Site Loader

Содержание

Принципиальная схема VS цоколёвка

Содержание

  1. Принципиальная схема
  2. Цоколёвка в виде таблицы
  3. Схема щита
  4. Типовые схемы подключения

Когда мы имеем дело с Умным Домом, в проекте важно показать, как ко всем модулям оборудования автоматики подключаются прочие устройства, и как эти модули подключаются между собой. Важно показать это наиболее понятным для того, кто читает этот чертёж образом.

Когда я вижу различные проекты систем Умного Дома, мне всегда интересно посмотреть, как проектировщик решает задачу донесения до схемы подключения модулей. А решают её все по-разному.

Принципиальная схема

Есть такая достаточно давно известная вещь как принципиальная схема. Если процитировать Википедию, в ГОСТ 2.701-2008 принципиальная схема определяется как «схема, определяющая полный состав элементов и связей между ними и, как правило, дающая детальное представление о принципах работы изделия».

Приведу пример принципиальной схемы подключения модуля Larnitech DW-HT07 (12 релейных выходов, 24 дискретных входа, входы датчиков 1-wire) из не моего проекта.

Не мой проект

Это достаточно удачное использование подобия однолинейной схемы электрики к нашему случаю, вполне можно понять, что куда подключается.

Я такую схему не использую. Мне она не нравится по следующим причинам:

  • Схема для всех модулей Larnitech занимает 9 страниц. Сложно анализировать использованием всех модулей, хотелось бы видеть их в более компактном виде. А ведь здесь ещё не нарисовано подключение входных сигналов к модулю!
  • Сложно что-то править. В процессе согласования и последующих ремонтных работ всегда что-то меняется, в такую схемы сложно вносить изменения как проектировщику, так и монтажнику.
  • Можно было бы сильно добавить схеме выразительности, если бы провода были нарисованы тем цветом, которым они надписаны. Сейчас все провода одного красного цвета, идея поменять цвета, кажется, лежит на поверхности. Слаботочные кабели (для 24 вольт питания и шины CAN) тоже хочется показать другим цветом, не тем, что силовые.

Вот ещё один пример принципиальной схемы, это подключение модуля 18 реле Larnitech LC18.

Не мой проект

Здесь немного по-другому. Нарисован модуль — это плюс. Не показаны жилы нейтрали — это минус. Не указан тип кабеля — тоже минус. Тип кабеля можно было надписать или сделать разные цвета для разных сечений.

В своих проектах я не делаю принципиальную схему подключения всех щитовых модулей, подобную показанным выше, я использую для того, чтобы показать подключения между модулями, три вещи:

  • Цоколёвку в виде таблицы
  • Схемы сборки щита с некоторыми кабелями
  • Типовые схемы подключения элементов

Чуть подробнее про каждый пункт.

Цоколёвка в виде таблицы

Причём, таблицу эту я делаю в Excel и прикладываю к проекту в этом же формате, чтобы заказчик или монтажник могли легко её править. Если уж я начал использовать в качестве примера Larnitech, то вот таблица для его модулей реле, входов и диммера:

Цоколёвка из моего проекта

В левом верхнем углу — ID модуля, используется для его идентификации в интерфейсе настройки. У реле и диммеров есть входы и выходы. С автомата мы подаём питание на реле, а на его выход подключаем управляемое устройство, в данном примере, группы света.

Такую цоколёвку несложно делать, так как с таблицей в Excel работать проще, чем с чертежом. Легко считать входы и выходы, легко видеть свободные. Самое главное — легко вносить изменения в эту таблицу заказчику или монтажнику при установке.

И на одном листе Excel помещаются все модули, сразу всё видно. Если модулей много, я создаю отдельные вкладки таблицы для разных шин или для входов и выходов.

Вот пример фрагмента цоколёвки для Wirenboard. Четвёртый столбец — входы модуля, пятый — входы реле, шестой — выходы реле. Если разбираться, что такое входы и выходы модуля, то всё становится понятно.

Цоколёвка из моего проекта

Схема щита

Схема щита — не просто расставленные в щите модули, а комментарии по монтажу, некоторые кабели между элементами, комментарии, назначение элементов.

Схема щита из моего проекта

Здесь на схеме щита видно соединение силовых кабелей между УЗО и автоматами, точки подключения от кросс-модуля (показаны коричневым и синим квадратами), назначения модулей.

Соединения между модулями Larnitech и автоматами-УЗО уже надо смотреть в цоколёвке. Чтобы какие-то изменения по подключению этих модулей требовали правки только таблицы цоколёвки.

В трёхфазных системах около точек подключения модульных элементов от кросс-модуля надписана фаза.

Типовые схемы подключения

«Типовые» означает, что на примере одного элемента показано, как подключать аналогичные.

Вот самое типичное, схема подключения светодиодных лент, там всегда всё более-менее сложно:

Схема из моего проекта

Тут показано, как подключаются светодиодные ленты через предохранители и усилители.

Вот схема подключения элементов к модулю защиты от протечки воды:

Схема из моего проекта

Непростая штука — подключение датчиков дыма с НЗ выходом. Сложность в том, что у датчиков питание 12 вольт, и нужна возможность сбрасывать тревогу, кратковременно отключая питание.

Схема из моего проекта

Для того, чтобы показать соединение модулей между собой питанием и шиной, я рисую отдельную схему вот такого вида:

Схема из моего проекта

Состав листов почти не меняется в зависимости от выбранной системы умного дома: в проектах на Wirenboard, Larnitech или HDL всегда есть цоколёвка, типовые схемы и схема щита.

На мой взгляд, получается достаточно наглядно и понятно. Некоторое время занимает вникание в цоколёвку, но потом она становится удобной благодаря тому, что её легко править.

 991 просмотров всего,  8 просмотров сегодня

Цоколевка биполярных транзисторов

1Т101, 1Т102

КТ104, КТ208, КТ301, КТ302, ГТ305, ГТ309

ГТ108, ГТ115, ГТ124

ГТ109, ГТ310

1Т116, ГТ122, ГТ125

КТ117

КТ118

КТ119

КТ120, 2Т126-1, КТ206, КТ307, КТ354, КТ380, КТ3134-1

КТ127-1, КТ331-1, КТ332-1

КТ201, КТ203, КТ313, КТ316, КТ326, КТ327, КТ340, КТ342, КТ343, КТ347, КТ349, КТ351, КТ352, КТ363, КТ3102, КТ3108, КТ3117, КТ3142, КТ3175, КТ616

КТ202, КТ211-1, 2Т317-1, КТ318

2Т205

КТ207, КТ210, КТ333, КТ348, КТ359, КТ379

КТ201-М, КТ209, КТ316-М, КТ337, КТ349-М, КТ345, КТ350, КТ351, КТ352, КТ363-М, КТ368-М, КТ375, КТ399-М, КТ3102-М, КТ3107, КТ3117-1, КТ3128-1, КТ502, КТ503, КТ632-1, КТ638, КТ645, КТ660, КТ668, КТ680, КТ681, КТ685, КТ686

2Т214-9, 2Т215-9, 2Т218-9, 2Т368-9, 2Т370-9, 2Т385-9, КТ396-9, КТ3106-9, КТ3126-9, КТ3129-9, КТ3130-9, КТ3153-9, КТ3169-9

КТС303-2

КТ208, КТ501, КТ3152

ГТ308, ГТ320, ГТ321, КТ321

ГТ311, ГТ313, ГТ338

КТ312

КТ314-2, КТ369, 2Т377-2, 2Т378-2, КТ384-2, КТ388-2, КТ389-2, КТ392-2, КТ397-2, КТ3150-2, КТ624-2, КТ625-2, 2Т629-2

КТ315, КТ361, КТ3122

ГТ322, ГТ328, ГТ346, КТ368, ГТ376, ГТ386, КТ399, КТ3127

КТ324, КТ360, КТ366, КТ3104, 2Т3135-1

ГТ329, ГТ330, ГТ341, ГТ362

ГТ335, ГТ402, ГТ404, КТ601, КТ603, КТ605, КТ608, КТ620

КТ336

КТ337

КТ209, КТ345, КТ351, КТ352

КТ355

КТ357, КТ358, КТ373

КТ364, КТС394, КТС395

КТ371, КТ382, КТ3120

КТ372

1Т374-6, 2Т3114-6, 2Т3121-6

2Т381-1

ГТ383, ГТ387, КТ391, 2Т3115-2, КТ3123-2, 2Т657-2, 2Т658-2, 2Т682-2, 2Т691-2

КТС393, 2ТС3136-1

КТ3101-2

КТС3103, 159НТ1

КТ3123-М

КТ306

КТС393-93

2Т3124-2, 2Т3132-2

2Т3133, 2Т652

КТ3155

КТ3169-91

КТ3174-С2

КТ339

ГТ402, ГТ404

ГТ403

ГТ405

КТ602, КТ604, КТ611

КТ607-4, 1Т612, 1Т614

КТ626

1Т3110-2, 2Т640-2, 2Т642-2, 2Т643-2, 2Т647-2, 2Т648-2, 2Т671-2

2ТС641

2Т649-2

2Т664-91, 2Т665-91, КТ666-9, КТ667-9, КТ9144-9, КТ9145-9

КТ203-М, КТ306-М, КТ313-1, КТ326-М, КТ342-М

КТ684

КТ355-М, КТ3157

КТ325-М, КТ339-М

2ТС687-С2

2Т688

КТ936

КТ3109

КТ3126

2ТС3111

ГТ701, 1Т901, КТ933

1Т702

ГТ703, ГТ705, 2Т713, КТ808-М, КТ812, КТ818-М, 2Т818, КТ819-М, 2Т818, 2Т824-М, 2Т825, 2Т826, 2Т827, 2Т828, 2Т832, 2Т834, 2Т838, 2Т839, 2Т840, 2Т841, 2Т842, 2Т844, 2Т845, 2Т846, 2Т847, 2Т848 и т. д.

КТ704, 1Т824, 2Т917, КТ926, КТ935

2Т708

2Т709, 2Т716

2Т709-2, 2Т716-1, КТ723, КТ724, КТ805-М, КТ818, 2Т818-2, КТ819, 2Т819-2, 2Т825-2, КТ835, 2Т837, КТ840-1, КТ896, КТ899

КТ801

КТ807

КТ802, КТ803, КТ805, ГТ806, КТ808, КТ809, ГТ813, КТ902, КТ903, КТ908

ГТ810, 1Т905, ГТ906

КТ601-М, КТ602-М, КТ604-М, КТ605-М, КТ611-М, КТ639, КТ644, КТ646, КТ807-М, КТ814, КТ815, КТ816, КТ817, КТ902-М, КТ940, КТ943, КТ961, КТ969, КТ972, КТ973, КТ9115, КТ9157

КТ820-1, КТ821-1

КТ822-1, КТ823-1

КТ617, КТ618, 2Т630, 2Т632, КТ633, 2Т635, 2Т638, 2Т653, 2Т830, 2Т831, 2Т836, 2Т860, 2Т861, 2Т880, 2Т881, 2Т888, КТ325, 2Т928, 2Т933, 2Т941, 2Т968, 2Т974, КТ9141, КТ9143

КТ712, КТ829, 2Т841-1, 2Т842-1, КТ850, КТ851, КТ852, КТ853, КТ854, КТ855, КТ856-1, КТ857, КТ858, КТ859, КТ863, КТ882, КТ883, 2Т884, КТ8109, КТ997, КТ9120

2Т862Б-Г, 2Т866, 2Т874

КТ606, КТ904, КТ907, КТ914, КТ921

ГТ905, ГТ906-М

КТ909

КТ911

КТ912

КТ610, КТ913, КТ916, 2Т939

2Т634-2, 2Т637-2, КТ918, 2Т938-2

КТ919, 2Т937-2, 2Т942

КТ920, КТ922, КТ925, КТ929, КТ934, 2Т951, КТ983

КТ927

2Т930, 2Т931, 2Т958, 2Т960

2Т946

КТ944, 2Т947

2Т948, 2Т9103-2

2Т949, 2Т993

2Т950

2Т955, 2Т965, 2Т966, 2Т981

2Т956, 2Т957, 2Т964, КТ967, 2Т980, 2Т9111

2Т962, 2Т976

2Т963-2, 2Т995-2, 2Т9119-2, 2Т9135-2

2Т975, 2Т986

2Т977

2Т982-2

2Т984, 2Т9104, 2Т9109

2Т985-С, 2Т9105-С, 2Т9125-С, 2Т9128-С

2Т987

КТ979, 2Т988, 2Т989, 2Т9114, 2Т9124, 2Т9129, 2Т9139, 2Т9149, 2Т9158

2Т991-С, 2Т9101-С, 2Т9132-С, 2Т9136-С

2Т994, 2Т9146

2Т996-2

2Т9118, 2Т9122

2Т9121, 2Т9127, 2Т9146Б,В

2Т9134

2Т9137

2Т9140

КТ872, КТ898, КТ8101, КТ8102, КТ8106, КТ8107

КТ999

2Т9126, 2Т9131

КТ970, 2Т971, КТ9116, КТ9133

2Т879

КТ9141-1

2Т891

КТ970

КТ715

1НТ251

КТС622

1НТ661

198НТ1, 198НТ2, 198НТ3, 198НТ4

198НТ5, 198НТ6, 198НТ7, 198НТ8

КР198НТ1-4

КР198НТ5-8

ГТС609

КТС613, КТС631

КР159НТ1, КТС3103-1

2ТС843

КТС398-94

КТ9147-С

2Т9153-С

КТ9142

КТ9150

КТ9151, КТ9152

КТ9160

КТ117-М

NE555: схемы, распиновки, даташиты

Микросхема NE555, согласно своим основным характеристикам, входит в категорию таймеров-универсалов. Разброс временных промежутков, которые можно в них устанавливать, очень широк. Большинство схем ne555 содержат генераторы импульсов прямоугольного типа с разной частотой и протяженностью. Устройство вместе с небольшим количеством добавочных радиоприборов, таких как резисторы и конденсаторы, является составной частью разной электроники. Это генераторы, шим регулятор на ne555, временные ne555 реле, устройства для имитации звука с разной частотой и т.д.

Цоколевка NE555

Распиновка устройства не меняется многие годы, несмотря на применение в разных видах приложений. Стандартная версия, как правило, имеет пластиковый корпус DIP-8. Поверхностный монтаж оформляется с помощью SOP-8 и SOIC-8.

Первый вывод всегда имеет маркировку в виде небольшого округлого углубления или выпуклости.

Ранее был вариант в круглом корпусе из металла LM555CH, однако сейчас он не производится. Он состоял из RS-триггера, двух компараторов, разрядного транзистора и инвертирующего усилителя.

Основные характеристики ne555

Устройство не является одним из биполярных ИС, ТТЛ, КМОП, но легко взаимодействует с ними. Напряжение ne555, при котором устройство может нормально работать, имеет диапазон в пределах 4,5 — 16 В. Если оно равно 5 В, происходит согласование выхода таймера ne555 и ТТЛ-входов остальных схем. В противном случае, нужны еще какие-либо согласующие приборы, чтобы задать импульсам нужный уровень.

Пределы допустимых значений

Есть ряд типовых максимальных эксплуатационных характеристик NE555. Они встречаются в самых распространенных модификациях этой микросхемы. Их различия зависят лишь от компании-производителя, но, как правило, одинаковы в большинстве технических описаний:

Напряжение источника энергии — от 4,5 до 18 Вольт.

Рассеиваемая мощность — 600 микроВатт.

Ток на выходе — 200 миллиАмпер.

Рабочая частота — 500 килоГерц.

Температура для работы — от 0 до 70 градусов, для хранения — от -65 до 150 градусов.

Если превышать указанные параметры, устройство может выйти из строя.

Чем можно заменить NE555

В советские времена существовал полный ne555 аналог микросхемы — КР1006ВИ1. Сегодня она производится в Латвии и Белоруссии. В русскоязычной инструкции к ней дана информация, полностью соответствующая англоязычному варианту ne555 datasheet.

Есть один момент, важный для подбора качественной замены. В указанной версии прибора есть приоритет работы выводов “останова” над “запуском”, а в оригинальном варианте обратная ситуация. В большей части распространенных схем этого функционала нет, но не нужно совсем сбрасывать его со счетов.

Такая микросхема является незавершенным изделием с реализацией 2 эксплуатационных режимов:

Моностабильного — таймера запуска.

Мультивибратора, который генерирует одиночные импульсы.

Чтобы прибор мог работать в одном из этих режимов, его нужно немного усовершенствовать. С этой целью между контактами ставят RC-цепочку с заблаговременной подборкой конденсатора и резистора. Их показатели задают нужную частота ne555 и периодику прямоугольных сигналов на выходе устройства, когда на него подается питание. Чтобы повысить точность работы во избежание помех извне, нужно проводить шунтирование емкостью, составляющей не более 0,1 мкФ.

Ne555 — схемы включения

Работа NE555 в режиме таймера

Требуется 2 дополнительных элемента:

Резистор.

Две емкости.

Когда подается питание, на 3-й по отношению к уровню земли ножке будет напряжение 0 Вольт. Конденсатор, задающий время, не имеет заряда, и в этом состоянии схема может пребывать долго, до поступления на второй контакт положительного сигнала. По величине он должен быть втрое меньше напряжения питания.

Когда сигнал подается на 2 контакт, выход микросхемы получает напряжение на уровне питающего. Его протяженность определяется временем заряда С. Когда это происходит, напряжение на выходе уменьшается почти до нуля, и устройство разряжается.

Для схемы важно, что, как только она включается, никакие влияния на контакт 2 не меняют уровень выходного напряжения. Но его можно уменьшить подачей сигнала на 4 ножку. Рассчитать временный интервал выходного импульса можно с помощью формулы: T=1.1*Rt*Ct.

Работа в режиме мультивибратора

ne555 выдает прямоугольные сигналы. Их периодичность зависит от значений задающей время RC-цепочки. Конструкция немного меняется, в нее добавляется дополнительное сопротивление. Контакт 7 соединяет резисторы Ra и Rb, но отключается внутри таймера.

Когда питание подается на микросхему, на выходе возникает высокий уровень по отношению к земле, начинается заряд конденсатора. При достижении Ct заряда в размере 2⁄3 от напряжения питания, произойдет переключение схемы и снижение напряжения на выходе до 0. Тогда включается 7 контакт и устройство разряжается.

Основные черты и минусы таймера NE555

Главная отличительная черта устройства — наличие встроенного делителя напряжения. Он задает верхнее и нижнее пороговые значения, при которых срабатывают 2 компаратора. Так как его невозможно убрать, это ограничивает возможность применения схемы.

У таймера с биполярными транзисторами есть один явный минус, касающийся перехода выходного каскада между состояниями. При переключении в устройстве проходит паразитный сквозной ток. На пике он доходит до 400 миллиАмпер, что приводит к возрастанию тепловых потерь.

Чтобы решить эту проблему, нужно установить полярный конденсатор. Он имеет емкость не более 0,1 мкФ между проводом и выводом контроля. Это стабилизирует устройство при запуске и при работе вообще. Чтобы устойчивость к помехам была еще выше, в цепь питания включают конденсатор 1 мкФ.

У таймеров, в основе которых находятся КМОП-транзисторы, нет указанных проблем. Им не требуется монтаж конденсаторов извне.

Размещение и предназначение выводов

NE555 и транзисторы, которые можно использовать для его замены, как правило, имеют восьмивыводной корпус PDIP8, TSSOP, либо SOIC. Выводы, вне зависимости от вида корпуса, расположены стандартно.

Таймер графически обозначается в виде прямоугольника и подписывается как G1 (генератор одиночного импульса) или GN (мультивибратор).

Виды выводов:

  1. GND — общий. Это 1-й вывод по отношению к ключу. Его подключают к участку питания прибора со знаком “-”.
  2. TRIG — запуск. Когда низкий импульс подается на вход 2-го компаратора, устройство запускается, и на выходе появляется сигнал высокого уровня. На их протяженность влияет номинал внешних деталей С и R.
  3. OUT — выход. Напряжение при высоком уровне сигнала на выходе составляет 1,5 В, при низком — 0,25 В. Переключение составляет 0,1 мкс.
  4. RESET — сброс. Этот вход обладает максимальным приоритетом. Он управляет работой устройства при любом напряжении на других выводах. Разрешение запуска возможно при потенциале от 0,7 В. Из-за этого его, с помощью резистора, связывают с питанием устройства. Если появляется импульс менее 0,7 В, NE555 перестает работать.
  5. CTRL — контроль. Впрямую соединяется с делителем напряжения, и без воздействий извне выдается 2/3 Uпит. Когда на вывод подается сигнал управления ne555, получается модуляция сигнала. В стандартных схемах он соединяется с внешним конденсатором.

Как изготовить металлоискатель ne555 своими руками

Существует способ самодельного изготовления металлоискателя из 2 схем ne555. Они состоят из 2 катушек:

  1. Передачи — Tx.
  2. Приема — Rx.

Вся конструкция делится на 2 блока. Первый, который находится слева, состоит из генератора прямоугольных импульсов. Элементы, задающие время ( R1, R2, C1) подбираются так, что приблизительная выходная частота равна 700 Герц. Ее называют частотой слышимого спектра.

Передача импульсов происходит через резистор с ограничениями тока — R3. Расположение двух катушек на одной территории таково, что они вместе составляют перекрытие и у системы появляется индукционный баланс. Напряжение катушки приема равно нулю, а со стороны правого участка схемы нет никакой реакции. При наличии рядом металлического предмета нарушается баланс и раздается звук.

Для усиления сигнала, поступающего на вход микросхемы 2 приемной катушки используется транзистор VT1, а именно, КТ3102ЕМ, или его аналог с любым уровнем усиления. Резисторы образуют усилитель напряжения. С помощью переменных резисторов настраивается металлоискатель на ne555. R6 -для подстройки, настраивается после взаиморазмещения катушек. R7 и R8 помогают осуществлять точную настройку и устанавливаются в корпусе устройства.

В сознании звукового сигнала участвует пьезоизлучатель BA1. Его изымают из непригодного мультиметра. Желательно, чтобы он имел внутренний генератор. Сформированный на выходе DD2 сигнал импульсов сигнализирует и помогает улавливать небольшие перемены звука, когда рядом находится предмет из металла.

Как изготовить катушку

Чтобы намотать катушки металлоискателя, нужно воспользоваться эмалированным проводом для обмотки с радиусом от 0,16 мм. Подберите какой-нибудь крупный предмет и сделайте обмотку вокруг него. Провод можно достать из ненужного электродвигателя или силового трансформатора.

Достаньте намотанную катушку и обмотайте бумажной клейкой лентой. Должны получиться 2 идентичные катушки. Скотч нужен, так как со временем обмотка теряет форму. Желательно сделать их приплюснутыми, напоминающими букву D, чтобы одна не перекрывала другую. Основанием для катушек может служить сэндвич -панель, часто применяемая в пластиковых окнах. Соединять катушки с платой можно экранированным проводом.

Как собрать мигалку на ne555

В среде любителей электроники очень популярна простейшая мигалка, в основе которой — данная микросхема. В ней немного элементов, чего вполне достаточно для управления 1-2 светодиодами.

Схема обычной мигалки на NE555

В этом устройстве действует режим мультивибратора, генерирующего прямоугольные импульсы. Их длина меняется путем подбора конденсаторов и резисторов. Схема состоит из 2 попеременно включаемых светодиодов. Но если вам нужен только 1 из них, второй не обязательно включать в микросхему, это не скажется на качестве работы всего прибора.

Питание схемы осуществляется от 3В, может находиться в разбросе от 3 до 15. При увеличении питания нужен подбор резисторов в светодиодные цепи. Если питание идет от 12 В, резисторы должны быть 1,5 — 2 килоОм.

Собранную мигалку не нужно настраивать, она работает при включении. Не обязательно брать резистор на 220 килоОм, достаточно впайки переменного или подстроечного варианта. Это поможет сделать настройку частоты мигания светодиода.

Для сборки схемы можно использовать макетную плату. Так как число компонентов в ней — минимальное, можно применить навесной монтаж. Этот прием актуален для автомобилистов.

Как изготовить реле времени ne555 самостоятельно

Чтобы лучше ознакомиться с таймером, изготовьте реле времени собственноручно. Это простая классическая схема, которую может собрать любой человек.

Для запуска используется тумблера SB1, для настройки длительности — резистор R2. Примерное время работы указанной схемы — 6 сек. Чтобы его увеличить, не меняя характеристики R2, нужно повысить емкость С1.

Для суточного рабочего цикла нужно использовать конденсатор с емкостью 1,6 тысяч мкФ. При применении микросхемы в условиях, приближенных к реальным, фарады можно менять на более соответствующие нужному рабочему времени. Для расчета применяют формулу: T=C1*R2, С1 — емкость выбранного конденсатора, R2 — средний показатель сопротивления резистора подстройки.

Распиновка выглядит так:

  1. GND (Земля) — уменьшается питание.
  2. Trigger (запуск) — контакт получает импульс для начала работы таймера. Возникает от нажатия тумблера.
  3. Output (выход) – при активности таймера идет генерация исходящего сигнала на контакте.
  4. Reset (сброс) — подается отрицательный сигнал, и происходит остановка таймера.
  5. Control Voltage (контроль) — повышается устойчивость прибора к помехам.

Приобрести NE555 можно на Алиэкспресс(по ссылке) и в других интернет-магазинах по максимально доступным ценам.

13003 транзистор характеристики, цоколевка, аналоги, datasheet

В данном тексте вы узнаете все характеристики мощного силового 13003 (mje13003)  транзистора с кремниевой NPN-структуры, высокой скоростью переключений и низкой полосой пропускания. Наиболее известен с обозначением mje13003, так как с этим префиксом он был когда то представлен миру компанией Motorola. В настоящее время его прототип наиболее широко применяется в бытовой электронике, особенно в режиме переключений SWITCHMODE. Позиционируются для коммутации от 115 до 229 вольт в различных схемах отклонения электронного луча, инверторов, регуляторах, а так же драйверов электромагнитных реле.

Содержание

  1. Распиновка
  2. Основные технические характеристики
  3. Предельные режимы эксплуатации
  4. Электрические характеристики
  5. Режима работы в SOA
  6. Режим FBSOA
  7. Режим RBSOA
  8. Комплементарная пара
  9. Маркировка
  10. Замена и эквиваленты
  11. Производители

Распиновка

Цоколевка 13003 у большинства производителей выполняется в пластиковым корпусом ТО-126. У компании STMicroelectronics (STM) этот корпус называется SOT-32. Фирменный MJE13003 у компании Motorola имел пластиковый корпус — ТО-225A. Это тот же, немного улучшенный ТО-126, согласно системы стандартизации полупроводниковых приборов Jedec. Три гибких вывода из корпуса ТО-126, если смотреть на маркировку, имеют следующее назначение: самый левый контакт – база; посередине – коллектор; крайний справа – эмиттер.

В статье рассмотрено назначение выводов, встречающееся у большинства производителей, однако бывает и другая – нетипичная распиновка 13003 в ТО-126. У той же STM, если смотреть на прибор как описано выше, эмиттер будет слева, база справа, а коллектор посередине. Аналогичная цоколевка у KSE13003 (Fairchild Semiconductor). Очень редко, но встречаются приборы в корпусе ТО-220. Для наглядности просмотрите рисунок с цоколевкой от разных компаний.

Основные технические характеристики

13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.

Предельные режимы эксплуатации

13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.

Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%.

Электрические характеристики

Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.

Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.

Режима работы в SOA

Очень важной характеристикой для переключающего транзистора является параметры, относящиеся к область безопасной работы (Safe operating area (SOA). Они в даташит показаны в виде графиков активного (безопасного) режима работы в SOA (FBSOA) и выключения (RBSOA).

Режим FBSOA

На графике активного режима работы для mje13003 видно, что постоянный ток коллектора в 1 А допустим только при напряжении около 30 В, что не превышает номинальной мощности 30 Вт (при предельной мощности устройства в 40 Вт). При импульсном токе активная область расширяется. Например при импульсном токе в 3 A, в течении 100 мкс, допустимо напряжение около 150 В. Как видно из графика, при увеличении напряжения, величина используемого тока коллектора уменьшается. Область возможного вторичного пробоя указывается в правой части графика.

Выглядит это конечно замечательно, но стоит внести в эту идиллию ложку дёгтя. Как принято, безопасный режим работы рассчитывается производителями при температуре перехода до 25 градусов. В реальности нельзя поддерживать такую температуру у работающего полупроводникового прибора, так как при её увеличении мощность устройства падает. А при увеличении температуры до предельных 150 °С доходит до 0 Вт. В связи с этим радиолюбители стараются разными способами уменьшить нагрев корпуса, оснащая устройства радиаторами, добиваясь при этом средних рабочих температур.

Режим RBSOA

В справочнике на 13003 (рисунке 12), приводится график работы в режиме выключения — RBSOA. На графике показана область устойчивой работы транзистора при выключении и обратном смещении на переходе эмиттер-база VBE(off), при этом ток коллектора продолжает течь. Если на базе напряжение нулевое, то область RBSOA значительно меньше.

В схемах с импульсными источниками питания, для уменьшения проблем связанных с запиранием транзистора в момент его выключения, чаще всего используют обратное смещение базы.

Комплементарная пара

Комплементарной пары  у mje13003 нет, учитывайте это при выборе компонента для своих схем или при замене вышедшего из строя устройства.

Маркировка

Маркируется на корпусе цифрами “13003”, указывающими на серийный номер устройства по системе JEDEC. Префикс MJE, в начале указывает на происхождение устройства у именитого брэнда — компании Motorola. В настоящее время префикс mje в обозначении своей продукции добавляют и другие производители радиоэлектронного оборудования. Так что, не удивительно встретить транзистор с таким префиксом от другого компании.

Также, вместо MJE, но с другими буквами в названиях, могут встречается похожие устройства: ST13003 SOT-32 (ST Microelectronics), FJP13003, KSE 13003 (Fairchild). В последнее время стали встречается копии устройств от китайских компаний с такой маркировкой на корпусе: 13003d, 13003br, j13003, e13003. В большинстве случаев у приборов с буквой “d” в конце есть встроенный защитный диод, а у остальных меньшая мощность до 25 Вт.

Замена и эквиваленты

Замену для 13003 можно подобрать из его ближайших аналогов ST13003, KSE13003, HMJE13003. Можно попробовать транзисторы из той же серии но, с более высокими характеристиками: mje13005, mje13007, mje13008, mje13009. В некоторых схемах может подойти BUJ101, 2SC4917 или PHD13003 с встроенным защитным диодом. Очень часто в качестве замены подходит его белорусский аналог от завода “Интеграл” — кт8170А1.

И напоследок интересное видео о сборке навесным монтажом простого аудиоусилителя.