Site Loader

Содержание

СебеВДом.ру — Шкала шумов

В описании тех или иных бытовых приборов часто приходится видеть упоминания о такой характеристике, как уровень шума. Параметр указывается цифрами, без комментариев, например «до 42 дБ» или «69 дБ» и прочее. Непосвященному человеку, конечно, разобраться в этом будет сложновато – как минимум, придется открыть «Яндекс» или «Гугл» в поисках понятных и нехитрых объяснений. 

Именно поэтому мы решили привести некоторые простые примеры, относительно того, что же скрывается за сухими цифрами. Для этого мы построили специальный список, где можно легко и быстро найти интересующую информацию, а главное без лишних усилий понять, что это такое.

Шкала шумов 

0 дБ Ничего не слышно – понятно; 
5 дБ Почти не слышно, то есть с трудом уловимые звуки, которых некоторые даже могут не услышать;
10 дБ Почти не слышно. Такой звук сравним с отдаленным шелестом листьев. Тихий звук также слегка уловим;
15 дБ Едва слышно. Более отчетливый шелест листвы при небольшом порыве ветра; 

20 дБ Едва слышно, но уже различимо. Такой звук схож с шепотом человека на расстоянии одного метра;
25 дБ Шепот человека, на расстоянии менее одного метра; 
30 дБ Тихо. Вполне отчетливый шепот, также звук сравним с тиканьем настенных часов. Следует отметить, что этот максимум допустим по нормам для квартир и жилых помещений ночью, с 23:00ч до 7:00 ч.; 
35 дБ Довольно слышно. Слегка приглушенный разговор людей; 
40 дБ Обычная повседневная речь, спокойный разговор людей. Этот порог является дневной нормой для жилых помещений, с 7:00 ч до 23:00ч.; 
45 дБ Слышно. Обычный разговор с присутствием неких ноток возмущения или эмоциональности; 
50 дБ Отчетливый разговор людей. Звук также сравним с работой пишущей машинки; 
55 дБ Отчетливый разговор нескольких людей.
Такой предел является верхней нормой для офисных помещений класса «А». Примером таких офисов являются новые здания, бизнес-центры, где, как правило, располагается руководство или филиалы зарубежных фирм; 
60 дБ Шумно. Атмосфера является нормой для рядовых офисов, контор, где ведется непрерывное общение с клиентами по телефону, различные переговоры и работа офисной техники;
65 дБ Шумно. Звук характеризуется громкими разговорами на расстоянии одного метра; 
70 дБ Несколько шумнее. Громкие разговоры людей, на расстоянии ближе одного метра; 
75 дБ Громкие разговоры, перерастающие в крик или смех, ближе одного метра; 
80 дБ Очень шумно. Постоянный крик, звук мотоцикла с глушителем; 
85 дБ Постоянный, весьма громкий крик, также мотоцикл с глушителем; 
90 дБ Очень шумно, в окружении нескольких громких криков. Звук грузового железнодорожного вагона в семи метрах; 
95 дБ Очень шумно. Вагон метро снаружи или внутри вагона; 
100 дБ Крайне шумно. Раскаты грома. Heavy Metal концерт. Данный порог – максимально допустимое звуковое давление для наушников плеера; 
105 дБ Крайне шумно. Звук, характерный для самолетов, до 80-х годов ХХ столетия;
110 дБ Вертолет; 
115 дБ Пескоструйный аппарат, отбойный молоток на расстоянии более одного метра; 
120 дБ Пескоструйный аппарат, отбойный молоток на расстоянии менее одного метра; 
125 дБ Почти невыносимо. Самолет на старте; 
130 дБ Болевой порог; 
135 дБ Контузия;
140 дБ Контузия. Звук взлетающего реактивного самолета на расстоянии одного метра; 
145 дБ Контузия. Старт ракеты;
150 дБ Контузия, с получением травм средней тяжести;
155 дБ Контузия, с тяжелыми травмами;
160 дБ Шок, контузия, крайне тяжелый травмы. Ударная волна сверхзвукового самолета; 
160 дБ — 200 дБ Возможен разрыв барабанных перепонок и легких; 
Более 200 дБ Смерть. 

Будьте внимательны и осторожны при выборе крупной бытовой техники, а также электроинструмента для тяжелых работ. Слишком сильный шум может навредить. Однако чтобы уберечь слух в обычном ритме жизни, есть несколько простых советов:

— Любой посторонний шум, даже тот, к которому вы привыкли, все равно, так или иначе, действует на организм. Поэтому, если вы собираетесь делать дома ремонт, то для снижения шума лучше применять шумоизолирующие экологичные материалы; 

 — Не стоит увеличивать громкость звука в наушниках плеера, для того, чтобы заглушить внешние источники шума (например, в метро или на улице). Так как при этом увеличивается и электромагнитное излучение от динамика наушника, что неблагоприятно сказывается на головной мозг. Вообще наушники желательно использовать «накладные», а наушники-вкладыши – индивидуально «подгонять» под ухо;  

— Во время активного отдыха, например, при подводном погружении, следует вовремя продуваться (проводить продувание ушей глотательным движением или зажав нос), чтобы не произошел разрыв барабанной перепонки.

Прыгая с парашютом — также необходимо своевременно выравнивать давление, дабы не получить баротравму. Ее последствия: шум и звон в ушах, снижение слуха, боль, и даже тошнота и головокружение;

— Давайте своим ушам чаще отдыхать. Послушайте тишину.

Секреты тихого дома — Acoustic Group

«Идеи вашего дома», №11 2001

Шум — малоприятный спутник человеческой жизни, один из главных виновников наших стрессов, раздражительности и общей усталости организма. Но и другая крайность — абсолютная тишина нам тоже, оказывается, не подходит, поскольку держит нервную систему в постоянном напряжении: почему так тихо? не случилось ли чего? Как же обеспечить допустимый уровень шума в доме?

Акустика помещения: звукоизоляция и звукопоглощение

Наш дом переполнен звуками. Это и журчание льющейся из крана воды, и шипение сковородки на плите, и скрип дверей, и шарканье тапочек, и многоголосие работающих бытовых приборов (холодильника, пылесоса, стиральной машины, музыкального центра, телевизора, систем кондиционирования и принудительной вентиляции), и многое другое.

Свою ноту в общий хор вносят звуки с улицы и от соседей. Все это вместе образует так называемый бытовой шум. Говоря о нем, имеют в виду не отдельные звуки, каждый из которых характеризуется своими амплитудой и частотой, а целый их спектр в диапазоне частот, воспринимаемых нашим ухом.

В терминологии архитектурно-дизайнерских проектов прочно укоренилось понятие «акустика помещений». На практике оно подразумевает решение двух взаимосвязанных проблем: защиты помещения от звуков извне и обеспечения качественного распространения полезных звуков внутри него. Обе предполагают снижение энергии звуковых волн, но первая — при прохождении их сквозь преграду (это называется звукоизоляцией), а вторая — при отражении от преграды (звукопоглощение).

Схема сочетания двух наиболее характерных звукоизолирующих конструкций: многослойной перегородки и «плавающего» пола
1. Плита перекрытия
2. Выравнивающая стяжка
3. Металлическая направляющая
4. Теплый пол
5. Шумо- и гидроизолирующая прокладка
6. Стяжка
7. Плитка
8. Плинтус
9. Гипсокартон
10. Звукопоглощающий заполнитель
11. Металлические стойки с шагом 600 мм.

До настоящего времени акустикой жилья в России занимались недостаточно. Во-первых, из соображений экономии (по утверждению специалистов проектной компании «СВЕНСОНС», таким образом стоимость строительства снижалась более чем на 30%). Во-вторых, из-за отсутствия контроля над соблюдением нормативных характеристик по акустике жилых помещений. Практическим шагом к устранению этих причин можно считать изданные в 1997 году московские городские строительные нормы 2.04-97 «Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях», принятые к использованию в столице.

Производители акустических материалов интенсивно расширяют ассортимент своей продукции. Усилиями таких фирм, как французская SAINT-GOBAIN (заводы ECOPHON в Швеции и ISOVER в Финляндии), датская ROCKWOOL, финская PAROC, голландская THERMAFLEX, американская DOW CHEMICAL Co., итальянская IDEX, португальская IPOCORC, а также производителей акустических подвесных потолков — американских ARMSTRONG, USG, немецкого AMF, отечественных «АКУСТИЧЕСКИЕ МАТЕРИАЛЫ», «СИЛИКА», «ЭСТ», совместных российско-германских ТИГИ-KNAUF, «ФЛАЙДЕРЕР-ЧУДОВО» и ряда других — наш рынок постепенно наполняется строительными материалами этого направления.

Шум воздушный и шум структурный

Звукопоглощающие плиты «Шуманет-БМ»

Различают два вида шума по характеру его распространения в помещении: шум воздушный и шум структурный.

В первом случае вибрации, создаваемые, например, динамиками работающего телевизора, вызывают звуковые волны в форме колебаний воздуха. Вне помещений этот вид шума преобладает. В первых 16 строках нашей таблицы приведены наиболее распространенные в быту источники, шум от которых превышает нормативный уровень (40 дБА в дневное время, 30 дБА ночью — согласно СНиПу II-12-77).

Источником шума может быть и механическое действие, например перемещение мебели по полу или забивание гвоздя в стену. Такой шум называют структурным. «Работает» он по следующей схеме: вибрация пола от наших шагов передается стене, а ее колебания слышны в соседнем помещении. Самый неприятный структурный шум — ударный. Он обычно распространяется на большие расстояния от источника. Скажем, стук по трубе центрального отопления на одном этаже слышен на всех остальных и воспринимается жильцами, как если бы его источник находился совсем рядом. Последние 4 строки таблицы содержат характеристики источников именно такого шума.

Некоторые бытовые приборы являются источниками обоих видов шума. Например, система принудительной вентиляции. Воздушный шум проникает в помещение по воздуховодам, а структурный возникает в результате вибрации стенок защитного кожуха вентилятора и самих воздуховодов.

Источники бытового шума

Источник шума
Уровень шума, дБА
Музыкальный центр 85
Телевизор 70
Разговор (спокойный) 65
Детский плач 78
Игра на пианино 80
Работа пылесоса 75
-«- стиральной машины 68
-«- холодильника 42
-«- электрополотера 83
-«- электробритвы 60
-«- принудительной вентиляции 42
-«- кондиционера 45
Вытекающая из крана вода 44-50
Наполнение ванны 36-58
Наполнение бачка в санузле 40-67
Приготовление пищи на плите 35-42
Перемещения лифта 34-42
Стук закрываемой двери лифта 44-52
Стук закрываемого мусоропровода 42-58
Стук по трубе центрального отопления 45-60

Звук и шум

В разговорах часто используют два близких по смыслу слова: «звук» и «шум». Звук — это физическое явление, вызванное колебательным движением частиц среды. Звуковые колебания имеют определенную амплитуду и частоту. Так, человек способен слышать звуки, различающиеся по амплитуде в десятки миллионов раз. Воспринимаемые нашим ухом частоты располагаются в диапазоне от 16 до 20000 Гц. Энергетика звука характеризуется интенсивностью (Вт/м2) или звуковым давлением (Па). Природа наделила нас способностью слышать и раскаты грома, и малейший шелест листвы. Для оценки столь разных звуков приняты показатель уровня интенсивности звука L и особые единицы измерения — децибелы (дБ). Кстати, порог слышимости человека соответствует звуковому давлению 2*10-5 Па или 0 дБ. Что касается шума, то он представляет собой хаотичное, нестройное смешение звуков, отрицательно действующее на нервную систему.

Чувствительность человеческого уха к очень низким и очень высоким частотам хуже, чем к частотам речевого диапазона (500-4000 Гц). При измерениях необходимо учитывать эту особенность слуха. В приборе шумомере используют особую шкалу «А» с единицами измерения «децибелами А» (дБА). В речевом диапазоне они почти совпадают с обычными децибелами.

Физиологической характеристикой звука служит его громкость. Снижение уровня интенсивности звука L на 10 дБ субъективно ощущается как уменьшение громкости в 2 раза, а на 5 дБ — как уменьшение громкости на треть. Организм человека неодинаково реагирует на шум разного уровня и частотного состава. В диапазоне 35-60 дБА реакция индивидуальна (по типу «мешает — не мешает»). Шумы уровня 70-90 дБА при длительном воздействии приводят к заболеванию нервной системы, а при L более 100 дБА — к снижению остроты слуха разной степени тяжести, вплоть до развития полной глухоты.

Способы изоляции шума

Крепление панели производится шурупом длиной 120 мм, пропускаемым через силиконовую вставку в панели

Избавить свой слух от нежелательных звуков можно двумя способами: снизив уровень шума источника или установив на пути акустических волн преграду. При выборе бытовых приборов желательно ориентироваться на те, у которых собственный шум при работе не превышает 40 дБА.

Уровень шума, проникающего извне, ограничивают уже на стадии строительства. Это достигается в результате соблюдения нормативных требований к звукоизоляции жилых помещений. «Шумящие» зоны (кухня, ванная комната, туалет) объединяют в отдельные блоки, граничащие с лестничными клетками или аналогичными блоками соседних квартир. Если же главные источники шума находятся за пределами жилья, а желанной тишины все равно нет, следует уделить особое внимание дополнительной звукоизоляции конструкций, ограждающих помещения сбоку, сверху и снизу. К ним чаще всего относятся:
— разделяющие стены и перегородки;
— полы и потолки, включая их стыки со стенами и перегородками;
— оконные блоки, межкомнатные и балконные двери;
— а также встраиваемое в стены и потолок оборудование и инженерные коммуникации, способствующие распространению шума.

Звукоизолирующая способность ограждающих конструкций, применяемых в строительстве, оценивается усредненными значениями индексов звукоизоляции Rw и Lnw. Для домов категории «А» (самой высокой) они должны составлять 54 и 55 дБ соответственно, для домов категории «Б» — 52 и 58 дБ и, наконец, для домов категории «В» — 50 и 60 дБ.

Защита от воздушного шума сбоку

Любое помещение ограничено стенами, которые представляют собой преграды для звуковых волн. Эти конструкции бывают двух типов: однослойные, чаще монолитные (кирпичные, железобетонные, каменные и другие), и многослойные, состоящие из листов разных материалов. Повысить звукоизоляцию ограждений можно следующими способами:
— сделать так, чтобы звуковая волна не смогла заставить преграду колебаться, передавая при этом звук внутрь помещения;
— добиться поглощения и рассеивания энергии звуковой волны внутри ограждающей конструкции.

Многослойная структура панели ЗИПС

Первый путь требует, чтобы преграда была или массивной (тяжелой), или жесткой. Второй реализуется с помощью многослойных конструкций из пористых и волокнистых материалов. Чем тяжелее и толще монолит и выше частота звука, тем меньше стена вибрирует, и, значит, ее звукоизолирующая способность лучше. Впрочем, связь между этими параметрами не прямая. Так, бетонная стена довольно распространенной толщины 140 мм обеспечивает при частоте 300 Гц звукоизоляцию всего в 39 дБ, а при частоте 1600 Гц — порядка 60 дБ. Повышение значения индекса Rw путем увеличения массы конструкции не столь эффективно, как кажется. Если оштукатуренная стена в полкирпича (толщиной 150 мм) даст звукоизоляцию в 47 дБ, то оштукатуренная стена толщиной в кирпич — только 53-54 дБ. Иными словами, удвоение массы улучшит звукоизоляцию всего на 6-7 дБ.

Многослойная конструкция состоит из листов разных материалов, между которыми может находиться и воздушная полость. В такой структуре вибрации затухают быстрее, чем в однородном материале. Звукоизоляционные свойства «слоеной» перегородки сравнительно небольшой плотности сопоставимы со свойствами монолитной стены. Так, перегородка толщиной 150 мм с 40-миллиметровым слоем заполнителя из минеральной ваты и воздушной полостью в 100 мм, обшитая снаружи сдвоенными гипсокартонными листами толщиной 12,5 мм каждый, обеспечит звукоизоляцию Rw = 52 дБ. Этого вполне достаточно для защиты от шума, создаваемого распространенными в быту источниками.

Словарик

Акустика (в практическом смысле слова) — учение о звуковых волнах в диапазоне частот, воспринимаемых человеческим ухом (от 16 Гц до 20 кГц). Применительно к помещению различают архитектурную акустику, предмет которой — распространение полезных звуковых волн в помещении, и строительную акустику, занимающуюся изоляцией помещения от проникновения звуков извне.

Звукоизоляция — снижение уровня звукового давления при прохождении волны сквозь преграду. Эффективность ограждающей конструкции оценивают индексом изоляции воздушного шума Rw (усредненным в диапазоне наиболее характерных для жилья частот — от 100 до 3000 Гц), а перекрытий — индексом приведенного ударного шума под перекрытием Lnw. Чем больше Rw и меньше Lnw, тем лучше звукоизоляция. Обе величины измеряются в дБ.

Звукопоглощение — снижение энергии отраженной звуковой волны при взаимодействии с преградой, например со стеной, перегородкой, полом, потолком. Осуществляется путем рассеивания энергии, ее перехода в тепло, возбуждения вибраций. Звукопоглощение оценивают по среднему показателю в диапазоне частот 250-4000 Гц и обозначают с помощью коэффициента звукопоглощения aw. Этот коэффициент может принимать значение от 0 до 1 (чем ближе к 1, тем соответственно выше звукопоглощение).

Акустические материалы — строительные изделия (чаще всего в виде листов, плит, матов или панелей), предназначенные для изменения характера распространения звуковых волн в помещении. Способствуют комфортному воспроизведению звуков в соответствии с особенностями человеческого слуха. Подразделяются на звукопоглощающие и звукоизолирующие, причем последние могут предназначаться для изоляции либо от воздушного, либо от структурного шума.

Звукопоглощающие материалы

Установка в межкомнатную перегородку звукопоглощающей панели со слоистой структурой

В качестве заполнителя чаще всего используют плиты из стекловолокна фирм ISOVER и PFLEIDERER, из минеральной ваты ROCKWOOL и PAROC, а также акустические материалы со слоистой или ячеистой структурой других фирм. Сами по себе эти изделия не спасают помещение от проникновения шума, но, включенные в состав перегородки, способны улучшить ее звукоизолирующую способность. Чем выше коэффициент звукопоглощения aw используемого материала, тем изолирующие свойства лучше.

Полимерно-
битумная мембрана Fonostop Duo фирмы INDEX

Материал может быть либо натуральным — минерального происхождения (базальтовая вата, каолиновая вата, вспученный перлит, вспененное стекло, шамот) или растительного (целлюлозная вата, камышитовая плита, торфоизоляционная плита, мат из льняной пакли, пробковый лист), либо синтетическим газонаполненным пластиком (пенополиэстр, пенополиуретан, пенополиэтилен, пенополипропилен и др. ). Наиболее долговечна минеральная вата из горных пород (чаще всего базальтовая). Среди ее дополнительных преимуществ менеджеры PAROC EXPORT называют гидрофобность, огнестойкость, паропроницаемость и экологическую безопасность. Зато стекловолокно, по утверждению специалистов фирмы «САН-ГОБЕН ИЗОВЕР», позволяет изготовить гораздо более легкие плиты, чем из минеральной ваты. Плесень и вредители в таких материалах не заводятся. Особенностью пенополистирола является низкая паропроницаемость (в 40-70 раз меньше, чем у минваты). В результате движение пара наружу осложняется, и при высокой влажности помещения требуется принудительное кондиционирование (для предотвращения отсыревания стен).

Один из примеров многослойных конструкций, монтируемых на существующую стену для дополнительной звукоизоляции, — достаточно легкие панели ЗИПС размером 500 х 1500 мм. В отдельных случаях с их помощью удается повысить индекс Rw межкомнатной перегородки на 8-13 дБ. Каждая панель состоит из чередующихся, различных по толщине слоев плотных гипсоволокнистых и мягких минераловолокнистых (стекловолокнистых) листов. Общая толщина конструкции составляет 70-130 мм. Специалисты фирмы «АКУСТИЧЕСКИЕ МАТЕРИАЛЫ» утверждают, что после монтажа панелей ЗИПС-Super на стену в один кирпич грохот соседской дискотеки, ранее сопоставимый по уровню шума с постоянно хлопающими дверями лифта, снизится до допустимых для жилья в дневное время 40 дБА.

Подбор звукопоглощающих материалов, расчет количества и толщины листов, а также величины воздушной полости лучше поручить специалисту. Лишь в этом случае эффективность звукоизоляции помещений будет максимальной при вложенных средствах.

Звукопоглощающие материалы для многослойных звукоизолирующих конструкций

Производитель Наименование Длина, ширина, толщина, мм Плотность, кг/м3 Коэффициент aw Цена 1 м2, $
ISOVER (Финляндия) Плита KL-E (стекловолокно) 1220 x 560 x 50 (100) 14 0,8-0,9 От 1
«ФЛАЙДЕРЕР- ЧУДОВО» (Россия) Плита П-15-П-80 (стекловолокно) 1250 x 565 x 50 15-80 0,8-0,9 От 1,2
ROCKWOOL (Дания) Мат Rollbatts (минеральная вата) 4000 x 960 x 50 30 0,9 10,45
PAROC (Финляндия) Плита IL (минеральная вата) 1320 x 565 x 50,
1170 x 610 x 50
30 0,9 2,2
«МИНЕРАЛЬНАЯ ВАТА» (Россия) Плита «Шуманет-БМ» (минеральная вата) 1000 x 600 x 50 45 0,95 3,5
«ЭКОВАТА» (Россия) Слой напыляемой целлюлозной ваты Толщина слоя 42-70* От 1,5
DOW CHEMICAL Co. (США) Лист Styrofoam (пенополистирол) 1200 x 600 x 20-120 30 От 8,5

* — площадь не ограничивается.

Защита помещения от проникновения шума снизу и сверху

Внешний вид окна с установленным вертикально проветривателем

Шумоизоляция помещения снизу и сверху определяется межэтажным перекрытием. Однако для защиты от структурного шума его пришлось бы сделать слишком толстым и тяжелым. В качестве дополнительного звукоизолятора можно смонтировать подвесной или подшивной потолок («Идеи вашего дома» N 5 за 2001 год, статья «Потолки для самых практичных»). А вот между нижней плитой и напольным покрытием (паркетом, линолеумом, ламинатом, ковролином) обычно стелют промежуточную эластичную подложку. Она заметно уменьшит шум ваших шагов, за что, кстати, сосед снизу должен быть вам благодарен.

Конечно, в этом случае не все однозначно. Так, индекс дополнительной шумоизоляции Rw акустических подвесных потолков не превышает 8 дБ, да и то без учета влияния структурного шума. Фирмы-производители вместо этого показателя приводят величину коэффициента шумоизоляции Dncw, которая имеет гораздо более высокое значение, но чаще всего не применима к жилым помещениям.

Гораздо эффективнее устройство звукоизолирующего пола. Он может монтироваться на лагах или на эластичном («плавающем») основании. Ударный шум снижают с помощью подложки из различных материалов. Например, из полимерно-битумной мембраны Fonostop Duo (фирма INDEX), технической пробки толщиной до 8 мм от фирмы IPOCORC или листов «Регупол», выполненных из резиновой крошки и полиуретана («РЕГУПЕКС»). Сверху делают бетонную стяжку толщиной 30-50 мм, а уже на нее настилают чистовое напольное покрытие. За счет малого модуля упругости материала подложки распространение ударного шума резко падает.

Встроенный в воздуховод глушитель системы принудительной вентиляции

ТИГИ-KNAUF предлагает свой шумоизоляционный «пирог». Различные комбинации его слоев в сочетании с листом полистирола толщиной 20-30 мм позволяют изменить индекс Lnw на 20-30 дБ для вибраций с частотой 150-3000 Гц. В среднем «плавающий» пол способен уменьшить этот индекс на 8-33 дБ для наиболее распространенных в быту шумов с частотами от 150 до 3000 Гц.

Спасаясь от шума, вы можете столкнуться с множеством неожиданных проблем. Например, при настиле линолеума с войлочной основой непосредственно на железобетонную плиту толщиной 220 мм шумоизоляция снизу нередко даже ухудшается на 1-3 дБ. Виновники неприятности — резонансные явления. Профессиональные акустики учитывают такие «подводные камни». В многоэтажных зданиях для борьбы с ударным шумом всегда применяют прокладочный материал. С его помощью защищают стыки несущих элементов. Довольно эффективно, скажем, рулонное кремнеземное волокно Supersil толщиной 6 мм. По данным НИИСФ, оно позволяет снизить индекс Lnw на 27 дБ. Волокно универсально, поскольку отличается еще и хорошим звукопоглощением. В качестве прокладочного материала удобно использовать также синтетическую ленту «Регупол».

Подбирая все эти изделия по толщине, прочности и долговечности, необходимо быть особенно внимательным и осторожным. Дело в том, что эластичные прокладки снижают жесткость конструкции ограждения. Чтобы ваше жилище не приблизилось по прочности к карточному домику, лучше все же дополнительные мероприятия по изоляции ударного шума производить с помощью специалиста-акустика.

шумоизоляционные прокладочные материалы

Производитель Наименование Длина, ширина, толщина, мм Плотность, кг/м3 Индекс Lnw, дБ Цена 1 м2, $
«СИЛИКА» (Россия) Мат Supersil (кремнеземное волокно) 30000 x 920 x 6-20 130-170 27 От 9,2
THERMAFLEX (Голландия) Рулон Termosheet (пенополиэтилен) L** x 1560 x 3-38 30-35 От 5
GATES RUBBER Co. (Шотландия) Рулон Tredaire* (пенополиэстр) 11000 x 1370 x 3 81 20 5,5
«ЗАВОД ЛИТ» (Россия) Рулон «Пенофол» (пенополиэтилен) От 5000 x 580 x 2-10 44-74 26-32 От 1,5
SAINT-GOBAIN (Франция) Стеклохолст Velimat LB 230 15000 x 1000 x 3 80 18 и 23**** 3
IPOCORK (Португалия) Рулон Ipocorc (пробка) 10000 x 100 x 2 500-560 18 От 3
«РЕГУПЕКС» (Россия) Лист «Регупол» (смесь резины и полиуретана) 2300 x 1150 x 6 (8, 10, 13) 870 17 (при толщине 6 мм) От 6,75
INDEX (Италия) Полимерно-битумная мембрана Fonostop Duo 10000 x 1000 x 8 250 33,5 5,5
«ЭСТ» (Россия) Лист «Энергофлекс» (пенополиэтилен) L*** x 1500 x 5-20 30 0,1-7,5

* — только под напольное покрытие; ** — длина не ограничивается; *** — длина любая в пределах 12 м; **** — при шумоизоляции, состоящей из двух слоев.

Шумоизоляция окон и дверей

Окна, балконные и межкомнатные двери тоже способствуют проникновению в помещение шумов. Причем улучшение шумоизоляции в данном случае находится в противоречии с проблемой обеспечения притока свежего воздуха. А поскольку устройство централизованной принудительной приточной вентиляции в жилых зданиях — слишком дорогое удовольствие, специалисты фирмы «АЭРОМАТИКА XXI ВЕК» предлагают другое решение: установить в каждое окно (горизонтально или вертикально) специальный шумозащитный вентиляционный клапан. Это может быть, например, оконный проветриватель модели «Аэромат 80». Такой прибор берет на себя сразу обе функции: снижает уровень шума и обеспечивает вентиляцию. Причем поступление свежего воздуха можно регулировать с помощью специального рычажного механизма. Максимально достижимая величина притока воздуха определяет величину индекса Rw: при 15 м3/ч он составляет 40 дБ, при 26 м3/ч — 36 дБ и при 70 м3/ч — 21 дБ. Эти же функции может выполнять и приточный клапан Aeropac 60/90 фирмы SIEGENIA. Он монтируется в простенке рядом с окном и подает наружный воздух через ПВХ-короб, создавая уровень собственного шума не выше 37 дБА.

Очень полезно знать уровень шума в вашем районе. В зависимости от этого показателя специалисты фирмы «БАМО» рекомендуют устанавливать разные варианты оконных рам. Оптимальное сочетание толщины стекла, количества полотен и размера промежутков между ними позволяет создать необходимую шумоизоляцию и при этом сохранить достаточную воздухопроницаемость окна. Но, разумеется, уровень шума в помещении даже при самом совершенном окне будет днем и ночью различным.

Балконную дверь всегда рассматривают как ограждение с неоднородными шумоизоляционными свойствами по высоте. Шумоизоляцию нижней, филенчатой части обеспечивают по аналогии с межкомнатной перегородкой, а остекленной верхней — так же, как окна.

Несколько практических рекомендаций

1. Перегородки должны опираться только на плиты перекрытия или ригели, расположенные между балками, но ни в коем случае не на лаги или полы. Проследите, чтобы чистовой пол и лаги двух соседних помещений не соприкасались. Это исключит передачу вибраций, возникающих при ходьбе.

2. Стены из строительного материала с ячеистой открытой структурой (например, из пористого бетона) должны быть тщательно оштукатурены. Так вы предотвратите проникновение звуковой волны сквозь поры.

3. Облицовывать многослойные межкомнатные перегородки гипсокартонными листами в два слоя лучше со смещением швов одного слоя относительно другого.

4. При встраивании осветительного оборудования в стены и потолок не забудьте тщательно заделать остающиеся щели и зазоры. Они могут значительно снизить индекс шумоизоляции ограждающей конструкции.

Герметизация помещения и шумоизоляция инженерного оборудования

Щели под дверью, зазоры и отверстия в стенах и перегородках, температурные и усадочные швы строительных конструкций всегда вредят шумоизоляции помещения. Так, 15-миллиметровая вентиляционная щель под межкомнатной дверью снизит Rw перегородки на целых 5-9 дБ. А сквозное отверстие для электророзеток в стене, разделяющей квартиры, даже при индексе Rw = 50 дБ позволит переговариваться с соседями. Именно по этой причине вентиляционные отверстия в межкомнатных дверях стоит снабдить закрывающимися шторками. Электророзетки же имеет смысл расположить со смещением по горизонтали, уничтожив таким образом лазейки для шума. Заметим, что в данном случае герметизация помещений одновременно решает задачи как теплоизоляции, так и шумоизоляции.

Также следует обратить внимание на шумоизоляцию встраиваемого в стены и потолок дополнительного оборудования. Например, имеет смысл возвести преграду на пути шума, распространяющегося по коробам и воздуховодам вентиляционных систем. Вопрос этот в каждом конкретном случае решается по-своему.

Требования по защите

Для исключения возможности возгорания звукоизолирующих материалов они должны относиться к классу негорючих (НГ), слабогорючих (Г1) или трудновоспламеняющихся (В1). Например, минеральная вата и стекловолокно — представители класса НГ, пенополистиролы и пробка — В1 (при обработке антипиреном). А вот пенополиуретан — горюч (класс Г). Утвержденных нормативных документов, содержащих правила безопасного применения горючих звукоизолирующих материалов, пока не существует. Именно поэтому при креплении таких изделий к деревянным стенам или деревянной обшивке стен следует принять меры, снижающие опасность их возгорания изнутри помещения. Скажем, установить за ними металлический лист. Плита из любого материала должна иметь гигиенический сертификат, подтверждающий отсутствие вредных для здоровья испарений. К сожалению, большинство перечисленных материалов под воздействием открытого огня дымятся и выделяют токсичные газы.

Офисные работники ежедневно тратят 86 минут на посторонние звуки

В большом городе

По данным исследования ВОЗ и European Commission’s Joint Research Centre, акустическое загрязнение находится на 2-м месте среди экологических причин плохого самочувствия после загрязнения воздуха. «Никакие другие опасности не стоят рядом с этими двумя, – говорит Рок Хо Ким, который координировал программу шума ВОЗ, цитирует эксперта New Scientist. По его словам, 340 млн жителей Западной Европы (на момент проведения работы) теряют около 1 млн лет жизни. Совокупные потери от загрязнения воздуха оцениваются в 4,5 млн лет здорового образа жизни в год.
От шума, который приводит к болезням сердца, европейцы в целом ежегодно теряют в общей сложности около 61 000 лет здоровой жизни, в 3000 случаях он становится причиной смерти, отмечает Рок Хо Ким.
В Европе, по данным ВОЗ, около 15% европейцев страдают от сильного раздражения из-за излишнего шума. В России около 35 млн человек – примерно 30% городского населения – подвержены существенному воздействию транспортного шума, отмечается в экологическом справочнике ru-ecology.
В Москве, по данным Роспотребнадзора, пятая часть всех жалоб касается именно повышенного шума в жилых кварталах. Основной вклад в акустическое загрязнение, как сотни лет назад, вносит транспорт: около 80%, по данным «Мосэкомониторинга». В средние века каменные мостовые возле домов устилали соломой. Сейчас прибегают к более прогрессивным методам. Один из них – защитные противошумные экраны на трассах при размещении вдоль автомобильных и железных дорог высотной застройки. Высота экрана может достигать 7–8 м для обеспечения шумозащиты, рассказали в Москомархитектуре.
Снижают уровень шума естественные защитные экраны – деревья, кустарники, даже газон. Так, однорядная посадка деревьев с живой изгородью из кустарника шириной 10 м снижает уровень шума на 3–4 дБ; такая же посадка, но двухрядная шириной 20–30 м – на 6–8 дБ, 3–4-рядная шириной 25–30 м – на 8–10 дБ и т. д.
Но кардинальное решение защиты зданий от шума – вывод транспортных потоков из жилых кварталов, считает Александр Ремизов, председатель правления НП «Совет по зеленому строительству», председатель Совета по экоустойчивой архитектуре Союза архитекторов России, руководитель архитектурного бюро Remistudio. В мире примеры новых жилых районов совсем или почти без машин есть. «Например, в Стокгольме новый район Stockholm Royal Seaport спроектирован таким образом, что автопоток движется вокруг кварталов, а внутри – пешеходная зона и подземные парковки».
Эффективный способ борьбы с городским шумом – объемно-планировочные решения. По словам Эрика Валеева, главы архитектурного бюро IQ, здания-пластины могут защитить от шума и загрязнения точечную, более низкую застройку. «Угол поворота и сама форма зданий может рассекать или поглощать звуковые волны, – рассказывает архитектор. – Можно выводить все коммуникации, стояки, лестничные клетки, коридоры на шумную сторону, создавая экран для жилых комнат, направленных в благоприятную, тихую зону».

ДИАПАЗОН СЛУХА ЧЕЛОВЕКА – ЧТО МЫ МОЖЕМ СЛЫШАТЬ?

Диапазон слуха человека включает в себя уровни громкости и высоты звуков, который может слышать человека, не чувствуя дискомфорта.

Нас окружает огромное количество разнообразных звуков, от едва слышимого пения птиц и шороха листьев до более громких звуков, таких как музыка, крик и промышленный шум. Этот набор звуков называется диапазоном слышимости.

Громкость и высота
Диапазон слухового восприятия человека включает высоту звуков (высокий или низкий звук) и громкость. Высота измеряется в герцах (Гц), громкость – в децибелах (дБ).

Для нормально слышащего человека диапазон слухового восприятия начинается на низких частотах, около 20 Гц. Это примерно соответствует самой низкой педали органа с лабиальными трубами. На другом конце диапазона находится самая высокая частота, которая не вызывает дискомфорта, на уровне 20,000 Гц. В то время как частоты от 20 до 20 000 Гц являются границами диапазона слухового восприятия человека, наш слух наиболее восприимчив в диапазоне 2000 — 5000 Гц.

Что касается громкости, человек слышит, начиная с уровня 0 дБ УЗД. Звуки на уровне выше 85 дБ УЗД могут быть опасны для вашего слуха, если их воздействие на вас длительное.

Вот несколько примеров привычных звуков, выраженных в децибелах:

Удивительно, но есть звуки, которые не могут слышать даже люди с безупречным слухом. Мы не можем улавливать звук собачьего свиста, но собака может, потому что у собак слуховой диапазон гораздо шире, чем у людей. Более низкие частоты, например, рев ветряной турбины, также находятся вне диапазона слухового восприятия и воспринимаются как вибрации, а не звуки.

Диапазоны восприятия у людей с нарушением слуха
Если у человека нарушен слух, то изменяется и диапазон его слухового восприятия. Для большинства людей потеря слуха будет сначала чувствоваться на высоких частотах. Пение птиц, некоторые речевые звуки, музыкальные инструменты (например, флейта) очень сложно услышать людям с потерей слуха.

Чтобы определить ваш диапазон слышимости, аудиолог проведет обследование вашего слуха и зафиксирует полученные результаты на аудиограмму – график, который показывает результаты теста слуха. Затем аудиолог перенесет результаты теста на другой график и сравнит его с показателями нормально слышащего человека. Специалисты по слухопротезированию используют данные аудиограммы для того, чтобы настроить слуховые аппараты.

Вот как выглядит аудиограмма´:

Левому уху соответствует голубая линия; правому — красная. Область под линией показывает уровни слуха, который человек может слышать, а область выше линии показывает уровни, которые человек не слышит.

Чтобы выяснить уровень вашего слуха, аудиолог будет предлагать вам несколько сигналов и просить вас поднять руку или нажать кнопку каждый раз, когда вы слышите сигнал. Обычно тест начинается с уровня, на котором вы можете слышать, а затем громкость будет уменьшаться, пока вы не сможете ничего слышать. Затем специалист повторит то же самое уже с более низкими или высокими частотами.

Этот тест также поможет определить ваш слуховой порог, то есть уровень, на котором вы не слышите. Этот порог наносится на график в виде двух отдельных линий для каждого уха.

Ваша аудиограмма может рассказать многое о вашем слухе, включая частоты и уровни громкости, на которых вы можете слышать. Это важная информация, так как каждый звук, который вы слышите, имеет свою частоту.
Пение птиц соответствует более высоким частотам, а звук тубы – низким частотам. 

Ниже показаны распространенные звуки, нанесенные на стандартную аудиограмму:

У человека с такой аудиограмма есть потеря слуха в левом ухе, что мешает ему слышать такие звуки, как пение птиц. Такому человеку будет легче слышать более низкие частоты (например, звук двигателя грузовика).

Следующий шаг
Вам кажется, что ваш слуховой диапазон не идеален? Обратитесь к  специалисту по слухопротезированию, чтобы пройти полное обследование. Он сможет определить, какие звуки вы слышите, а какие нет, и составит дальнейший план действий. 

Зайдите в раздел КОНТАКТЫ, чтобы найти ближайшего к вам специалиста.

Чувствительность микрофона — что это значит?

Аналоговые и цифровые микрофоны

Чувствительность микрофона обычно измеряется путем подачи синусоидального сигнала с частотой 1 кГц и уровнем звукового давления (Sound Pressure Level, SPL) 94 дБ, что соответствует давлению 1 Па. Уровень аналогового или цифрового выходного сигнала микрофона при таком входном воздействии является мерой его чувствительности. Это значение, хоть и является одной из характеристик микрофона, ни в коей мере не дает полного представления о его качестве.

Чувствительность аналогового микрофона является интуитивно понятным показателем. Она обычно измеряется в логарифмических единицах дБ·В (децибел по отношению к 1 В) и говорит о том, каким будет выходное напряжение в вольтах при заданном уровне звукового давления. Для перевода чувствительности аналогового микрофона из линейных единиц (мВ/Па) в логарифмические единицы (дБ) можно воспользоваться следующим выражением:

где ВыходAREF — это эталонный уровень чувствительности, равный 1000 мВ/Па.

На основании этой информации можно легко подобрать подходящий коэффициент усиления предварительного усилителя для согласования уровня выходного сигнала микрофона с желаемым уровнем входного сигнала остальной части схемы или системы. Рис. 1 иллюстрирует согласование пикового выходного напряжения микрофона (VMAX) с входным напряжением полной шкалы АЦП (VIN) при помощи усилителя с коэффициентом усиления VIN/VMAX. Так, например, для согласования выходного напряжения микрофона ADMP504, которое имеет максимальный уровень 0,25 В, с АЦП, имеющим пиковое значение входного напряжения полной шкалы, равное 1 В, потребуется коэффициент усиления, равный 4 (12 дБ).

Рис. 1. Согласование выходного сигнала аналогового микрофона с входным уровнем АЦП при помощи предварительного усилителя

Чувствительность цифровых микрофонов, выражаемая в дБ по отношению к полной шкале (дБ FS), не столь интуитивно понятна. Различие в единицах измерения указывает на тонкий контраст в определениях чувствительности для аналоговых и цифровых микрофонов. В случае аналогового микрофона с выходным сигналом в виде напряжения единственным фактором, ограничивающим уровень выходного сигнала, является практическое ограничение напряжений питания системы. Хотя в большинстве случаев это нецелесообразно по практическим соображениям, никаких физических причин, по которым аналоговый микрофон не мог бы обладать чувствительностью 20 дБ·В (выходное напряжение 10 В при эталонном уровне входного сигнала), нет. Данное значение чувствительности допустимо при условии, что усилители, преобразователи и иные схемы способны поддерживать требуемые уровни сигнала.

В случае с чувствительностью цифрового микрофона разработчик имеет меньшую свободу, поскольку она зависит от единственного параметра проекта — максимального акустического входного сигнала. Когда максимальный уровень входного акустического сигнала микрофона отображается в значение полной шкалы цифрового кода (единственно разумный вариант отображения), чувствительность всегда должна быть равна разности между данным уровнем акустического сигнала и эталонным уровнем звукового давления (94 дБ). Таким образом, если максимальный уровень звукового давления микрофона равен 120 дБ, чувствительность микрофона будет равна –26 дБ FS (94–120 дБ). Изменить проект так, чтобы цифровой выходной сигнал при заданном уровне входного акустического сигнала был выше, невозможно без уменьшения максимального входного акустического сигнала на ту же величину.

Чувствительность цифровых микрофонов измеряется в процентах от выходного сигнала полной шкалы, соответствующего входному сигналу с уровнем звукового давления 94 дБ. Уравнение, позволяющее преобразовать чувствительность цифрового микрофона из линейных единиц в логарифмические, выглядит следующим образом:

где ВыходDREF — это уровень полной шкалы выходного цифрового сигнала.

И, наконец, еще один часто вводящий в заблуждение вопрос при сравнении аналоговых и цифровых микрофонов связан с применением пиковых и среднеквадратических значений. Акустические уровни входного сигнала микрофона, указываемые в дБ, — это всегда среднеквадратические значения, независимо от типа микрофона. В качестве эталонного уровня для выходного сигнала аналоговых микрофонов используется среднеквадратическое напряжение 1 В. Это вызвано тем, что для сравнения уровней аналоговых звуковых сигналов наиболее часто применяют среднеквадратические значения. В свою очередь, чувствительность и уровень выходного сигнала цифровых микрофонов указываются через пиковые значения, поскольку они привязаны к цифровому коду полной шкалы, также являющемуся пиковым значением. Тот факт, что для указания выходного сигнала цифровых микрофонов используются пиковые значения, как правило, необходимо учитывать при разработке последующих алгоритмов обработки, в которых может потребоваться знание точных уровней сигналов. Так, например, в алгоритмах преобразования динамического диапазона (компрессорах, ограничителях и пороговых шумоподавителях) пороги обычно выставляются по среднеквадратическим уровням, поэтому при обработке выходного сигнала цифрового микрофона необходимо перейти от пиковых к среднеквадратическим значениям, вычтя соответствующую величину. Для синусоидального входного сигнала среднеквадратическое значение на 3 дБ ниже пикового, в то время как для сигналов более сложной формы это соотношение может быть иным. Рассмотрим в качестве примера микрофон МЭМС ADMP421, имеющий цифровой выход в формате с модуляцией плотности потока импульсов (pulse-density-modulated, PDM), чувствительность которого составляет –26 дБ FS. При синусоидальном входном сигнале с уровнем звукового давления 94 дБ пиковый выходной уровень будет равен –26 дБ FS, а среднеквадратический — –29 дБ FS.

Поскольку выходные сигналы цифровых и аналоговых микрофонов имеют разные единицы измерения, непосредственное сравнение этих двух типов микрофонов затруднено. В то же время в акустической области они работают с одной и той же единицей измерения — уровнем звукового давления. Независимо от формата выходного сигнала микрофона (аналоговое напряжение, цифровой сигнал в формате PDM или цифровой сигнал в формате I2S) максимальный входной акустический сигнал и отношение сигнал-шум (разница между эталонным уровнем звукового давления 94 дБ и уровнем шума) можно сравнивать напрямую. Рис. 2 иллюстрирует взаимосвязь между акустическим входным сигналом и уровнями выходного сигнала аналогового и цифрового микрофонов при заданном значении чувствительности. Рис. 2a соответствует аналоговому микрофону ADMP504, который обладает чувствительностью –38 дБ·В и отношением сигнал-шум 65 дБ. Изменение его чувствительности относительно эталонного уровня звукового давления (94 дБ), указанного слева, означает перемещение шкалы выходного сигнала в дБ·В вверх (повышение чувствительности) или вниз (уменьшение чувствительности).

Рис. 2. Отображение входного акустического сигнала:
а) уровень выходного напряжения аналогового микрофона;
б) уровень цифрового выходного сигнала цифрового микрофона

Рис. 2б соответствует цифровому микрофону ADMP521, который обладает чувствительностью –26 дБ FS и отношением сигнал-шум 65 дБ. Приведенный пример отображения уровней показывает, что чувствительность цифрового микрофона невозможно подстроить, не нарушив соотношения между максимальным уровнем входного акустического сигнала и значением полной шкалы цифрового кода. Такие характеристики, как отношение сигнал-шум, динамический диапазон, ослабление пульсаций напряжения питания и полный уровень гармонических искажений (THD), лучше отражают качество микрофона, чем чувствительность.

 

Выбор чувствительности и коэффициента усиления

Микрофон с высокой чувствительностью не всегда лучше микрофона с низкой чувствительностью. Чувствительность дает определенную информацию о характеристиках микрофона, но не о его качестве. То, насколько хорошо отдельно взятый микрофон подходит для конкретной задачи, определяется соотношением уровня шума микрофона, точки ограничения, уровня искажений и чувствительности. Для микрофона с высокой чувствительностью может потребоваться меньший коэффициент усиления в предварительном усилителе, однако в то же время он может иметь меньший запас относительно точки ограничения по сравнению с микрофоном, обладающим меньшей чувствительностью.

В задачах приема сигнала в ближней зоне, например в сотовых телефонах, где микрофон находится близко к источнику сигнала, более вероятно, что микрофон с большей чувствительностью достигнет максимального уровня входного акустического сигнала, попадет в ограничение и будет давать искажения. С другой стороны, большее значение чувствительности может быть предпочтительнее для приема сигнала в дальней зоне, например в телефонах с громкой связью и видеокамерах охранных систем, где уровень звукового сигнала ослабевает по мере увеличения расстояния от источника до микрофона. Рис. 3 иллюстрирует влияние расстояния от источника звука до микрофона на уровень звукового давления. При каждом удвоении расстояния от источника акустического сигнала его уровень уменьшается на 6 дБ (вдвое).

Рис. 3. Уменьшение уровня звукового давления на входе микрофона по мере увеличения расстояния от источника

Для примера на рис. 4 показаны типичные значения уровней звукового давления для различных источников звука — от тихой записи в студии (менее 10 дБ) до уровня болевого порога (более 130 дБ, уровень звука, вызывающий болевые ощущения у среднестатистического человека). Микрофоны редко способны перекрыть весь этот диапазон или большую его часть, поэтому на этапе проектирования важно выбрать подходящий микрофон с учетом требуемого диапазона уровней звукового давления. Для согласования уровня выходного сигнала микрофона в представляющем интерес динамическом диапазоне с типичным рабочим диапазоном тракта обработки звуковых частот следует использовать информацию, которую дает значение чувствительности.

Рис. 4. Уровень звукового давления для различных источников

Аналоговые микрофоны имеют широкий диапазон возможных значений чувствительности. Некоторые динамические микрофоны могут иметь чувствительность на уровне всего –70 дБ·В. Некоторые конденсаторные микрофонные модули содержат интегрированные предварительные усилители и поэтому обладают очень высокой чувствительностью вплоть до –18 дБм. Большинство аналоговых электретных микрофонов и микрофонов на основе технологии МЭМС обладают чувствительностью в диапазоне от –46 до –35 дБ·В (5–17,8 мВ/Па). Этот уровень является разумным компромиссом между шумовым порогом, которому в микрофонах МЭМС ADMP504 и ADMP521, например, соответствует уровень звукового давления всего 29 дБ, и максимальным входным акустическим сигналом (типичный уровень звукового давления около 120 дБ). Чувствительность аналогового микрофона можно отрегулировать в цепи предварительного усилителя, который зачастую интегрируется в один корпус с преобразовательным элементом.

Несмотря на очевидное отсутствие гибкости в выборе чувствительности цифрового микрофона, уровень его выходного сигнала легко может быть отрегулирован при помощи цифрового усиления в цифровом процессоре. Если процессор имеет достаточную разрядность для представления всего динамического диапазона исходного сигнала микрофона, цифровое усиление не приведет к ухудшению шумового уровня сигнала. В аналоговой схеме каждый усилительный каскад будет вносить некоторый дополнительный шум в сигнал, и разработчик системы должен гарантировать, что шум, вносимый каскадами, не приведет к ухудшению качества звукового сигнала. В качестве примера рассмотрим микрофон ADMP441 с цифровым выходом в формате I2S, который обладает максимальным уровнем звукового давления 120 дБ (чувствительность –26 дБ FS) и эквивалентным входным шумом, соответствующим уровню звукового давления 33 дБ (отношение сигнал-шум 61 дБ). Динамический диапазон микрофона равен разности между наибольшим (максимальный уровень звукового давления) и наименьшим (шумовой порог) уровнями сигнала, которые он способен достоверно воспроизводить. Для ADMP441 он равен 120–33 = 87 дБ и может быть представлен 15-разрядным цифровым словом. Сдвиг данных в цифровом слове на 1 бит приводит к изменению уровня сигнала на 6 дБ, поэтому даже 16-разрядный процессор с динамическим диапазоном 98 дБ допускает в данном случае усиление или ослабление на 11 дБ без ухудшения исходного динамического диапазона. Обратите внимание на то, что во многих процессорах максимальный входной акустический сигнал цифрового микрофона отображается в уровень полной шкалы внутреннего формата данных процессора. При таком отображении добавление любого усиления уменьшает динамический диапазон на соответствующую величину и снижает точку ограничения системы. Так, при работе с ADMP441 добавление усиления 4 дБ в процессоре приведет к ограничению сигнала в системе при подаче сигнала с уровнем звукового давления 116 дБ, если запас между уровнем полной шкалы сигнала и полной шкалой формата данных отсутствует.

На рис. 5 изображен цифровой микрофон с выходом I2S или PDM, подключенный непосредственно к цифровому сигнальному процессору. В данной конфигурации применение промежуточного каскада усиления не требуется, поскольку пиковый уровень выходного сигнала микрофона уже соответствует полной шкале формата входного слова процессора.

Рис. 5. Сигнальный тракт с непосредственным подключением цифрового микрофона к цифровому сигнальному процессору

Заключение

В статье даны пояснения, что такое чувствительность микрофона, как учитывать ее при проектировании каскадов усиления и почему, несмотря на связь между чувствительностью и отношением сигнал-шум, первый параметр не является показателем качества микрофона в отличие от второго. Независимо от типа используемого микрофона приведенная информация позволит разработчику подобрать наиболее подходящее для решения конкретной задачи устройство и добиться максимальных показателей от выбранного продукта.

Литература
  1. Designing with MEMS Microphones. http://ez.analog.com/community/ask_the_expert/archived/mems-microphones /ссылка утеряна/
  2. Lewis J. AN-1112 Application Note. Microphone Specifications Explained. Analog Devices. 2011.
  3. MEMS Microphones. http://www.analog.com/en/audio video-products/mems-microphones/products/index.html  /ссылка утеряна/
  4. Eargle J. The Microphone Book // Elsevier/Focal Press. 2004.

Шум вокруг нас | Наука и жизнь

Диапазоны восприятия шумов слышимого диапазона на разных частотах звука.

Громкость звука, определяемая величиной звукового давления, воспринимается человеческим ухом по-разному — на низких и высоких частотах хуже, на средних (от 2 до 5 кГц) — лучше.

В последние годы при строительстве дорог стали уделять внимание защите от шума. На снимке: шумозащитный экран на третьем транспортном кольце Москвы.

В пластиковых окнах звукоизоляцию обеспечивают большой вес стеклопакета и хорошее уплотнение рамы.

В современных офисах потолки часто облицовывают легкими волокнистыми плитами, которые обеспечивают хорошее звукопоглощение.

Для уменьшения вибрации в стиральной машине служат системы пружинистой подвески и гидравлические амортизаторы бака.

Схема активной системы гашения вибрации в вагоне поезда: 1 — регулятор; 2 — активатор; 3 — датчик рассогласования; 4 — первая ступень рессорного подвешивания; 5 — опорный датчик.

Самый простой способ защиты от шума — индивидуальные ушные протекторы беруши.

Считается, что городские жители давно свыклись с высоким уровнем шума. Но не стоит забывать, что шум нарушает психологический комфорт человека, плохо влияет на состояние вегетативной нервной системы, а иногда поражает и слуховой аппарат, вызывая тугоухость. Откуда берется техногенный шум, каковы его характеристики, в чем заключаются основные принципы и современные методы защиты от него, как обеспечить тишину в собственной квартире? Эта статья ответит и на другие вопросы, волнующие многих читателей.

Когда-нибудь человеку придется ради своего существования столь же упорно бороться с шумом, как он борется сейчас с холерой и чумой.
Роберт Кох

Что такое шум? Это не несущий полезной информации или случайный звук, мешающий окружающим либо причиняющий им значитель ные неудобства. Один и тот же звук, в зависимости от ситуации, может оказаться как шумом, так и информационным сигналом или даже волшебной музыкой. Внезапно сработавшая ночью автомобильная сигнализация для владельца — полезная информация, но для остальных — шум, а громкий радостный детский смех звучит музыкой для родителей, но не для живущих по соседству.

Техногенный шум стал опасен для здоровья только в ХХ веке. Но и в старое доброе время, до наступления эры технического прогресса, жизнь человеческого сообщества тишиной не отличалась. Даже в Древнем Риме жители жаловались, что уличный шум не дает им спать по ночам, и Юлий Цезарь в 50 году до н. э. запретил движение экипажей по ночному городу. Королева Англии Елизавета I (1533-1603), заботясь о ночном покое своих подданных, запретила скандалы и громкие семейные ссоры после десяти часов вечера. В те счастливые времена супружеский разлад был чуть ли не единственным источником шума!

*

Когда говорят об уровне шума, обычно имеют в виду его интенсивность, которая определяется как поток энергии, приходящейся на единицу площади поверхности (например, ватт на квадратный метр, Вт/м2). Однако интенсивность обычных шумов в этих единицах выражать довольно трудно. Дело в том, что ухо — уникальный аппарат, созданный природой, — улавливает звуки с разницей интенсивности в 10 триллионов раз. Оперировать числами, лежащими в таком широком диапазоне, крайне неудобно. Для характеристики уровня шума приняли логарифмическую шкалу величин, поскольку по ней изменение интенсивности шума на одну единицу в действительности означает изменение в 10 раз. Логарифмическую единицу интенсивности звука назвали «бел» (Б) в честь изобретателя телефона Александра Грейама Белла (1847-1922). На практике оказалось удобнее пользоваться десятыми долями бела — децибелами (дБ). Заметим, что децибел — величина относительная: за 0 дБ принято значение 10-12 Вт/м2. Это порог слышимости, с которого человеческое ухо начинает воспринимать звук. Предельный же уровень интенсивности шума, вызывающий болевые ощущения, равен 130 дБ, или 10 Вт/м2 (таков шум реактивного самолета на испытательном стенде на расстоянии 50 м). Изменение уровня интенсивности шума на 3 дБ соответствует изменению интенсивности звука в 2 раза, на 6 дБ — примерно в 4 раза и т. д. В децибелах также измеряют звуковое давление, которое определяется как сила, приходящаяся на единицу поверхности (ньютон на квадратный метр, Н/м2). В этом случае за 0 дБ принимается величина 2x10-5 Н/м2.

Другая характеристика шума — число звуковых колебаний в одну секунду, или частота звука, измеряемая в герцах. Один герц (1 Гц) равен одному колебанию в секунду. Нота «ля» первой октавы соответствует частоте 440 Гц. Ухо человека в молодом возрасте воспринимает звуки в диапазоне частот от 20 до 20 000 Гц. Инфразвуковые колебания, то есть колебания с частотами ниже 20 Гц, человек не слышит, но ощущает. С возрастом верхняя граница восприятия звука уменьшается и к тридцати годам составляет 15 000-17 000 Гц.

Наше ухо по-разному воспринимает звуки, имеющие одинаковый уровень интенсивности, но разную частоту: звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности. Из-за этого при измерении уровня шума неравномерную чувствительность человеческого уха к звукам разных частот приходится модулировать с помощью специальных частотных фильтров, измеряя так называемый взвешенный уровень звука. Полученная в результате измерений величина имеет размерность дБА. Здесь буква А означает, что взвешенный уровень звука получен с использованием частотного фильтра типа А.

Шумы окружают человека повсюду. Рано утром звон будильника громкостью 55-80 дБА поднимает с постели. Электробритва гудит с громкостью 70-90 дБА, а кофемолка — около 70 дБА. За завтраком вы слушаете по радио музыку — это 50-70 дБА, шум транспорта на улице достигает 70-80 дБА. А на производстве интенсивность шума доходит до 80-90 дБА и выше. Вечером вы, возможно, зайдете в кафе, чтобы «отдохнуть» под 80 дБА «живого звука», или посидите дома у телевизора с громкостью 60-70 дБА. И, наконец, под тихое, всего лишь в 25-35 дБА, тиканье будильника вы засыпаете. Кстати, в соответствии с московскими городскими санитарными нормами шум в квартире с 7 утра до 11 вечера не должен превышать 40 дБА, а с 11 часов вечера до 7 часов утра — 30 дБА.

Шум убивает тысячи людей на планете — Российская газета

О том, что шум вреден, знает каждый. Но впервые ученые подтвердили этот тезис конкретными цифрами.

Согласно исследованиям британских специалистов, в прошлом году в стране от коронарных заболеваний сердца скончались 101 тысяча человек. Из них около трех тысяч пали жертвой постоянного шумового воздействия, особенно от автомобильного транспорта.

Но ученые пошли дальше, они показали, как шум воздействует на организм. Оказалось, что он увеличивает содержание в крови таких гормонов стресса, как кортизол, адреналин и норадреналин, даже во время сна. Сильный стресс способен вызвать сердечную недостаточность, приступ стенокардии, высокое кровяное давление и проблемы с иммунитетом. А нередко и смерть.

Профессор Университетского колледжа Лондона Дипак Прэшер заявил: «Новые исследования показывают, что существует связь между шумом и ранними смертями. Еще недавно люди не осознавали того негативного влияния, которое он оказывает на их здоровье. Все это происходит незаметно».

По мнению ученых, сердечно-сосудистые заболевания могут возникнуть, если человек по ночам постоянно подвергается воздействию шума силой в 50 децибел или выше: такой звук издает улица, где нет интенсивного движения.

Для того чтобы заработать бессонницу, достаточно длительно «слушать» 42 децибела, чтобы стать раздражительным, достаточно шума в 35 децибел. А это уровень человеческого шепота! Для сравнения: шум в офисе составляет 35-45 дБ, оживленной улицы или громкого разговора — 70 дБ.

Эллен Мейсон, специалист одной из британских кардиологических больниц, считает: «Мир вокруг нас становится более шумным. Одних людей шумовое загрязнение раздражает меньше, других — больше. Шум неспособен непосредственно убить нас, но он может усилить стресс. В некоторых случаях стрессовые ситуации накладываются на уже имеющееся заболевание сердца, и это может вызвать сердечный приступ. Люди в состоянии стресса чаще едят нездоровую пищу, меньше занимаются физическими упражнениями и больше курят. А все это в первую очередь увеличивает риск развития сердечных заболеваний».

Специалисты считают, что есть множество возможностей почистить «шумовую грязь». Например, дорожное движение могло бы стать более тихим, если бы, например, больше водителей использовали малошумные покрышки, а местные власти сменили бы дорожное покрытие на менее шумное.

В Евросоюзе уже вышла директива, обязывающая города Европы с населением более 250 тысяч жителей выпустить цифровые карты, на которых были бы показаны районы с наиболее насыщенным и шумным дорожным движением.

А что же в Москве? По оценкам специалистов, более 60 процентов жилищного фонда, где проживают 3,5 миллиона человек, не соответствует санитарно-гигиеническим нормам по шуму.

Кстати

Во многих странах допустимый уровень шума в течение часа на рабочем месте составляет

85 дБ. Воздействие более 90 дБ может повредить слух, свыше 140 дБ — вызывает боль. Именно такой звук издает самолет, 120 дБ — автомобильный гудок, метро в час «пик» — 90-100, офис — 60, обычная квартира, тихая улица — 40, шум листвы — 20.

Если вы наслаждаетесь в метро музыкой от плеера, то, перекрывая шум вагона, он воздействуют на уши с силой в

110-120 дБ, то есть как реактивный самолет, стоящий в десяти метрах от человека. Если такое воздействие оказывается ежедневно, то человек может оглохнуть, считают ученые.

Ссылка по теме: Столичные власти предлагают увеличить штрафы за шум

уровней вредного шума | Мичиган Медицина

Обзор темы

Влияние шума на слух у разных людей разное. Уши некоторых людей более чувствительны к громким звукам, особенно на определенных частотах. (Частота означает, насколько низкий или высокий тон.) Но любой достаточно громкий звук, который длится достаточно долго, может повредить слух и привести к его потере.

Громкость звука измеряется в децибелах (дБ). Нормальный разговор — около 60 дБ, газонокосилка — около 90 дБ, громкий рок-концерт — около 120 дБ.В целом, звуки выше 85 вредны, в зависимости от того, как долго и как часто вы их слышите, а также от того, носите ли вы средства защиты органов слуха, например беруши или наушники.

Ниже приводится таблица уровня децибел для ряда звуков.

Уровни шума

Шум

Средние децибелы (дБ)

Шелест листьев, мягкая музыка, шепот

30

30

30

шум

40

Обычный разговор, фоновая музыка

60

Рабочий шум, внутри автомобиля на скорости 60 миль в час

70

Пылесос, среднее радио

75

Интенсивное движение, оконный кондиционер, шумный ресторан, газонокосилка

80–89 (звуки выше 85 дБ вредны)

Метро , крикнул разговор

90–95

Бумбокс, квадроцикл, мотоцикл

96–100

Школа танцев

101–105

Бензопила, снегоход, снегоход

106–115

Спортивная публика, рок-концерт, громкая симфония

120–129

Гонки на серийных автомобилях

130

Пистолет , сирена на расстоянии 100 футов

140

По мере увеличения громкости время, в течение которого вы можете слышать звук, уменьшается.Средства защиты органов слуха снижают громкость звука, достигающего ушей, позволяя слышать более громкие звуки в течение более длительного времени.

Предотвращение повреждения слуха

Простой способ узнать о потенциально опасном шуме — это обратить внимание на предупреждающие знаки о том, что звук может повредить ваш слух. Звук может быть вредным, если:

  • Вам трудно разговаривать или слышать, как другие разговаривают через звук.
  • От звука болят уши.
  • После звука у вас в ушах звон.
  • Другие звуки кажутся приглушенными после того, как вы покинете место с громким звуком.

Большинство случаев потери слуха из-за шума вызвано многократным воздействием шума умеренных уровней в течение многих лет, а не отдельными случаями очень громкого шума. Ношение средств защиты органов слуха может помочь предотвратить повреждение как средним, так и громким шумом.

Если на вашем рабочем месте опасный уровень шума, планируйте это заранее и используйте средства защиты органов слуха. Люди, которые могут регулярно подвергаться воздействию вредного шума из-за своей работы, включают:

  • Те, кто работает с громкими машинами, транспортными средствами или электроинструментами, например, строительные рабочие, заводские рабочие, фермеры, водители грузовиков, механики или наземная бригада аэропорта рабочие.
  • Военнослужащие.
  • Сотрудники полиции и пожарные.
  • Музыканты.

Кредиты

Текущий по состоянию на: 2 декабря 2020 г.

Автор: Healthwise Staff
Медицинский обзор:
Уильям Х. Блахд-младший, доктор медицины, FACEP — неотложная медицина
Кэтлин Ромито — доктор медицины, семейная медицина
Чарльз М.Myer III MD — Отоларингология

По состоянию на: 2 декабря 2020 г.

Автор: Здоровый персонал

Медицинское обозрение: Уильям Х. Блахд младший, доктор медицины, FACEP — неотложная медицина и Кэтлин Ромито — доктор медицины, семейная медицина и Чарльз М. Майер III, доктор медицины — отоларингология

Уровни шума повседневных звуков

Если вы только начинаете исследовать потерю слуха или подозреваете, что страдаете ею, вы, вероятно, столкнулись со множеством статистических данных об опасных уровнях шума и децибелах.Эта информация может сбивать с толку или ошеломлять, потому что большинство людей не знакомы с уровнями звука и громкостью звука в децибелах, а также с тем, в какой момент шумовое воздействие может привести к необходимости использования слуховых аппаратов. Давайте рассмотрим некоторые распространенные звуки, чтобы лучше понять безопасные уровни шума и то, насколько на самом деле громкий децибел.

Готовы ли вы внести изменения? Посмотрите наше последнее видео:

Что такое децибел?

Важно точно понимать, что такое децибел.Децибел — это единица измерения интенсивности звука, сокращенно дБ. Шкала децибел невероятно велика, потому что уши очень чувствительны к звуку — люди с нормальным слухом могут услышать все, от легкого прикосновения к коже до рев двигателя самолета. Шкала децибел является логарифмической, что означает, что она увеличивается каждый раз в 10 степени. Наименьший слышимый звук — 0 дБ. Звук, который в 10 раз мощнее, составляет 10 дБ, звук, который в 1000 раз мощнее, — 30 дБ, и так далее (помогает отсчитывать нули на шкале!) Пройдите бесплатный онлайн-тест слуха

Насколько громки повседневные звуки?

Как упоминалось ранее, 0 дБ — это самый тихий звук, который человеческое ухо может услышать — что-то почти неслышное, например, падающий лист.Любое воздействие звуков более 140 дБ считается небезопасным для человека, а продолжительное воздействие шума более 85 дБ также подвергает опасности ваш слух. Однако эти числа мало что значат, если у вас нет системы отсчета для них. Может быть полезно использовать обычные звуки, с которыми вы сталкиваетесь каждый день, в качестве приблизительной шкалы уровней децибел:

  • 10 дБ: нормальное дыхание
  • 20 дБ: шепот на расстоянии пяти футов
  • 30 дБ: шепот поблизости
  • 40 дБ: Тихие звуки библиотеки
  • 50 дБ: Холодильник
  • 60 дБ: Электрическая зубная щетка
  • 70 дБ: Стиральная машина
  • 80 дБ: Будильник
  • 90 дБ: Поезд метро
  • 100 дБ: Заводское оборудование
  • 110 дБ: Автомобиль звуковой сигнал
  • 120 дБ: Сирена скорой помощи
Уровень шума в метро составляет около 90 дБ.

Как видно из этой краткой шкалы, шумы могут быстро достигать опасного уровня. Большинство людей не подвергаются продолжительному воздействию звука поезда метро, ​​но многие сталкиваются с производственным шумом, который одинаково громок в течение всего дня. Газонокосилка может иметь уровень шума от 60 до 90 дБ и часто используется в течение нескольких часов. Ближайший вертолет может легко достичь 105 дБ — хотя большинство людей не очень часто находятся рядом с вертолетами, 105 дБ также может быть произведен большим барабаном, что представляет серьезную опасность для музыкантов.Невероятно важно защитить свой слух, даже если звуки не достигли невыносимого или болезненного уровня. Продолжительное или даже кратковременное воздействие очень громких звуков может необратимо повредить слух. Лучше избегать ежедневных громких звуков, таких как крики, и носить средства защиты органов слуха при звуках, которых вы не можете избежать, таких как взрывы листьев, концерт или самолет.

Написано и обновлено в 2020 году: Елена Макфиллипс

Глоссарий: Децибел

Децибел

Определение:

децибел (дБ) — единица измерения интенсивности звука. и другие физические величины.Децибел — это одна десятая бела (B), единица, названная после Грэма Белла, изобретателя телефона. Его логарифмический масштаб равен удобно представлять весь диапазон человеческого слуха.

децибел уровня звукового давления (дБ SPL) принимает как ссылаться на минимальный уровень звукового давления, который может слышать обычное человеческое ухо. обнаружить. Наименьший слышимый для человека звук обычно составляет 0 дБ SPL (слух порог). На практике «дБ» часто означает «дБ SPL».

Поскольку шкала децибел является логарифмической, звук увеличивается на три децибела. уровень уже представляет собой удвоение интенсивности [звука]. Например, нормальный в разговоре может быть около 65 дБ, и обычно вокруг может быть кто-то кричащий 80 дБ. Разница всего 15 дБ, но крики в 30 раз сильнее.

Обратите внимание, что восприятие громкости не совсем то такой же, как уровень звукового давления. Чтобы учесть тот факт, что особенно низкие и высокие звуки кажутся менее громкими человеческому уху, шум обычно измерено в децибелах, взвешенных по шкале А, (дБ (А)) .

Источник: GreenFacts, на основе данных EU-OSHA. Что такое шум?

Больше:

Опасность шума определяется не только интенсивностью. В длительность воздействия также очень важна. Чтобы принять это во внимание, используются средневзвешенные по времени уровни звука. Для шума на рабочем месте это обычно при 8-часовом рабочем дне.

Эквивалент уровня непрерывного звукового давления более восьми часов (L экв, 8ч ) — уровень интенсивности звука, выражается в дБ (A), что при непрерывном воздействии в течение 8 часов приведет к в результате получится такое же количество звуковой энергии, что и от фактического разная экспозиция.

Источник: GreenFacts

Связанные слова:

Звук

Перевод (и):

Deutsch: Dezibel
Español: Decibelio
Français: Décibel

Децибел (дБ): Основы звука и вибрации

Основы звука и вибрации

Децибел (сокращенно дБ) сбивает с толку многих людей, возможно, потому, что они предполагают, что это абсолютная единица или уровень звука.

дБ — это не единица измерения в том смысле, что метр или килограмм являются четко определенными единицами измерения расстояния и веса. Децибел — это соотношение или соотношение между двумя уровнями звука, например, измеренный уровень звукового давления и минимальный уровень звукового давления, который может обнаружить человек с хорошим слухом.

Зачем использовать децибелы, почему бы не придерживаться реальных единиц измерения, которые можно измерить напрямую? Надеюсь, причина станет ясной, когда мы поймем, насколько чувствительно человеческое ухо.

Самый тихий звук, который мы можем услышать, имеет уровень звуковой мощности около 0,000000000001 Вт / кв. метр, а болевой порог составляет около 1 ватт / кв. метр, который находится в диапазоне от миллиона миллионов до 1. Итак, как вы описываете эти уровни и стадии между ними значимыми числами?

Вот Александр Грэм Белл, шотландский инженер-телефонист, который предложил просто преобразовать эти огромные числа в логарифмы, поэтому порог слышимости будет равен 0, а порог боли — 12, и назовем их Bels.Некоторое время это применялось, но вскоре было обнаружено, что сжатие такого широкого диапазона до 12 «единиц» зашло слишком далеко в обратном направлении, поэтому было решено умножить ответ на 10 и назвать их децибелами, т.е. 1 бел = 10 децибел. Это означало, что «нормальный» диапазон будет от 0 до 120 дБ, что гораздо более разумно.

Как это работает в реальном мире? Если поставить в комнату 10 одинаковых источников шума, то их будет в 10 раз больше. звуковая энергия так измерена Уровень звука, иногда называемый уровнем децибел или уровнем дБ, увеличивается на 10 дБ, что вполне логично.Точно так же, если бы мы удвоили звуковой мощности, т. е. двух машин, то измеренное увеличение составит всего 3 дБ.

В первом случае у нас было в 10 раз больше мощности, а логарифм 10 составляет 1 бел или 10 дБ. Точно так же удвоенная мощность или коэффициент 2 дает логарифм 0,3 бел или 3 дБ.

Следовательно, если одна машина = 90 дБ, то 2 = 93 дБ и 10 машин = 100 дБ. Если вы затем удвоите количество источников с 10 до 20, измеренный уровень увеличится только еще на 3 дБ до 103 дБ.

Вам нужно будет втиснуть в комнату 100 машин, чтобы увеличить уровень до 110 дБ, или 1000 машин, чтобы измерить 120 дБ, что является порогом боли для большинства людей.

И наоборот, если вы выключите одну машину в комнате, содержащей 100 машин, вы никогда не заметите или не измерите разницу, потому что вам придется выключить 50, прежде чем уровень снизится на 3 дБ.

Если 1 = 90 дБ: 2 = 93 дБ: 10 = 100 дБ: 20 = 103 дБ: 50 = 107 дБ: 100 = уровень 110 дБ или 110 децибел.

Добавление децибел с округлением до 0,1 дБс


Если разница в дБ = 0 дБ 1 дБ 2 дБ 3 дБ 4 дБ 5 дБ 6 дБ 7 дБ 8 дБ 9 дБ 10 дБ 15 дБ 20 дБ
, затем добавьте ** 3 2,5 2,1 1.8 1,5 1,2 1,0 0,8 0,6 0,5 0,4 0,1 0
** добавить к высшему уровню

Примеры
90 дБ + 80 дБ = 90,4 дБ
60 дБ + 64 дБ = 65,5 дБ
25 дБ + 32 дБ = 32,8 дБ

Вы можете проверить эти цифры на себе, используя калькулятор, идеально подходит тот, который включен в Windows, выберите опцию «Научный», чтобы включить журнал.параметры.

Следующее предназначено для читателей, не знакомых с логарифмическими вычислениями.

Допустим, вы хотите добавить 80 дБ и 80 дБ, чтобы проверить правило 3 дБ и увидеть точное значение.

Введите 8 в калькулятор, значение Bel, а не значение в децибелах *
Щелкните 10 x , чтобы рассчитать и увидеть значение антилогарифма 100000000 или 10 8
Нажмите +
Введите 8
Щелкните 10 x для расчета и посмотрите второе значение анти-журнала. 100000000
Щелкните =, чтобы увидеть общее количество 200000000
Щелкните журнал, чтобы вычислить общее количество Белсов = 8.3010299566 …….
Наконец, умножьте на 10, чтобы вернуться к децибелам = 83,010 ≈ 83 дБ

* На практике мы умножаем белки на 10, чтобы получить более полезный диапазон от 0 до 120 дБ, см. Предыдущие примечания на этой странице.

Децибелметры в аренду

Навигация: На главную> Основы> дБ —
децибел 01234 708835 эл. Почта

Наука со смартфоном: децибелметр

Примечание редактора. Мы стремимся сохранить доступность наших мероприятий «Принесите науку домой», ограничив использование необходимых технологий.Мы осознаем, что сейчас технологии стали более доступны, чем когда мы начали эту серию в 2011 году, и что они могут повысить ценность научных исследований. Это наше первое занятие, требующее использования смартфона или планшета. Пожалуйста, сообщите нам свое мнение! Отправьте электронное письмо по адресу [email protected] с отзывами об использовании технологий в этом — и будущем — мероприятиях Bring Science Home.

Ключевые концепции
Физика
Звук
Измерение
Логарифмический

Введение
Знаете ли вы, что вы можете использовать смартфон в качестве научного инструмента для исследования окружающего мира? Смартфоны содержат множество встроенных электронных датчиков, которые могут измерять такие явления, как звук, свет, движение и многое другое! В этом упражнении вы будете использовать микрофон телефона, чтобы исследовать громкость различных звуков в вашем окружении.Насколько тихо в библиотеке? Насколько громко проносится этот грузовик? Попробуйте это занятие, чтобы узнать!

Фон
Вы, вероятно, знакомы с единицами измерения, которые мы используем для измерения повседневных величин, таких как длина тела или температура. Вы бы и глазом не моргнули, если бы кто-то сказал, что он шести футов ростом или на улице 70 градусов. Но как измерить звук? Вы можете описать звук как «тихий, как шепот» или «громче, чем у реактивного двигателя», но вы, вероятно, не станете использовать число. Звук измеряется в децибелах, сокращенно дБ.Шкала в децибелах немного необычна, потому что она скорее логарифмическая, чем линейная. Что это обозначает? При каждом увеличении на 10 дБ громкость звука увеличивается вдвое. Например, звук 30 дБ вдвое громче звука 20 дБ. Звук 40 дБ в два раза громче звука 30 дБ и в четыре раза громче звука 20 дБ и т. Д. Нулевой дБ не означает, что звука нет вообще. Скорее, 0 дБ выбран в качестве опорного уровня на пороге человеческого слуха. Это сбивает с толку? Не волнуйтесь — вот список эталонных звуков и их приблизительный уровень в децибелах:

0 дБ: порог слышимости человека
20 дБ: шелест листьев
40 дБ: тихая библиотека
60 дБ: нормальный разговор
80 дБ: кричащий ребенок
100 дБ: цепная пила
120 дБ: живой рок-концерт
140 дБ: реактивный двигатель

Уровни звука выше 80 дБ могут вызвать повреждение слуха в течение длительного времени, а уровни звука выше 120 дБ могут вызвать немедленное повреждение.Вот почему людям, использующим такое оборудование, как газонокосилки, рекомендуется использовать средства защиты слуха. Обратите внимание, что громкость звука также зависит от вашего расстояния до источника звука (по мере удаления он становится тише) — поэтому для прямого сравнения различных звуков вы должны поддерживать это расстояние постоянным.

При чем здесь смартфон? Если бы вы хотели измерить уровень звука ранее, вам пришлось бы купить автономный децибелметр — устройство с микрофоном и экраном, который отображал бы уровень звука в дБ.Однако современные смартфоны (которые уже содержат встроенные микрофоны) могут запускать приложения, которые будут отображать звук в дБ непосредственно на экране телефона. Итак, если вы хотите исследовать звуки окружающего вас мира, все, что вам нужно, — это телефон!

Материалы

  • Смартфон или планшет с доступом в Интернет и разрешением на загрузку и установку приложения
  • Взрослый (для проверки и загрузки приложения)
  • Другие люди, голоса которых вы можете измерить (необязательно)
  • Телефон в нескольких местах (необязательно)


Препарат

  • Попросите взрослого помочь вам найти приложение «децибелметр» или «шумомер» на смартфоне или планшете.Доступно множество бесплатных опций, но в некоторых приложениях может быть включена реклама или встроенные покупки.
  • Познакомьтесь со своим приложением для измерения децибел. Некоторые приложения просто отображают число на экране, тогда как другие отображают счетчик или график. Некоторые также позволяют записывать данные. Убедитесь, что приложение работает: говорите с нормальной громкостью, и вы должны увидеть колебания цифр.


Процедура

  • Определите уровень фонового шума.Положите телефон, сядьте неподвижно и задержите дыхание. Что такое уровень децибел? Меняется ли он из-за фоновых шумов, таких как проезжающая машина или щебетание птиц?
  • Теперь исследуйте свой собственный голос. Попробуйте шептать, говорить и даже кричать по телефону. Вы также можете попробовать другие звуки, такие как свист или жужжание. Регистрируется ли шепот или он заглушается фоновым шумом? Насколько громко твой крик?
  • Если вокруг есть другие люди, попробуйте также измерить их голоса.У всех «нормальный» голос одинакового уровня в децибелах? Кто может кричать громче всех?
  • Теперь проверьте разные звуки. Это может быть так же просто, как хлопнуть в ладоши или постучать в дверь. Вы также можете попробовать множество других повседневных звуков, например, нажатие крана или щелчок выключателя света. Вы также можете попробовать включить некоторые приборы, например микроволновую печь или пылесос. Как соотносятся разные звуки? Какие из них самые громкие?
  • Узнайте, как расстояние от источника звука влияет на уровень звука.Постарайтесь найти относительно постоянный звук, например, звук работающего крана или жужжания человека. Начните с телефона рядом с источником, а затем медленно уходите. Как изменяется уровень децибел по мере удаления?
  • Попробуйте измерить уровни фонового шума в разных местах. Возьмите телефон в разные комнаты, библиотеку, детскую площадку или парк. Где можно найти самое тихое место? Самый громкий? Достаточно ли уровень шума в любом месте, чтобы он мог представлять опасность для вашего слуха?
  • Дополнительно: Вы также можете загрузить приложения для измерения частоты или высоты звука.Частота измеряется в герцах (Гц). Диапазон человеческого слуха составляет примерно от 20 до 20 000 Гц. С возрастом мы теряем способность слышать звуки верхнего предела этого диапазона. Некоторые животные, например собаки, могут слышать до 45 000 Гц. Какой частотный диапазон вашего голоса? А как насчет всех других звуков, которые вы измерили ранее?
  • Extra: Измеряйте звуки, издаваемые различными музыкальными инструментами. Если у вас нет под рукой инструментов, вы можете сделать свои собственные (см. Раздел «Еще для изучения»)!

Наблюдения и результаты
Используя предметы повседневного обихода, вы, вероятно, сможете измерить звуки в диапазоне примерно от 20 до 80 дБ.Даже в совершенно «тихой» комнате фоновые шумы, такие как гул компьютера или даже ваше собственное дыхание, могут затруднить снижение уровня ниже 10 дБ. Если вы находитесь в оживленном месте с большим количеством людей или рядом с улицей с интенсивным движением, уровень фонового шума, вероятно, будет намного выше. Громкость звука бытовых приборов, например пылесоса или электроинструментов, может превышать 80 дБ. Человеческие крики могут быть довольно громкими, возможно, превышающими 100 дБ (по состоянию на март 2019 года мировой рекорд составляет 129 дБ!), Но вы, вероятно, захотите этого избежать, потому что такие громкие крики могут повредить ваши уши! Вы также должны были обнаружить, что уровни звука быстро падают по мере удаления от источника.Людям, которые в течение всего дня будут постоянно слышать громкий звук (например, кто зарабатывает себе на жизнь стрижкой газонов или работает возле реактивных двигателей), следует носить средства защиты органов слуха.

Больше для изучения
дБ: Что такое децибел?, От Университета Нового Южного Уэльса, Школа физики
Настройте свою гитару с резиновой лентой !, от Scientific American
Наука о звуке: создайте свою собственную гармонику !, от Scientific American
Make Sprinkles Dance; от Scientific American
Занятия STEM для детей от Science Buddies

Эта деятельность предоставлена ​​вам в сотрудничестве с Science Buddies

Что такое децибелы

Децибел (сокращенно дБ) — это единица измерения интенсивности звука.Шкала децибел немного странная, потому что человеческое ухо невероятно чувствительно. Ваши уши могут слышать все, от легкого прикосновения пальца к коже до громкого реактивного самолета. Что касается мощности, звук реактивного двигателя примерно в 1 000 000 000 000 раз мощнее самого слабого слышимого звука. Это большая разница.

По шкале децибел наименьший слышимый звук (почти полная тишина) составляет 0 дБ. Звук в 10 раз мощнее — 10 дБ. Звук в 100 раз мощнее, чем почти полная тишина, составляет 20 дБ.Звук в 1000 раз более мощный, чем почти полная тишина, составляет 30 дБ. Вот некоторые распространенные звуки и их значения в децибелах:

  • Почти полная тишина — 0 дБ
  • Шепот — 15 дБ
  • Обычный разговор — 60 дБ
  • Газонокосилка — 90 дБ
  • А автомобильный гудок — 110 дБ
  • Рок-концерт или реактивный двигатель — 120 дБ
  • Выстрел или петарда — 140 дБ

Вы по собственному опыту знаете, что расстояние влияет на интенсивность звука — если вы находитесь далеко, мощность значительно уменьшается.Все вышеперечисленные оценки сняты стоя рядом со звуком. Любой звук выше 85 дБ может вызвать потерю слуха, причем потеря связана как с мощностью звука, так и с продолжительностью воздействия. Вы знаете, что слушаете звук 85 дБ, если вам нужно повысить голос, чтобы вас услышал кто-то другой. Восемь часов звука 90 дБ могут повредить ваши уши; любое воздействие звука 140 дБ вызывает немедленный ущерб (и вызывает настоящую боль).

ДОБАВЛЕНИЕ ДЕЦИБЕЛЕЙ
Уровни звукового давления в дБ нельзя просто сложить вместе, как другие величины, потому что добавление децибел эквивалентно умножению чисел.

Если объединить N источников, создающих одинаковый уровень звукового давления, общий уровень звукового давления увеличится на 10 log N дБ. Например, 60 дБ + 60 дБ = 63 дБ, а не 120 дБ, как многие ожидают. Чем больше разница в уровне звука между двумя источниками, тем меньше влияние на комбинированный уровень. Когда разница между двумя источниками превышает 6 дБ, общий уровень будет менее чем на 1 дБ выше, чем уровень громкости одного более громкого источника.

Когда присутствуют два отдельных звука, уровень звука их комбинации не может быть более чем на 3 дБ выше, чем более высокий уровень.Размещение оборудования с уровнем шума 85 дБ в зоне, где уровень шума уже составляет 85 дБ, приведет к комбинированному уровню шума 88 дБ (85 + 3).

Также стоит отметить, поскольку нас все время спрашивают, каких результатов можно ожидать при добавлении одного или нескольких продуктов в существующую систему / конструкцию. Просто потому, что в техническом паспорте указано, что продукт может иметь акустический рейтинг, скажем, 25 дБ, это не означает, что добавление одного слоя к полу улучшит ситуацию на 25 дБ, потому что пол уже является «чем-то», а не просто открытой пустотой.Если пол уже достиг, скажем, 35 ​​дБ, то добавление чего-либо с номиналом 25 дБ не даст конечного результата в 60 дБ.

Акустические подложки — это еще кое-что, о чем нас часто спрашивают. У большинства подложек есть дельта-фигура, которая, по сути, является тестом до и после бетонного пола, который определяет, насколько улучшилась ударная нагрузка, которую дала подложка. Эта цифра не совсем точно соответствует деревянному полу, и к тому времени, когда на указанную подложку будет установлена ​​деревянная накладка, результаты не будут приближаться к заявленному значению Delta Rw.Это вся информация, которая вводит клиентов в заблуждение, заставляя думать, что один продукт намного превосходит другой, хотя на самом деле между ними очень мало различий в реальном мире. .

АКУСТИЧЕСКАЯ КОНФИДЕНЦИАЛЬНОСТЬ

При строительстве акустических стен, особенно для офисных переговорных комнат / перегородок и т. Д., Общее практическое правило будет:

  • Rw 25 дБ Нормальную речь легко подслушивать
  • Rw 30 дБ, громкую речь легко подслушивать
  • Rw 35 дБ Громкая речь может быть понятна в нормальных условиях
  • Rw 40 дБ громкая речь слышна, но ее трудно понять
  • Rw 45dB Громкая речь слышна слабо и ее трудно различить
  • Rw 50 дБ Громкую речь / крик можно услышать с небольшими трудностями

В этой категории нет товаров.

Интенсивность звука и уровень звука

Цели обучения

К концу этого раздела вы сможете:

  • Определите интенсивность, интенсивность звука и уровень звукового давления.
  • Рассчитайте уровни интенсивности звука в децибелах (дБ).

Рис. 1. Из-за шума на многолюдных дорогах, подобных этой в Дели, других людей трудно услышать, если они не кричат. (Источник: Lingaraj G J, Flickr)

В тихом лесу иногда можно услышать, как на землю падает один лист.Уложившись в постель, вы можете слышать, как кровь пульсирует в ушах. Но когда проезжающий автомобилист включает стереосистему, вы даже не слышите, что говорит человек рядом с вами в вашей машине. Все мы хорошо знакомы с громкостью звуков и знаем, что они связаны с энергией вибрации источника. В мультфильмах, изображающих кричащего человека (или животного, издающего громкий звук), художник часто показывает открытый рот с вибрирующим язычком, висящую ткань в задней части рта, чтобы предположить громкий звук, исходящий из горла. Рис. 2.Сильное воздействие шума опасно для слуха, и у музыкантов часто случаются настолько серьезные потери слуха, что они мешают музыкантам выступать. Соответствующая физическая величина — это интенсивность звука, концепция, которая действительна для всех звуков, вне зависимости от того, находятся они в слышимом диапазоне или нет.

Интенсивность определяется как мощность волны на единицу площади. Мощность — это скорость передачи энергии волной. В форме уравнения, интенсивность I равна [латекс] I = \ frac {P} {A} \\ [/ latex], где P — мощность, проходящая через область A .2} {2} \\ [/ latex]) колеблющегося элемента воздуха из-за бегущей звуковой волны пропорционально квадрату его амплитуды. В этом уравнении ρ — это плотность материала, в котором распространяется звуковая волна, в единицах кг / м 3 , а v w — это скорость звука в среде в единицах m. / с. Изменение давления пропорционально амплитуде колебаний, поэтому I изменяется как (Δ p ) 2 (Рисунок 2). Это соотношение согласуется с тем фактом, что звуковая волна создается некоторой вибрацией; чем больше амплитуда его давления, тем сильнее сжимается воздух в создаваемом им звуке.

Рисунок 2. Графики манометрических давлений в двух звуковых волнах разной интенсивности. Более интенсивный звук создается источником, который имеет колебания большей амплитуды и имеет большие максимумы и минимумы давления. Поскольку давление выше в звуке большей интенсивности, он может оказывать более сильное воздействие на объекты, с которыми сталкивается.

Уровни интенсивности звука гораздо чаще указываются в децибелах (дБ), чем в ваттах на квадратный метр. Децибелы — это единица измерения, которую выбирают как в научной литературе, так и в популярных средствах массовой информации.Причины такого выбора единиц связаны с тем, как мы воспринимаем звуки. То, как наши уши воспринимают звук, можно более точно описать логарифмом интенсивности, а не непосредственно интенсивностью. Уровень интенсивности звука β в децибелах звука с интенсивностью I в ваттах на квадратный метр определяется как [латекс] \ beta \ left (\ text {дБ} \ right) = 10 \ log_ {10} \ left (\ frac {I} {I_0} \ right) \\ [/ latex], где I 0 = 10 −12 Вт / м 2 — эталонная интенсивность.В частности, I 0 — это самая низкая или пороговая интенсивность звука, которую человек с нормальным слухом может воспринимать на частоте 1000 Гц. Уровень интенсивности звука не совпадает с интенсивностью. Поскольку β определяется в терминах отношения, это безразмерная величина, сообщающая вам уровень звука относительно фиксированного стандарта (в данном случае 10 −12 Вт / м 2 ). Единицы децибел (дБ) используются, чтобы указать, что это отношение умножается на 10 в его определении.Бел, на котором основан децибел, назван в честь изобретателя телефона Александра Грэхема Белла.

Таблица 1. Уровни и интенсивность звука
Уровень звуковой интенсивности β (дБ) Интенсивность I (Вт / м 2 ) Пример / эффект
0 1 × 10 –12 Порог слышимости при 1000 Гц
10 1 × 10 –11 Шорох листьев
20 1 × 10 –10 Шепот на расстоянии 1 м
30 1 × 10 –9 Тихий дом
40 1 × 10 –8 Средний дом
50 1 × 10 –7 Средний офис, легкая музыка
60 1 × 10 –6 Обычный разговор
70 1 × 10 –5 Офис шумный, трафик загруженный
80 1 × 10 –4 Громкое радио, аудиторная лекция
90 1 × 10 –3 Внутри тяжелого грузовика; Ущерб от длительного воздействия
100 1 × 10 –2 Шумная фабрика, сирена на 30 м; ущерб от 8 ч в сутки воздействия
110 1 × 10 –1 Ущерб от 30 мин в сутки воздействия
120 1 Громкий рок-концерт, пневматический измельчитель на 2 м; порог боли
140 1 × 10 2 Реактивный самолет на высоте 30 м; сильная боль, повреждение за секунды
160 1 × 10 4 Разрыв барабанных перепонок

Уровень децибел звука с пороговой интенсивностью 10 −12 Вт / м 2 равен β = 0 дБ, поскольку log 10 1 = 0.То есть порог слышимости 0 децибел. В таблице 1 приведены уровни в децибелах и интенсивности в ваттах на квадратный метр для некоторых знакомых звуков.

Одна из наиболее поразительных особенностей интенсивности в Таблице 1 заключается в том, что интенсивность в ваттах на квадратный метр довольно мала для большинства звуков. Ухо чувствительно к одной триллионной ватт на квадратный метр — это еще более впечатляет, когда вы понимаете, что площадь барабанной перепонки составляет всего около 1 см 2 , так что на нее приходится всего 10 –16 Вт на пороге слышимости! Молекулы воздуха в звуковой волне такой интенсивности колеблются на расстоянии менее одного диаметра молекулы, а манометрическое давление составляет менее 10 –9 атм.

Еще одна впечатляющая особенность звуков в Таблице 1 — их числовой диапазон. Интенсивность звука изменяется в 10 раз 12 от порога до звука, который вызывает повреждение за секунды. Вы не знаете об этом огромном диапазоне интенсивности звука, потому что то, как ваши уши реагируют, можно приблизительно описать как логарифм интенсивности. Таким образом, уровни интенсивности звука в децибелах соответствуют вашему опыту лучше, чем уровни интенсивности в ваттах на квадратный метр. Шкалу децибел также легче использовать, потому что большинство людей больше привыкли иметь дело с числами, такими как 0, 53 или 120, чем с числами, такими как 1.2} {2 \ rho {v} _ {\ text {w}}} \\ [/ latex] состоит в том, что каждый коэффициент 10 в интенсивности соответствует 10 дБ. Например, звук 90 дБ по сравнению со звуком 60 дБ на 30 дБ больше или в три раза в 10 (то есть в 10 3 раза) интенсивнее. Другой пример: если один звук на 10 7 такой же интенсивный, как другой, он на 70 дБ выше. См. Таблицу 2.

Таблица 2. Соотношения интенсивностей и соответствующие различия в уровнях интенсивности звука
[латекс] \ frac {I_2} {I_1} \\ [/ latex] β 2 β 1
2. 2} \\ [/ latex].2 \ [/ латекс]

3. Введите значение для I и известное значение для I 0 в [latex] \ beta \ left (\ text {dB} \ right) = 10 \ log_ {10} \ left (\ frac {I} {I_0} \ right) \\ [/ latex]. Рассчитайте, чтобы найти уровень силы звука в децибелах:

10 log 10 (5,04 × 10 8 ) = 10 (8,70) дБ = 87 дБ.

Обсуждение

Этот звук 87 дБ имеет интенсивность в пять раз больше звука 80 дБ. Таким образом, пятикратный коэффициент интенсивности соответствует разнице в уровне интенсивности звука в 7 дБ.Это значение верно для любых интенсивностей, различающихся в пять раз.

Пример 2. Изменение уровней интенсивности звука: что происходит с уровнем децибел?

Покажите, что если один звук в два раза сильнее другого, его уровень звука примерно на 3 дБ выше.

Стратегия

Вам дается, что отношение двух интенсивностей равно 2 к 1, а затем вас просят найти разницу в их уровнях звука в децибелах. Вы можете решить эту проблему, используя свойства логарифмов.

Решение

1. Определите известных.

Соотношение двух интенсивностей составляет 2 к 1, или:

[латекс] \ frac {I_2} {I_1} = 2,00 \\ [/ латекс].

Мы хотим показать, что разница в уровнях звука составляет около 3 дБ. То есть мы хотим показать

β 2 β 1 = 3 дБ.

Обратите внимание, что

[латекс] \ log_ {10} b- \ log_ {10} a = \ log_ {10} \ left (\ frac {b} {a} \ right) \\ [/ latex].

2. Используйте определение β , чтобы получить:

[латекс] \ beta_ {2} — \ beta_ {1} = 10 \ log_ {10} \ left (\ frac {I_2} {I_1} \ right) = 10 \ log_ {10} 2.00 = 10 \ влево (0,301 \ вправо) \ text {дБ} \ [/ латекс]

Таким образом,

β 2 β 1 = 3,01 дБ.

Обсуждение

Это означает, что два уровня интенсивности звука различаются на 3,01 дБ, или примерно на 3 дБ, как указано в рекламе. Обратите внимание, что поскольку указано только соотношение [латекс] \ frac {I_2} {I_1} \\ [/ latex] (а не фактическая интенсивность), этот результат верен для любых интенсивностей, которые отличаются в два раза. Например, звук 56,0 дБ в два раза интенсивнее звука 53.Звук 0 дБ, звук 97,0 дБ вдвое слабее звука 100 дБ и т. Д.

Здесь следует отметить, что используется другая шкала децибел, называемая уровнем звукового давления , основанная на отношении амплитуды давления к опорному давлению. Эта шкала используется, в частности, в приложениях, где звук распространяется в воде. Рассмотрение этой шкалы выходит за рамки большинства вводных текстов, поскольку она обычно не используется для звуков в воздухе, но важно отметить, что при указании уровней звукового давления могут встречаться очень разные уровни децибел.Например, шумовое загрязнение океана, производимое судами, может достигать 200 дБ, выраженных в уровне звукового давления, тогда как более привычный уровень интенсивности звука, который мы используем здесь, будет чем-то ниже 140 дБ для того же звука.

Расследование на вынос: ощущение звука

Найдите проигрыватель компакт-дисков и компакт-диск с рок-музыкой. Поместите проигрыватель на светлый стол, вставьте компакт-диск в проигрыватель и начните воспроизведение компакт-диска. Осторожно положите руку на стол рядом с динамиками. Увеличьте громкость и обратите внимание на уровень, когда стол только начинает вибрировать во время воспроизведения рок-музыки.Увеличивайте показание регулятора громкости, пока оно не увеличится вдвое. Что случилось с вибрациями?

Проверьте свое понимание

Часть 1

Опишите, как амплитуда связана с громкостью звука.

Решение

Амплитуда прямо пропорциональна ощущению громкости. По мере увеличения амплитуды увеличивается громкость.

Часть 2

Определите общие звуки на уровнях 10 дБ, 50 дБ и 100 дБ.

Решение

10 дБ: Проведите пальцами по волосам.

50 дБ: В тихом доме без телевизора и радио.

100 дБ: Взлет реактивного самолета. {2}} {2 {\ rho {v} } _ {w}} \\ [/ latex], где ρ — плотность среды, в которой распространяется звуковая волна, а v w — скорость звука в среде.

  • Уровень интенсивности звука в децибелах (дБ): [латекс] \ beta \ left (\ text {dB} \ right) = \ text {10} \ log_ {10} \ left (\ frac {I} {{I } _ {0}} \ right) \\ [/ latex], где I 0 = 10 –12 Вт / м 2 — пороговая интенсивность слуха.
  • Концептуальные вопросы

    1. Шесть членов команды синхронного плавания носят беруши, чтобы защитить себя от давления воды на глубине, но они все еще могут слышать музыку и отлично выполнять комбинации в воде.Однажды их попросили покинуть бассейн, чтобы команда ныряльщиков могла попрактиковаться в нескольких погружениях, и они попытались потренироваться на коврике, но, похоже, у них возникли гораздо большие трудности. Почему это могло быть?
    2. Сообщество обеспокоено планом по доставке поездов в центр города с окраин города. Текущий уровень интенсивности звука, даже несмотря на то, что железнодорожная станция находится в нескольких кварталах от центра города, составляет 70 дБ. Мэр уверяет общественность, что разница в звуке в центре города составит всего 30 дБ.Стоит ли беспокоиться горожанам? Почему?

    Задачи и упражнения

    1. Какова интенсивность в ваттах на квадратный метр звука мощностью 85,0 дБ?
    2. Предупреждающая табличка на газонокосилке указывает, что она производит шум на уровне 91,0 дБ. Что это в ваттах на квадратный метр?
    3. Звуковая волна, распространяющаяся в воздухе 20ºC, имеет амплитуду давления 0,5 Па. Какова интенсивность волны?
    4. Какому уровню интенсивности соответствует звук в предыдущей задаче?
    5. Какой уровень интенсивности звука в дБ издают наушники с интенсивностью 4.00 × 10 −2 Вт / м 2 ?
    6. Покажите, что интенсивность 10 −12 Вт / м 2 такая же, как 10 −16 Вт / м 2 .
    7. (a) Каков уровень децибел звука, который вдвое сильнее звука 90,0 дБ? (б) Каков уровень децибел звука, интенсивность которого составляет одну пятую от звука с уровнем шума 90,0 дБ?
    8. (a) Какова интенсивность звука, уровень которого на 7,00 дБ ниже, чем уровень звука 4,00 × 10 −9 Вт / м 2 ? (б) Какова интенсивность звука, равного 3.На 00 дБ выше, чем звук 4,00 × 10 −9 Вт / м 2 ?
    9. (a) Насколько интенсивнее звук, уровень которого на 17,0 дБ выше, чем у другого? (б) Если один звук имеет уровень на 23,0 дБ ниже, чем другой, каково соотношение их интенсивностей?
    10. Люди с хорошим слухом могут воспринимать звуки до -8,00 дБ на частоте 3000 Гц. Какова интенсивность этого звука в ваттах на квадратный метр?
    11. Если большая комнатная муха на расстоянии 3,0 м от вас издает шум 40.0 дБ, каков уровень шума у ​​1000 летящих на таком расстоянии, если предположить, что влияние помех незначительно?
    12. Десять автомобилей в круге на соревнованиях по бумбоксам производят уровень шума 120 дБ в центре круга. Каков средний уровень интенсивности звука, производимого каждой стереосистемой, если предположить, что интерференционными эффектами можно пренебречь?
    13. Амплитуда звуковой волны измеряется ее максимальным манометрическим давлением. Во сколько раз увеличивается амплитуда звуковой волны, если уровень интенсивности звука увеличивается на 40?0 дБ?
    14. Если уровень интенсивности звука 0 дБ при 1000 Гц соответствует максимальному манометрическому давлению (амплитуде звука) 10 −9 атм, каково максимальное манометрическое давление в звуке с уровнем 60 дБ? Какое максимальное манометрическое давление при звуке 120 дБ?
    15. 8-часовое воздействие звука с уровнем интенсивности 90,0 дБ может вызвать повреждение слуха. Какая энергия в джоулях приходится на обнаженную барабанную перепонку диаметром 0,800 см?
    16. (a) Ушные трубы никогда не были очень распространены, но они действительно помогали людям с потерей слуха, собирая звук на большой площади и концентрируя его на меньшей части барабанной перепонки.Какое увеличение децибел производит ушная труба, если ее площадь сбора звука составляет 900 см 2 , а площадь барабанной перепонки составляет 0,500 см 2 , но труба имеет эффективность передачи звука на барабанную перепонку только 5,00%? (b) Прокомментируйте полезность увеличения децибел, обнаруженного в части (a).
    17. Звук более эффективно передается в стетоскоп при прямом контакте, чем через воздух, и усиливается за счет концентрации на меньшей площади барабанной перепонки.Разумно предположить, что звук передается в стетоскоп в 100 раз эффективнее, чем через воздух. Каково же тогда усиление в децибелах, производимое стетоскопом, который имеет площадь сбора звука 15,0 см 2 и концентрирует звук на двух барабанных перепонках общей площадью 0,900 см 2 с эффективностью 40,0%?
    18. Громкоговорители могут издавать интенсивные звуки с удивительно малой потребляемой энергией, несмотря на их низкую эффективность.Рассчитайте потребляемую мощность, необходимую для достижения уровня интенсивности звука 90,0 дБ для динамика диаметром 12 см с КПД 1,00%.

      alexxlab

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *