Site Loader

Содержание

Действующее, среднеквадратичное, эффективное напряжение или ток, что это такое

Действующее, среднеквадратичное, эффективное напряжение или ток, что это такое

Электрический ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда.

Среднее значение переменного синусоидального напряжения или тока

Говоря о величине, изменяющейся по синусоидальному (гармоническому) закону, можно за половину периода определить ее среднее значение. Поскольку ток в сети у нас в подавляющем большинстве случаев синусоидальный, то для этого тока также легко может быть найдена средняя его величина (за половину периода), достаточно прибегнуть к операции интегрирования, установив пределы от 0 до Т/2. В результате получим:

Подставив Пи = 3,14, найдем среднюю, за половину периода, величину синусоидального тока в зависимости от его амплитуды. Аналогичным образом находится среднее значение синусоидальной ЭДС или синусоидального напряжения U:

Действующее значение тока I или напряжения U

Однако среднее значение не так широко применяется на практике, как действующее значение синусоидального тока или напряжения. Действующее значение синусоидально меняющейся во времени величины — есть среднеквадратичное, другими словами — эффективное ее значение.

Эффективное (или действующее) значение тока или напряжения находится так же, путем интегрирования, но уже по отношению к квадратам, и с последующим извлечением квадратного корня, причем пределы интегрирования теперь — целый период синусоидальной функции.

Итак, для тока будем иметь:

Подставив значение корня из 2, получим формулу для нахождения эффективного (действующего, среднеквадратичного) значения тока, напряжения, ЭДС — по отношению к амплитудному значению. Эту формулу можно встретить очень часто, ее используют всюду в расчетах, связанных с цепями переменного синусоидального тока:

С практической точки зрения, если сравнить тепловое действие тока переменного синусоидального с тепловым действием тока постоянного непрерывного, на протяжении одного и того же периода времени, на одной и той же активной нагрузке, то выяснится, что выделенная за период синусоидального переменного тока теплота окажется равна выделенной за это же время теплоте от тока постоянного, при условии, что величина постоянного тока будет меньше амплитуды тока переменного в корень из 2 раз:

Это значит, что действующее (эффективное, среднеквадратичное) значение синусоидального переменного тока численно равно такому значению постоянного тока, при котором тепловое действие (выделяемое количество теплоты) этого постоянного тока на активном сопротивлении за один период синусоиды равно тепловому действию данного синусоидального тока за тот же период.

Аналогичным образом находится действующее (эффективное, среднеквадратичное) значение синусоидального напряжения или синусоидальной ЭДС.

Подавляющее большинство современных портативных измерительных приборов, измеряя переменный ток или переменное напряжение, показывают именно действующее значение измеряемой величины, то есть среднеквадратичную величину, а не ее амплитуду и не среднее значение за полпериода.

Если других уточняющих настроек на приборе нет, а стоит значок ~I или ~U – измерены будут действующие значения тока и напряжения. Обозначения для конкретно амплитуды или конкретно действующего — Im (m — maximum – максимум, амплитуда) или Irms (rms — Root Mean Square – среднеквадратичное значение).

Ранее ЭлектроВести писали, что компания Tesla выпустила новое компактное зарядное устройство Wall Connector with 14-50 Plug, которое подключается непосредственно к розетке, благодаря чему ее без проблем можно возить с собой использовать по мере необходимости. Стоимость новинки составляет те же $500, что и для обычной настенной зарядки Wall Connector.

По материалам: electrik.info.

Равно действующее значение напряжения переменного тока. Эффективное, действующее напряжение, сила тока. Значение. Закон Ома и мощность для действующих значений напряжения и силы тока

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

Удвоение напряжения не обязательно удваивает скорость. Кроме того, это обычно не требуется, так как характеристики двигателя в диапазоне напряжений можно прочитать из наших технических данных. Даже при доступе к информации, приведенной выше, существуют допуски при изготовлении двигателей, и два двигателя из одной партии могут не иметь абсолютно одинакового поведения. Между партиями разница может быть еще больше.

Действующее значение переменного тока

Обратите внимание, что в разделе «Операционная спецификация» в технических описаниях номинальная скорость имеет значение допуска. Как мы уже описали выше, изменение скорости оказывает определенное влияние на амплитуду колебаний. Уравнения, приведенные выше, основаны на упрощенной модели с использованием ограниченных степеней свободы.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Поэтому, хотя они полезны для объяснения теории того, как напряжение влияет на скорость и амплитуду, они не могут использоваться для чрезвычайно точных предсказаний. Однако их можно использовать для общих оценок, если это необходимо. Наши таблицы включают в себя графики типичных рабочих характеристик, которые показывают масштабное напряжение, построенное по амплитуде вибрации, частоте, эффективности и текущей потребляемой мощности.


Конечно, изменение управляющего напряжения — это не единственный способ изменить скорость двигателя или амплитуду вибрации, есть две общие области настройки, которые повлияют на работу двигателя. Обе эти настройки позволяют создавать различные профили для балансировки размера, скорости, напряжения и нагрузки двигателя, сочетание которых дает нам наши различные вибрационные моторные продукты, предназначенные для различных применений.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока имеем

Мы можем легко манипулировать напряжением возбуждения для регулировки скорости двигателя и, в свою очередь, изменять амплитуду и частоту вибрации. Мы также объяснили, что амплитуда и частота вибрации связаны и не могут независимо управляться напряжением, поскольку они оба зависят от скорости.

Мы видели, что связь между амплитудой и частотой колебаний не является линейной, и мы также показали, что трудно предсказать амплитуду реального мира от изменения напряжения. Кроме того, изменение напряжения может повлиять на то, как быстро двигатель начинает вращаться, а не только на конечную скорость. По этой причине можно использовать напряжение для улучшения тактильных эффектов и характеристик двигателя.

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота

f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

Обеспечивая, чтобы напряжение возбуждения находилось между максимальным стартовым напряжением и максимальным номинальным рабочим напряжением, мы можем обеспечить долговечность и надежность двигателя. Чтобы помочь выбрать правильный двигатель, вы можете найти наш полезный.

Подробный обзор физических связей переменного напряжения и их измерения — гостевой вклад Йоханнеса Бюрглина. Поскольку величина напряжения постоянно изменяется с переменным напряжением и пульсирующим постоянным напряжением, существует не только одно значение напряжения, но и три значения, которые имеют большее значение — то же самое относится к токам.

i — мгновенное значение тока ;

u – мгновенное значение напряжения ;

е — мгновенное значение ЭДС ;

р — мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ).

Амплитуда тока;

Коэффициенты пересчета для нескольких типичных форм напряжения

В случае переменного напряжения сначала должна быть сформирована величина, т.е. соответствуют переменному напряжению. Большинство измерительных приборов отображают это значение, и это, Например, скорость двигателя. В случае переменного напряжения обычно задается среднеквадратичное значение. Это является решающим для расчета мощности, или эффективный ток определяет, например, как тепловая линия электропередачи, трансформатор или другие компоненты. Например, для сопротивления напряжению полупроводников.

Многие измерительные приборы фактически не измеряют среднеквадратичное значение переменного напряжения, а значение выпрямления.

Амплитуда напряжения;

Амплитуда ЭДС.

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

Для этих измерительных приборов индикатор напряжения переменного тока подходит только для синусоидальных или подобных сигналов, поскольку коэффициент формы отличается почти для каждого сигнала. Измерительное устройство, которое измеряет с помощью значения выпрямления в диапазоне переменного напряжения, показывает здесь эффективное значение напряжения.

Чем больше напряжение отклоняется от синусоидальной формы, тем больше форм-фактор, и чем больше дисплей отклоняется от среднеквадратичного значения, когда измеритель измеряет переменное напряжение с помощью значения выпрямления. Скорость поезда на цифровом не регулируется напряжением, а путем периодического включения и выключения двигателя локомотивным декодером. Соответственно, также течет пульсирующий ток. Пока только один локомотив движется без света, формулы грубого прямоугольного переменного напряжения можно использовать грубо.

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Но как только несколько локомотивов находятся на дороге или добавлены автомобили с освещением, это становится намного сложнее. Некоторые инструменты не справляются с «высокой» частотой от 10 кГц до 20 кГц с цифровыми и показывают слишком мало. В некоторых токовых метрах дисплей колеблется, потому что они не справляются с периодическим включением и выключением тока.

Потребление тока одного и того же локомотива отличается в аналоговом и цифровом режимах, поскольку в аналоговом режиме ток течет все время, пока он пульсирует с цифровым. И напряжение двигателя отличается по высоте и форме в обоих режимах работы. Если измеритель может справиться с переменным током цифрового сигнала, ток может быть непосредственно измерен.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е 1 и е 2 соответствуют уравнения:

Мостовой выпрямитель установлен в кабель к дорожке. Через измерительный прибор протекает постоянный ток. Большинство измерительных приборов делают это хорошо. Приблизительно 1, 5 В напряжение падает через выпрямитель. Во многих случаях текущий изменяется незначительно. В качестве выпрямителя нормальный выпрямитель моста достаточно для 50 Гц. Напряжение не имеет значения, ток должен быть не менее 200 мА для локомотива. Некоторые более старые локомотивы также требуют 500 мА.

В зависимости от того, используется ли трансформатор или источник питания постоянного тока, необходимо измерить переменный или постоянный ток. Измерьте ток, когда напряжение на дорожке выключено. Измерьте ток при включенном напряжении дорожки. Разница протекает на дорожку в значительной степени, небольшая часть нужна бустеру. Если вы хотите, чтобы это было точнее, напряжение трека постоянно включается и прерывает соединение с дорожкой во время измерения.


Значения аргументов синусоидальных функций иназываютсяфазами синусоид, а значение фазы в начальный момент времени (t =0): и —начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называютугловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть, гдеf– частота.

Пользователи говорят по этой теме

Этот тип измерения тока менее точен, чем 1 или 2, но тем не менее подходит для сравнительных измерений между различными локомотивами или сравнительными измерениями в случае неисправности. Спасибо Йоханнесу Бюрглину за подготовку этой статьи. Для этого пользователя нет отчета пользователя.

В электронике имеется много периодических сигналов, которые не имеют синусоидального курса, но могут быть четко описаны рядом конкретных значений. Форма волны характеризуется зависящим от времени или углом курсом. Простые формы сигналов идентифицируются по их именам, как показывают следующие примеры.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз .

Для синусоидальных ЭДС е 1 и е 2 угол сдвига фаз:

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное ) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е 1 и е 2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Периодическая последовательность сигналов повторяется в той же хронологически регулярной последовательности. Период — это время полного колебания, которое необходимо для полного представления сигнала. Частота периодического сигнала рассчитывается из обратной величины периода. Единицей измерения является герц в Гц = -1.

Эквивалентное или среднее арифметическое

В случае периодических сигналов мгновенное значение амплитуды сигнала в течение периода не является постоянным. Если сигналы на нулевой линии симметричны, их также можно описать простым пиковым значением. Среднее арифметическое значение сигнала периодического изменения соответствует содержимому области под временной функцией всего периода. Он вычисляется практически из суммы всех парциальных величин, делящихся на число парциальных величин. Если значение должно быть определено графически, период периода в периодических сигналах делится на максимально возможное количество подсекций и определяются соответствующие мгновенные значения.


Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токовидвух ветвей:

Значения действующего напряжения и силы тока. Определение. Соотношение с амплитудой для разной формы. (10+)

Сумма всех мгновенных значений, с учетом их знаков, делится на количество слагаемых. На изображении показан нуль-симметричный синусоидальный сигнал, равная часть которого определялась по методу суммирования в течение полупериода. Второй полупериод имеет такое же отрицательное значение. Периодический сигнал, симметричный относительно нулевой линии, не имеет одинаковой составляющей.

Сигнал смешивания всегда можно разложить на переменную переменную и равную составляющую. Значение выпрямления сигнала является его абсолютным средним арифметическим значением. При его определении добавляются только абсолютные и, следовательно, неподписанные суммы и делятся на количество слагаемых. Значение выпрямления сигнала представляет собой среднее напряжение постоянного тока или средний постоянный ток. Его также называют электролитическим средним значением. Выпрямленное значение синусоидального тока указывает, какое значение постоянного тока переносит одно и то же количество заряда в течение рассматриваемого периода.

Понятие эффективных (действующих) значений напряжения и силы тока

Когда мы говорим о переменных напряжении или силе тока, особенно сложной формы, то встает вопрос о том, как их измерять. Ведь напряжение постоянно меняется. Можно измерять амплитуду сигнала, то есть максимум модуля значения напряжения. Такой метод измерения нормально подходит для сигналов относительно гладкой формы, но наличие коротких всплесков портит картину. Еще одним критерием выбора способа измерения является то, для каких целей делается измерение. Так как в большинстве случаев интерес представляет мощность, которую может отдать тот или иной сигнал, то применяется действующее (эффективное) значение.

На следующем эскизе показан вывод выпрямленного значения для синусоидального напряжения. Светло-синее и зеленое поверхностное содержание должно быть одинаковым. В двух полуволновом выпрямлении учитываются как синусоидальные полуволны. В случае односторонней выпрямления регистрируется только площадь полуволны за период. Значение выпрямления составляет половину размера синусоидального размера.

Это эффективное значение периодического сигнала и непосредственно сопоставимо с уравнениями напряжения и тока, которые преобразуют одну и ту же электрическую энергию в омическое сопротивление и с той же электрической мощностью с течением времени. Электрическая мощность является продуктом напряжения и тока. На диаграмме времени кривая мощности для симметричных синусоидов напряжения и тока находится только в положительном диапазоне и имеет удвоенную частоту. Математически среднеквадратичное значение вычисляется из квадратного корня из среднего значения кривой мощности за период.

Вашему вниманию подборка материалов:

Действующее (эффективное) значение для сигналов стандартной формы

Синусоидальный сигнал (синус, синусоида) [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 2 ]

Прямоугольный сигнал (меандр) [Действующее значение ] = [Амплитудное значение ]

Треугольный сигнал [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 3 ]

Закон Ома и мощность для действующих значений напряжения и силы тока

Эффективное значение напряжения измеряется в Вольтах, а силы тока в Амперах.

Для эффективных значений верен закон Ома: = / [Сопротивление нагрузки, Ом ]

[Рассеиваемая на омической нагрузке мощность, Вт ] = [Действующее значение силы тока, А ] * [Действующее значение напряжения, В ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Микроконтроллеры — пример простейшей схемы, образец применения. Фузы (…
Самая первая Ваша схема на микро-контроллере. Простой пример. Что такой фузы?…

Время переключения полевого транзистора. Емкость затвор — сток, исток….
Переключение полевого транзистора. Входные емкости. Встроенный диод. …

Повышающий импульсный преобразователь напряжения. Силовой ключ — бипол…
Как сконструировать повышающий импульсный источник питания. Как выбрать мощный т…

Удлинитель пульта дистанционного управления, ду, инфракрасного, ик…
Пульт ДУ работает только в условиях прямой видимости с дистанционно управляемым…

Цветомузыка, цветомузыкальное оборудование своими руками. Схема ЦМУ, к…
Как самому сделать цвето-музыку. Оригинальная конструкция цвето-музыкальной сист…

Магнитный усилитель — проектирование, формулы, расчет онлайн (online)….
Расчет магнитного усилителя. Формулы для проектирования….


Как сконструировать обратноходовый импульсный преобразователь. Как выбрать часто…

Пушпульный импульсный преобразователь напряжения. Выбор ключа — биполя…
Как сконструировать пуш-пульный импульсный источник питания. Как выбрать мощные…


Действующее значение переменного синусоидального тока

Если в цепь переменного синусоидального тока включить прибор, который предназначен для измерения среднего значения тока в цепи, то этот прибор зафиксирует нулевое значение. Действительно, в каждый период ток протекает полпериода в одном направлении и полпериода — в другом.

В цепи такого тока не будет происходить электролиза, то есть осаждения металла на катоде в электролитической ванне. В то же время в сопротивлении, включенном в цепь переменного тока, идет непрерывный процесс выделения тепла независимо от направления тока: и в первый и во второй полупериоды. Поэтому, чтобы судить о силе переменного синусоидального тока, его сравнивают с постоянным током по одинаковому тепловому действию. Полученное путем такого сравнения значение силы переменного тока называют действующим.

Таким образом, действующее (эффективное) значение переменного тока численно равно эквивалентной по тепловому действию силе постоянного тока, то есть такому току, который за то же время,

на том же сопротивлении выделит такое же количество тепла, что и переменный ток одинаковой силы.

В цепи постоянного тока на сопротивлении R за время Т при силе тока I выделяется количество теплоты

Q= I2 RT.                                    (6.6)

В подобном сопротивлении, включенном в цепь переменного тока, в каждый очень короткий отрезок времени ∆t, в течение которого мгновенное значение силы тока i можно считать практически неизменным, выделяется элементарное количество теплоты:

∆Q~ = i2R∆t,

то есть количество теплоты, пропорциональное произведению i2R. На рисунке 6.4 построены кривые i и i2 для синусоидального переменного тока. Как видно из графика, несмотря на то, что ток i в течение периода меняется по значению и направлению, i2 меняется только по значению и остается положительным независимо от направления тока i, то есть в первом полуперирде эта величина имеет положительное значение (+ i)•(+ i) = +i2, во втором полупериоде она также остается положительной: (—i)•(—i)= +i2.

Разделив площадь, ограниченную кривой i2 и осью ωt, на время Т, получим среднюю ординату кривой i2 за период, которую обозначим i2ср. Тогда количество теплоты, которое выделится на сопротивлении в цепи переменного тока за время Т,

Q~= i2 RT.                                (6.7)

Согласно приведенному выше определению действующего значения переменного тока, Q~= Q, то есть из формул (6.6) и (6.7) следует, что

I2 RT=i2сp RT,

откуда действующее значение переменного тока

I = √i2сp.                                       (6.8).

Действующее значение переменного тока есть среднеквадратичное за период значение переменного тока.

Величину i2, графически представленную на рисунке 6.4, можно определить аналитически через амплитудное значение Im2:

.                                   1-cos2ωt         Im2 Im2

i2 = Im2 sin2ωt = Im2—————— = ——— — —— cos2ωt ,

.                                       2                  2         2

где .

 

.             1-cos2ωt

sin2ωt = —————  ,

.                 2

Среднее значение cos2ωt за период Т равно нулю (соответствует сумме площадей, помеченных на рисунке 6.4 знаками + и —). Тогда среднее за период значение квадрата силы синусоидального переменного тока

iср2 =Im2 /2

а действующее значение синусоидального переменного тока

 

I = √iср2 = √Im2/2 = Im/2 = Im/1.414 = 0,707 Im.        (6.9)

Действующее значение переменного синусоидального напряжения может быть найдено из предыдущего как

.        Im

IR = ——— R

.       √2

или

.      Um

U = —— = 0,707 Um.

.      √2

Значит, если в сети напряжение U — 220 В, то его максимальное (амплитудное) значение

Um = 220•1,414 = 311 В.

Амплитуда напряжения 380 В равна 380•1,414 = 538 В. То обстоятельство, что амплитуда значительно превышает действующее значение, дает преимущество переменному току при использовании люминесцентных или дуговых ламп, которые легче зажигаются на переменном токе.

< Предыдущая   Следующая >

Действующее значение тока. Действующее значение переменного тока и напряжения

Как известно, переменная э.д.с. индукции вызывает в цепи переменный ток. При наибольшем значении э.д.с. сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

В данное время в мировой промышленной практике широко распространен трехфазный переменный ток , который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными э.д.с. с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода. Каждая такая цепь называется фазой.

Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора. Пример такой системы показан на рис. 3.4.б.

Согласно вышеперечисленным условиям, выясняется, что э.д.с., возникающая во втором генераторе, не будет успевать измениться, по сравнению с э.д.с. первого генератора, т. е. она будет опаздывать на 120°. Э.д.с. третьего генератора также будет опаздывать по отношению ко второму на 120°.

Однако такой способ получения переменного трехфазного тока весьма громоздкий и экономически невыгодный. Чтобы упростить задачу, нужно все статорные обмотки генераторов совместить в одном корпусе. Такой генератор получил название генератор трехфазного тока (рис. 3.4.а). Когда ротор начинает вращаться, в каждой обмотке возникает


а) б)

Рис. 3.4. Пример трехфазной системы переменного тока

а) генератор трёхфазного тока; б) с тремя генераторами;

изменяющаяся э.д.с. индукции. Из-за того что происходит сдвиг обмоток в пространстве, фазы колебаний в них также сдвигаются относительно друг друга на 120°.

Для того чтобы подсоединить трехфазный генератор переменного тока к цепи, нужно иметь 6 проводов. Для уменьшения количества проводов обмотки генератора и приемников нужно соединить между собой, образовав трехфазную систему. Данных соединений два: звезда и треугольник. При использовании и того и другого способа можно сэкономить электропроводку.

Соединение звездой

Обычно генератор трехфазного тока изображают в виде 3 статорных обмоток, которые располагаются друг к другу под углом 120°. Начала обмоток принято обозначать буквами А, В, С , а концы — X, Y, Z . В случае, когда концы статорных обмоток соединены в одну общую точку (нулевая точка генератора), способ соединения называется «звезда». В этом случае к началам обмоток присоединяются провода, называемые линейными (рис. 3.5 слева).


Точно так же можно соединять и приемники (рис. 3.5., справа). В этом случае провод, который соединяет нулевую точку генератора и приемников, называется нулевой.{2}dt}}.}

Для синусоидального тока:

I = 1 2 ⋅ I m ≈ 0,707 ⋅ I m , {\displaystyle I={\frac {1}{\sqrt {2}}}\cdot I_{m}\approx 0{,}707\cdot I_{m},}

I m {\displaystyle I_{m}} — амплитудное значение тока.

Для тока треугольной и пилообразной формы:

I = 1 3 ⋅ I m ≈ 0,577 ⋅ I m . {\displaystyle I={\frac {1}{\sqrt {3}}}\cdot I_{m}\approx 0{,}577\cdot I_{m}.}

Аналогичным образом определяются действующие значения ЭДС и напряжения.

Дополнительные сведения

В англоязычной технической литературе для обозначения действующего значения употребляется термин effective value — эффективное значение. Также применяется аббревиатура RMS (rms) — root mean square — среднеквадратичное (значение).

В электротехнике приборы электромагнитной, электродинамической и тепловой систем калибруются на действующее значение.

Источники

  • «Справочник по физике», Яворский Б. М., Детлаф А. А., изд. «Наука», 1979 г.1
  • Курс физики. А. А. Детлаф, Б. М. Яворский М.: Высш. шк., 1989. § 28.3, п.5
  • «Теоретические основы электротехники», Л. А. Бессонов: Высш. шк., 1996. § 7.8 — § 7.10

Ссылки

  • Действующие значения тока и напряжения
  • Среднеквадратичное значение

Мгновенные, максимальные, действующие и средние значения электрических величин переменного тока

Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p ).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Е m , напряжения — U m , тока — I m .

Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.

Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в раз.

Аналогично действующие значения переменной электродвижущей силы и напряжения меньше их максимальных значений тоже в 1,41 раза.

По величине измеренных действующих значений силы переменного тока, напряжения или электродвижущей силы можно вычислить их максимальные значения:

E m = E · 1,41; U m = U · 1,41; I m = I · 1,41;

Среднее значение = отношению количества эл энергии прошедшего через сечение проводника за половину периода к величине этого полупериода.

Под средним значением понимают среднеарифметическое ее значение за половину периода.

/ Среднее и действующие значения синусоидальных токов и напряжений

Под средним значением синусоидально изменяющейся величины понимают ее среднее значение за полпериода. Среднее значение тока

т. е. среднее значение синусоидального тока составляет от амплитудного. Аналогично,

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично,

Можно сопоставить тепловое действие синусоидального тока с тепловым действием постоянного тока, текущего то же время по тому же сопротивлению.

Количество теплоты, выделенное за один период синусоидальным током,

Выделенная за то же время постоянным током теплота равна Приравняем их:

Таким образом, действующее значение синусоидального тока численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Для установления эквивалентности переменного тока в отношении энергии и мощности, общности методов расчета, а также сокращения вычислительной работы изменяющиеся непрерывно во времени токи. ЭДС и напряжения заменяют эквивалентными неизменными во времени величинами. Действующим или эквивалентным значением называется такой неизменный во времени ток, при котором выделяется в резистивном элементе с активным сопротивлением r за период то же количество энергии, что и при действительном изменяющемся синусоидально токе.

Энергия за период, выделяющаяся в резистивном элементе при синусоидальном токе,

i 2r dt =

I m 2 sin2 ωt r dt. .

При неизменном во времени токе энергия

W = I 2rT

Приравняв правые части

I m

0,707I m .

Таким образом, действующее значение тока меньше амплитудного в √2 раз.

Аналогично определяют действующие значения ЭДС и напряжения:

Е = E m / √2, U = U m / √2.

Действующему значению тока пропорциональна сила, действующая на ротор двигателя переменного тока, подвижную часть измерительного прибора и т. д. Когда говорят о значе­ниях напряжения, ЭДС и тока в цепях переменного тока, имеют в виду их действующие значения. Шкалы измерительных приборов переменного тока отградуированы соответственно в действующих значениях тока и напряжения. Например, если прибор показывает 10 А, то это значит, что амплитуда тока

I m = √2I = 1,41 10 = 14,1 A,

и мгновенное значение тока

i = I m sin (ωt + ψ) = 14,1 sin (ωt + ψ).

При анализе и расчет выпрямительных устройств пользуются средними значениями тока, ЭДС и напряжения, под которыми понимают среднее арифметическое значение соответствующей величины за полпериода (среднее значение за период, как известно, равно нулю):

T 2

Е ср =

Е т sin ωt dt =

sin ωt d ωt =

|cos ωt | π 0 =

0,637Е т .

Аналогично можно найти средние значения тока и напряжения:

I ср = 2I т /π; U ср = 2U т .

Отношение действующего значения к среднему значению какой-либо периодически изменяющейся величины называется коэффициентом формы кривой. Для синусоидального тока

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока — это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I, проходящего через сопротивление r, будет Р = Р2r.

Мощность переменного тока выразится как средний эффект мгновенной мощности I2r за целый период или среднее значение от (Im х sinωt)2 х rза то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I2r = Mr, откуда I = √M,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Действующее значение переменного тока

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно1/2I2m. Следовательно, М = 1/2I2m

Так как действующее значение I переменного тока равно I = √M, то окончательно I = Im / √2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √2,E= Em / √2

Действующие значения переменных величин обозначаются прописными буквами без индексов (I, U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √2 раз. От этого расположение векторов на диаграмме не изменяется.

Список параметров напряжения и силы электрического тока

В связи с тем, что электрические сигналы представляют собой изменяющиеся во времени величины, в электротехнике и радиоэлектронике используются по необходимости разные способы представлений напряжения и силы электрического тока

Значения переменного напряжения (тока)

Мгновенное значение

Мгновенное значение — это значение сигнала в определённый момент времени, функцией которого является (u (t) , i (t) {\displaystyle u(t)~,\quad i(t)}).{2}(t)dt}}}

Среднеквадратичные значения являются самыми распространёнными, так как они наиболее удобны для практических расчётов, поскольку в линейных цепях с чисто активной нагрузкой переменный ток с действующими значениями I {\displaystyle I} и U {\displaystyle U} совершает ту же работу, что и постоянный ток с теми же значениями тока и напряжения. Например, лампа накаливания или кипятильник, включённые в сеть с переменным напряжением с действующим значением 220 В, работают (светят, греют) точно так же, как и будучи подключенными к источнику постоянного напряжения с тем же значением напряжения.

Когда не оговаривают особо, то обычно имеют ввиду именно среднеквадратичные значения величины напряжения или силы тока.

В среднеквадратичных значениях проградуированы показывающие устройства большинства вольтметров и амперметров переменного тока, за исключением специальных приборов, однако эти обычные приборы дают правильные показания для среднеквадратических значений только при форме сигнала синусоидальной формы. Некритичны к форме сигнала приборы с термопреобразователем, в которых измеряемый ток или напряжение с помощью нагревателя, представляющим собой активное сопротивление, преобразуется в далее измеряемую температуру, которая и характеризует величину электрического сигнала. Также нечувствительны к форме сигнала специальные устройства, возводящие мгновенное значение сигнала в квадрат с последующим усреднением во времени (с квадратичным детектором) или АЦП, возводящие в входной сигнал в квадрат тоже с усреднением по времени. Квадратный корень из выходного сигнала таких устройств как раз и является среднеквадратическим значением.

Квадрат среднеквадратичного значения напряжения, выраженного в вольтах, численно равен средней рассеиваемой мощности в ваттах на резисторе с сопротивлением 1 Ом.

Среднее значение

Среднее значение (смещение) — постоянная составляющая напряжения или силы тока

U = 1 T ∫ 0 T u (t) d t , I = 1 T ∫ 0 T i (t) d t {\displaystyle U={\frac {1}{T}}\int \limits _{0}^{T}u(t)dt~,\qquad I={\frac {1}{T}}\int \limits _{0}^{T}i(t)dt}

В электротехнике используется редко, но сравнительно часто используется в радиотехнике (ток смещения и напряжение смещения).{T}\mid i(t)\mid dt}

На практике используется редко, однако большинство измерительных приборов переменного тока — магнитоэлектрической системы (т. е., в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала проградуирована по среднеквадратичным значениям для синусоидальной формы сигнала. Если сигнал заметно отличается от синусоидального, показания приборов магнитоэлектрической системы имеют систематическую ошибку. В отличие от приборов магнитоэлектрической системы, приборы электромагнитной, электродинамической и тепловой систем измерения всегда реагируют на действующее значение, независимо от формы электрического тока.

Геометрически это сумма площадей, ограниченная кривой над и под осью времени за время измерения. При однополярном измеряемом напряжении среднее и средневыпрямленное значения равны между собой.

Коэффициенты пересчёта значений

  • Коэффициент формы кривой переменного напряжения (тока) — величина, равная отношению действующего значения периодического напряжения (тока) к его средневыпрямленному значению. Для синусоидального напряжения (тока) равен π / 2 2 ≈ 1.11 {\displaystyle {\frac {{\pi }/2}{\sqrt {2}}}\approx 1.11} .
  • Коэффициент амплитуды кривой переменного напряжения (тока) — величина, равная отношению максимального по модулю за период значения напряжения (тока) к действующему значению периодического напряжения (тока). Для синусоидального напряжения (тока) равен 2 {\displaystyle {\sqrt {2}}} .

Параметры постоянного тока

  • Размах пульсации напряжения (тока) — величина, равная разности между наибольшим и наименьшим значениями пульсирующего напряжения (тока) за определенный интервал времени
  • Коэффициент пульсации напряжения (тока) — величина, равная отношению наибольшего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей.
    • Коэффициент пульсации напряжения (тока) по действующему значению — величина, равная отношению действующего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей
    • Коэффициент пульсации напряжения (тока) пo среднему значению — величина, равная отношению среднего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей

Параметры пульсации определяются по осциллографу, либо с помощью двух вольтметров или амперметров (постоянного и переменного тока)

Литература и документация

Литература
  • Справочник по радиоэлектронным устройствам : В 2-х т.; Под ред. Д. П. Линде — М.: Энергия, 1978
  • Шульц Ю. Электроизмерительная техника: 1000 понятий для практиков: Справочник: Пер. с нем. М.:Энергоатомиздат, 1989
Нормативно-техническая документация
  • ГОСТ 16465-70 Сигналы радиотехнические измерительные. Термины и определения
  • ГОСТ 23875-88 Качество электрической энергии. Термины и определения
  • ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств. Нормы качества электрической энергии в системах электроснабжения общего назначения

Ссылки

  • Электрические цепи постоянного тока
  • Переменный ток. Изображение синусоидальных переменных
  • Амплитудное, среднее, эффективное
  • Периодические несинусоидальные ЭДС, токи и напряжения в электрических цепях
  • Системы тока и номинальные напряжения электроустановок
  • Электричество
  • Проблемы высших гармоник в современных системах электропитания

Какой физический смысл имеет действующее значение напряжения и тока

Александр титов

Действующее значение силы ПЕРЕМЕННОГО тока — это такое значение величины ПОСТОЯННОГО тока, действие которого произведёт ту же самую работу (или тепловой эффект) , что и действие переменного тока за время одного периода его действия.2 = Im/2, откуда I = Im / корень из 2. Это и есть действующее значение тока.

То же самое с действующим значением напряжения и ЭДС.

Vitas latish

можно грубо сказать
— напряжение — потенциальная энергия…. расческа- волосы…. напряжение = свечение, искорки, подъем волос… .
— ток это работа, действие, сила.. . тепло, горение, движение выплеск кенетической энергии

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока имеем

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i — мгновенное значение тока ;

u – мгновенное значение напряжения ;

е — мгновенное значение ЭДС ;

р — мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ).

Амплитуда тока;

Амплитуда напряжения;

Амплитуда ЭДС.

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е 1 и е 2 соответствуют уравнения:

Значения аргументов синусоидальных функций иназываютсяфазами синусоид, а значение фазы в начальный момент времени (t =0): и —начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называютугловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть, гдеf– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз .

Для синусоидальных ЭДС е 1 и е 2 угол сдвига фаз:

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное ) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е 1 и е 2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токовидвух ветвей:

,

После подстановки значения тока i и последующих преобразований получим, что действующее значение переменного тока равно:

Аналогичные соотношения могут быть получены также для напряжения и ЭДС:

Большинство электроизмерительных приборов измеряют не мгновенные, а действующие значения токов и напряжений.

Учитывая, например, что действующее значение напряжения в нашей сети составляет 220В, можно определить амплитудное значение напряжения в сети: U m =U Ö2=311В. Соотношение между действующим и амплитудным значениями напряжений и токов важно учитывать, например, при проектировании устройств с применением полупроводниковых элементов.

Действующее значение переменного тока

Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел.

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока имеем

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i — мгновенное значение тока ;

u – мгновенное значение напряжения ;

е — мгновенное значение ЭДС ;

р — мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ).

Амплитуда тока;

Амплитуда напряжения;

Амплитуда ЭДС.

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

,

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е 1 и е 2 соответствуют уравнения:

Значения аргументов синусоидальных функций и называются фазами синусоид, а значение фазы в начальный момент времени (t =0): и начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть , где f– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз .

Для синусоидальных ЭДС е 1 и е 2 угол сдвига фаз:

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное ) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е 1 и е 2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токов и двух ветвей:

Каждый из этих токов синусоидален и может быть представлен уравнением

Результирующий ток также будет синусоидален:

Определение амплитуды и начальной фазы этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы. На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов дляt =0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

.

Построение векторной диаграммы в масштабе позволяет определить значения и из диаграммы, после чего может быть записано решение для мгновенного значения путем формального учета угловой частоты: .

Действующее и среднее значения переменного тока и напряжения.

Среднее или среднеарифметическое значение Fcp произвольной функции времени f (t )за интервал времени Т оп­ределяется по формуле:

Численно среднее значение Fср равно высоте прямоугольника, равновели­кого по пло­щади фигуре, ограниченной кривой f (t ), осью t и преде­лами интег­ри­рования 0 – Т (рис. 35).

Для синусоидальной функции среднее значение за полный период Т (или за целое число полных периодов) равно нулю, так как площади положи­тельной и отрицательной по­луволн этой функции равны. Для переменного си­нусоидаль­ного напряжения определяют среднее по модулю значение за полный период Т или среднее значение за половину периода (Т /2) между двумя нулевыми значе­ниями (рис. 36) :

Ucp = Um∙ sinwt dt = 2R . Таким образом, количественные параметры электрической энергии на переменном токе (количество энергии, мощность) определяются действующими значениями напряжения U и тока I . По этой при­чине в электроэнергетике все тео­ретические расчеты и экспериментальные из­мерения принято выполнять для действую­щих значений токов и напряжений. В радиотехнике и в технике связи, наобо­рот, оперируют максимальными значе­ниями этих функций.

Приведенные выше формулы для энергии и мощности переменного тока полностью совпадают с аналогичными формулами для постоянного тока. На этом основании можно ут­верждать, что энергетически постоянному току экви­валентно действующее значение пере­менного тока.

Что берется за действующее значение силы переменного тока и переменного напряжения

что берется за действующее значение силы переменного тока и переменного напряжения?

Боевое яйцо

Переменный ток, в широком смысле электрический ток, изменяющийся во времени. Обычно в технике под П. т. понимают периодический ток, в котором среднее значение за период силы тока и напряжения равно нулю.

Переменные токи и переменные напряжения постоянно изменяются по величине. В каждое другое мгновение у них другая величина. Возникает вопрос, как же их измерять? Для их измерения введено понятие действующее значение.

Действующим или эффективным значением переменного тока называют величину такого постоянного тока, который по своему тепловому действию равноценен данному переменному току.

Действующим или эффективным значением переменного напряжения называют величину такого постоянного напряжения, которое по своему тепловому действию равноценно данному переменному напряжению.

Все переменные токи и напряжения в технике измеряются в действующих значениях. Приборы измеряющие переменные величины показывают их действующее значение.

Вопрос: напряжение в электросети 220 В, что это значит?

Это значит, что источник постоянного напряжения с напряжением 220 В оказывает такое же тепловое действие как и электросеть.

Действующее значение тока или напряжения синусоидальной формы в 1,41 раз меньше амплитуды этого тока или напряжения.

Пример: Определить амплитуду напряжения электросети с напряжением 220 В.

Амплитуда равна 220 * 1,41=310,2 В.

Значения действующего напряжения и силы тока. Определение. Соотношение с амплитудой для разной формы. (10+)

Понятие эффективных (действующих) значений напряжения и силы тока

Когда мы говорим о переменных напряжении или силе тока, особенно сложной формы, то встает вопрос о том, как их измерять. Ведь напряжение постоянно меняется. Можно измерять амплитуду сигнала, то есть максимум модуля значения напряжения. Такой метод измерения нормально подходит для сигналов относительно гладкой формы, но наличие коротких всплесков портит картину. Еще одним критерием выбора способа измерения является то, для каких целей делается измерение. Так как в большинстве случаев интерес представляет мощность, которую может отдать тот или иной сигнал, то применяется действующее (эффективное) значение.

Вашему вниманию подборка материалов:

Действующее (эффективное) значение для сигналов стандартной формы

Синусоидальный сигнал (синус, синусоида) [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 2 ]

Прямоугольный сигнал (меандр) [Действующее значение ] = [Амплитудное значение ]

Треугольный сигнал [Действующее значение ] = [Амплитудное значение ] / [Квадратный корень из 3 ]

Закон Ома и мощность для действующих значений напряжения и силы тока

Эффективное значение напряжения измеряется в Вольтах, а силы тока в Амперах.

Для эффективных значений верен закон Ома: = / [Сопротивление нагрузки, Ом ]

[Рассеиваемая на омической нагрузке мощность, Вт ] = [Действующее значение силы тока, А ] * [Действующее значение напряжения, В ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Микроконтроллеры — пример простейшей схемы, образец применения. Фузы (…
Самая первая Ваша схема на микро-контроллере. Простой пример. Что такой фузы?…

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Силовой резонансный фильтр для получения синусоиды от инвертора…
Для получения синусоиды от инвертора нами был применен самодельный силовой резон…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…


Принцип работы, самостоятельное изготовление и наладка импульсного силового прео…

Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…

Электрическое напряжение. Амплитуда сигнала. Амплитудное. Вольт. Volt….
Понятие напряжения и разности электрических потенциалов. Амплитуда. Единицы изме…


Максимальное и действующее значение напряжения. Активное сопротивление. Действующие значения силы тока и напряжения — Гипермаркет знаний

>> Активное сопротивление. Действующие значения силы тока и напряжения

§ 32 АКТИВНОЕ СОПРОТИВЛЕНИЕ. ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ СИЛЫ ТОКА И НАПРЯЖЕНИЯ

Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Сила тока в цени с резистором. Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряже ния (рис. 4.11), а амплитуда силы тока определяется равенством

Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощ ностъ тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найчи среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии , поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

P = I 2 R. (4.18)

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным.

Поэтому мгновенная моoность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

P = i 2 R. (4.19)

Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение

График зависимости мгновенной мощности от времени изображен на рисунке 4.12, а. Согласно графику (рис. 4.12, б.), на протяжении одной восьмой периода, когда , мощность в любой момент времени больше, чем . Зато на протяжении следующей восьмой части периода, когда cos 2t

Средняя мощность равна, таким образом, первому члену в формуле (4.20):


Действующие значения силы тока и напряжения .
Из формулы (4.21) видно, что величина есть среднее за период значение квадрата силы тока:

Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы неременного тока. Действующее зртачепие силы неременного тока обозначается через I:

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты , что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока:

Заменяя в формуле (4.17) амплитудные значения силы тока и напряжения на их действующие значения, получаем

Это закон Ома для участка цепи переменного тока с резистором.

Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Кроме того, действующие значения удобнее мгновенных значений еще и потому, что именно они непосредственно определяют среднее значение мощности Р переменного тока:

P = I 2 R = UI.

Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

1. Чему равна амплитуда напряжения в осветительных сетях переменного тока, рассчитанных на напряжение 220 В!
2. Что называют действующими значениями силы тока и напряжения!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с: ил.

Библиотека с учебниками и книгами на скачку бесплатно онлайн , Физика и астрономия для 11 класса скачать , школьная программа по физике, планы конспектов уроков

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Мы говорили про мощность и работу переменного тока. Напомню, что тогда мы считали ее через некоторый интеграл, а в самом конце статьи я вскользь сказал, что существуют способы облечения и без того нелегкой жизни и часто можно обойтись вообще без взятия интеграла, если знать про действующее значение тока . Сегодня про него и поговорим!

Господа, вероятно, для вас не станет секретом, что в природе существует большое число видов переменного тока: синусоидальный, прямоугольный, треугольный и так далее. И как их вообще можно сравнивать между собой? По форме? Хмм…Пожалуй, да. Они же визуально различаются, с этим не поспоришь. По частоте? Тоже да, но иногда это вызывает вопросы. Некоторые считают, что само определение частоты применимо исключительно для синусоидального сигнала и его нельзя использовать, например, для последовательности импульсов. Возможно, формально они и правы, но я не разделяю их точку зрения. А еще как еще можно? А, например, по деньгам! Неожиданно? Напрасно. Ток ведь стоит денег. Вернее, стоит денег работа тока. В конце концов ведь те самые киловатт·часы, за которые вы все платите каждый месяц по счетчику не что иное, как работа тока. А поскольку деньги вещь серьезная, то ради такого стоит и термин отдельный ввести. И для сравнения между собой токов различной формы по количеству работы ввели понятие действующего тока.

Итак, действующее (или среднеквадратичное) значение переменного тока — это такая величина некоторого постоянного тока, который за время, равное периоду переменного тока выделит столько же тепла на резисторе, что и наш переменный ток. Звучит очень хитро и, скорее всего, если вы читаете это определение в первый раз, то вряд ли вы его поймете. Это нормально. Когда я его в первый раз услышал в школе, я сам долго доходил, что же это значит. Поэтому сейчас я постараюсь разобрать это определение поподробнее, чтобы вы поняли, что за этой мудреной фразой скрывается быстрее, чем я в свое время.

Итак, у нас есть переменный ток. Допустим, синусоидальный. У него своя амплитуда А m и период T период (ну или частота f ). На фазу в данном случае пофиг, считаем ее равной нулю. Этот переменный ток течет через некоторый резистор R и на этом резисторе выделяется энергия. За один период T период нашего синусоидального тока выделится вполне определенное количество джоулей энергии. Это число джоулей мы можем точно посчитать по формулам с интегралом, которые я приводил в прошлый раз . Допустим, мы насчитали, что за один период T период синусоидального тока выделится Q джоулей тепла. А теперь, внимание, господа, важный момент! Давайте мы заменим переменный ток на постоянный, причем выберем его такой величины (ну то есть столько ампер), чтобы на том же самом резисторе R за то же самое время T период выделилось ровно такое же количество джоулей Q. Очевидно, мы должны как-то определить величину этого самого постоянного тока, эквивалентного переменному с энергетической точки зрения. И вот когда мы найдем эту величину, то она-то как раз и будет тем самым действующим значением переменного тока . А теперь, господа, вернитесь еще разок к тому мудреному формальному определению, которое я давал вначале. Сейчас оно стало лучше понятно, не так ли?

Итак, суть вопроса, надеюсь, стала понятной, поэтому давайте все сказанное выше переведем на язык математики. Как мы уже писали в прошлой статье , закон изменения мощности переменного тока равен

Количество выделившейся энергии при работе тока за время T период — соответственно, равно интегралу за время периода T период :

Господа, теперь нам надо взять этот интеграл. Если по причине нелюбви к математике вам это кажется чем-то слишком мудреным, вы волне можете пропустить выкладки и посмотреть сразу результат. А у меня что-то сегодня настроение вспомнить молодость и аккуратненько разобраться со всеми этими интегральчиками .

Итак, как его нам брать? Ну, величины I m 2 и R являются константами и их можно сразу вынести за знак интеграла. А для квадрата синуса нам надо применить формулу понижения степени из курса тригонометрии. Надеюсь, вы ее помните . А если нет, то напомню еще раз:

Теперь давайте разобьем интеграл на два интеграла. Можно воспользоваться тем, что интеграл от суммы или разности равен сумме или разности интегралов. В принципе, это очень даже логично, если вспомнить про то, что интеграл — это площадь.

Итак, имеем


Господа, у меня есть для вас просто отличнейшая новость. Второй интеграл равен нулю!

Почему это так? Да просто потому, что интеграл любого синуса/косинуса на величине, кратной его периоду, равен нулю. Полезнейшее свойство, кстати! Рекомендую его запомнить. Геометрически это тоже понятно: первая полуволна синуса идет выше оси абсцисс и интеграл от нее больше нуля, а вторая полуволна идет ниже оси абсцисс, поэтому его величина меньше нуля. А по модулю они равны между собой, поэтому их сложение (собственно, интеграл за весь период) даст в итоге нолик.

Итак, отбрасывая интеграл с косинусом, получаем

Ну и не надо быть большим гуру математики, чтобы сказать, что этот интеграл равен

И, таким образом, получаем ответ

Это мы получили количество джоулей, которое выделится на резисторе R при протекании через него синусоидального тока амплитудой I m в течении периода T период . Теперь, чтобы найти чему в данном случае равен действующий ток нам надо исходить из того, что на том же самом резисторе R за то же самое время T период выделится то же самое количество энергии Q. Поэтому мы можем записать

Если не совсем понятно, откуда здесь взялась левая часть, рекомендую вам повторить статью про закон Джоуля-Ленца . А мы тем временем выразим действующее значение тока I действ . из этого выражения, предварительно сократив все, что можно

Вот такой вот результат, господа. Действующее значение переменного синусоидального тока в корень из двух раз меньше его амплитудного значения. Хорошо запомните этот результат, это важный вывод.

Вообще говоря никто не мешает по аналогии с током ввести действующее значение напряжения . При этом у нас зависимость мощности от времени примет вот такой вид

Именно его мы будем подставлять под интеграл и выполнять все преобразования. Господа, каждый из вас может на досуге при желании это проделать, я же просто приведу конечный результат, поскольку он полностью аналогичен случаю с током. Итак, действующее значение напряжения синусоидального тока равно

Как видим, аналогия полнейшая. Действующее значения напряжения точно также в корень из двух раз меньше амплитуды.

Подобным образом можно рассчитать действующее значение тока и напряжения для сигнала абсолютно любой формы: надо только лишь записать закон изменения мощности для этого сигнала и выполнить пошагово все вышеописанные преобразования.

Все вы, наверняка, слышали, что у нас в розетках напряжение 220 В. А каких вольт? У нас ведь теперь есть два термина — амплитудное и действующее значение. Так вот, оказывается, что 220 В в розетках — это действующее значение! Вольтметры и амперметры , включаемые в цепи переменного тока показывают именно действующие значения. А форму сигнала вообще и его амплитуду в частности можно посмотреть с помощью осциллографа. Ну, мы же уже говорили, что всем интересны деньги, то бишь работа тока, а не какая-то там непонятная амплитуда. Тем не менее давайте-ка все-таки определим, чему равна амплитуда напряжения в наших с вами сетях. Пользуясь только что написанной формулой, можно записать

Отсюда получаем

Вот так вот, господа. В розетках у нас, оказывается, синус с амплитудой аж 311 В, а не 220, как можно было подумать сначала. Что бы убрать все сомнения представлю вам картинку, как выглядит закон изменения напряжения в наших розетках (помним, что частота сети равна 50 Гц или, что тоже самое, период равен 20 мс). Этот закон представлен на рисунке 1.


Рисунок 1 — Закон изменения напряжения в розетках

И специально для вас, господа, я посмотрел напряжение в розетке с помощью осциллографа. Смотрел я его через делитель напряжения 1:5. То есть форма сигнала полностью сохранится, а амплитуда сигнала на экране осциллографа будет в пять раз меньше, чем на самом деле в розетке. Зачем я так сделал? Да просто потому, что из-за большого размаха входного напряжения картинка целиком не влезает на экран осциллографа.

ВНИМАНИЕ! Если у вас нет достаточного опыта работы с высоким напряжением, если вы абсолютно четко не представляете себе как могут течь токи при измерениях в гальванически не отвязанных от сети цепях, настоятельно не рекомендую проводить подобный эксперимент самостоятельно, это опасно! Дело в том, что при подобных измерениях с помощью осциллографа, подключенного к розетке с заземлением есть очень большой шанс что произойдет короткое замыкание через внутренние земли осциллографа и прибор сгорит без возможности восстановления! А если делать эти измерения с помощью осциллографа, подключенного к розетке без заземления , на его корпусе, кабелях и разъемах может присутствовать смертельно опасный потенциал! Это не шутки, господа, если нет понимания, почему это так, лучше этого не делать, тем более, что осциллограммы уже сняты и вы можете их наблюдать на рисунке 2.


Рисунок 2 — Осциллограмма напряжения в розетке (делитель 1:5)

На рисунке 2 мы видим, что амплитуда синуса составляет около 62 вольт, а частота — ровно 50 Гц. Помня, что мы смотрим через делитель напряжения, который делит входное напряжение на 5, мы можем рассчитать реальную величину напряжения в розетке, она равна

Как мы видим, результат измерения очень близок к теоретическому, не смотря на погрешность измерения осциллографа и неидеальность резисторов делителя напряжения. Это свидетельствует о том, что все наши расчеты верны.

На этом на сегодня все, господа. Сегодня мы узнали, что такое действующий ток и действующее напряжение, научились их рассчитывать и проверили результаты расчетов на практике. Спасибо что прочитали это и до новых статей!

Вступайте в нашу

,

После подстановки значения тока i и последующих преобразований получим, что действующее значение переменного тока равно:

Аналогичные соотношения могут быть получены также для напряжения и ЭДС:

Большинство электроизмерительных приборов измеряют не мгновенные, а действующие значения токов и напряжений.

Учитывая, например, что действующее значение напряжения в нашей сети составляет 220В, можно определить амплитудное значение напряжения в сети: U m =U Ö2=311В. Соотношение между действующим и амплитудным значениями напряжений и токов важно учитывать, например, при проектировании устройств с применением полупроводниковых элементов.

Действующее значение переменного тока

Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел.

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока имеем

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота f = 50Гц .

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i — мгновенное значение тока ;

u – мгновенное значение напряжения ;

е — мгновенное значение ЭДС ;

р — мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m ).

Амплитуда тока;

Амплитуда напряжения;

Амплитуда ЭДС.

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

,

Аналогично определяются действующие значения ЭДС и напряжения.

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е 1 и е 2 соответствуют уравнения:

Значения аргументов синусоидальных функций и называются фазами синусоид, а значение фазы в начальный момент времени (t =0): и начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть , где f– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз .

Для синусоидальных ЭДС е 1 и е 2 угол сдвига фаз:

Векторное изображение синусоидально изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное ) с угловой частотой, равной w . Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е 1 и е 2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t =0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w . Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

Пусть, например, в точке разветвления цепи (рис. 5) общий ток равен сумме токов и двух ветвей:

Каждый из этих токов синусоидален и может быть представлен уравнением

Результирующий ток также будет синусоидален:

Определение амплитуды и начальной фазы этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы. На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов дляt =0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

.

Построение векторной диаграммы в масштабе позволяет определить значения и из диаграммы, после чего может быть записано решение для мгновенного значения путем формального учета угловой частоты: .

Действующее и среднее значения переменного тока и напряжения.

Среднее или среднеарифметическое значение Fcp произвольной функции времени f (t )за интервал времени Т оп­ределяется по формуле:

Численно среднее значение Fср равно высоте прямоугольника, равновели­кого по пло­щади фигуре, ограниченной кривой f (t ), осью t и преде­лами интег­ри­рования 0 – Т (рис. 35).

Для синусоидальной функции среднее значение за полный период Т (или за целое число полных периодов) равно нулю, так как площади положи­тельной и отрицательной по­луволн этой функции равны. Для переменного си­нусоидаль­ного напряжения определяют среднее по модулю значение за полный период Т или среднее значение за половину периода (Т /2) между двумя нулевыми значе­ниями (рис. 36) :

Ucp = Um∙ sinwt dt = 2R . Таким образом, количественные параметры электрической энергии на переменном токе (количество энергии, мощность) определяются действующими значениями напряжения U и тока I . По этой при­чине в электроэнергетике все тео­ретические расчеты и экспериментальные из­мерения принято выполнять для действую­щих значений токов и напряжений. В радиотехнике и в технике связи, наобо­рот, оперируют максимальными значе­ниями этих функций.

Приведенные выше формулы для энергии и мощности переменного тока полностью совпадают с аналогичными формулами для постоянного тока. На этом основании можно ут­верждать, что энергетически постоянному току экви­валентно действующее значение пере­менного тока.

Что берется за действующее значение силы переменного тока и переменного напряжения

что берется за действующее значение силы переменного тока и переменного напряжения?

Боевое яйцо

Переменный ток, в широком смысле электрический ток, изменяющийся во времени. Обычно в технике под П. т. понимают периодический ток, в котором среднее значение за период силы тока и напряжения равно нулю.

Переменные токи и переменные напряжения постоянно изменяются по величине. В каждое другое мгновение у них другая величина. Возникает вопрос, как же их измерять? Для их измерения введено понятие действующее значение.

Действующим или эффективным значением переменного тока называют величину такого постоянного тока, который по своему тепловому действию равноценен данному переменному току.

Действующим или эффективным значением переменного напряжения называют величину такого постоянного напряжения, которое по своему тепловому действию равноценно данному переменному напряжению.

Все переменные токи и напряжения в технике измеряются в действующих значениях. Приборы измеряющие переменные величины показывают их действующее значение.

Вопрос: напряжение в электросети 220 В, что это значит?

Это значит, что источник постоянного напряжения с напряжением 220 В оказывает такое же тепловое действие как и электросеть.

Действующее значение тока или напряжения синусоидальной формы в 1,41 раз меньше амплитуды этого тока или напряжения.

Пример: Определить амплитуду напряжения электросети с напряжением 220 В.

Амплитуда равна 220 * 1,41=310,2 В.

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения . В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого , мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I , проходящего через сопротивление r , будет Р = Р 2 r .

Мощность переменного тока выразится как средний эффект мгновенной мощности I 2 r за целый период или среднее значение от (Im х sinωt ) 2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I 2 r = Mr, откуда I = √ M ,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i ) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i 2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I 2 m . Следовательно, М = 1/2I 2 m

Так как действующее значение I переменного тока равно I = √ M , то окончательно I = Im / √ 2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √ 2 E= Em / √ 2

Действующие значения переменных величин обозначаются прописными буквами без индексов (I , U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.


Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √ 2 раз. От этого расположение векторов на диаграмме не изменяется.

Физический смысл данных понятий примерно таков же, как физический смысл средней скорости или других величин, усредненных по времени. В различные моменты времени сила переменного тока и его напряжение принимают разные значения, поэтому говорить о силе переменного тока вообще можно лишь условно.

Вместе с тем совершенно очевидно, что различные токи имеют различные энергетические характеристики – они производят разную работу за один и тот же промежуток времени. Произведенная током работа принята за основу при определении действующего значения силы тока. Задаются определенным промежутком времени и рассчитывают работу, совершенную переменным током за этот промежуток времени. Затем, зная эту работу, производят обратное вычисление: узнают силу постоянного тока, который произвел бы аналогичную работу за тот же промежуток времени. То есть производят усреднение по мощности. Вычисленная сила гипотетически протекающего через тот же проводник постоянного тока, производящего ту же самую работу и есть – действующее значение исходного переменного тока. Аналогично поступают и с напряжением. Данный расчет сводится к определению величины такого интеграла:

Откуда берется данная формула? Из хорошо известной формулы для мощности тока, выражаемой через квадрат его силы.

Действующие значения периодических и синусоидальных токов

Вычислять действующее значение для произвольных токов – занятие малопродуктивное. Зато для периодического сигнала данный параметр может оказаться весьма полезным. Известно, что любой периодический сигнал может быть разложен в спектр. То есть, представлен как конечная или бесконечная сумма синусоидальных сигналов. Поэтому для определения величины действующего значения такого периодического тока нам нужно знать, как вычислять действующее значение простого синусоидального тока. В итоге, сложив действующие значения нескольких первых гармоник с максимальной амплитудой, мы получим приближенное значение действующего значения тока для произвольного периодического сигнала. Подставляя в вышеприведенную формулу выражение для гармонического колебания, получим такую приближенную формулу.

Эффективные значения силы тока и напряжения. Действующее значение напряжения

При расчете цепей переменного тока обычно пользуются понятием действующих (эффективных) значений переменного тока, напряжения и э. д. с.

Действующие значения тока, напряжения и э. д. с. обозначаются прописными буквами .

На шкалах измерительных приборов и технической документации также указываются действующие значения величин.

Действующее значение переменного тока равно значению такого эквивалентного постоянного тока, который, проходя через то же сопротивление, что и переменный ток, выделяет в нем за период то же количество тепла.

Количество тепла, выделенное переменным током в со противлении за бесконечно малый промежуток времени

а за период переменного тока Т

Приравняв Полученное выражение количеству тепла выделенному в том же сопротивлении постоянным током за то же время Т, получим:

Сократив общий множитель , получим действующее значение тока

Рис. 5-8. График переменного тока и квадрата тока.

На рис. 5-8 построена кривая мгновенных значений тока i и кривая квадратов мгновенных значений Площадь, ограниченная последней кривой и осью абсцисс, представляет собой в некотором масштабе величину, определяемую выражением Высота прямоугольника равновеликого площади, ограниченной кривой и осью абсцисс, равная среднему значению ординат кривой представляет собой квадрат действующего значения тока

Если ток изменяется по закону синуса, т. е.

Аналогично для действующих значений синусоидальных напряжений и э. д. с. можно написать:

Кроме действующего значения тока и напряжения, иногда пользуются еще понятием среднего значения тбка и напряжения.

Среднее значение синусоидального тока за период равно нулю, так как в течение первой половины периода определенное количество электричества Q проходит через поперечное сечение проводника в прямом направлении. В течение второй половины периода то же количество электричества проходит через сечение проводника в обратном направлении. Следовательно, количество электричества, прошедшее через сечение проводника за период, равно нулю, равно нулю и среднее за период значение синусоидального тока.

Поэтому среднее значение синусоидального тока вычисляют за полупериод, в течение которого ток остается положительным. Среднее значение тока равно отношению количества электричества, прошедшего через сечение проводника за половину периода, к продолжительности этого полупериода.

Рассмотрим следующую цепь.

Она состоит из источника переменного напряжения, соединительных проводов и некоторой нагрузки. Причем индуктивность нагрузки очень мала, а сопротивление R очень велико. Эту нагрузку мы раньше называли сопротивлением. Теперь будем называть её активным сопротивлением.

Активное сопротивление

Сопротивление R называют активным, так как если в цепи будет нагрузка с таким сопротивлением, цепь будет поглощать энергию, поступающую от генератора. Будем считать, что напряжение на зажимах цепи подчиняется гармоническому закону:

U = Um*cos(ω*t).

Мгновенное значение силы тока можем вычислить по закону Ома, оно будет пропорционально мгновенному значению напряжения.

I = u/R = Um*cos(ω*t)/R = Im*cos(ω*t).

Сделаем вывод: в проводнике с активным сопротивлением разность фаз между колебаниями напряжения и силы тока отсутствует.

Действующее значение силы тока

Амплитуда силы тока определяется по следующей формуле:

Среднее значение квадрата силы тока за период вычисляется по следующей формуле:

Здесь Im есть амплитуда колебания силы тока.2) = Um/√2.

Теперь подставим действующие значения силы тока и напряжения, в выражение Im = Um/R. Получим:

Данное выражение является законом Ома для участка цепи с резистором, по которому течет переменный ток. Как и в случае механических колебаний, в переменном токе нас мало будут интересовать значения силы тока, напряжении в какой-то отдельный момент времени. Гораздо важнее будет знать общие характеристики колебаний — такие, как амплитуда, частота, период, действующие значения силы тока и напряжения.

Кстати, стоит отметить, что вольтметры и амперметры, предназначенные для переменного тока, регистрируют именно действующие значения напряжения и силы тока.

Еще одним преимуществом действующих значений перед мгновенными является то, что их можно сразу использовать для вычисления значения средней мощности P переменного тока.

>> Активное сопротивление. Действующие значения силы тока и напряжения

§ 32 АКТИВНОЕ СОПРОТИВЛЕНИЕ. ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ СИЛЫ ТОКА И НАПРЯЖЕНИЯ

Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Сила тока в цени с резистором. Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряже ния (рис. 4.11), а амплитуда силы тока определяется равенством

Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощ ностъ тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найчи среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии , поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

P = I 2 R. (4.18)

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным.

Поэтому мгновенная моoность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

P = i 2 R. (4.19)

Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение

График зависимости мгновенной мощности от времени изображен на рисунке 4.12, а. Согласно графику (рис. 4.12, б.), на протяжении одной восьмой периода, когда , мощность в любой момент времени больше, чем . Зато на протяжении следующей восьмой части периода, когда cos 2t

Средняя мощность равна, таким образом, первому члену в формуле (4.20):


Действующие значения силы тока и напряжения .
Из формулы (4.21) видно, что величина есть среднее за период значение квадрата силы тока:

Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы неременного тока. Действующее зртачепие силы неременного тока обозначается через I:

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты , что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока:

Заменяя в формуле (4.17) амплитудные значения силы тока и напряжения на их действующие значения, получаем

Это закон Ома для участка цепи переменного тока с резистором.

Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Кроме того, действующие значения удобнее мгновенных значений еще и потому, что именно они непосредственно определяют среднее значение мощности Р переменного тока:

P = I 2 R = UI.

Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

1. Чему равна амплитуда напряжения в осветительных сетях переменного тока, рассчитанных на напряжение 220 В!
2. Что называют действующими значениями силы тока и напряжения!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с: ил.

Библиотека с учебниками и книгами на скачку бесплатно онлайн , Физика и астрономия для 11 класса скачать , школьная программа по физике, планы конспектов уроков

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Дополнительные сведения

В англоязычной технической литературе для обозначения действующего значения употребляется термин «effective value » — в дословном переводе «эффективная величина »

В электротехнике приборы электромагнитной, электродинамической и тепловой систем реагируют на действующее значение.

Источники

  • «Справочник по физике», Яворский Б. М., Детлаф А. А., изд. «Наука», 1979 г.1
  • Курс физики. А. А. Детлаф, Б. М. Яворский М.: Высш. шк., 1989. § 28.3, п.5
  • «Теоретические основы электротехники», Л. А. Бессонов: Высш. шк., 1996. § 7.8 — § 7.10

Ссылки

См. также

  • Список параметров напряжения и силы электрического тока

Wikimedia Foundation . 2010 .

Смотреть что такое «Действующее значение переменного тока» в других словарях:

    действующее значение переменного тока

    эффективное значение переменного тока — efektinė srovė statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas(ai) Grafinis formatas atitikmenys: angl. effective current; root mean square current vok. Effektivstrom, m rus. действующее значение… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    действующее значение тока — Среднеквадратичное значение периодического электрического тока за период. Примечание — Аналогично определяют действующие значения периодических электрического напряжения, электродвижущей силы, магнитного потока и т. д. [ГОСТ Р 52002 2003]… …

    В электротехнике среднее квадратичное за период значение переменного тока, напряжения, электродвижущей силы, магнитодвижущей силы, магнитного потока и т. п. Действующее значение синусоидального тока и напряжения в раз меньше их амплитудных… … Большой Энциклопедический словарь

    — (электротехн.), среднее квадратичное за период значение переменного тока, напряжения, эдс, магнитодвижущей силы, магнитного потока и т. п. Действующие значения синусоидального тока и напряжения в √2 раз меньше их амплитудных значений. * * *… … Энциклопедический словарь

    Ср. квадратичное за период значение переменного тока, напряжения, эдс, магнитодвижущей силы, магн. потока и т. п. Д. з. синусоидального тока и напряжения в кв. корень из 2 раз меньше их амплитудных значений … Естествознание. Энциклопедический словарь

    ГОСТ Р МЭК 60252-2-2008: Конденсаторы для двигателей переменного тока. Часть 2. Пусковые конденсаторы — Терминология ГОСТ Р МЭК 60252 2 2008: Конденсаторы для двигателей переменного тока. Часть 2. Пусковые конденсаторы оригинал документа: 1.3.11 длительность рабочего цикла (duty cycle duration): Общее время одного нагружения (подачи напряжения) и… … Словарь-справочник терминов нормативно-технической документации

    истинное действующее значение Справочник технического переводчика

    истинное действующее значение — [Интент] Прибор, измеряющий несинусоидальный электрический сигнал, например, имеющий форму импульсов или отрезков синусоиды, с учетом всех гармоник этого сигнала, является прибором, определяющим истинное действующее значение этого сигнала.… … Справочник технического переводчика

    истинное действующее значение — [Интент] Прибор, измеряющий несинусоидальный электрический сигнал, например, имеющий форму импульсов или отрезков синусоиды, с учетом всех гармоник этого сигнала, является прибором, определяющим истинное действующее значение этого сигнала.… … Справочник технического переводчика

Мы говорили про мощность и работу переменного тока. Напомню, что тогда мы считали ее через некоторый интеграл, а в самом конце статьи я вскользь сказал, что существуют способы облечения и без того нелегкой жизни и часто можно обойтись вообще без взятия интеграла, если знать про действующее значение тока . Сегодня про него и поговорим!

Господа, вероятно, для вас не станет секретом, что в природе существует большое число видов переменного тока: синусоидальный, прямоугольный, треугольный и так далее. И как их вообще можно сравнивать между собой? По форме? Хмм…Пожалуй, да. Они же визуально различаются, с этим не поспоришь. По частоте? Тоже да, но иногда это вызывает вопросы. Некоторые считают, что само определение частоты применимо исключительно для синусоидального сигнала и его нельзя использовать, например, для последовательности импульсов. Возможно, формально они и правы, но я не разделяю их точку зрения. А еще как еще можно? А, например, по деньгам! Неожиданно? Напрасно. Ток ведь стоит денег. Вернее, стоит денег работа тока. В конце концов ведь те самые киловатт·часы, за которые вы все платите каждый месяц по счетчику не что иное, как работа тока. А поскольку деньги вещь серьезная, то ради такого стоит и термин отдельный ввести. И для сравнения между собой токов различной формы по количеству работы ввели понятие действующего тока.

Итак, действующее (или среднеквадратичное) значение переменного тока — это такая величина некоторого постоянного тока, который за время, равное периоду переменного тока выделит столько же тепла на резисторе, что и наш переменный ток. Звучит очень хитро и, скорее всего, если вы читаете это определение в первый раз, то вряд ли вы его поймете. Это нормально. Когда я его в первый раз услышал в школе, я сам долго доходил, что же это значит. Поэтому сейчас я постараюсь разобрать это определение поподробнее, чтобы вы поняли, что за этой мудреной фразой скрывается быстрее, чем я в свое время.

Итак, у нас есть переменный ток. Допустим, синусоидальный. У него своя амплитуда А m и период T период (ну или частота f ). На фазу в данном случае пофиг, считаем ее равной нулю. Этот переменный ток течет через некоторый резистор R и на этом резисторе выделяется энергия. За один период T период нашего синусоидального тока выделится вполне определенное количество джоулей энергии. Это число джоулей мы можем точно посчитать по формулам с интегралом, которые я приводил в прошлый раз . Допустим, мы насчитали, что за один период T период синусоидального тока выделится Q джоулей тепла. А теперь, внимание, господа, важный момент! Давайте мы заменим переменный ток на постоянный, причем выберем его такой величины (ну то есть столько ампер), чтобы на том же самом резисторе R за то же самое время T период выделилось ровно такое же количество джоулей Q. Очевидно, мы должны как-то определить величину этого самого постоянного тока, эквивалентного переменному с энергетической точки зрения. И вот когда мы найдем эту величину, то она-то как раз и будет тем самым действующим значением переменного тока . А теперь, господа, вернитесь еще разок к тому мудреному формальному определению, которое я давал вначале. Сейчас оно стало лучше понятно, не так ли?

Итак, суть вопроса, надеюсь, стала понятной, поэтому давайте все сказанное выше переведем на язык математики. Как мы уже писали в прошлой статье , закон изменения мощности переменного тока равен

Количество выделившейся энергии при работе тока за время T период — соответственно, равно интегралу за время периода T период :

Господа, теперь нам надо взять этот интеграл. Если по причине нелюбви к математике вам это кажется чем-то слишком мудреным, вы волне можете пропустить выкладки и посмотреть сразу результат. А у меня что-то сегодня настроение вспомнить молодость и аккуратненько разобраться со всеми этими интегральчиками .

Итак, как его нам брать? Ну, величины I m 2 и R являются константами и их можно сразу вынести за знак интеграла. А для квадрата синуса нам надо применить формулу понижения степени из курса тригонометрии. Надеюсь, вы ее помните . А если нет, то напомню еще раз:

Теперь давайте разобьем интеграл на два интеграла. Можно воспользоваться тем, что интеграл от суммы или разности равен сумме или разности интегралов. В принципе, это очень даже логично, если вспомнить про то, что интеграл — это площадь.

Итак, имеем


Господа, у меня есть для вас просто отличнейшая новость. Второй интеграл равен нулю!

Почему это так? Да просто потому, что интеграл любого синуса/косинуса на величине, кратной его периоду, равен нулю. Полезнейшее свойство, кстати! Рекомендую его запомнить. Геометрически это тоже понятно: первая полуволна синуса идет выше оси абсцисс и интеграл от нее больше нуля, а вторая полуволна идет ниже оси абсцисс, поэтому его величина меньше нуля. А по модулю они равны между собой, поэтому их сложение (собственно, интеграл за весь период) даст в итоге нолик.

Итак, отбрасывая интеграл с косинусом, получаем

Ну и не надо быть большим гуру математики, чтобы сказать, что этот интеграл равен

И, таким образом, получаем ответ

Это мы получили количество джоулей, которое выделится на резисторе R при протекании через него синусоидального тока амплитудой I m в течении периода T период . Теперь, чтобы найти чему в данном случае равен действующий ток нам надо исходить из того, что на том же самом резисторе R за то же самое время T период выделится то же самое количество энергии Q. Поэтому мы можем записать

Если не совсем понятно, откуда здесь взялась левая часть, рекомендую вам повторить статью про закон Джоуля-Ленца . А мы тем временем выразим действующее значение тока I действ . из этого выражения, предварительно сократив все, что можно

Вот такой вот результат, господа. Действующее значение переменного синусоидального тока в корень из двух раз меньше его амплитудного значения. Хорошо запомните этот результат, это важный вывод.

Вообще говоря никто не мешает по аналогии с током ввести действующее значение напряжения . При этом у нас зависимость мощности от времени примет вот такой вид

Именно его мы будем подставлять под интеграл и выполнять все преобразования. Господа, каждый из вас может на досуге при желании это проделать, я же просто приведу конечный результат, поскольку он полностью аналогичен случаю с током. Итак, действующее значение напряжения синусоидального тока равно

Как видим, аналогия полнейшая. Действующее значения напряжения точно также в корень из двух раз меньше амплитуды.

Подобным образом можно рассчитать действующее значение тока и напряжения для сигнала абсолютно любой формы: надо только лишь записать закон изменения мощности для этого сигнала и выполнить пошагово все вышеописанные преобразования.

Все вы, наверняка, слышали, что у нас в розетках напряжение 220 В. А каких вольт? У нас ведь теперь есть два термина — амплитудное и действующее значение. Так вот, оказывается, что 220 В в розетках — это действующее значение! Вольтметры и амперметры , включаемые в цепи переменного тока показывают именно действующие значения. А форму сигнала вообще и его амплитуду в частности можно посмотреть с помощью осциллографа. Ну, мы же уже говорили, что всем интересны деньги, то бишь работа тока, а не какая-то там непонятная амплитуда. Тем не менее давайте-ка все-таки определим, чему равна амплитуда напряжения в наших с вами сетях. Пользуясь только что написанной формулой, можно записать

Отсюда получаем

Вот так вот, господа. В розетках у нас, оказывается, синус с амплитудой аж 311 В, а не 220, как можно было подумать сначала. Что бы убрать все сомнения представлю вам картинку, как выглядит закон изменения напряжения в наших розетках (помним, что частота сети равна 50 Гц или, что тоже самое, период равен 20 мс). Этот закон представлен на рисунке 1.


Рисунок 1 — Закон изменения напряжения в розетках

И специально для вас, господа, я посмотрел напряжение в розетке с помощью осциллографа. Смотрел я его через делитель напряжения 1:5. То есть форма сигнала полностью сохранится, а амплитуда сигнала на экране осциллографа будет в пять раз меньше, чем на самом деле в розетке. Зачем я так сделал? Да просто потому, что из-за большого размаха входного напряжения картинка целиком не влезает на экран осциллографа.

ВНИМАНИЕ! Если у вас нет достаточного опыта работы с высоким напряжением, если вы абсолютно четко не представляете себе как могут течь токи при измерениях в гальванически не отвязанных от сети цепях, настоятельно не рекомендую проводить подобный эксперимент самостоятельно, это опасно! Дело в том, что при подобных измерениях с помощью осциллографа, подключенного к розетке с заземлением есть очень большой шанс что произойдет короткое замыкание через внутренние земли осциллографа и прибор сгорит без возможности восстановления! А если делать эти измерения с помощью осциллографа, подключенного к розетке без заземления , на его корпусе, кабелях и разъемах может присутствовать смертельно опасный потенциал! Это не шутки, господа, если нет понимания, почему это так, лучше этого не делать, тем более, что осциллограммы уже сняты и вы можете их наблюдать на рисунке 2.


Рисунок 2 — Осциллограмма напряжения в розетке (делитель 1:5)

На рисунке 2 мы видим, что амплитуда синуса составляет около 62 вольт, а частота — ровно 50 Гц. Помня, что мы смотрим через делитель напряжения, который делит входное напряжение на 5, мы можем рассчитать реальную величину напряжения в розетке, она равна

Как мы видим, результат измерения очень близок к теоретическому, не смотря на погрешность измерения осциллографа и неидеальность резисторов делителя напряжения. Это свидетельствует о том, что все наши расчеты верны.

На этом на сегодня все, господа. Сегодня мы узнали, что такое действующий ток и действующее напряжение, научились их рассчитывать и проверили результаты расчетов на практике. Спасибо что прочитали это и до новых статей!

Вступайте в нашу

Действующее значение тока. Действующее значение напряжения

Господа, в прошлой статье мы говорили про мощность и работу переменного тока. Напомню, что тогда мы считали ее через некоторый интеграл, а в самом конце статьи я вскользь сказал, что существуют способы облечения и без того нелегкой жизни и часто можно обойтись вообще без взятия интеграла, если знать про действующее значение тока. Сегодня про него и поговорим!

Господа, вероятно, для вас не станет секретом, что в природе существует большое число видов переменного тока: синусоидальный, прямоугольный, треугольный и так далее. И как их вообще можно сравнивать между собой? По форме? Хмм…Пожалуй, да. Они же визуально различаются, с этим не поспоришь. По частоте? Тоже да, но иногда это вызывает вопросы. Некоторые считают, что само определение частоты применимо исключительно для синусоидального сигнала и его нельзя использовать, например, для последовательности импульсов. Возможно, формально они и правы, но я не разделяю их точку зрения. А еще как еще можно? А, например, по деньгам! Неожиданно? Напрасно. Ток ведь стоит денег. Вернее, стоит денег работа тока. В конце концов ведь те самые киловатт·часы, за которые вы все платите каждый месяц по счетчику не что иное, как работа тока. А поскольку деньги вещь серьезная, то ради такого стоит и термин отдельный ввести. И для сравнения между собой токов различной формы по количеству работы ввели понятие действующего тока.

Итак, действующее (или среднеквадратичное) значение переменного тока – это такая величина некоторого постоянного тока, который за время, равное периоду переменного тока выделит столько же тепла на резисторе, что и наш переменный ток. Звучит очень хитро и, скорее всего, если вы читаете это определение в первый раз, то вряд ли вы его поймете. Это нормально. Когда я его в первый раз услышал в школе, я сам долго доходил, что же это значит. Поэтому сейчас я постараюсь разобрать это определение поподробнее, чтобы вы поняли, что за этой мудреной фразой скрывается быстрее, чем я в свое время.

Итак, у нас есть переменный ток. Допустим, синусоидальный. У него своя амплитуда Аm и период Tпериод (ну или частота f). На фазу в данном случае пофиг, считаем ее равной нулю. Этот переменный ток течет через некоторый резистор R и на этом резисторе выделяется энергия. За один период Tпериод нашего синусоидального тока выделится вполне определенное количество джоулей энергии. Это число джоулей мы можем точно посчитать по формулам с интегралом, которые я приводил в прошлый раз. Допустим, мы насчитали, что за один период Tпериод синусоидального тока выделится Q джоулей тепла. А теперь, внимание, господа, важный момент! Давайте мы заменим переменный ток на постоянный, причем выберем его такой величины (ну то есть столько ампер), чтобы на том же самом резисторе R за то же самое время Tпериод выделилось ровно такое же количество джоулей Q. Очевидно, мы должны как-то определить величину этого самого постоянного тока, эквивалентного переменному с энергетической точки зрения. И вот когда мы найдем эту величину, то она-то как раз и будет тем самым действующим значением переменного тока. А теперь, господа, вернитесь еще разок к тому мудреному формальному определению, которое я давал вначале. Сейчас оно стало лучше понятно, не так ли?

Итак, суть вопроса, надеюсь, стала понятной, поэтому давайте все сказанное выше переведем на язык математики. Как мы уже писали в прошлой статье, закон изменения мощности переменного тока равен

Количество выделившейся энергии при работе тока за время Tпериод – соответственно, равно интегралу за время периода Tпериод:

Господа, теперь нам надо взять этот интеграл. Если по причине нелюбви к математике вам это кажется чем-то слишком мудреным, вы волне можете пропустить выкладки и посмотреть сразу результат. А у меня что-то сегодня настроение вспомнить молодость и аккуратненько разобраться со всеми этими интегральчиками .

Итак, как его нам брать? Ну, величины Im2 и R являются константами и их можно сразу вынести за знак интеграла. А для квадрата синуса нам надо применить формулу понижения степени из курса тригонометрии. Надеюсь, вы ее помните . А если нет, то напомню еще раз:

Погнали считать!

Теперь давайте разобьем интеграл на два интеграла. Можно воспользоваться тем, что интеграл от суммы или разности равен сумме или разности интегралов. В принципе, это очень даже логично, если вспомнить про то, что интеграл – это площадь.

Итак, имеем

Господа, у меня есть для вас просто отличнейшая новость. Второй интеграл равен нулю!

Почему это так? Да просто потому, что интеграл любого синуса/косинуса на величине, кратной его периоду, равен нулю. Полезнейшее свойство, кстати! Рекомендую его запомнить. Геометрически это тоже понятно: первая полуволна синуса идет выше оси абсцисс и интеграл от нее больше нуля, а вторая полуволна идет ниже оси абсцисс, поэтому его величина меньше нуля. А по модулю они равны между собой, поэтому их сложение (собственно, интеграл за весь период) даст в итоге нолик.

Итак, отбрасывая интеграл с косинусом, получаем

Ну и не надо быть большим гуру математики, чтобы сказать, что этот интеграл равен

И, таким образом, получаем ответ

Это мы получили количество джоулей, которое выделится на резисторе R при протекании через него синусоидального тока амплитудой Im в течении периода Tпериод. Теперь, чтобы найти чему в данном случае равен действующий ток нам надо исходить из того, что на том же самом резисторе R за то же самое время Tпериод выделится то же самое количество энергии Q. Поэтому мы можем записать

Если не совсем понятно, откуда здесь взялась левая часть, рекомендую вам повторить статью про закон Джоуля-Ленца. А мы тем временем выразим действующее значение тока Iдейств. из этого выражения, предварительно сократив все, что можно

Вот такой вот результат, господа. Действующее значение переменного синусоидального тока в корень из двух раз меньше его амплитудного значения. Хорошо запомните этот результат, это важный вывод.

Вообще говоря никто не мешает по аналогии с током ввести действующее значение напряжения. При этом у нас зависимость мощности от времени примет вот такой вид

Именно его мы будем подставлять под интеграл и выполнять все преобразования. Господа, каждый из вас может на досуге при желании это проделать, я же просто приведу конечный результат, поскольку он полностью аналогичен случаю с током. Итак, действующее значение напряжения синусоидального тока равно

Как видим, аналогия полнейшая. Действующее значения напряжения точно также в корень из двух раз меньше амплитуды.

Подобным образом можно рассчитать действующее значение тока и напряжения для сигнала абсолютно любой формы: надо только лишь записать закон изменения мощности для этого сигнала и выполнить пошагово все вышеописанные преобразования.

Все вы, наверняка, слышали, что у нас в розетках напряжение 220 В. А каких вольт? У нас ведь теперь есть два термина – амплитудное и действующее значение. Так вот, оказывается, что 220 В в розетках – это действующее значение! Вольтметры и амперметры, включаемые в цепи переменного тока показывают именно действующие значения. А форму сигнала вообще и его амплитуду в частности можно посмотреть с помощью осциллографа. Ну, мы же уже говорили, что всем интересны деньги, то бишь работа тока, а не какая-то там непонятная амплитуда. Тем не менее давайте-ка все-таки определим, чему равна амплитуда напряжения в наших с вами сетях. Пользуясь только что написанной формулой, можно записать

Отсюда получаем

Вот так вот, господа. В розетках у нас, оказывается, синус с амплитудой аж 311 В, а не 220, как можно было подумать сначала. Что бы убрать все сомнения представлю вам картинку, как выглядит закон изменения напряжения в наших розетках (помним, что частота сети равна 50 Гц или, что тоже самое, период равен 20 мс). Этот закон представлен на рисунке 1.

Рисунок 1 – Закон изменения напряжения в розетках

И специально для вас, господа, я посмотрел напряжение в розетке с помощью осциллографа. Смотрел я его через делитель напряжения 1:5. То есть форма сигнала полностью сохранится, а амплитуда сигнала на экране осциллографа будет в пять раз меньше, чем на самом деле в розетке. Зачем я так сделал? Да просто потому, что из-за большого размаха входного напряжения картинка целиком не влезает на экран осциллографа.

ВНИМАНИЕ! Если у вас нет достаточного опыта работы с высоким напряжением, если вы абсолютно четко не представляете себе как могут течь токи при измерениях в гальванически не отвязанных от сети цепях, настоятельно не рекомендую проводить подобный эксперимент самостоятельно, это опасно! Дело в том, что при подобных измерениях с помощью осциллографа, подключенного к розетке с заземлением есть очень большой шанс что произойдет короткое замыкание через внутренние земли осциллографа и прибор сгорит без возможности восстановления! А если делать эти измерения с помощью осциллографа, подключенного к розетке без заземления, на его корпусе, кабелях и разъемах может присутствовать смертельно опасный потенциал! Это не шутки, господа, если нет понимания, почему это так, лучше этого не делать, тем более, что осциллограммы уже сняты и вы можете их наблюдать на рисунке 2.

Рисунок 2 – Осциллограмма напряжения в розетке (делитель 1:5)

На рисунке 2 мы видим, что амплитуда синуса составляет около 62 вольт, а частота – ровно 50 Гц. Помня, что мы смотрим через делитель напряжения, который делит входное напряжение на 5, мы можем рассчитать реальную величину напряжения в розетке, она равна

Как мы видим, результат измерения очень близок к теоретическому, не смотря на погрешность измерения осциллографа и неидеальность резисторов делителя напряжения. Это свидетельствует о том, что все наши расчеты верны.

На этом на сегодня все, господа. Сегодня мы узнали, что такое действующий ток и действующее напряжение, научились их рассчитывать и проверили результаты расчетов на практике. Спасибо что прочитали это и до новых статей!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.


Объяснение действующего значения напряжения и тока

Переменный ток

Электричество и магнетизм

Объяснение действующего значения напряжения и тока

Руководство для преподавателей для 14-16

Есть много способов объяснить среднеквадратичное (среднеквадратичное) напряжение и ток на разных уровнях сложности для студентов продвинутого уровня.

  • Для простейшего уровня скажем, что вы измеряете ток (или разность потенциалов) через крошечные интервалы времени. Возведите каждое значение в квадрат, сложите квадраты (все положительные) и разделите на количество выборок, чтобы найти средний квадрат или средний квадрат. Затем извлеките из этого квадратный корень. Это среднеквадратичное значение (среднеквадратичное значение) (rms).
  • Например, предположим, что существует 8 временных интервалов, как показано на диаграмме выше:
    Значения 7 10 7 0-7-10-7 0
    Квадраты 49 100 49 0 49 100 49 0
    Сумма квадратов = 396 Среднее значение квадратов = 396/8 = почти 50 Квадратный корень ~ 7 При большем количестве интервалов среднеквадратичное значение оказывается равным (пиковое значение) √ 2 = пиковое значение 1.41 = 0,707 пиковое значение
  • Для тех, кто знаком с графиками функций синуса и косинуса, можно попробовать следующий алгебраический метод.
    • I = I 0 sinω t и I 2 = I 0 2 sin 2 ω t
    • Эффект нагрева зависит от I 2 R , поэтому требуется в среднем I 2 , а не в среднем I .
    • Чтобы найти среднеквадратичное значение, вам нужно среднее значение sin 2 с течением времени.
    • График sinω t и график cosω t выглядят одинаково, за исключением смещения начала координат. Поскольку это одна и та же модель, sin 2 ω t и cos 2 ω t имеют одинаковое среднее значение с течением времени.
    • Но sin 2 ω t + cos 2 ω t = 1. Следовательно, средние значения любого из них должны быть 1/2.
    • Следовательно, действующее значение I 0 sinω t должно быть I 0 √ 2
    • Среднеквадратичное значение составляет 0,707 пикового значения, а пиковое значение — 1,41 раза больше значения, отображаемого вольтметром. Пиковое значение для сети 230 В составляет 325 В.
  • В качестве альтернативы: Постройте график sin 2 θ. Разрежьте график пополам и переверните одну половину вверх ногами или скопируйте на прозрачную пленку и совместите вместе. Две половины точно совпадают, показывая, что среднее значение равно 1/2.
  • Обратите внимание, что при использовании несглаженного выпрямленного переменного тока от простого источника питания оценка мощности, полученная путем умножения показаний вольтметра постоянного тока с подвижной катушкой и амперметра с подвижной катушкой, вероятно, будет почти на 20% меньше. Это связано с тем, что каждый измеритель с подвижной катушкой измеряет простое среднее по времени неровностей за полупериод, а не среднеквадратичное значение.
  • Умноженные действующие значения тока и напряжения дают фактическую мощность. Это жизненно важная часть при проведении количественных экспериментов с мощностью и энергией, таких как удельная теплоемкость.Значения в лучшем случае составляют только 80% от стоимости.

Значения переменного напряжения и тока

Напряжение переменного тока полностью описывается, когда пиковое или среднеквадратичное значение указывается вместе с частотой синусоидальной волны. Например, обычное значение напряжения, используемого в любом доме в Соединенных Штатах, составляет 120 В переменного тока, эффективное при частоте 60 Гц. Поскольку синусоидальная волна переменного тока для напряжения или тока имеет множество различных мгновенных значений в течение цикла, нам необходимо определить отношения между различными значениями переменного тока.

Пиковое значение

Максимальное мгновенное значение положительного или отрицательного чередования синусоидальной волны — это пиковое значение переменного тока или напряжения. Предполагая, что наше переменное напряжение представляет собой синусоидальную волну с начальной фазой, равной нулю, положительное пиковое значение выше базовой линии 0 В и существует при 90 °, тогда как его отрицательное пиковое значение ниже базовой линии 0 В и существует при 270 ° (см. Рисунок 1 ).

Рисунок 1. Пиковое значение синусоидальной волны с начальной фазой нуля происходит при 90 ° и 270 °.Положительное пиковое значение происходит при 90 °, а отрицательное пиковое значение — при 270 °.

Размах сигнала переменного тока — это величина, измеряемая от положительного пика до отрицательного пика. Напряжения и токи в цепи переменного тока иногда указываются в размахе. Поскольку чистая синусоида со средним значением нуля имеет равные значения выше и ниже базовой линии 0 В, положительные и отрицательные пики равны по величине. Если известно положительное или отрицательное пиковое значение напряжения, то размах напряжения можно рассчитать по следующей формуле:

В P-P = 2 × V P

где

В P-P = размах переменного тока (в В)

В P = положительное пиковое значение переменного тока (в В)

Пример: Какова размах напряжения переменного тока, если положительное пиковое значение напряжения равно 170 В?

В P-P = 2 × V P

В P-P = 2 × 170 В = 340 В

Формулы для напряжения одинаково применимы к переменному току с пиковым током I P и размахом тока I P-P , заменяющим V P и V P-P .В некоторых приложениях пиковое значение является предпочтительным показателем при объяснении характеристик цепи или сигнала. Например, в мостовом выпрямителе конденсатор фильтра заряжается до пика приложенного напряжения. Отклонение электронного луча в мониторе компьютера с ЭЛТ зависит от размаха напряжения. Обычно вертикальная шкала на осциллографе регулируется в зависимости от значений размаха или пика.

Среднее значение

Среднее значение переменного напряжения или тока в цепи переменного тока — это математическое среднее всех мгновенных значений в синусоиде.Для некоторых приложений переменного тока используется среднее значение синусоидальной волны. Могут быть представлены либо напряжение, либо ток. Когда сигнал симметричен относительно оси x, мы получаем среднее значение, равное нулю, когда среднее значение выше базовой линии усредняется со средним значением ниже базовой линии. В этих случаях мы можем использовать среднее значение одного полупериода или одного чередования синусоидальной волны. Может использоваться как положительное, так и отрицательное чередование (см. Рисунок 2 ).

Рисунок 2. Среднее значение одного полупериода равно пиковому значению, умноженному на 0,636.

Среднее напряжение синусоиды — это среднее всех мгновенных значений для одного чередования. То есть, если значения синусоидальной функции были добавлены для каждого градуса от 0 ° до 180 °, с суммой, деленной на 180, было бы вычислено приближение среднего значения. Значение среднего напряжения рассчитывается равным мгновенному пиковому значению, умноженному на коэффициент 0.636. Среднее напряжение можно рассчитать по следующей формуле:

В СРЕДНЕЕ = В P × 0,636

Где

В AVG = среднее значение одного полупериода (в В)

В P = пиковое значение (в В)

0,636 = коэффициент преобразования из V P в V AVG


Пример: Каково среднее значение одного полупериода синусоидальной волны, если пиковое значение напряжения равно 170 В?

V AVG = V P × 0.636

В СРЕДНЕЕ = 170 × 0,636 = 108,12 В

Если известно среднее значение за полупериод, пиковое значение можно рассчитать по следующей формуле:

V P = V AVG / 0,636

Где

В AVG = среднее значение напряжения за полупериод (в В)

В P = пиковое значение (в В)

0,636 = коэффициент преобразования из V P в V AVG

Пример: Каково пиковое значение напряжения переменного тока, если среднее значение за полупериод равно 108.12 В?

V P = V AVG / 0,636

В P = V AVG /0,636= 108,12 / 0,636 = 170 В

Среднеквадратичное значение (RMS)

Среднеквадратичное значение переменного тока или напряжения дает нам эквивалентное значение постоянного тока или напряжения, которое дает тот же эффект нагрева, что и исходная форма переменного сигнала при приложении к чисто резистивной нагрузке. Например, переменный ток со среднеквадратичным значением 1 А вызывает тот же эффект нагрева, что и 1 А постоянного тока.Когда переменный ток проходит через сопротивление, рассеиваемая мощность постоянно изменяется с синусоидальной волной переменного тока. Мощность, рассеиваемая в любой момент, может быть рассчитана по следующей формуле:

P D = I 2 × R

Где

P D = рассеиваемая мощность (Вт)

I = ток цепи (в A)

R = сопротивление цепи (в Ом)

Пример: Какая мощность рассеивается в цепи 4 А с сопротивлением 10 Ом?

P D = I 2 × R

P D = I 2 × R = 4 2 × 10 = 160 Вт

Рассеиваемая мощность всегда является положительной величиной, даже если текущее значение отрицательно.Значение I 2 всегда положительно, потому что отрицательное значение, умноженное на отрицательное, дает положительное значение.

При вычислении среднеквадратичного значения пиковое значение синусоидального сигнала тока или напряжения делится на квадратный корень из 2. Синусоидальный сигнал тока можно рассчитать по следующей формуле:

\ [{{I} _ {RMS}} = \ frac {{{I} _ {P}}} {\ sqrt {2}} \]

где

I RMS = текущее действующее значение (в A)

I P = пиковое значение тока (в A)

\ (\ sqrt {2} \) = 1.414

Поскольку обратное значение 1,414 равно 0,707, среднеквадратичное значение текущей синусоидальной волны также можно рассчитать по следующей формуле:

I RMS = 0,707 × I P

При расчете синусоидальных колебаний напряжения V RMS заменяется I RMS .

Пример: Каково среднеквадратичное напряжение, если пиковое напряжение равно 230 В?

В RMS = 0,707 × В P

В RMS = 0.707 × 230 = 162,6 В

Рисунок 3. Действующее значение напряжения или тока равно пиковому значению, умноженному на 0,707.

Примечание:

Когда номинальное напряжение или ток переменного тока дается без каких-либо определителей, таких как пиковое или среднее значение, подразумевается, что номинальное значение напряжения или тока является среднеквадратичным значением. Например, прибор рассчитан на 120 В переменного тока / 10 А / 60 Гц. Среднеквадратичные значения составляют 120 В переменного тока и 10 А.

Среднеквадратичное значение переменного тока или среднеквадратичное значение переменного тока — Определение, формула и расчет

Определение

Среднеквадратичное значение (RMS) переменного тока определяется как установившийся или постоянный ток, который при протекании по цепи в течение заданного периода времени производит такое же тепло, как и ток переменного тока, протекающий по той же цепи в течение того же периода времени. . Среднеквадратичное значение также известно как действующее значение или виртуальное значение переменного тока.

Расчет среднеквадратичного значения

Предположим, что через цепь протекает переменный ток i = I м Sinωt, и нас интересует вычисление среднеквадратичного или среднеквадратичного значения этого тока.

Среднеквадратичное или среднеквадратичное значение можно рассчитать двумя разными методами: Метод средней ординаты и аналитический метод .

Оба эти метода можно удобно использовать для вычисления среднеквадратичного значения симметричных или несимметричных синусоидальных или несинусоидальных сигналов. Метод средних ординат очень удобен для симметричных несинусоидальных сигналов. Давайте обсудим каждый из методов по очереди.

Метод средней оси ординат:

В методе средней оси ординат временная развертка положительной половины сигнала переменного тока делится на n равных интервалов времени, каждый длительностью (T / n) секунд.

На приведенном выше рисунке весь положительный полупериод разделен на n равных интервалов времени. Вы можете спросить, почему мы учитывали только положительную половину. Это потому, что, поскольку мы собираемся вычислить тепло, выделяемое переменным током, нам нужно применить формулу I 2 R. Возведение в квадрат тока (I 2 ) уравняет положительный и отрицательный цикл симметричной формы волны. Поэтому будет разумным решением рассматривать только положительный цикл.

Давайте теперь продолжим, чтобы найти тепло, выделяемое в цепи из-за протекания переменного тока, форма волны, показанная на рисунке выше.

Тепло, произведенное в интервале времени 1 st = i 1 2 R (T / n) Джоуль

Тепло, произведенное за интервал времени 2 nd = i 2 2 R (T / n) Джоуль

……………………………………………………… ..

……………………………………………………… ..

Тепло, произведенное в n -м интервале времени = i n 2 R (T / n) Джоуль

Таким образом, общее количество тепла, произведенного этим током, равно

.

i 1 2 R (T / n) + i 2 2 R (T / n) + …… + i n 2 R (T / n) …………… (1)

Пусть среднеквадратичное или действующее значение этого тока I действующее значение .Этот постоянный ток I rms должен выделять тепло Q, равное I rms 2 RT. Следовательно, согласно определению действующего значения тока,

Из приведенного выше выражения действующего значения ясно, что действующее значение переменного тока равно квадратному корню из среднего квадратов мгновенных значений тока. Хотя приведенная выше формула была получена для переменного тока, она также применима и для переменного напряжения.Единственная разница в том, что вместо мгновенных значений тока следует брать мгновенное значение напряжения.

Аналитический метод

Мне лично нравится этот метод расчета среднеквадратичного значения величин переменного тока. По сути, этот метод не отличается от метода средней ординаты. В методе средней оси ординат мы вычисляли среднеквадратичное значение, рассматривая дискретные значения мгновенного тока в разном временном интервале. Но в аналитическом методе мы используем интегрирование для получения среднего квадрата мгновенных значений тока, а затем находим квадратный корень из него, чтобы получить среднеквадратичное значение.

Чтобы вычислить среднеквадратичное значение, нам нужно сначала вычислить среднее значение квадрата переменного тока / напряжения за один период времени. Затем находим квадратный корень из вычисленного среднего значения. Это дает среднеквадратичное значение (СКЗ). Это все, что нам нужно сделать.

Так как среднее значение любой функции f (x), имеющей период времени T, равно

Следовательно, среднее значение квадрата f (x),

Следовательно, формула для среднеквадратичного значения

.

Эта формула для расчета среднеквадратичного значения очень важна и может применяться для сигналов любого типа.Я лично этим пользуюсь. Я никогда не использую метод средней оси ординат. Я рекомендую вам использовать эту формулу. Прочтите «Как найти среднеквадратичное значение любой функции», чтобы узнать, как эта формула может оказаться лучшим оружием для расчета среднеквадратичного значения.

Действующее значение стандартного синусоидального переменного тока

Ну, все мы знаем, что стандартный переменный синусоидальный ток записывается как i = I m Sinωt. Нас просят найти действующее значение этого тока. Как вы рассчитываете? Я буду использовать аналитический метод или, откровенно говоря, формулу для среднеквадратичного значения.На рисунке ниже показана форма синусоидального сигнала переменного тока.

Шаг-1: Определите период времени T сигнала.

Период времени T сигнала равен 2π, как видно из его формы сигнала.

Шаг 2: Используйте формулу.

В нашем примере мы положим в формулу T = 2π и f (x) = I м Sinωt.

RMS Значение синусоидального переменного тока рассчитывается, как показано ниже.

Таким образом, действующее значение синусоидального переменного тока или напряжения равно пиковому значению тока / напряжения, деленному на √2.

Среднеквадратичное значение комплексной волны

Давайте рассмотрим сложную волну, чтобы проиллюстрировать метод или формулу для расчета среднеквадратичного значения. Предположим, что ток, имеющий уравнение i = A1Sinωt + A2Sin3ωt + A3Sin5ωt, протекает через сопротивление R. Поскольку этот ток состоит из основной составляющей тока вместе с гармонической составляющей 3 rd и 5 th , эффект нагрева такого сложного тока для один период времени T будет обусловлен индивидуальным тепловым эффектом основной гармоники, а также 3 rd и 5 th гармонических составляющих.

Нагрев за счет основного тока = (A1 / √2) 2 RT

Нагрев из-за 3 rd Гармонический ток = (A2 / √2) 2 RT

Нагрев из-за 5 th Гармонический ток = (A3 / √2) 2 RT

Следовательно, общий нагрев комплексным током будет суммой отдельных нагревательных эффектов основной гармоники и составляющих 3 rd и 5 th гармонических составляющих тока.

Если I — среднеквадратичное значение комплексного тока, то эквивалентный эффект нагрева будет I 2 RT.Но по определению это должно быть равно нагреву, фактически производимому комплексным током. Следовательно,

Следовательно, для сложной волны правило выглядит следующим образом:

«Действующее значение комплексной волны тока или напряжения равно квадратному корню из суммы квадратов действующего значения ее отдельных компонентов».

Формула среднеквадратичного значения

Формулы для среднеквадратичного значения приведены в таблице ниже.

Среднеквадратичное значение — обзор

8.4.4.2.2 Временная область

В главе 5 тома I мы представили подход во временной области к решению проблемы случайного отклика; в главе 7 тома I мы расширили обсуждение до систем с несколькими степенями свободы. Процедура буфета во временной области проста и относительно проста по концепции. Он основан на предположении, что анализ «шведского стола» со стационарными случайными и эргодическими силами и численное решение во временной области, если оно достаточно продолжительное, даст соответствующие статистические результаты.Действительно, Broussinos и Kabe (1990) использовали подход во временной области для проверки соответствующего решения в частотной области, где мощность возбуждения и спектральная плотность перекрестной мощности были получены из временных диаграмм силы удара.

Историю времени возбуждения буфета можно составить двумя способами. Первый из них, как обсуждалось выше, где графики силы во времени генерируются из данных испытаний в аэродинамической трубе. Второй устанавливает хронологию на основе существующих функций спектральной плотности мощности возбуждения.Поскольку площадь под функцией спектральной плотности мощности является среднеквадратичным значением, мы можем вычислить среднеквадратичное значение для каждой спектральной линии, предполагая, что она охватывает площадь на полпути к соседним спектральным линиям. Затем мы можем приравнять каждый из них к синусоидальной функции с соответствующей частотой и амплитудой спектральной линии, что даст такое же среднеквадратичное значение. Мы не можем установить с помощью функции спектральной плотности мощности фазовое соотношение между ее различными спектральными компонентами. Однако, поскольку мы знаем, что хронология случайна по своей природе, предполагая, что фазовое соотношение между различными гармоническими составляющими является случайным, мы можем разработать случайную хронологию, которая имеет желаемую функцию спектральной плотности мощности.

Среднеквадратичное значение синусоидальной функции амплитуды A равно

(8.4-74) A2¯ = 1T∫0TA2sin2ωtdt = A2 / 2

Следовательно, при данном среднеквадратичном значении спектральной линии эквивалентная синусоидальная амплитуда будет быть квадратным корнем из удвоенного значения. Суммирование синусоидальных функций, по одной для каждой спектральной линии, при назначении каждой фазового угла θj, произвольно проведенного между 0 и 2π, дает искомую временную диаграмму,

(8,4-75) f (t) = 2∑j = 1Nfj2¯sin (ωjt + θj)

где fj2¯ — среднеквадратичное значение, полученное из функции спектральной плотности мощности для j-й спектральной линии.Обратите внимание, что N должно быть достаточно большим, а спектральные линии должны доходить до частоты Найквиста. Это может потребовать добавления дополнительных спектральных линий к спектральной плотности мощности путем интерполяции между существующими частотами.

Учитывая хронологию функции форсирования буфета, полученную непосредственно из испытаний в аэродинамической трубе или выведенную из функций спектральной плотности мощности, теперь мы можем численно интегрировать уравнения движения, используя процедуры из тома I,

(8.4-76) [I] {q¨ (t)} + ([D] + [N˙]) {q˙ (t)} + ([ωn2] — [N]) {q (t)} = [ ϕ] T {f (t)}

Ур. (8.4-76) был получен в разделе 8.4.2 этой главы и включает аэродинамическое демпфирование и жесткость [N˙] и [N], соответственно. Опыт показывает, что эти термины не имеют значения при вычислении ответов о буфете и поэтому могут быть исключены. Однако при желании условия всегда можно сохранить. Кроме того, поскольку функции принуждения имеют ноль средних, имитация автопилота не требуется для стабильности, хотя включение этого обычно увеличивает эквивалентное демпфирование в нижних режимах .Временные истории, полученные с помощью формул. (8.4-76) теперь можно использовать для вычисления временной истории интересующих физических величин, таких как нагрузки, смещения и ускорения. По ним можно вычислить среднеквадратические значения каждого параметра; для нагрузок, например, вычисление будет:

(8.4-77) {L2¯} = 1T∫0T {L2 (t)} dt

, где {L2¯} содержит среднеквадратичные значения, полученные из историй времени загрузки , {L (t)}, а T — длительность временных историй. Квадратные корни из членов в {L2¯} являются искомыми среднеквадратичными значениями.

Как только истории времени отклика буфета станут доступны, они могут быть использованы либо непосредственно в комбинации Монте-Карло с историями времени других участников, такими как реакции турбулентности / порыва, либо они могут быть использованы для получения среднеквадратичных значений, которые могут быть используется напрямую или в уравнении сочетания нагрузок. В подходе Монте-Карло, например, сегменты историй времени отклика «шведского стола» будут выбираться случайным образом из более длинных временных историй и объединяться со случайно выбранными, но более короткими историями времени отклика турбулентности / порыва; другие участники также могут быть включены.Пиковые значения будут извлечены из каждой комбинации, разработаны гистограммы и определены уровни статистической вложенности. В подходе уравнения комбинации нагрузок среднеквадратичные значения будут использоваться для определения соответствующих средних значений распределения Рэлея и дисперсных частей, которые затем могут быть объединены с соответствующими значениями от других участников. Оба подхода подробно обсуждаются в главе 7.

Длина временной истории, T, требует дальнейшего обсуждения.В подходе «временной области» предполагается, что временные истории вынуждающих функций и, следовательно, временные истории отклика являются стационарными, случайными и эргодическими. Это, следовательно, требует, чтобы продолжительность вынуждающих функций была достаточно большой, чтобы давать сходящиеся статистические результаты. Требуемая длина может быть установлена ​​путем сравнения среднеквадратичных значений, полученных для увеличения продолжительности временной истории. Например, можно начать с временной истории, скажем, 10 с и вычислить среднеквадратичное значение отклика, затем увеличить продолжительность и пересчитать среднеквадратичное значение.Это можно повторять до тех пор, пока значения не сойдутся в пределах желаемого допуска. Следует отметить, что чем ниже основная частота упругой моды системы, тем длиннее должна быть временная история. Тридцать-шестьдесят секундные истории были успешно использованы, и для систем с очень низкими фундаментальными частотами моды длительность временной истории пришлось увеличить до 100 с.

В главе 5 тома I среднеквадратичные значения хронологий бесконечной продолжительности получены аналитически и показаны как эквивалентные значениям, полученным в частотной области.Кроме того, в главе содержится закрытое решение вопроса о продолжительности. Получено соотношение, которое устанавливает длину функции принуждения, которая требуется, так что в среднем средний квадрат находится в пределах указанного допуска решения бесконечной длины. Отношение является функцией собственной частоты, связанной с любой данной модой .

Среднеквадратичные значения, вычисленные, как описано выше, будут очень близки к значениям, полученным путем извлечения квадратного корня из площади под соответствующими кривыми спектральной плотности мощности, полученными в анализе частотной области, который использовал спектральную плотность мощности и спектральную плотность перекрестной мощности. форсирующие функции, полученные из временных историй форсирующих функций.Однако выполнение анализа во временной области дает ряд преимуществ:

(1)

Временные истории различных нагрузок могут быть объединены, и синхронизация по времени будет правильной. Затем можно вычислить среднеквадратичные значения с объединенной временной историей. Это может уменьшить ненужный консерватизм за счет использования временной фазировки, чего нельзя добиться с помощью частотной области, если комбинация нагрузок является нелинейной, например, комбинируя две ортогональные компоненты нагрузки.

(2)

Размер вычислительной задачи может быть уменьшен, поскольку для вычисления правильных нагрузок в частотной области следует использовать кросс-спектры вынуждающих функций. Они часто игнорируются или используются лишь частично для экономии вычислительных ресурсов. Подход во временной области включает строгое правильное фазирование между всеми функциями форсирования при условии, что они были измерены в одном и том же испытании в аэродинамической трубе.

(3)

Историю времени отклика можно использовать в последующих анализах, таких как комбинация нагрузок Монте-Карло.

(4)

Доступность хронологии имеет большое значение для понимания физического поведения системы.

Среднее и действующее значение переменного тока и напряжения

Постоянный ток течет только в одном направлении. Переменный ток время от времени меняет направление потока в цепи. В постоянном токе напряжение источника не меняет своей полярности. В переменном токе напряжение источника меняет свою полярность с положительной на отрицательную.

На рисунке 1 показаны величина и полярность переменного напряжения. Начиная с нуля, напряжение возрастает до максимума в положительном направлении. Затем он возвращается к нулю. Затем он возрастает до максимума с противоположной полярностью и возвращается к нулю.

Рисунок 1. Ток и напряжение переменного тока.

Текущая волна также нанесена на график. Он показывает течение тока и направление потока. Выше нулевой линии ток течет в одном направлении.Ниже нулевой линии ток течет в обратном направлении.

График на рис. 1 представляет мгновенные значения тока и напряжения в любой точке цикла. Но что такое цикл? Цикл — это последовательность или цепочка событий, происходящих в период времени. Цикл переменного тока можно описать как полный набор положительных и отрицательных значений переменного тока.

Переменный ток в вашем доме меняет направление 120 раз в секунду. Он имеет частоту 60 циклов в секунду (60 Гц). Частота , измеряемая в циклах в секунду или герцах (Гц), — это количество полных циклов, происходящих в секунду. Если за одну секунду происходит 60 циклов, то период времени для одного цикла составляет 1/60 секунды или 0,0166 секунды. Это период цикла . Снова обратитесь к Рисунок 1 . Максимальный подъем формы волны показывает амплитуду волны, включая пиковое (самая высокая точка) напряжение и ток.

Мы узнали, что индуцированный ток во вращающемся проводе в магнитном поле течет сначала в одном направлении, а затем в другом.Это было определено как переменный ток. Следует запомнить два момента: :

• Частота этого цикла событий увеличивается с увеличением скорости вращения.

• Амплитуда индуцированного напряжения зависит от силы магнитного поля.

Векторы

При решении задач, связанных с переменным током, векторы используются для обозначения величины и направления силы. Вектор — это прямая линия, проведенная в масштабе, который представляет единицы силы.Стрелка на линии показывает направление силы. Длина вектора показывает величину.

Развитие волны переменного тока показано на Рис. 2 . Эта волна исходит от якоря с одной катушкой, представленного вращающимся вектором, совершающим один оборот через магнитное поле .

Предположим, что пиковое индуцированное напряжение составляет 10 вольт. Используя шкалу, в которой один дюйм равен пяти вольтам, вектор составляет два дюйма или 10 вольт. Предполагается, что векторы такого характера вращаются против часовой стрелки.

Рисунок 2. Развитие синусоидальной волны. Слева вращающийся вектор. Справа — один цикл синусоиды.

Временная база на рисунке 2 — это линия с любым удобным масштабом. Он показывает период одного цикла или оборот вектора. База времени сгруппирована в сегменты, которые представляют время для определенных градусов вращения во время цикла.

Например, при повороте на 90 градусов используется четверть периода времени.При повороте на 270 градусов используются три четверти периода времени. Волна создается путем построения графика амплитуды напряжения в любой момент вращения относительно временного отрезка. Развитая волна называется синусоидой .

Мгновенные наведенные напряжения пропорциональны синусу угла θ (тета), который вектор образует с горизонталью. Затем мгновенное напряжение можно найти в любой точке цикла, используя следующее уравнение:

$ e = {{E} _ {\ max}} \ times \ sin \ theta $

(Обратите внимание, что буква e в нижнем регистре использовалась для обозначения мгновенного напряжения вместо обычного верхнего регистра.{o}} = 100 В \ times 0,707 = 70,7 В $

Средние и среднеквадратичные значения

Исследование различий между волной переменного тока и постоянным током поднимает ключевой вопрос. Каково действительное значение волны переменного тока? Напряжение и ток постоянно меняются и достигают пикового значения только дважды за цикл.

Часто требуется среднее значение волны. Среднее значение — это математическое среднее всех мгновенных значений в течение одного полупериода переменного тока.Формулы для вычисления среднего значения из пикового значения (макс.) Любых волн переменного тока:

$ \ begin {matrix} {{E} _ {avg}} = 0,637 \ times {{E} _ {\ max}} \\ или \\ {{I} _ {avg}} = 0,637 \ times {{ \ operatorname {I}} _ {max}} \\\ end {matrix}

долл. США

Если известно E avg или I avg , преобразование для нахождения E max или I max может быть выполнено с использованием следующих уравнений.

$ \ begin {matrix} {{E} _ {\ max}} = 1,57 \ times {{E} _ {avg}} \\ или \\ {{I} _ {\ max}} = 1,57 \ times { {\ operatorname {I}} _ {avg}} \\\ end {matrix}

долл. США

Более полезным значением переменного тока является эффективное значение .Термин «эффективное значение» был получен от ученых, обнаруживших, что эффект нагрева переменным током эквивалентен постоянному току.

Указанный объем воды был нагрет с использованием заданного уровня постоянного напряжения. Затем такое же количество воды нагревали с помощью переменного тока. Напряжение переменного тока, которое вызывает нагрев, эквивалентный напряжению постоянного тока, было эффективным значением. Формулы для определения эффективного значения любого переменного напряжения или тока:

$ \ begin {matrix} {{E} _ {eff}} = 0,707 \ times {{E} _ {\ max}} \\ или \\ {{I} _ {eff}} = 0.707 \ times {{\ operatorname {I}} _ {\ max}} \\\ end {matrix}

долл. США

Где E max и I max — пиковые значения сигнала переменного тока. Если известны E eff или I eff , преобразование для нахождения пиковых значений может быть выполнено с использованием следующих уравнений.

$ \ begin {matrix} {{E} _ {\ max}} = 1,414 \ times {{E} _ {eff}} \\ или \\ {{I} _ {\ max}} = 1,414 \ times { {\ operatorname {I}} _ {eff}} \\\ end {matrix}

долл. США

Действующее значение также называется среднеквадратичным значением (среднеквадратичное значение) .Он получил такое название, потому что значение представляет собой квадратный корень из среднего значения всех токов в квадрате между нулем и максимумом волны. Токи возведены в квадрат, поэтому производимую мощность можно сравнить с постоянным током. Закон Ватта гласит: P = I 2 R.

Используя коэффициент 0,707, можно найти значение постоянного тока, равное переменному току. Например, , пиковый переменный ток 5 ампер вызывает тот же эффект нагрева в сопротивлении, что и постоянный ток 3.53 ампера. Подставляя значения в уравнение:

I eff = 0,707 × 5 ампер переменного тока = 3,53 ампера постоянного тока

Обратите внимание, что средние и действующие значения могут применяться как к волнам напряжения, так и к волнам тока.

Сдвиг фаз

На одной временной основе можно нарисовать несколько форм сигналов, чтобы показать фазовое соотношение между ними. На рис. 3 кривые E и I показывают напряжение и ток в данной цепи. Ток и напряжение растут и падают одновременно.Они пересекают нулевую линию в одной и той же точке. Ток и напряжение совпадают по фазе. Синфазное состояние существует только в чисто резистивной цепи .

Рисунок 3. Эти волны тока и напряжения синфазны.

Часто ток опережает или отстает от напряжения , Рисунок 4 . Когда волна тока опережает или отстает от волны напряжения, говорят, что две волны находятся в противофазе. Это создает фазовый сдвиг между двумя волнами.Смещение измеряется в градусах. Сдвиг фазы равен углу θ между двумя полярными векторами.

Рисунок 4. Эти волны тока и напряжения не в фазе.

Генератор переменного тока

Генератор переменного тока похож на генератор постоянного тока во многих отношениях с одним ключевым исключением. Коммутатор опущен. Концы катушек якоря выдвинуты до контактных колец. Щетки, скользящие по контактным кольцам, обеспечивают постоянное соединение с катушками.Ток во внешне подключенной цепи — это переменный ток.

В крупных промышленных генераторах магнитное поле вращается, и обмотки якоря размещаются в пазах неподвижной рамы или статора генератора. Этот метод позволяет генерировать большие токи в якоре, избегая передачи этих токов через движущиеся или скользящие кольца и щетки.

Вращающееся поле возбуждается через контактные кольца и щетки небольшим генератором постоянного тока, установленным на том же валу, что и вращающееся магнитное поле.Этот небольшой генератор постоянного тока называется возбудителем . Для магнитного поля необходимо постоянное напряжение. Коммерческие генераторы энергии преобразуют множество различных элементов (например, движущуюся воду, уголь, нефть, ветер, ядерную энергию) в электричество. Силовой механизм, который используется для вращения генератора, называется первичным двигателем, Рис. 5.

Рис. 5. Первичный двигатель, возбудитель и трехфазный генератор имеют общий вращающийся вал. Возбудитель обеспечивает электрическую энергию для генератора переменного тока.

Генератор переменного тока или генератор переменного тока

Генератор переменного тока (также называемый генератором переменного тока) используется в системе зарядки всех автомобилей США. Рисунок 6 показывает внутреннюю часть устройства, включая встроенный регулятор напряжения для управления выходом. Выходной сигнал выпрямляется с переменного тока на постоянный для зарядки аккумулятора и других электрических устройств в автомобиле.

Производители говорят, что генератор переменного тока имеет некоторые преимущества перед генератором постоянного тока.Эти преимущества включают более высокую производительность при более низких скоростях, а также безотказное обслуживание.

Рис. 6. Типичный генератор переменного тока (генератор переменного тока) показан на видах снаружи и в разрезе.

Среднеквадратичное значение переменного тока соответствует классу 12 по физике CBSE

Подсказка: Мы можем получить это с помощью выделения тепла за конкретное время dt. Это даст правильное значение среднеквадратичного значения переменного тока. $ I = {{I} _ {\ text {o}}} \ sin \ left (\ omega t \ right) $.{2}} Rt, \ int {tdt = t, \ int {\ cos \ left (\ omega t \ right) dt} = \ sin \ left (\ omega t \ right)}, \ sin \ left (2 \ pi \ right) = 0 $

Полный ответ:
Среднеквадратичное значение может быть сокращено до среднеквадратичного значения. Обнаруживается в переменном токе в устойчивой форме. Как только постоянный ток проходит через некоторое сопротивление в виде сопротивления, он создает тепловую энергию, подобную переменному току. Действующее значение переменного тока представлено как $ {{I} _ {rms}} $.

Значение чередования при столкновении с сопротивлением измеряется как $ I = {{I} _ {\ text {o}}} \ sin \ left (\ omega t \ right) $.{2}} {2} \\
& \ Rightarrow {{I} _ {rms}} = \ dfrac {{{I} _ {\ text {o}}}} {\ sqrt {2}} \\
\ end {align} \]

Итак, правильный ответ — «Вариант c».

Примечание:
Чтобы решить это уравнение, мы применим вывод для количества тепла, присутствующего в небольшом временном интервале. Тем самым мы сможем получить уравнение среднеквадратичного значения переменного тока. Мы также можем использовать прямую формулу для условия, если она нам известна. В уравнении \ [{{I} _ {rms}} = \ dfrac {{{I} _ {\ text {o}}}} {\ sqrt {2}} \] символ \ [{{I} _ {\ text {o}}} \] работает как пиковое значение.{2}} Rdt $ в начале вывода будет здесь полезен.

Пиковое и действующее значение переменного тока

Когда рассматривается постоянный ток, напряжение и ток постоянны, и нет проблем с указанием их величины, но когда рассматривается переменный ток, как переменное напряжение, так и ток изменяются от момента к моменту, и возникает проблема, как определить величину напряжения. и текущий. Напряжение и ток могут быть выражены в виде пикового среднего максимального тока или действующего значения, известного как среднеквадратичное значение.Утверждается, что при указании переменного напряжения или тока его пик, который также известен как максимальное значение, используется редко, поскольку он имеет значение только в два раза больше цикла. С другой стороны, нельзя использовать среднее или среднее значение, так как оно как положительное, так и отрицательное, и поэтому среднее значение равно нулю.

Какое среднее значение переменного тока?

Среднее значение переменного тока также называется средним значением тока, и оно равно значению постоянного тока, который передает по любой цепи тот же заряд, что и переменный ток.В случае одного, у которого два полупериода аналогичны, среднее или среднее значение за цикл равно нулю для таких переменных величин, среднее значение означает значение, определенное путем взятия среднего мгновенного значения в течение полупериода, с другой стороны, несимметричное переменное Ток определяется как полуволновой выпрямленный ток, где среднее значение означает значение с учетом всего цикла. Они могут быть применимы и к полупериоду, но нет необходимости находить среднее или среднее значение, чтобы можно было определить полупериод без нарушения компонентов всего текущего цикла.

Что означает действующее значение или эффективное значение переменного тока?

Значение плеча так или иначе известно как эффективное значение переменного тока, и оно задается постоянным током или напряжением, которое течет к заданному сопротивлению в течение заданного времени, которое выделяет такое же количество тепла, когда переменное напряжение прикладывается к такое же сопротивление за то же время.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *