Site Loader

Содержание

Что такое LED телевизор?

Что такое LED телевизор

В последнее время кинескопные телевизоры практически канули в лету – их уже не встретишь в магазинах электроники, разве что в некоторых домах. А вот тонкие, узкие телевизоры совсем не считаются роскошью и используются повсюду, причем ежегодно выпускаются новые модели с усовершенствованными технологиями. Поэтому потенциальным покупателям нередко трудно решиться на окончательный выбор «голубого экрана» среди изобилия предложенных товаров. Мы же расскажем о том, что такое LED телевизор и его преимуществах.

Что такое технология LED?

Вообще LED – это аббревиатура на английском языке, которая расшифровывается как «light-emitting diode». Фраза переводится на русский язык просто – светодиод. И если говорить о том, что значит LED телевизор, то на самом деле его можно назвать продвинутым ЖК телевизором.

Известно, что ЖК — это технология, основанная на использовании жидкокристаллической матрицы. Последняя состоит из двух пластин, между которыми размещаются жидкие кристаллы. При воздействии электрического тока они начинают двигаться. А вот благодаря лампам подсветки на матричной поверхности появляются темные и светлые пятна. И цветные фильтры, располагающиеся позади матрицы, делают цветным изображение на экране.

Касательно того, что такое LED подсветка, то тут в качестве источника света используется большое количество светодиодов (в отличие от подсветки ЖК, где применяются флуоресцентные лампы с холодным катодом).

Таким образом, принцип работы LED телевизора основан на подсветке жидких кристаллов матрицы светодиодами.

Преимущества и недостатки LED телевизоров

Телевизоры с технологией LED обладают рядом преимуществ. Наверно, главным плюсом можно назвать сниженное использование электроэнергии: как считают специалисты, до 40% по сравнению с ЖК мониторами, в которых подсветка осуществляется флуоресцентными лампами.

Кроме того, LED монитор легко впишется в любой интерьер – светодиоды позволяют создавать мониторы толщиной до 3-3,5 см, ведь на самом деле светодиоды совсем крошечные. Причем, это не предел. Кстати, существует различие в расположении светодиодов в LED телевизорах, от чего и зависит толщина матрицы. В случае, когда они равномерно размещаются позади панели телевизора, говорят от Direct LED. Благодаря этому подсветка экрана осуществляется равномерно. Наверняка вы слышали и о чрезвычайно тонких телевизорах Edge LED. Что касается того, что такое Edge LED подсветка, то так называют расположение светодиодов по периметру экрана с одновременным использованием рассеивающей панели. За счет этого значительно утончается ширина панели – меньше 3 см! Кстати, в магазинах электроники нередко в обозначениях модели встречается Slim LED — что это такое? Это маркетинговое обозначение телевизоров с минимальной толщиной корпуса – 22,3 мм. Обычно у таких моделей зрительно отсутствует такая привычная рамка вкруг экрана, хотя в действительности она находится под экранным стеклом.

Значительным преимуществом LED телевизоров можно назвать и улучшение качества изображения. Благодаря осуществлению полного что значит led телевизорконтроля над осветлением и затемнением локальных участков экрана черный цвет действительно получается глубоким. Качественней становится общая цветопередача, выше яркость изображения. Кстати, смотреть любимый сериал можно со всех уголков комнаты, не боясь затемнения изображения.

Основным недостатком LED телевизоров считается его дороговизна в соотношении телевизоров с другими типами подсветки. Однако считается, что по мере усовершенствования технологий, производство телевизоров с светодиодной подсветкой примет массовый характер, а потому цена будет постепенно снижаться.

 

Светодиод, или LED технология в вопросах и ответах

Светодиод, или LED технология в вопросах и ответах

1. Что такое LED?

Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. По-английски светодиод называется light emitting diode, или LED. 

2. Из чего состоит LED?
Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные LED мало похожи на первые корпусные LED, применявшиеся для индикации.

3. Как работает LED?
Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими. Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области LED должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу. Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

 

4. Означает ли это, что чем больший ток проходит через LED, тем он светит ярче?
Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода LED перегреется и выйдет из строя.

5. Чем хорош LED?
В LED, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, LED (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, LED излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. LED механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 — 10 раз больше, чем у люминесцентной лампы. Наконец, LED — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох LED?
Только одним — ценой. Пока что цена одного люмена, излученного LED, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2 — 3 года этот показатель будет снижен в 10 раз.

7. Когда LED начали применяться для освещения?
Первоначально LED применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые LED, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии. В 60-х и 70-х годах были созданы LED на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче LED обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало LED синего, сине-зеленого и белого цвета.

8. От чего зависит цвет LED?
Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» LED, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой LED?
Голубые LED можно сделать на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?) У LED на основе SiC оказался слишком мал кпд и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У LED на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды. Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но… проблему не удавалось решить до конца 80-х годов. Первым, еще в 70-х, голубой LED на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош…» — и работы Панкова не поддержали. Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось. Это сделали японцы — профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирую-щий слой р-типа с высокой концентрацией дырок. Однако разработчики LED не обратили должного внимания на их публикации. Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой LED. Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10 — 20 млн голубых и зеленых LED в месяц, а в январе 1998 года приступила к выпуску белых LED.

10. Что такое квантовый выход LED?
Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход.Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных LED составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности LED.

11. Как получить белый свет с использованием LED?
Существует три способа получения белого света от LED. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые LED, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность LED, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И наконец в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой LED, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?
У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные LED. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество LED в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины LED нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать. Белые LED с люминофорами существенно дешевле, чем LED RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам LED. Промышленность выпускает как LED с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики LED?
LED — низковольтный прибор. Обычный LED, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. LED, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1 А в проекте. В LED модуле отдельные LED могут быть включены последовательно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В). При подключении LED необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного LED. Яркость LED характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие LED разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения. Для сравнения эффективности LED между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует LED на повышение температуры?
Говоря о температуре LED, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость LED падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод. Падение яркости с повышением температуры не одинаково у LED разных цветов. Оно больше у AlGalnP- и AeGaAs-LED, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через LED?
Как видно из рисунка, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость LED оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев LED может привести к его ускоренному старению.

16. Для чего LED требуется конвертор?
Конвертор (в англоязычной терминологии driver) для LED — то же, что балласт для лампы. Он стабилизирует ток, протекающий через LED.

17. Можно ли регулировать яркость LED?
Яркость LED очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на LED подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость LED становится управляемой, в то же время LED не гаснет. Небольшое изменение цветовой температуры LED при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы LED?
Считается, что LED исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через LED в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных LED короче, чем у маломощных сигнальных, и составляет в настоящее время 20 — 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, LED надо менять.

19. «Портится» ли цвет LED с течением времени?
Старение LED связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета LED в процессе старения и сравнить с другими источниками.

20. Не вреден ли LED для человеческого глаза?
Спектр излучения LED близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии LED на человеческий глаз отсутствуют.

21. Какие на сегодняшний день существуют технологии изготовления LED и LED модулей?
Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области. За один процесс, который длится несколько часов, можно вырастить структуры на 6 — 12 подложках диаметром 50 — 75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 — 2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой культуры. Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24×0,24 до 1×1 мм2. Следующим шагом является создание LED из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый LED, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости LED определяется этими этапами высокой технологии. Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного LED перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-техноло-гии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке. LED, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются LED модули, которые могут иметь линейную, прямоугольную или круглую форму, быть 50 — 75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 — 2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой культуры. Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24×0,24 до 1×1 мм2. Следующим шагом является создание LED из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый LED, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости LED определяется этими этапами высокой технологии. Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного LED перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-техноло-гии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). LED, изготовленный по технологии СОВ, схематически изображен на рисунке. LED, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются LED модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и LED лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются LED сборки на круглом массивном радиаторе. Раньше в светодиодных сборках было очень много LED. Сейчас, по мере увеличения мощности, LED становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

22. Где сегодня целесообразно применять LED?
LED находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. LED оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию и где высоки требования по электробезопасности.

LED телевизор что это значит, какие особенности лед экранов

На 2016 год развитие телевизионной техники вывело на пик популярности телевизоры с LED подсветкой, их так и называют «лед телевизоры». Так же на сегодня в магазинах вы встретите телеприемники с экранами на основе OLED.

LED телевизоры – это такие телеприемники, у которых экран построен на жидкокристаллической матрице (lcd) с подсветкой от светодиодов.

Матрица на жидких кристаллах носит аббревиатуру на английском «LCD» (liquid crystal display). И раньше так и назывались аппараты с такими экранами – LCD телевизоры. Но для работы экрана на жидких кристаллах нужна подсветка и первые несколько лет для подсветки использовалась люминесцентная лампа CCFL. Затем для работы подсветки стали использовать светодиоды (light-emitting diode – LED). И теперь телевизоры с дисплеями на жидких кристаллах называют «LED телевизоры», это то же самое что и «LCD телевизоры». Отличия в этих названиях только в виде подсветки, все остальные параметры и принцип работы остается одинаковым.

На 2014 год все фирмы прекратили выпуск LCD телевизоров с подсветкой от люминесцентной лампы. Выпускаются модели с экранами на жидких кристаллах и светодиодной подсветкой. И на сегодня такие телеприемники составляют самый массовый и доступный сегмент телевизоров. Плазменные модели уже уходят с рынка, осталось всего несколько фирм продолжающих выпуск плазменных телевизоров и то это всего несколько новых моделей в 2014 году и при этом это не флагманские модели. А вот аппараты с OLED экранами (экраны на светоизлучающих светодиодах) относятся как раз к флагманским моделям, и их цена пока не позволяет перевести эти телевизоры в разряд массовых.

Отличия LED от обычных LCD

При использовании ламп для подсветки матриц было невозможно регулировать подсветку отдельно взятых участков экрана. Это приводило к тому, что контрастность LCD экранов была не достаточно высокой, что бы конкурировать с плазмой или даже еще живыми на то время кинескопами. Поэтому и пришли к решению использовать светодиоды для подсветки матрицы. При этом стало возможным регулировать подсветку на отдельных участках, регулируя яркость свечения отдельных светодиодов.

Отсюда и получаются преимущества LED подсветки по сравнению с обычной люминесцентной лампой:
  • улучшенные яркость экрана,
  • контрастность,
  • цветопередача,
  • а энергопотребление при этом уменьшилось до 40%.
Из-за малых размеров светодиодов и общая толщина корпуса LED телевизора получается меньше других. Различия в подсветке от CCFL и LED

Способы LED подсветки

Есть два типа светодиодной подсветки: боковая и задняя. Боковая (Edge) подсветка, при которой светодиоды расположены по периметру корпуса телевизора. Задняя (Direct) подсветка, при которой светодиоды расположены равномерно сзади матрицы. Лучшие результаты по качеству изображения дает подсветка Direct с возможностью локального затемнения групп светодиодов. Более дешевой является подсветка Edge, поэтому она больше используется при производстве телевизоров

Принцип работы подсветки

Основной проблемой жк экранов была контрастность, вернее её малое значение. Контрастность — это отношение яркости в самом ярком участке экрана к яркости в самом темном участке. Производители экранов пытались регулировать яркость подсветки на разных участках для увеличения контрастности. Поэтому появилась технология local dimming, которая позволяет управлять сразу группами из нескольких светодиодов. Система local dimming обладает несколькими недостатками. Во первых, плохая однородность цвета (заметны яркие и темные пятна) на участках где ярко включена и выключена подсветка. Во вторых, на контрастных переходах появляются цветные ореолы. В третьих, на темных участках пропадают детали изображения. Но увеличение контрастности и уровня черного компенсируют эти недостатки.

Если расставить по местам различные технологии по показателю качества получаемой картинки, то получится такой результат:
  1. LED подсветка по методу Direct;
  2. LED подсветка по методу Edge;
  3. Подсветка на лампе CCFL.

Сегодняшние модели LED телевизоров имеют разрешение экранов от HD Ready до Full HD, а в этом году есть и модели с разрешением 4К Ultra HD. Так же модели LED могут иметь и такие функции как 3D, Smart TV, самый разный набор разъемов и других параметров. Так что каждый покупатель среди моделей лед телевизоров сможет себе подобрать подходящую покупку.

Отличия QLED, OLED, LED

Хотя на страницах сайта уже объяснялись многие из различных технологий формирования телевизионного изображения, похоже, назрела необходимость дать чёткое разъяснение по QLED, OLED и LED. Прежде чем узнать, чем отличаются QLED, OLED и LED, рассмотрим коротко каждую технологию в отдельности.

QLED, OLED, LED: отличия

QLED, OLED, LED: отличия

LED/LCD

Как мы уже писали, наиболее широко известный и распространённый тип телепанели – это LED/LCD с их двумя подвидами VA или IPS.
Напомним читателям, что технология светодиодного/жидкокристаллического дисплея основывается на пропускании света от светодиодных матриц подсветки различных типов через ЖК-панель, в которую интегрированы пиксели RGB (Красный-Синий-Зелёный).

Благодаря светофильтрам пикселей формируется цветное изображение с определённым уровнем яркости. Но уровень чёрного цвета (его незасвеченность) в этом случае, как правило, далёк от совершенства, хотя он и стал намного лучше в новых моделях LCD телевизоров 4K этого типа.

Именно из-за контрастности изображения, да и точности цветопередачи разгорелся, если можно так сказать, весь сыр-бор. В поисках улучшения этих параметров появились новые технологии: OLED и QLED. Впрочем, нельзя однозначно сказать, что современным LED / LCD телевизорам 4K HDR или SDR чего-то не хватает для качественной обработки телесигнала. Но об этом чуть позже.

QLED это

Под технологией QLED сейчас понимают две совершенно разные вещи. С одной стороны, это реальная технология потенциального будущего телевизоров 4K, которая благодаря определённым новаторским элементам обещает почти полностью изменить взгляд на функционирование 4K ТВ-экрана. Говоря привычным языком, это технология, использующая светодиоды на основе квантовых точек.

А с другой стороны, все те типы QLED телевизоров, которые мы сейчас видим на рынке (на данный момент только Samsung), практически идентичны ЖК-телевизору с LED дисплеем, только с кое-какими умеренными изменениями в части улучшения цветопередачи и углов обзора.

Другими словами, QLED 4K в том виде, в каком он доступен сейчас, в основном состоит из маркетинговой бирки, наклеенной на то, что на самом деле является ничем иным, как LCD телевизором, использующим плёнку с нанесёнными на неё квантовыми точками. Назовём его QLED ЖК-телевизор.

Кстати, сами квантовые точки, т.е. нанокристаллы, были впервые исследованы ещё в конце прошлого века советским физиком Алексеем Екимовым, который объяснил зависимость их оптических свойств от физического размера и уровня пропускаемого через них тока.

Главное отличие LED от QLED Samsung как раз и состоит лишь в том, что эти самые модели QLED используют новые специализированные металлические нанофильтры на квантовых точках, расположенные на плёночной матрице над светодиодной панелью подсветки. В общем и целом, это даёт нам более яркие, более насыщенные цвета.

В отличие от маркетинговых названий многих сегодняшних телевизоров 4K, надпись QLED TV в случае с Samsung действительно имеет некоторое серьёзное значение, и несмотря на то, что телевизоры марки QLED во многом схожи с премиальными LED телевизорами, они предлагают действительно превосходный уровень цветовых характеристик. Даже в случае относительно небольшого охвата широкого диапазона цветовой гаммы.

Подчеркнём также, что телевизоры Samsung QLED TV поставляются с такими же светодиодными матрицами подсветки и, как следствие, имеют сравнимые со своими двойниками, не имеющими отношения к QLED, характеристики уровня чёрного и яркости. Например, QLED телевизоры Q7, Q8 и Q9 от Samsung оснащены боковой подсветкой, т.е. так же, как и большинство предыдущих телевизоров 4K компаний Sony, LG или Samsung.

Технология QLED

Выше описана технология QLED, какая она есть сегодня. Тем не менее, в настоящее время идут разработки более продвинутой, реальной технологии дисплеев QLED, когда (в самом общем виде) пиксели телевизора 4K будут состоять из реагирующих на свет нанокристаллов, которые при прохождении через них электрического тока не только светятся, но также окрашиваются в различные цвета.

Эта новая разработка сделает будущие телевизоры Самсунг QLED очень похожими на OLED-телевизоры в фундаментальном смысле. Но только цветопередача будет гораздо лучше, поскольку каждая квантовая точка имеет свой цвет, а не получает его смешением RGB цветов субпикселей, как в случае с OLED.
Технология QLED

OLED 4K

Технология OLED-дисплея, как мы писали в материале о том, чем отличается OLED от LED, принципиально отличается от всех существующих моделей ЖК-телевизоров и в большинстве случаев намного превосходит по характеристикам почти все параметры качества изображения. OLED-телевизоры – это, как правило, самые дорогие и самые эффективные типы продаваемых сейчас телевизоров 4K HDR или SDR.

За это ответственен сам способ функционирования OLED-панели: в отличие от LED, OLED-телевизоры вообще не имеют подсветки. Вместо этого каждый пиксель содержит органический светодиод, который загорается или полностью выключается в зависимости от прохождения электротока.

В результате телевизоры OLED 4K способны обеспечить идеальное локальное затемнение с точностью до одного светодиода (на телевизоре 4K это фактически означает 8.3 миллиона локальных зон затемнения). Поэтому, деактивировав все пиксели, можно вести речь об идеальной, бесконечной контрастности.

Правда, цвет в OLED-телевизорах формируется голубыми и жёлтыми светодиодами, свет которых пропускается затем через красные или зелёные фильтры с целью создания всех цветов, в том числе и белого. В общем, формирование цвета не прямое.

Плюс известно, что OLED-телевизоры обладают меньшей пиковой яркостью, чем лучшие LCD / LED. Но, во-первых, всё меняется, а во-вторых, из-за идеального уровня чёрного даже «тускловатый» OLED-ТВ создаёт гораздо лучший воспринимаемый контраст. Теперь, когда технологии расписаны в основных деталях, пора сравнить их по характеристикам изображения на экране.

Уровень чёрного и контрастность

А начнём мы с самой важной пары характеристик для качества ТВ-экрана 4K: контрастности и уровня чёрного. В жидкокристаллических телевизорах они могут сильно варьироваться в зависимости от производителя, типа панели (в основном IPS против VA) и наличия технологии локального затемнения. В OLED-телевизорах уровни чёрного практически идеальны, а контрастность, соответственно, практически бесконечна.

В сегодняшних телевизорах QLED (то же самое относится к ЖК-телевизорам, но с меньшими вариациями) большинство моделей используют VA панели, которые, как известно, обеспечивают намного лучшие уровни чёрного, чем IPS конкуренты.

В общем, если вам нужен идеальный контраст, идеальный уровень чёрного и идеальное местное затемнение, OLED-телевизор ни в коем случае не проиграет ни ЖК-дисплею, ни QLED-телевизору любого типа. Однако, если вы не можете позволить себе обычно более высокие цены на некоторые OLED-телевизоры, то 4K-LED-телевизор с VA-дисплеем даст типовое соотношение контрастности 4000:1 или выше, а лучшие LED-телевизоры 4K HDR с VA-панелями на сегодняшний день обеспечат уровень чёрного от 0.016 до 0.020 нит.

Все телевизоры QLED представляют собой модели с VA, поэтому они обеспечивают такой же уровень контрастности и чёрного или лучше. Местное затемнение в ЖК-телевизорах 4K премиум-класса позволяет некоторым тёмным участкам экрана телевизора достигать очень глубоких уровней чёрного.

Однако точность не сравнима с той, какой возможно добиться на OLED-дисплеях, где можно отключить любой пиксель, даже если окружающие его пиксели светятся. Обычные же телевизоры IPS 4K с жидкокристаллическим экраном, особенно без местного затемнения, имеют примерно в 4 раза худшие параметры чёрного цвета и контрастности даже в самых лучших моделях с HDR.
QLED vs OLED уровень черного

Яркость QLED, OLED, LED

Уровни яркости не так важны, как уровни чёрного на любом телевизоре 4K и даже в моделях HDR. Почему? Да просто недостаточно высокие значения пиковой яркости могут быть компенсированы более глубокими чёрными тонами, которые усиливают восприятие ярких бликов на экране. Тем не менее, основная гонка среди сегодняшних производителей практически всех высококлассных 4K ТВ любых типов развернулась именно за панели, достигающие доселе невиданных уровней максимальной яркости.

Победителями в этой области, без сомнения, являются ЖК-телевизоры и QLED-телевизоры. Лучшие среди них могут достигать яркости от 1400 до 2000 нит. Это на самом деле много, и гораздо сильнее приближает нас к реалистичной картине на экране, чем что-либо ещё в технологии домашнего телевидения.

У большинства 4K LCD / LED телевизоров пиковая яркость редко превышает 500…700 нит, а многие модели ЖК-телевизоров среднего класса достигают лишь значений 400…500 нит даже при использовании встроенной в них функции повышения контрастности HDR.

За счёт того, что все телевизоры QLED принадлежат к топовому модельному сегменту, они предлагают нам очень высокие уровни яркости от 1000 нит и более, а модель Samsung Q9F – почти 2000 нит пиковой яркости в 10%-й области экрана. Это действительно впечатляюще, и может сравниться только с лучшим LCD-телевизором 4K Sony ZD9, у которого примерно такие же характеристики.

OLED телевизоры привязать к яркости немного сложнее. С одной стороны, OLED традиционно ассоциируется с более низкими уровнями пиковой яркости из-за ограничений текущего развития органических светодиодов, которые продуцируют яркость в этих телевизорах. Но с другой стороны, поскольку OLED-телевизоры создают идеальный чёрный цвет и практически бесконечный контраст в нужных местах, их яркие блики смотрятся гораздо более впечатляюще, чем на любом ЖК-экране или QLED ЖК-телевизоре.

Более того, хотя некоторые из самых ранних OLED-телевизоров LG едва могли обеспечить максимальный уровень яркости в 300 нит, то новейшие HDR-модели, такие как LG OLED65W7V флагманской серии, обеспечивают максимальную яркость почти в 1000 нит, к досаде многих ЖК-телевизоров. Однако в абсолютном выражении самые лучшие и яркие телевизоры с ЖК-дисплеем или QLED пока что массово превосходят по параметру яркости самые лучшие OLED-телевизоры.

Цветопередача QLED, OLED, LED

Цветопередача у всех типов телевизоров во многом схожа. Кроме того, в эпоху царствования HDR, увеличивающего количество цветовых оттенков, все 4K телевизоры премиум-класса с ЖК- или OLED-дисплеями имеют широкую цветовую гамму с более чем 90% -ным охватом цветового пространства DCI-P3, а следовательно, более насыщенные, яркие и реалистичные цвета.

Другими словами, покупая телевизор с мульти HDR (а это все телевизоры QLED и большинство OLED-телевизоров), мы получаем потрясающую цветность, особенно на HDR-контенте. И всё-таки из наших обзоров OLED-, LED- и QLED-телевизоров можно заметить, что технология QLED от Samsung с нанокристаллами (квантовыми точками) действительно обеспечивает заметно более яркие уровни цветопередачи по сравнению с теми, которые указываются в OLED-телевизорах или других высококачественных HDR ТВ.

OLED-телевизоры, с другой стороны, обеспечивают реалистичные цвета, а их превосходные уровни чёрного улучшают восприятие яркости цвета, поэтому они определённо чуточку превосходят даже топовые LED-телевизоры, которые все мы хорошо знаем.

Размытость движения

Движущиеся объекты на экране телевизора 4K могут до некоторой степени размываться, поскольку пиксели, которые формируют их изображение, пытаются резко сменить свой цвет. Время отклика этих пикселей или скорость изменения цвета – это параметр, больше всего влияющий на то, плавно ли телевизор обрабатывает изображение с быстрым движением или делает это с эффектом размытия, на который иногда даже больно смотреть.

Меньшее время отклика означает меньшее размытие изображения. Время отклика LED-телевизоров может сильно различаться: некоторые модели 4K-телевизоров низкого уровня страдают большим размытием при быстром перемещении объектов, а многие модели 4K HDR LED-телевизоров премиум-класса обеспечивают отличные характеристики размытия (или его отсутствие).

Поэтому плёночные QLED-телевизоры показывают отличное умение контролировать быструю смену цвета пикселя, особенно с малым временем отклика по стандартам LED-телевизора. О реальных QLED-телевизорах пока речь не идёт в силу отсутствия таковых на современном рынке.

Однако, OLED так и остаётся непревзойдённым, когда речь идёт о размытии движения. Из-за природы света и цвета излучающих органических светодиодов, пиксели в этих телевизорах могут менять цвета практически мгновенно, демонстрируя чрезвычайно низкое время отклика.

QLED, OLED, LED: что лучше выбрать?

Основные характеристики и отличия QLED, OLED, LED рассмотрены, и теперь следует ответить на самый главный вопрос – какой купить телевизор: QLED, OLED или LED? Суть ответа в следующем. Если вы можете себе позволить, замахнитесь-ка на OLED-телевизор из-за его превосходства в общих характеристиках по всем направлениям.

Однако, если вы хотите добиться какого-то определённого максимально возможного параметра, а точнее, яркости и цветопередачи, то новые 4К телевизоры QLED от Samsung являются неоспоримыми лидерами в этих двух ключевых областях. Что же касается обычных LED-телевизоров 4K с HDR, доминирующих своим присутствием в магазинах, то большая часть этих моделей прекрасно справляются с большой частью обычного, среднего видеоконтента.

https://ultrahd.su/video/qled-oled-led-otlichiya.htmlОтличия QLED, OLED, LEDSemenВидеовидеоХотя на страницах сайта уже объяснялись многие из различных технологий формирования телевизионного изображения, похоже, назрела необходимость дать чёткое разъяснение по QLED, OLED и LED. Прежде чем узнать, чем отличаются QLED, OLED и LED, рассмотрим коротко каждую технологию в отдельности. QLED, OLED, LED: отличия LED/LCD Как мы уже писали, наиболее широко известный и…SemenСемён [email protected]4k - Телевидение высокой четкости

OLED, QLED, ULED – что это такое?. Распутываем запутанные названия телевизоров

Распутываем запутанные названия телевизоров

С момента исчезновения «плазмы» на рынке безраздельно царствовали ЖК-телевизоры с галогенной либо светодиодной подсветкой. Однако в последние годы наблюдается настоящее нашествие моделей, в названии которых мы видим разнообразные новые аббревиатуры, содержащие в себе «LED». Что это – новые технологии или что-то иное? Давайте разбираться.

Для начала напомним, что слово LED – это сокращение от Light Emitting Diode, то есть просто «светодиод». Соответственно, во всех телевизорах, в названии которых встречается эта аббревиатура, используются светодиодные источники света. Различие состоит в разновидности данных светодиодов и способах их применения. В данной статье мы подробно расшифруем каждое встречающееся на рынке название и объясним, что оно означает и какую картинку ожидать от той или иной технологии.

OLED

OLED, QLED, ULED – что это такое?

Расшифровывается данная аббревиатура как Organic Light Emitting Diode, то есть «органический светодиод». Особенностью технологии является использование для формирования каждого пикселя нескольких самоподсвечивающихся светодиодов. В современных панелях LG их четыре — красный, синий, зеленый и белый. Преимуществом данной технологии является возможность, как это было в плазменных телевизорах, полностью гасить свечение каждого пикселя, что существенно повышает контрастность изображения и позволяет обеспечить глубочайший черный цвет. Обратной стороной является не самая высокая яркость и необходимость заботиться о правильной эксплуатации панели, чтобы избежать эффекта выгорания. Под ним подразумевается остаточное свечение в областях экрана, на которых долгое время отображалась яркая статичная картинка. Современные OLED-панели подвержены данному явлению в гораздо меньшей степени, чем прошлые, кроме того, производители придумали специальные режимы управления питанием, позволяющие свести к минимуму риск проявления данного эффекта. Однако потрясающий черный цвет и глубина изображения, формируемого данными телевизорами, стоят времени, потраченного на изучение инструкции. На сегодняшний день OLED-телевизоры производят следующие компании – LG, Panasonic, Sony, Philips, Xiaomi.

QLED

OLED, QLED, ULED – что это такое?

Данное название было изобретено компанией Samsung для обозначения особой разновидности жидкокристаллических телевизоров. Аббревиатура QLED обозначает сочетание двух технологий – светодиодной подсветки и элементов технологии квантовых точек или «Quantum dot» по-английски. Здесь используются не простые белые светодиоды, а синие, точнее даже фиолетово-синие и намного более мощные. Между ними и ЖК-панелью в телевизоре расположен особый фосфоресцирующий слой. Диоды своим мощным свечением заставляют его светиться, но так как площадь этого слоя в сотни раз больше площади излучения у простых белых диодов, то и яркость свечения больше на порядок. За счет полной прямой подсветки и локального управления диодами QLED-телевизоры Samsung обладают отличной контрастностью, и благодаря мощным светодиодам и такому вот слою за матрицей яркость у них просто рекордная. То же можно сказать и в отношении насыщенности цвета. Телевизоры QLED – это вершина технологического развития ЖК, единственное, в чем они все же уступают OLED, это глубина черного цвета. Помимо Samsung, желание развивать производство QLED-телевизоров высказала компания Hisense, отказавшаяся недавно от технологии OLED.

ULED

OLED, QLED, ULED – что это такое?

Перед нами маркетинговый термин, обозначающий сочетание множества решений и технических ухищрений, применяемых в телевизорах компании Hisense. То есть ULED – это не название отдельной технологии, оно просто обозначает совокупность применяемых в LED-телевизорах фирмы оригинальных решений. Так, например, в новом модельном ряду Hisense есть аппараты, в которых применяется сдвоенная матрица – монохромная с разрешением 1080р и полноцветная с разрешением 4K. Подобное решение позволяет добиться высокого уровня контрастности и отличной цветопередачи. Так что ULED, это некий знак качества, означающий в отношении телевизоров Hisense принадлежность к топовой линейке устройств фирмы.

Mini LED

OLED, QLED, ULED – что это такое?

Телевизоры с подобным названием активно продвигает на рынке китайская компания TCL, один из крупнейших производителей ТВ в мире. Однако Mini LED – это тоже не отдельная технология, а вариация на тему светодиодной подсветки. Принцип заключается в создании тыловой подсветки за счет тысяч светодиодов, установленных за ЖК-матрицей, позволяющих организовать несколько тысяч зон локального затемнения. А это означает лучшее разрешение в темных сценах и более высокий уровень контраста. Кроме того, существенно повышается и максимальная яркость подобного дисплея. Подобное решение является разновидностью тыловой подсветки, его особенность – очень большое число светодиодов, а также оригинальные режимы управления ими, позволяющие добиться превосходных показателей. Помимо TCL, на последней выставке CES 2020 работающий прототип телевизора Mini LED показала компания LG.

Micro LED

OLED, QLED, ULED – что это такое?

А вот это уже новая технология и, пожалуй, самая перспективная на сегодняшний день, сочетающая в себе достоинства многих других решений. В панелях Micro LED каждый пиксель является активным и формируется несколькими миниатюрными светодиодами с независимым питанием. То есть сам принцип похож на OLED, но использование неогранических светодиодов существенно повышает надежность, яркость и долговечность таких панелей. До недавнего времени Micro LED использовались только для создания огромных экранов с диагональю до 292 дюймов, однако в 2020 году компания Samsung представила сразу несколько «домашних» телевизоров, построенных на данной технологии – 75 и 88 дюймов. За прошедший год инженеры компании смогли существенно снизить размеры светодиодов, в результате чего каждый пиксель имеет теперь диаметр всего 0,15 мм. Кроме того, значительно возросла их яркость – ее пиковое значение достигает теперь 5000 нит. Кроме Samsung, над данной технологией работает компания Sony и китайская Konka Group. На данном этапе главной задачей остается дальнейшее снижение размера пикселей, а также стоимости данных телевизоров – пока они по карману только очень состоятельным видеофилам.

Денис Репин

25 января 2020 года

LED или OLED, и чем они отличаются

Если вы решили купить новый телевизор или просто просматриваете актуальные варианты, которые сегодня предлагает рынок, то, скорее всего, вы слышали две очень похожие аббревиатуры: OLED и LED, отличие которых заключается всего в одной букве. Но в чём разница между ними? Эти панели дисплеев действительно так сильно отличаются? Какой телевизор будет выдавать лучшую картинку: LED или OLED? Давайте рассмотрим эти технологии поближе и узнаем сильные стороны каждой из них.

Что такое LED

Внешне LED-телевизоры очень похожи на существующие ЖК-телевизоры. Разница заключается в том, как освещаются их экраны. Традиционные жидкокристаллические телевизоры используют люминесцентную подсветку, в LED-приёмниках используются более компактные и энергоэффективные светодиоды.

LED означает светодиод. Это такие небольшие твёрдотельные устройства, которые излучают свет благодаря движению электронов через полупроводник. Светодиод представляет собой тип диода, который может излучать свет при проводке. Поскольку диод состоит из двух неорганических полупроводниковых слоёв типов P или N, то в проводимости участвуют как электроны, так и пустоты (носители положительного тока). То есть, PN-переход излучает свет, когда на него подаётся энергия. Это явление обычно называют электролюминесценцией, которую можно определить как излучение света из полупроводника под воздействием электрического поля.

Таким образом, светодиод является источником света, и он имеет много преимуществ, таких как:

  • Энергоэффективность;
  • Долговечность;
  • Меньшие размеры и т. д.

Но стандартные светодиоды не настолько малы, чтобы их можно было использовать в качестве отдельных пикселей телевизора – для этого они пока слишком велики. Это одна из причин, по которой светодиоды используются только в качестве подсветки для ЖК-телевизоров, каждый из которых освещает небольшой кластер пикселей.

Новая технология под названием MicroLED может в ближайшем будущем всё это изменить, но сейчас давайте придерживаться нашей темы. Сегодня предпочтительным выбором в качестве подсветки для всех ЖК-дисплеев являются именно светодиоды: они имеют гораздо меньший размер, чем компактные люминесцентные лампы или устройства накаливания, но при этом светят очень ярко.

Существует два типа светодиодных телевизоров. Хотя оба используют один и тот же тип освещения, реализованы они по-разному:

  1. Один тип светодиодной подсветки называется Edge Lighting (или Edge LED). В этом методе светодиодная подсветка размещена вдоль внешних краёв экрана и от них свет рассеивается по экрану. Преимущество этой конструкции заключается в том, изделия можно сделать очень тонкими. Недостатком освещения Edge является то, что чёрный уровень не такой глубокий, а края дисплея могут быть ярче, чем центральный участок.
  2. Другой тип светодиодных телевизоров – «Direct LED» (матричная подсветка). В этом методе несколько рядов светодиодов размещены за всей поверхностью экрана. Преимущество состоит в том, что эти наборы могут использовать «локальное затемнение» для улучшения темноты изображения.

Что такое OLED

OLED-телевизоры имеют элементы, которые генерируют собственный свет и не требуют дополнительного источника освещения. Их экраны могут воспроизводить особенно яркие цвета, потребляя минимум электрики, а для получения устойчивого чёрного цвета им вообще не нужен электроток.

OLED означает органический излучающий светодиод. Такие элементы изготавливаются из органических соединений, которые загораются при подаче электроэнергии. Вроде бы не сильно огромная разница по сравнению со светодиодами, но в отличие от своих аналогов OLED могут быть очень тонкими, гибкими и удивительно маленькими. Фактически они могут быть настолько маленькими, что их можно использовать в качестве отдельных пикселей: миллионы органических светодиодов, которые занимают весь экран, загораясь и отключаясь независимо друг от друга.

OLED-приборы могут определять яркость каждого пикселя по отдельности, что позволяет воспроизводить бесконечный контраст и исключительное качество изображения.

Способность дисплея воспроизводить глубокие тёмные оттенки чёрного является, пожалуй, самым важным фактором достижения превосходного качества изображения. Более глубокий чёрный цвет обеспечивает более высокую контрастность и более насыщенные цвета (среди прочего) и, таким образом, более реалистичное и ослепительное изображение.

Телевизоры с технологией 4K Ultra High Definition (UHD) также могут использовать OLED-дисплеи, но есть 4K-телевизоры, в которых используется другая технология отображения. OLED – это технология, которую можно использовать для создания дисплеев с различным разрешением, в том числе и разрешение 3840 пикселей × 2160 строк (8,3 мегапикселя при соотношении сторон 16: 9).

Все 4K-телевизоры удваивают количество пикселей по сравнению со стандартным HDTV, вертикальные линии сканирования также удваиваются, что делает разрешение 4K более чем в четыре раза большим, чем у Full HD, поэтому вы увидите изображение, а не пиксели, даже если окажетесь максимально близко к экрану. OLED обеспечивает в этом смысле более простую внутреннюю структуру, чем обычные дисплеи.

Разница между LED и OLED

LED и OLED – это разные типы светодиодов, первые изготовлены из неорганических полупроводников, тогда как OLED состоят из органических материалов.

OLED являются ответвлением от существующей традиционной светодиодной технологии. Светодиоды являются полупроводниковыми источниками света, которые функционируют посредством электролюминесценции, то есть они производят фотоны (свет), помещая электроны в маленькие электронные дыры на излучающем слое устройства. Электричество входит, а свет выходит благодаря полупроводниковому материалу.

Технология OLED, впервые успешно реализованная в 1987 году исследователями Kodak, использует ту же идею, что и светодиод, но сглаживает её. Вместо того, чтобы использовать отдельные светодиодные лампы, OLED использует серию тонких светоизлучающих плёнок. Это позволяет OLED-матрице производить более яркий свет при меньшем потреблении энергии. А поскольку эти светоизлучающие плёнки состоят из углеводородных цепочек, а не из полупроводников, нагружённых тяжёлыми металлами, им позволено называться «органическими».

Светодиоды в современных LED-телевизорах фактически используются только для обеспечения белой задней подсветки, которая затем светится через быстро обновляющуюся матрицу ЖК-затвора, которая окрашивает излучаемый свет. Технология OLED работает одновременно и как источник света, и как цветовая матрица. И вот какие преимущества это предлагает.

Цвет и яркость

Тут лидируют OLED-телевизоры.

Светодиодные телевизоры, используя светодиодную подсветку позади ЖК-панели даже с продвинутой технологией затемнения, которая избирательно затемняет светодиоды, могут страдать от эффекта, называемого «световым кровотечением», когда более светлые участки экрана создают дымку или цветение в смежных тёмных областях.

Даже на самых новых моделях светодиодов эти проблемы неизбежны, хотя важно отметить, что в 2018 году производители показали значительный прорыв в производстве светодиодной техники.

OLED-телевизоры не страдают от проблем чёрного уровня традиционных светодиодных телевизоров. Если OLED-пиксель не получает электричество, он не производит никакого света и, следовательно, полностью чёрный. Поскольку в OLED встроены собственные цветовые фильтры, они могут создавать более глубокий чёрный цвет и более широкий спектр гаммы. Отсутствие постоянно включённой подсветки способствует повышению контрастности (разницы между самыми яркими и самыми тёмными пикселями на экране).

Важно отметить, что все современные телевизоры – OLED, LED/LCD или другие – производят более чем достаточную яркость. И если вы задумываетесь о покупке телевизора, то подумайте над вопросом, где будет использоваться оборудование: в тёмной закрытой комнате OLED-телевизор будет работать лучше, а вот в более ярко освещённой среде LED-телевизоры затмят своих конкурентов.

Разрешение и угол обзора

В этой категории также предпочтительнее OLED-телевизоры.

Благодаря отсутствию массива затвора OLED-дисплеи могут иметь частоту обновления на порядок выше, чем у ЖК-телевизоров. Мы говорим о повышении с 480 Гц до 100 000 Гц – теоретически, по крайней мере.

Вдобавок ко всему, OLED обеспечивают впечатляюще широкий угол обзора – около 90 градусов от центра для многих панелей – без потери цвета и чёткости, наблюдаемых у традиционных светодиодов. Светодиодные экраны страдают от снижения качества изображения, если вы сидите слишком далеко от одной стороны или если телевизор слишком высок или слишком низок относительно ваших глаз. OLED-телевизоры не имеют такой зависимости.

Время отклика и энергопотребление

Время отклика относится к показателю времени, которое требуется для каждого отдельного диода, чтобы изменить свой статус с «Включён» на «Выключен». Чем быстрее время отклика, тем меньше размытость при движении и меньше артефактов.

OLED, с его меньшими диодами, работающими как единственные пиксели, уверенно оставляет LED-телевизоры позади себя, если сравнивать модели по времени отклика. Диоды в светодиодных телевизорах не только медленнее, но и находятся за ЖК-панелью, где они освещают определённые кластеры, а не отдельные пиксели. Это вызывает более медленное изменение между состояниями «Включено» и «Выключено». OLED в настоящее время предлагает самое быстрое время отклика среди всех используемых сегодня телевизионных технологий, что делает его явным победителем в этом отношении.

Если сравнить энергопотребление, то OLED-дисплей не нуждается в электронике и схемах, используемых для управления светодиодной подсветкой и ЖК-затвором от светодиодного дисплея, что делает OLED более эффективными. Светодиодные экраны производят чёрный цвет, просто полностью закрывая затвор пикселя, а задняя подсветка при этом всё ещё светится (фактически она никогда не выключается), но сам свет блокируется. Тогда как OLED полностью отключает пиксели для получения чёрного цвета, экономя энергию в процессе.

Хотя, если вы просматриваете веб-страницы на своём OLED-телевизоре, сайты с большим количеством белого на экране заставят ваш OLED потреблять больше энергии, чем сопоставимый светодиодный LED-телевизор.

Есть и ещё одна сильная сторона OLED-панелей: отказ от подсветки и решёток также означает, что производители могут заменить более тяжёлые стеклянные подложки, часто используемые в светодиодных дисплеях, на более лёгкие и прочные пластиковые субстраты. А с появлением 3D-печатных технологий эти светопродуцирующие элементы OLED могут иметь и вовсе экзотические формы поверхностей.

Сами плёнки OLED довольно долговечны и могут без сбоев выдерживать более широкий диапазон рабочих температур, чем обычные светодиоды. А вот что касается технологии 4K TV в OLED, то тут она не сильно проверена. Это вызывает некоторое беспокойство, особенно когда вспоминаешь, что с ранними плазменными дисплеями имелась проблема выгорания экрана.

Светодиодные телевизоры 4K имеют светодиодную подсветку по краям (или полный массив), они надёжны и достаточно хорошо испытаны временем. Эта технология способна обеспечить вам до 60 000 часов просмотра (если это значение разбить на 4 часа просмотра каждый день, то получится более 40 лет!).

Цена

В настоящее время наборы OLED стоят почти в два раза дороже по сравнению с LED-телевизорами и почти в три раза дешевле обычных ЖК-дисплеев. Но как только возможности производства на основе 3D-печати будут достаточно расширены, стоимость изготовления OLED-панелей должна в значительной мере упасть и сравниться со своими конкурентами.

Сегодня же, OLED-телевизоры являются премиальным сегментом телевизоров. В этой категории победитель – LED.

Что же лучше: LED или OLED

Выбор телевизора – задача весьма ответственная, ведь техника покупается на годы вперёд. Именно поэтому целесообразно не экономить, а отдавать предпочтение новейшим технологиям, ведь мир всё стремительнее развивается. То, что ещё два года назад было чем-то новым и невиданным, сегодня может считаться уже устаревшим и отсталым.

Если подвести итог, то можно выделить следующее:

  • LED-модели сильно берут своим ценовым параметром, широким ассортиментом моделей и длительными эксплуатационными характеристиками;
  • OLED-телевизоры показывают внушительные значения по скорости отклика, широкие углы обзора, наиболее чёткую яркость и контрастность картинки.

Стоит ли покупать OLED телевизор – решать только  вам. Но помните, что LED – это уже хорошо освоенная технология, у которой вряд ли остался потенциал двигаться вперёд, в то время как у молодой и перспективной OLED всё только начинается.

разбираемся в технологии и развеиваем мифы

Технология квантовых точек (quantum dots) появилась еще несколько лет назад, но мало кто представляет себе, что это такое. Разберемся, что собой представляют телевизоры с дисплеями QLED и какие преимущества обеспечивает новая технология.

1. QLED и OLED — совсем разные вещи

Именно эти две аббревиатуры больше всего на слуху в последние годы, если речь идёт об экранах, и многие не вполне понимают разницу между ними. Компания Samsung стояла у истоков обеих этих технологий, но в телевизорах в итоге сделала ставку на QLED. Если OLED-дисплеи представляют собой матрицу из самостоятельно излучающих нужные цвета светодиодов, то QLED — это революционное развитие уже знакомых ЖК-экранов.  

В чём же революция? В обычных ЖК-дисплеях подсветку обеспечивают белые светодиоды, и спектр у них не очень чистый. Цветовые составляющие, которые пройдут далее через поляризаторы, ЖК-матрицу и светофильтры, слабо разделены и неравномерны.

В QLED-дисплеях источником подсветки служат синие светодиоды, свет от которых проходит через особый слой с квантовыми точками из специального вещества, которое поглощает часть синего света и добавляет в поток предельно чистые зеленый и красный цвета.

Это позволяет QLED-телевизорам показывать точные оттенки в огромном цветовом диапазоне, а также обеспечивает высокую яркость и большую контрастность.

Цветовые компоненты в экранах QLED чисты, хорошо разделены и сбалансированы

2. Углы обзора — не проблема

Хотя дисплеям со слоем жидких кристаллов свойственны не очень большие углы обзора, инженеры Samsung решили эту проблему в модельном ряду QLED TV 2019. Модели Q80R, Q90R и Q900R обеспечивают расширенный угол обзора за счёт двух дополнительных слоёв: первый концентрирует свет в нужном направлении и исключает любые утечки, а второй распределяет световой поток таким образом, чтобы свет распространялся одинаково во все стороны.

3. Квантовым точкам — Quantum HDR

Телевизоры Samsung QLED TV 2019 поддерживают стандарт HDR 10+. Такой контент содержит динамические метаданные, позволяющие подстраивать контрастность и яркость для каждой сцены, чтобы все детали были видны и в светлых, и в тёмных сценах. Пиковая яркость старших моделей достигает рекордных 4000 нит! Фильмы и сериалы в формате HDR 10+ уже доступны в нескольких российских онлайн-кинотеатрах.

4. Не чёрный, а Ultra Black Elite

В моделях Samsung QLED TV 2019 Q80R, Q90R и Q900R есть два дополнительных слоя антибликового покрытия: слой низкого отражения и слой высокого отражения. Внешний свет отражается от каждого из них, интерферирует сам с собой и гасится. За счёт этого смотреть фильмы комфортно при любом освещении, а чёрный всегда остаётся чёрным.

Кроме того, Samsung QLED TV 2019 оборудованы ковровой подсветкой Direct Full Array: светодиоды светят ярче на светлых деталях и выключаются на тёмных, повышая контрастность. 

5. QLED не выгорает

Одна из главных проблем OLED-телевизоров состоит в довольно быстром выгорании пикселей в местах, где изображение статично. Например, за несколько месяцев может «отпечататься» логотип телеканала или плашка с бегущей строкой главных событий. Телевизоры Samsung QLED TV такого недостатка лишены: смотреть можно что угодно, сколь угодно долго и на любой яркости. Чтобы это не звучало голословно, Samsung даёт 10 лет гарантии от выгорания.

Абсолютную устойчивость экрана к статичному изображению Samsung использовала в дополнительной функции: в режиме Ambient телевизор QLED TV становится частью интерьера. Он может мимикрировать под окружающую поверхность, показывать картины, орнамент, календарь или стать окном в виртуальный сад. Это намного лучше, чем скучное «чёрное зеркало» на стене.

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *