромное количество беспорядочно движущихся в междуатомном пространстве электронов, называемых свободными (рисунок 1).

Рисунок 1. Хаотическое движение электронов в металле.

 

Если каким-либо способом упорядочить движение свободных электронов, то есть заставить их двигаться в одном определенном направлении, то мы и получим в металле электрический ток (рисунок 2).

Рисунок 2. Возникновение тока в проводнике.

 

Определение: Тела, обладающие свободными электронами, называются проводниками первого рода.

 

В проводниках первого рода прохождение электрического тока не вызывает химических изменений их вещества. К проводникам первого рода относятся металлы и их сплавы. Проводники первого рода нашли самое широкое применение в электротехнике и радиотехнике. Провода, шины, пластины конденсаторов, нити ламп накаливания и другие токопроводящие детали — все это делается из проводников первого рода.

 

Определение: К проводникам второго рода относятся растворы кислот, щелочей и солей.

 

Проводники второго рода часто называют электролитами. В электролите происходит непрерывный процесс образования отрицательно и положительно заряженных молекул (ионов). Электрический ток в электролите представляет собой упорядоченное движение этих ионов (а не электронов, как это было в проводниках первого рода).

Рисунок 3. Ток в проводниках второго рода (электролитах).

 

Наконец, имеется большая группа веществ, которая не имеет ни свободных электронов, ни ионов. В таких веществах при обычных условиях электрический ток проходить не может, и называются они диэлектриками (фарфор, резина, слюда, стекло и т. п.).

 

Определение: К диэлектрикам относятся вещества, не имеющие свободных электронов.

 

Диэлектрики широко используются в современной электротехнике в качестве изоляторов (фарфоровые изоляторы на линиях электропередачи, резиновые покрытия проводов, слюдяные прокладки и т. д.).

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

3. Проводники и диэлектрики в электрическом поле.

Под действием электрического поля в веществе происходит перемещение электрических зарядов. Различают свободные и связанные электрические заряды. В зависимости от преобладания того или иного вида зарядов различают проводники и диэлектрики. При помещении проводника в электрическое поле в нем происходит перемещение свободных зарядов под действием электрических сил. Тем самым осуществляется объемная поляризация среды, то есть пространственное разобщение разноименных электрических зарядов – разведение их в разные участки макроскопического по сравнению с размерами молекул, объема. Разобщенные заряды полностью экранируют внутренность проводника от внешнего электрического поля, вызвавшего объемную поляризацию. Поэтому внутри проводника поле отсутствует (эффект Фарадея).

Движение свободных электрических зарядов под действием внешнего электрического поля называют током проводимости Iпр. Величина тока проводимости подчиняется закону Ома:

Iпр = U/R (1),

где U – напряжение, R – сопротивление проводника. Выражение (1) может быть преобразовано в виду:

jпр = E (2).

Здесь jпр – плотность тока проводимости [Aм-2],  — удельная электропроводность среды [См м-1], а Е –напряженность электрического поля в данной точке среды. Выражение (2) называется законом Ома в дифференциальной форме. Он справедлив для любых сред, которые содержат свободные заряды.

В среде, кроме свободных, могут присутствовать связанные электрические заряды, входящие в состав атомов и молекул. Под действием поля такие заряды не могут свободно перемещаться, но могут изменять свою ориентацию относительно исходного положения.

Простейшей системой связанных зарядов является электрический диполь, представляющий собой систему двух одинаковых по величине и противоположных по знаку электрических зарядов, находящихся на расстоянии l. Диполь характеризуется электрическим дипольным моментом р = ql. Его размерность – Клм. Внесистемная единица измерения – Дебай (Д): 1Д = 3,310-30 Кл м. Дипольный момент – векторная величина. Он направлен от отрицательного заряда к положительному.

На дипольный момент, помещенный в однородное электрическое поле, действует пара сил, момент которой равен:

М = рЕsin (3),

где  — угол между направлениями р и Е. Таким образом, внешнее электрическое поле стремится упорядочить расположение диполей, выстраивая их по направлению силовых линий.

Различают полярные и неполярные диэлектрики. Полярные – подобны по строению электрическому диполю: вода, аммиак, эфир, ацетон. Неполярные – не обладают дипольным моментом: H2, N2.. Существуют также кристаллические диэлектрики, где различные по знаку заряды локализуются в разных местах кристаллической решетки.

Как было сказано, при помещении в электрическое поле полярные молекулы поворачиваются по направлению поля – это так называемая ориентационная поляризация.

Неполярные молекулы в электрическом поле приобретают дипольный момент за счет деформации электронных орбит – происходит электронная поляризация.

В кристаллических диэлектриках происходит смещение узлов кристаллической решетки – ионная поляризация. Все виды поляризации приводят к появлению связанных зарядов на поверхности диэлектрика, вследствие чего ослабляется напряженность электрического поля внутри вещества Е: Е = Е0/, где Е0 – напряженность электрического поля вне вещества, а  — относительная диэлектрическая проницаемость вещества. Для воды  = 81. Эффект поляризации характеризуется вектором поляризации, который равен суммарному дипольному моменту молекул, содержащихся в единице объема диэлектрика:

Р = рi/ V (4),

где суммирование производится по всем молекулам, содержащимся в объеме V. Как показывает опыт, в электрических полях малой напряженности вектор поляризации пропорционален напряженности электрического поля внутри диэлектрика:

Р = 0Е (5),

где  — безразмерный параметр, характеризующий поляризуемость диэлектрика и называемый диэлектрической восприимчивостью. Из рассмотрения напряженности поля внутри диэлектрика следует, что:

 = + 1 (6).

Это соотношение показывает, что ослабление внешнего поля внутри диэлектрика происходит за счет эффекта поляризации. Чем больше поляризация (чем больше ), тем больше ослабление поля в диэлектрике (). На границе диэлектрика часть силовых линий напряженности поля обрывается на связанных зарядах. Таким образом, в неоднородных диэлектриках, которые представляют собой слоеный пирог, оказывается неудобным пользоваться вектором Е, поскольку он разный в разных слоях. Чтобы избежать этого, вводят вектор электрической индукции:

D =0Е (7).

Его силовые линии не терпят разрыва на границе раздела, и он одинаков как внутри, так и вне диэлектрика. Целесообразность использования вектора D определяется конкретной конфигурацией диэлектрика и конкретной задачей по нахождению электрического поля в веществе (конкретными граничными условиями). Уравнение (7) называется материальным уравнением Максвелла. С учетом (6) его можно переписать в виде:

D = 0E + P (8).

В анизотропных диэлектриках направления D и Е не совпадают. Есть вещества, где значения  аномально большие (до нескольких тысяч). Они называются сегнетоэлектриками. Свойства сегнетоэлектриков объясняются особенностями их строения: в них есть области, называемые доменами, где дипольные моменты отдельных молекул упорядочены за счет взаимодействия между молекулами. В отсутствие внешнего поля векторы поляризации соседних доменов ориентированы хаотично и компенсируют друг друга. Внешнее поле поворачивает не отдельные молекулы, а целые области – домены. В сегнетоэлектриках нарушается линейная связь между Е и Р.

Опыт показывает, что в некоторых диэлектриках (например, в кварце) поляризация может возникнуть без внешнего электрического поля, если кристалл подвергается механической деформации. Это происходит вследствие смещения кристаллических слоев решетки относительно друг друга. Возникновение разности потенциалов между обкладками диэлектрика носит название пьезоэффекта. Обратный пьезоэффект – деформация кристаллического диэлектрика, обладающего пьезоэлектрическими свойствами, при помещении его в электрическое поле используется при преобразовании электромагнитных колебаний в механические.

  1. Магнитные свойства сред.

Все вещества при помещении в магнитное поле изменяют свое состояние, вступая с ним во взаимодействие. В этом смысле все вещества принято называть магнетиками. Так как макроскопические различия магнетиков обусловлены особенностями их строения, необходимо рассмотреть магнитные характеристики молекул и атомов, а также их поведение в магнитном поле.

Движение электронов в атоме подобно току, текущему по замкнутому контуру или рамке с током. Для характеристики этого движения вводится магнитный момент рm, равный:

Рm = Is (9),

где I – ток, создаваемый электроном, а s – площадь контура, охватываемая этим током. Размерность магнитного момента: Ам2 = ДжТл-1. Магнитный момент приложен в центре контура перпендикулярно его плоскости и ориентирован относительно тока по правилу буравчика.

Величина магнитного момента атомов может быть выражена в единицах, называемых магнетоном Бора: Б = еh/2m = 9.27 10-24Ам2. Здесь е – заряд электрона, h –постоянная Планка, m – масса электрона. Магнитные моменты ядер измеряются в так называемых ядерных магнетонах, которые на три порядка меньше из-за различия масс электрона и нуклонов. Существует связь между рm и моментом количества движения частицы L:

Рm = -g Lе/2m (10),

где g – множитель Ланде , равный для орбитального движения электрона 1, а для спинового движения 2. В веществе численное значение множителя Ланде несколько отличается от этих значений, что указывает на особенности микроокружения молекулы (ее связь с соседними молекулами) и определяется методом электронного парамагнитного резонанса (ЭПР).

В атоме (и в молекуле) магнитные моменты всех электронов векторно складываются, образуя общий магнитный момент. В зависимости от его величины все вещества можно условно разделить на две группы:

  1. вещества, у которых в основном состоянии молекула не имеет магнитного момента. Такие вещества называются диамагнетиками. К ним в частности относятся углеводы, белки, вода, фосфор, сера, углерод и другие.

  2. Вещества, у которых магнитный момент молекулы отличен от нуля. Их называют парамагнетиками. Например, кислород, щелочные и щелочноземельные элементы, некоторые другие металлы и их окислы. В магнитном поле электроны атомов и молекул начинают прецессировать относительно вектора магнитной индукции В этого поля. Прецессионное движение электронов представляет собой микроток, который служит источником собственного магнитного поля, направленного против внешнего поля в соответствии с правилом Ленца. Возникновение собственного магнитного поля в среде за счет прецессионного движения электронов, вызванного внешним магнитным полем, называется диамагнитным эффектом. Он присущ как диамагнетикам так и парамагнетикам.

В парамагнетиках под действием внешнего магнитного поля, кроме диамагнитного, возникает парамагнитный эффект. Он представляет собой ориентирование магнитных моментов атомов и молекул в направлении внешнего магнитного поля. Таким образом, парамагнитный эффект проявляется в усилении внешнего магнитного поля, тогда как диамагнитный – в его ослаблении. Поэтому в веществе, обладающем свойствами парамагнетика, магнитное поле усиливается, а в диамагнетиках, наоборот –ослабляется.

Возникновение собственного магнитного поля в веществе под действием внешнего поля называется намагничением. Количественной мерой этого эффекта служит вектор намагничения, определяемый как суммарный магнитный момент атомов и молекул в единице объема вещества:

J = рm/V (11).

Вектор намагничения связан с напряженностью магнитного поля Н:

J = H (12),

где  — магнитная восприимчивость, связанная с относительной магнитной проницаемостью соотношением, аналогичным (6):

 =  — 1 (13).

У диамагнетиков <0, у парамагнетиков >0.

На величину намагниченности в парамагнетиках влияет температура, поскольку тепловое движение препятствует намагничению. Парамагнетики втягиваются в область сильного магнитного поля, а парамагнетики- выталкиваются.

Среди парамагнетиков выделяют группу ферромагнетиков. Их выделяют следующие отличительные особенности: собственные магнитные поля ферромагнетиков в 103— 104 раз сильнее, чем у других парамагнетиков. Они сохраняются после прекращения действия внешнего поля (явление остаточного намагничивания). По мере усиления магнитной индукции внешнего поля индукция поля внутри ферромагнетика усиливается до определенного значения, а затем перестает изменяться ( свойство магнитного насыщения).

К ферромагнетикам принадлежат железо, никель, кобальт, сталь, некоторые специальные сплавы, ряд кристаллических неметаллических соединений (ферриты). Структура всех этих веществ характеризуется наличием доменов, но в ферромагнетиках, в отличие от сегнетоэлектриков, доменами называют области, в которых атомы и молекулы имеют не дипольные, а магнитные моменты с определенной ориентацией в пространстве, что обуславливает значительный общий магнитный момент каждого домена. В отсутствие внешнего магнитного поля магнитные моменты разных доменов неупорядочены и компенсируют друг друга. Под действием поля упорядочиваются не отдельные магнитные моменты атомов или молекул, а магнитные моменты многих доменов. Поэтому собственным магнитным полям ферромагнетиков присущи большие значения индуктивности (относительной магнитной проницаемости ).

= B/B0 (14).

Здесь В – индукция магнитного поля в веществе, а В0— индукция магнитного поля в вакууме.

При определенной температуре, называемой точкой Кюри, ферромагнетики теряют свои магнитные свойства. Из-за теплового движения доменная структура разрушается и ферромагнетик превращается в парамагнетик.

При рассмотрении электрических и магнитных эффектов ЭМП в веществе, следует помнить, что они развиваются параллельно: любая среда и поляризуется и намагничивается одновременно. В переменном ЭМП каждый из этих процессов течет непрерывно – во всякой точке среды циклично. Поляризация сменяется деполяризацией, а намагничение – размагничением и наоборот. Эти превращения происходят не мгновенно, а за определенное конечное время, на которое они запаздывают относительно изменений внешнего ЭМП. Это время называется временем релаксации. Величина, обратная времени релаксации называется характеристической частотой релаксации (х).

5.Электрические и магнитные свойства тканей организма.

Характеризуя электрические свойства живых тканей, следует учитывать, что они являются очень неоднородными средами, поскольку одни структурные элементы обладают свойствами проводников, а другие – диэлектриков. Так электропроводность органов и тканей связана с присутствием в них ионов, которые являются свободными зарядами, создающими в организме ток проводимости под действием внешнего электромагнитного поля (ЭМП). Электропроводность живых тканей определяется, прежде всего, электрическими свойствами крови, лимфы, межклеточной жидкости и цитозоля. Удельная электропроводность () этих электролитов составляет 0,1 – 1,0 См м-1. Подвижность ионов в биологических жидкостях примерно такая же, как в растворах соответствующих солей, приготовленных на дистиллированной воде.

Однако  целых органов на 4-6 порядков ниже  жидкостей, выделенных из них. Причиной такого расхождения являются малые объемы, занимаемые свободными электролитами в органах и тканях животных. В клетке электролиты заключены в мельчайшие отсеки (компартменты), образованные биомембранами, составляющими более 50% массы клетки. По существу каждая клеточная органелла представляет собой компартмент. Ее содержимое и окружающий цитозоль обладают относительно высокой электропроводностью, тогда как разделяющая их мембрана является типичным диэлектриком.

Живым тканям свойственна зависимость электропроводности от частоты воздействующего ЭМП. Этот феномен получил название дисперсии электропроводности. С повышением частоты электропроводность тканей увеличивается. Дисперсия электропроводности особенно выражена в низкочастотном диапазоне. На средних частотах дисперсия электропроводности менее выражена, а на высоких – снова проявляется довольно отчетливо. Так, при изменении частоты ЭМП от 25 МГц до 8,5 ГГц сопротивление скелетной мышцы снижается примерно в 10 раз.

Дисперсия электропроводности присуща всем средам, а не только биологическим. Она наблюдается в том диапазоне частот ЭМП, которые соответствуют характеристическим частотам (х) заряженных частиц, входящих в состав той или иной среды. Поскольку однородные среды образованы частицами с близкими значениями х, то дисперсия электропроводности в них выражена слабо. Поэтому сопротивление резисторов в цепях переменного тока считают не зависящими от частоты, в отличие от сопротивлений индуктивности и емкости.

Характерной особенностью живых тканей является то, что у них зависимость электропроводности от частоты гораздо отчетливее, чем у сред с более однородной структурой, и обнаруживается в широком частотном диапазоне. Это обусловлено сложной структурой тканей и большим разнообразием релаксационных способностей их заряженных частиц, причем такое разнообразие связано как с различиями в размерах, так и с влиянием на их подвижность биологических мембран. Повреждение клеточных мембран стирает в значительной мере грань между тканями и органическими электролитами в дисперсии электропроводности на низких частотах. Отметим, что метод измерения электропроводности называют кондуктометрией.

Диэлектрические свойства биологических тканей определяются присутствием в них воды, растворенных в ней макромолекул, а также компартментализацией клеточных структур. Такие структуры подобны доменам с одинаковой ориентацией дипольных моментов. Каждая органелла, на мембране которой поддерживается разность потенциалов между цитозолем и ее содержимым, имеет значительный дипольный момент и подобна домену в сегнетоэлектрике. За счет таких заряженных компартментов живые ткани обладают высокой диэлектрической проницаемостью. В постоянном электрическом поле она достигает десятка тысяч.

Как и всякому домену, каждому внутриклеточному компартменту присуща невысокая характеристическая частота релаксации. Применительно к диполям х соответствует максимальной частоте внешнего ЭМП, которую они способны воспроизвести своими поворотами в нем, за счет чего достигается максимально возможная компенсация внешнего поля полем связанных зарядов диэлектрика. Диапазон характеристических частот разных внутриклеточных компартментов находится в пределах от долей герца до 1 кГц. Поэтому компартменты вносят основной вклад в диэлектрические свойства биологических тканей именно на низких частотах.

На более высоких частотах диэлектрические свойства биообъектов определяются полярными макромолекулами, сосредоточенными как в цитозоле, так и в клеточных мембранах. В сверхвысокочастотных полях основной вклад в эти свойства вносит вода.

У разных белковых молекул характеристическая частота охватывает диапазон от 10 кГц до 100 МГц и зависит от их размеров, а также от вязкости окружающей среды. При этом молекулы одинаковых размеров, пребывая в средах с разной вязкостью (например, в цитозоле и биомембране), обладают неодинаковой х.

Характеристическая частота релаксации внутриклеточной воды такая же, как и дистиллированной (20 ГГц). Дипольные моменты у них также одинаковы – примерно 1,84 дебая. Именно в воде, входящей в состав живых тканей, происходят основные диэлектрические потери при действии на организм СВЧ излучений, посколькух воды лежит в сантиметровом диапазоне длин волн.

Неодинаковые характеристические частоты разных тканевых компонентов, способных поляризоваться в ЭМП, обусловливают неравномерный ход кривой дисперсии диэлектрической проницаемости, отображающей зависимость  ткани от частоты электромагнитных колебаний, воздействующих на нее (Рис.). На графике можно выделить три участка, где кривая идет круче, чем в промежутках. Эти участки называют зонами дисперсии и обозначают греческими буквами , , .

Первый участок ( — дисперсия) соответствует низкочастотному диапазону (до 1 кГц). Он отображает поляризацию внутриклеточных компартментов, с которыми связаны сегнетоэлектрические свойства живых тканей. В силу значительной инерционности релаксационных процессов в доменах-компартментах вращение этих «гигантских диполей» запаздывает относительно перемен направления напряженности внешнего ЭМП даже на низких частотах, что проявляется в уменьшении  по мере повышения частоты в области низких частот. Некоторый вклад в -дисперсию вносит релаксация зарядов на фасциях, внутриорганных соединительнотканных прослойках, клеточных поверхностях.

Второй участок (-дисперсия) отображает изменение поляризации макромолекул по мере повышения частоты внешнего ЭМП. В скелетной мышце -дисперсия наблюдается в диапазоне частот от 104 до 108 Гц. Снижение  по мере повышения  в этом диапазоне зависит от того, что все менее крупные макромолекулы не успевают поворачиваться в соответствии с частотой внешнего ЭМП, когда она начинает превосходить характеристическую частоту той или иной полярной молекулы. Очевидно, 108 Гц является частотой, соответствующей характеристической частоте наименее инерционных пептидных молекул.

Третий участок (-дисперсия) приходится на частоты выше 1010 Гц, чему соответствует х воды. Поскольку вода имеет несколько значений х, лежащих около 20 ГГц, то изменение  на >1010 Гц имеет немонотонно убывающий характер. Диэлектрическая проницаемость уменьшается потому, что даже такие мелкие молекулы, как Н2О, не успевают совершать повороты с частотой, соответствующей частотному диапазону -дисперсии.

В живых тканях под действием внешнего ЭМП возникают и токи проводимости, и токи смещения. По мере повышения частоты роль тока смещения в биологических эффектах электромагнитного излучения возрастает и становится ведущей на частотах выше 107 Гц. Сказанное хорошо иллюстрируют различные виды высокочастотной электротерапии: если при диатермии (= 0,5-2,0 МГц) ткани нагреваются благодаря возникновению в них тока проводимости, то при УВЧ терапии (=40-60 МГц) тепловой эффект связан прежде всего с током смещения.

Магнитные свойства биологических тканей характеризуются довольно низкой величиной магнитной проницаемости (), близкой к 1, поскольку большинство молекул, входящих в состав живых клеток (белки, углеводы, липиды,вода) относятся к диамагнетикам. Их почти нулевая магнитная восприимчивость () служит одной из причин недостаточного внимания к изучению магнитных явлений в организме. Неясно также обладает ли живая ткань индуктивностью. Данные на сей счет противоречивы. В целом же можно сказать, что биофизические основы действия магнитных полей на биологические объекты изучены еще недостаточно, хотя работа в этом направлении ведется весьма активно.

Ткани организма проводят не только постоянный, но и переменный ток. Индуктивность тканей близка к нулю, а биологические мембраны обладают емкостными свойствами, в связи с этим импеданс (полное сопротивление) тканей организма определяется только омическим и емкостным сопротивлениями. Наличие в биологических системах емкостных элементов подтверждается тем, что сила тока опережает по фазе приложенное напряжение.

Как и в электрических цепях, импеданс биологических систем зависит от частоты переменного тока. Для живых тканей характерно уменьшение импеданса по мере увеличения этой частоты. Эта зависимость получила название дисперсии импеданса. Дисперсия импеданса отображает широкий круг электромагнитных процессов в биологических системах. По кривой дисперсии импеданса удается судить об уровне обмена веществ и его отклонениях от нормы. В медико-биологических экспериментах применяется метод изучения дисперсии Z для оценки жизнеспособности органов и тканей. Б.Н.Тарусов предложил упрощенный вариант такого исследования. Следуя ему, измеряют всего два значения Z: на низкой (около 102 Гц) и высокой (>106 Гц) частотах, соответствующих тем частотным диапазонам, где кривая дисперсии импеданса идет боле полого, чем на среднечастотном участке крутого спада. Отношение этих величин называют коэффициентом поляризации:

Кп = Zнч/Zвч (17),

где Zнч – импеданс на низкой частоте, Zвч— импеданс на высокой частоте.

Жизнеспособная ткань имеет Кп>1, причем значения коэффициента поляризации тем больше, чем выше уровень обмена вещества в данной ткани и чем лучше сохранена ее структурная целостность. При отмирании ткани ее Кп стремится к 1.

Метод исследования дисперсии импеданса применяют для оценки жизнеспособности тканевых трансплантатов при пересадке органов. Изучаются возможности его использования для определения зон раневого процесса в ходе хирургической обработки раны, для характеристики ишемии, отека и т. д.

Широкое распространение в медицинской практике нашла методика реоплетизмографии. Посредством ее изучают активную составляющую импеданса (R), которая зависит прежде всего от кровенаполнения исследуемого органа. Чем больше крови содержится в органе, тем ниже (при прочих равных условиях) его электрическое сопротивление. Это позволяет оценивать органное кровообращение путем измерения R органа переменному току.

По динамике электрического сопротивления кожи судят о так называемых кожно-гальванических реакциях (КГР), в которых отображаются эмоции, утомление и другие состояния организма.

Выводы и заключение.

Данная лекция служит основой для понимания механизмов биологического действия электромагнитных полей на живые объекты. Этот вопрос очень важен в образовании военного врача, поскольку в условиях воинского труда организм человека подвержен действию разнообразных электромагнитных излучений. Кроме того, посредством электромагнитных излучений пытаются изменять не только вегетативные и соматические процессы, но также влиять и на соматические процессы.

С другой стороны, слабые знания электрических и магнитных свойств вещества зачастую не позволяют врачу грамотно и эффективно применять многие лечебные средства. Это относится в первую очередь к средствам физиотерапевтического воздействия: диатермии, индуктотермии, УВЧ-терапии, микроволновой терапии. Из них врач далеко не всегда выбирает наиболее эффективный способ лечения в каждом конкретном случае. Цель данной лекции – помочь врачу лучше ориентироваться в вопросах воздействия электромагнитного поля на человеческий организм.

проводники? в чем отличие проводников от диэлектриков?

ПРОВОДНИК&#152;И, вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. К хорошим проводникам обычно относят вещества с удельным сопротивлением 10-6 ом. см. Проводниками электрического тока (проводниковыми материалами) могут быть твердые тела, жидкости, а при соответствующих условиях и газы. ДИЭЛ&#152;ЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное электросопротивление ~108-1012 ОмЧсм) . Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых диэлектриках поляризация существует в отсутствие поля (спонтанная поляризация) , что связано с особенностями их строения

Проводники — это вещества хоршо проводящие эл. ток. Диэлектрики — это вещества плохо проводящие или вовсе не проводящие электриченский ток.

вода диэлектрик, металл проводник…. примера достаточно ?

Проводники — это вещества хоршо проводящие эл. ток. Диэлектрики — это вещества плохо проводящие или вовсе не проводящие электриченский ток.

Разница между проводниками и диэлектриками в том, что проводники — проводят электрический ток, а диэлектрики — нет. Проводники выталкивают заряженные частицы. Диэлектрики накапливают заряженные частицы.

Идеальный проводник — Википедия

Материал из Википедии — свободной энциклопедии

Идеальный проводник — материал, который беспрепятственно проводит электрический ток при любой напряженности электростатического поля, однако обладает обычными магнитными свойствами (положительная или малая отрицательная магнитная восприимчивость)[1].

В природе идеальные проводники не встречаются[2], однако это полезная модель для случаев, когда сопротивление какого-либо объекта пренебрежимо мало. Так, в электрических схемах провода, как правило, считаются идеальными проводниками; в так называемой идеальной магнитной гидродинамике среду считают идеальным проводником[3].

Идеальный проводник обладает нулевым электрическим сопротивлением или, что то же самое, бесконечной электропроводностью. В таком материале могут присутствовать незатухающие стационарные электрические токи. В обычном проводнике из-за сопротивления ток приводит к нагреванию материала, идеальный же проводник не будет нагреваться, а значит, и терять энергию. В то же время ток смещения в идеальном проводнике равен нулю.

Магнитный поток через любой контур в идеальном проводнике не меняется со временем. Попытка его изменения путём приложения внешнего магнитного поля приведёт лишь к тому, что согласно закону Фарадея в идеальном проводнике возникнут стационарные токи, в точности компенсирующие изменение; в частности, если некий материал помещён во внешнее поле, затем каким-то образом переходит в состояние идеального проводника, после чего внешнее поле отключается, то токи в этом идеальном проводнике сложатся так, чтобы поддерживать внутри него ту же самую конфигурацию магнитного поля — поле «заморозится»[4].

Сверхпроводник тоже имеет нулевое сопротивление, но он отличается от идеального проводника тем, что магнитное поле в нём равно нулю всегда, даже если поле было включено в момент перехода материала в сверхпроводящее состояние (эффект Мейснера)[5][4]. Сверхпроводник проявляет и другие макроскопические квантовые эффекты, отсутствующие у идеального проводника, например, эффект Джозефсона.

  • Charles P. Poole, Horacio A. Farach, Richard J. Creswick, Ruslan Prozorov. Superconductivity. — Elsevier, 2010. — ISBN 0080550487, 9780080550480.
  • Kirk T. McDonald. Electromagnetic Fields inside a Perfect Conductor (неопр.). Princeton University (29 декабря 2015). Дата обращения 29 июня 2018.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *