Ротор и статор электродвигателя: определение, виды, назначение
Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.Что такое ротор
Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.
Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:
- Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
- Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
- Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
- Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
- На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.
Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.
Что такое статор
Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.
Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.
Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:
Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.
Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений. Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.
Статор и ротор в асинхронных двигателях
Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.
В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.
Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.
Короткозамкнутый ротор
Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.
Фазный ротор
Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.
Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:
Материалы по теме:
Статор и ротор — что это такое?
Автор Aluarius На чтение 4 мин. Просмотров 5.1k. Опубликовано
Существует несколько классов электрических преобразователей, среди которых практическое применение нашли так называемые индуктивные аналоги. В них преобразование энергии происходит за счет преобразования индукции обмоток, являющиеся неотъемлемой частью самого агрегата. Обмотки располагаются на двух элементах – на статоре и роторе. Итак, чем отличаются статор и ротор (что это такое и каковы их функции?).
Самое простое определение двух частей преобразователя – это их функциональность. Здесь все просто: статор (электродвигателя или генератора) является неподвижной частью, ротор подвижной. В большинстве случаев последний располагается внутри первого, и между ними есть небольшой зазор. Есть так называемые агрегаты с внешним ротором, который представляет собой вращающееся кольцо, внутри которого располагается неподвижный статор.
Виды преобразователей
Почему так важно рассмотреть виды, чтобы понять, чем отличается статор электродвигателя от подвижной его части. Все дело в том, что конструктивных особенностей у электродвижков немало, то же самое касается и генераторов (это преобразователи механической энергии в электрическую, электродвигатели имеют обратную функциональность).
Итак, электрические двигатели делятся на аппараты переменного и постоянного тока. Первые в свою очередь разделяются на синхронные, асинхронные и коллекторные. У первых угловая скорость вращения статора и ротора равны. У вторых два эти показателя неравны. У коллекторных видов в конструкции присутствует так называемый преобразователь частоты и количества фаз механического типа, который носит название коллектор. Отсюда и название агрегата. Именно он напрямую связан с обмотками ротора двигателя и его статора.
Машины постоянного тока на роторе имеют тот же коллектор. Но в случае с генераторами он выполняет функции преобразователя, а в случае с электродвигателями функции инвертора.
Если электрический агрегат – это машина, в которой вращается только ротор, то его название – одномерный. Если в нем вращаются в противоположные стороны сразу два элемента, то этот аппарат носит название двухмерный или биротативный.
Асинхронные электродвигатели
Чтобы разобраться в понятиях ротора двигателя и его статора, необходимо рассмотреть один из видов электрических преобразовательных машин. Так как асинхронные электродвижки используются чаще всего в производственном оборудовании и бытовой техники, то стоит рассмотреть именно их.
Итак, что собой представляет асинхронный электродвигатель? Это обычно чугунный корпус, в который запрессован магнитопровод. В нем сделаны специальные пазы, куда укладывается обмотка статора, собранная из медной проволоки. Пазы сдвинуты относительно друг друга на 120º, поэтому их всего три. Они же образуют три фазы.
Ротор в свою очередь – это цилиндр, собранный из стальных листов (сталь штампованная электротехническая), и насажанный на стальной вал, который в свою очередь при сборке электрического движка устанавливается в подшипники. В зависимости от того, как собраны фазные обмотки агрегата, роторы двигателя могут быть фазными или короткозамкнутыми.
- Фазный ротор – это цилиндр, на котором собраны катушки, сдвинутые относительно друг друга на 120º. При этом в его конструкцию установлены три контактных кольца, которые не соприкасаются ни с валом, ни между собой. К кольцам присоединены с одной стороны концы трех обмоток, а с другой графитовые щетки, которые относительно колец располагаются в скользящем контакте. Пример такой машины – это крановые электродвигатели с фазным ротором.
- Короткозамкнутый ротор собирается из медных стержней, которые укладываются в пазы. При этом их соединяют специальным кольцом, изготовленном из меди.
Асинхронный электрический двигатель с фазным ротором является обладателем больших размеров и веса. Но у него отличные свойства, касающиеся пусковых и регулировочных моментов. Двигатели, у которых установлен короткозамкнутый ротор, считаются самыми надежными на сегодняшний день. Они просты в конструкции, поэтому и являются дешевыми. Их единственный недостаток – это большой пусковой ток, с которым сегодня борются соединением обмоток статора со звезды на треугольник. То есть, пуск производится при соединении звездой, после набора оборотов производится переключение на треугольник.
Статор электродвигателей | Полезные статьи
Статор электродвигателей является неподвижной частью, внутри которой на подшипниках вращается ротор (якорь). Конструктивно статор состоит из станины и сердечника, зафиксированного внутри нее винтами. Станина представляет собой литой или сварной корпус, выполненный из чугуна или алюминия.
Сердечник статора синхронных и асинхронных двигателей имеет цилиндрическую форму и формируется из профилированных листов электротехнической стали толщиной от 0,35 до 0,5 мм, предварительно отожженных и изолированных лаком. Между собой такие пластины скрепляются продольными швами или скобами таким образом, чтобы профильные вырезы образовывали продольные пазы, в которые укладывается обмотка, состоящая из ряда изолированных и параллельно соединенных проводников. Такая конструкция сердечника позволяет ослабить вихревые токи.
Статор двигателя постоянного тока большой и средней мощности называется индуктор и собирается из главных полюсов, сформированных из листов электротехнической стали, и монолитных добавочных полюсов. В ДПТ малой мощности функцию статора обычно выполняют постоянные магниты.
Обмотка статора электродвигателя: основные особенности
Взаимное расположение и количество групп обмоток статора синхронных и асинхронных двигателей зависит от их типа и необходимой частоты вращения ротора. Если в каждый паз помещается только одна сторона катушки одной фазы, то такая обмотка называется однослойной. В том случае, если в одном пазу размещаются две катушечные стороны, принадлежащие разным фазам, то обмотка называется двухслойной. В двигателях может быть различное число групп катушек, которые между собой соединяются последовательно.
В трехфазных синхронных и асинхронных электродвигателях обмотки статора расположены с шагом 120°, что позволяет создать вращающееся магнитное поле. В зависимости от величины питающего напряжения обмотки статора соединяются по схеме «звезда» или «треугольник».
В однофазных двигателях имеются две группы обмоток, сдвинутых в пространстве относительно друг друга на 90°. Сдвиг фаз осуществляется благодаря конденсаторам, установленным параллельно одной из обмоток.
Класс нагревостойкости
В зависимости от условий эксплуатации для выполнения обмоток статора используются провода с различной термической стойкостью изоляции:
Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.
Ротор и статор насоса — что это такое?
Ярославль
Абаза
Абакан
Абдулино
Абинск
Агидель
Агрыз
Адыгейск
Азнакаево
Азов
Ак-Довурак
Аксай
Алагир
Алапаевск
Алатырь
Алдан
Алейск
Александров
Александровск
Александровск-Сахалинский
Алексеевка
Алексин
Алзамай
Алупка
Алушта
Альметьевск
Амурск
Анадырь
Анапа
Ангарск
Андреаполь
Анжеро-Судженск
Анива
Апатиты
Апрелевка
Апшеронск
Арамиль
Аргун
Ардатов
Ардон
Арзамас
Аркадак
Армавир
Армянск
Арсеньев
Арск
Артем
Артемовск
Артемовский
Архангельск
Асбест
Асино
Астрахань
Аткарск
Ахтубинск
Ахтубинск-7
Ачинск
Аша
Бабаево
Бабушкин
Бавлы
Багратионовск
Байкальск
Баймак
Бакал
Баксан
Балабаново
Балаково
Балахна
Балашиха
Балашов
Балей
Балтийск
Барабинск
Барнаул
Барыш
Батайск
Бахчисарай
Бежецк
Белая Калитва
Белая Холуница
Белгород
Белебей
Белев
Белинский
Белово
Белогорск
Белогорск
Белозерск
Белокуриха
Беломорск
Белорецк
Белореченск
Белоусово
Белоярский
Белый
Бердск
Березники
Березовский
Березовский
Беслан
Бийск
Бикин
Билибино
Биробиджан
Бирск
Бирюсинск
Бирюч
Благовещенск
Благовещенск
Благодарный
Бобров
Богданович
Богородицк
Богородск
Боготол
Богучар
Бодайбо
Бокситогорск
Болгар
Бологое
Болотное
Болохово
Болхов
Большой Камень
Бор
Борзя
Борисоглебск
Боровичи
Боровск
Боровск-1
Бородино
Братск
Бронницы
Брянск
Бугульма
Бугуруслан
Буденновск
Бузулук
Буинск
Буй
Буйнакск
Бутурлиновка
Валдай
Валуйки
Велиж
Великие Луки
Великие Луки-1
Великий Новгород
Великий Устюг
Вельск
Венев
Верещагино
Верея
Верхнеуральск
Верхний Тагил
Верхний Уфалей
Верхняя Пышма
Верхняя Салда
Верхняя Тура
Верхотурье
Верхоянск
Весьегонск
Ветлуга
Видное
Вилюйск
Вилючинск
Вихоревка
Вичуга
Владивосток
Владикавказ
Владимир
Волгоград
Волгодонск
Волгореченск
Волжск
Волжский
Вологда
Володарск
Волоколамск
Волосово
Волхов
Волчанск
Вольск
Вольск-18
Воркута
Воронеж
Воронеж-45
Ворсма
Воскресенск
Воткинск
Всеволожск
Вуктыл
Выборг
Выкса
Высоковск
Высоцк
Вытегра
Вышний Волочек
Вяземский
Вязники
Вязьма
Вятские Поляны
Гаврилов Посад
Гаврилов-Ям
Гагарин
Гаджиево
Гай
Галич
Гатчина
Гвардейск
Гдов
Геленджик
Георгиевск
Глазов
Голицыно
Горбатов
Горно-Алтайск
Горнозаводск
Горняк
Городец
Городище
Городовиковск
Городской округ Черноголовка
Гороховец
Горячий Ключ
Грайворон
Гремячинск
Грозный
Грязи
Грязовец
Губаха
Губкин
Губкинский
Гудермес
Гуково
Гулькевичи
Гурьевск
Гурьевск
Гусев
Гусиноозерск
Гусь-Хрустальный
Давлеканово
Дагестанские Огни
Далматово
Дальнегорск
Дальнереченск
Данилов
Данков
Дегтярск
Дедовск
Демидов
Дербент
Десногорск
Джанкой
Дзержинск
Дзержинский
Дивногорск
Дигора
Димитровград
Дмитриев
Дмитров
Дмитровск
Дно
Добрянка
Долгопрудный
Долинск
Домодедово
Донецк
Донской
Дорогобуж
Дрезна
Дубна
Дубовка
Дудинка
Духовщина
Дюртюли
Дятьково
Евпатория
Егорьевск
Ейск
Екатеринбург
Елабуга
Елец
Елизово
Ельня
Еманжелинск
Емва
Енисейск
Ермолино
Ершов
Ессентуки
Ефремов
Железноводск
Железногорск
Железногорск
Железногорск-Илимский
Железнодорожный
Жердевка
Жигулевск
Жиздра
Жирновск
Жуков
Жуковка
Жуковский
Завитинск
Заводоуковск
Заволжск
Заволжье
Задонск
Заинск
Закаменск
Заозерный
Заозерск
Западная Двина
Заполярный
Зарайск
Заречный
Заречный
Заринск
Звенигово
Звенигород
Зверево
Зеленогорск
Зеленогорск
Зеленоград
Зеленоградск
Зеленодольск
Зеленокумск
Зерноград
Зея
Зима
Златоуст
Злынка
Змеиногорск
Знаменск
Зубцов
Зуевка
Ивангород
Иваново
Ивантеевка
Ивдель
Игарка
Ижевск
Избербаш
Изобильный
Иланский
Инза
Инкерман
Инсар
Инта
Ипатово
Ирбит
Иркутск
Иркутск-45
Исилькуль
Искитим
Истра
Истра-1
Ишим
Ишимбай
Йошкар-Ола
Кадников
Казань
Калач
Калач-на-Дону
Калачинск
Калининград
Калининск
Калтан
Калуга
Калязин
Камбарка
Каменка
Каменногорск
Каменск-Уральский
Каменск-Шахтинский
Камень-на-Оби
Камешково
Камызяк
Камышин
Камышлов
Канаш
Кандалакша
Канск
Карабаново
Карабаш
Карабулак
Карасук
Карачаевск
Карачев
Каргат
Каргополь
Карпинск
Карталы
Касимов
Касли
Каспийск
Катав-Ивановск
Катайск
Качканар
Кашин
Кашира
Кашира-8
Кедровый
Кемерово
Кемь
Керчь
Кизел
Кизилюрт
Кизляр
Кимовск
Кимры
Кингисепп
Кинель
Кинешма
Киреевск
Киренск
Киржач
Кириллов
Кириши
Киров
Киров
Кировград
Кирово-Чепецк
Кировск
Кировск
Кирс
Кирсанов
Киселевск
Кисловодск
Климовск
Клин
Клинцы
Княгинино
Ковдор
Ковров
Ковылкино
Когалым
Кодинск
Козельск
Козловка
Козьмодемьянск
Кола
Кологрив
Коломна
Колпашево
Колпино
Кольчугино
Коммунар
Комсомольск
Комсомольск-на-Амуре
Конаково
Кондопога
Кондрово
Константиновск
Копейск
Кораблино
Кореновск
Коркино
Королев
Короча
Корсаков
Коряжма
Костерево
Костомукша
Кострома
Котельники
Котельниково
Котельнич
Котлас
Котово
Котовск
Кохма
Красавино
Красноармейск
Красноармейск
Красновишерск
Красногорск
Краснодар
Красное Село
Краснозаводск
Краснознаменск
Краснознаменск
Краснокаменск
Краснокамск
Красноперекопск
Красноперекопск
Краснослободск
Краснослободск
Краснотурьинск
Красноуральск
Красноуфимск
Красноярск
Красный Кут
Красный Сулин
Красный Холм
Кременки
Кронштадт
Кропоткин
Крымск
Кстово
Кубинка
Кувандык
Кувшиново
Кудымкар
Кузнецк
Кузнецк-12
Кузнецк-8
Куйбышев
Кулебаки
Кумертау
Кунгур
Купино
Курган
Курганинск
Курильск
Курлово
Куровское
Курск
Куртамыш
Курчатов
Куса
Кушва
Кызыл
Кыштым
Кяхта
Лабинск
Лабытнанги
Лагань
Ладушкин
Лаишево
Лакинск
Лангепас
Лахденпохья
Лебедянь
Лениногорск
Ленинск
Ленинск-Кузнецкий
Ленск
Лермонтов
Лесной
Лесозаводск
Лесосибирск
Ливны
Ликино-Дулево
Липецк
Липки
Лиски
Лихославль
Лобня
Лодейное Поле
Ломоносов
Лосино-Петровский
Луга
Луза
Лукоянов
Луховицы
Лысково
Лысьва
Лыткарино
Льгов
Любань
Люберцы
Любим
Людиново
Лянтор
Магадан
Магас
Магнитогорск
Майкоп
Майский
Макаров
Макарьев
Макушино
Малая Вишера
Малгобек
Малмыж
Малоархангельск
Малоярославец
Мамадыш
Мамоново
Мантурово
Мариинск
Мариинский Посад
Маркс
Махачкала
Мглин
Мегион
Медвежьегорск
Медногорск
Медынь
Межгорье
Междуреченск
Мезень
Меленки
Мелеуз
Менделеевск
Мензелинск
Мещовск
Миасс
Микунь
Миллерово
Минеральные Воды
Минусинск
Миньяр
Мирный
Мирный
Михайлов
Михайловка
Михайловск
Михайловск
Мичуринск
Могоча
Можайск
Можга
Моздок
Мончегорск
Морозовск
Моршанск
Мосальск
Москва
Московский
Муравленко
Мураши
Мурманск
Муром
Мценск
Мыски
Мытищи
Мышкин
Набережные Челны
Навашино
Наволоки
Надым
Назарово
Назрань
Называевск
Нальчик
Нариманов
Наро-Фоминск
Нарткала
Нарьян-Мар
Находка
Невель
Невельск
Невинномысск
Невьянск
Нелидово
Неман
Нерехта
Нерчинск
Нерюнгри
Нестеров
Нефтегорск
Нефтекамск
Нефтекумск
Нефтеюганск
Нея
Нижневартовск
Нижнекамск
Нижнеудинск
Нижние Серги
Нижние Серги-3
Нижний Ломов
Нижний Новгород
Нижний Тагил
Нижняя Салда
Нижняя Тура
Николаевск
Николаевск-на-Амуре
Никольск
Никольск
Никольское
Новая Ладога
Новая Ляля
Новоалександровск
Новоалтайск
Новоаннинский
Нововоронеж
Новодвинск
Новозыбков
Новокубанск
Новокузнецк
Новокуйбышевск
Новомичуринск
Новомосковск
Новопавловск
Новоржев
Новороссийск
Новосибирск
Новосиль
Новосокольники
Новотроицк
Новоузенск
Новоульяновск
Новоуральск
Новохоперск
Новочебоксарск
Новочеркасск
Новошахтинск
Новый Оскол
Новый Уренгой
Ногинск
Нолинск
Норильск
Ноябрьск
Нурлат
Нытва
Нюрба
Нягань
Нязепетровск
Няндома
Облучье
Обнинск
Обоянь
Обь
Одинцово
Ожерелье
Озерск
Озерск
Озеры
Октябрьск
Октябрьский
Окуловка
Олекминск
Оленегорск
Оленегорск-1
Оленегорск-2
Оленегорск-4
Олонец
Омск
Омутнинск
Онега
Опочка
Орёл
Оренбург
Орехово-Зуево
Орлов
Орск
Оса
Осинники
Осташков
Остров
Островной
Острогожск
Отрадное
Отрадный
Оха
Оханск
Очер
Павлово
Павловск
Павловск
Павловский Посад
Палласовка
Партизанск
Певек
Пенза
Первомайск
Первоуральск
Перевоз
Пересвет
Переславль-Залесский
Пермь
Пестово
Петергоф
Петров Вал
Петровск
Петровск-Забайкальский
Петрозаводск
Петропавловск-Камчатский
Петухово
Петушки
Печора
Печоры
Пикалево
Пионерский
Питкяранта
Плавск
Пласт
Плес
Поворино
Подольск
Подпорожье
Покачи
Покров
Покровск
Полевской
Полесск
Полысаево
Полярные Зори
Полярный
Поронайск
Порхов
Похвистнево
Почеп
Починок
Пошехонье
Правдинск
Приволжск
Приморск
Приморск
Приморско-Ахтарск
Приозерск
Прокопьевск
Пролетарск
Протвино
Прохладный
Псков
Пугачев
Пудож
Пустошка
Пучеж
Пушкин
Пушкино
Пущино
Пыталово
Пыть-Ях
Пятигорск
Радужный
Радужный
Райчихинск
Раменское
Рассказово
Ревда
Реж
Реутов
Ржев
Родники
Рославль
Россошь
Ростов
Ростов-на-Дону
Рошаль
Ртищево
Рубцовск
Рудня
Руза
Рузаевка
Рыбинск
Рыбное
Рыльск
Ряжск
Рязань
Саки
Саки
Салават
Салаир
Салехард
Сальск
Самара
Санкт-Петербург
Саранск
Сарапул
Саратов
Саров
Сасово
Сатка
Сафоново
Саяногорск
Саянск
Светлогорск
Светлоград
Светлый
Светогорск
Свирск
Свободный
Себеж
Севастополь
Северо-Курильск
Северобайкальск
Северодвинск
Североморск
Североуральск
Северск
Севск
Сегежа
Сельцо
Семенов
Семикаракорск
Семилуки
Сенгилей
Серафимович
Сергач
Сергиев Посад
Сергиев Посад-7
Сердобск
Серов
Серпухов
Сертолово
Сестрорецк
Сибай
Сим
Симферополь
Сковородино
Скопин
Славгород
Славск
Славянск-на-Кубани
Сланцы
Слободской
Слюдянка
Смоленск
Снегири
Снежинск
Снежногорск
Собинка
Советск
Советск
Советск
Советская Гавань
Советский
Сокол
Солигалич
Соликамск
Солнечногорск
Солнечногорск-2
Солнечногорск-25
Солнечногорск-30
Солнечногорск-7
Соль-Илецк
Сольвычегодск
Сольцы
Сольцы 2
Сорочинск
Сорск
Сортавала
Сосенский
Сосновка
Сосновоборск
Сосновый Бор
Сосногорск
Сочи
Спас-Деменск
Спас-Клепики
Спасск
Спасск-Дальний
Спасск-Рязанский
Среднеколымск
Среднеуральск
Сретенск
Ставрополь
Старая Купавна
Старая Русса
Старица
Стародуб
Старый Крым
Старый Оскол
Стерлитамак
Стрежевой
Строитель
Струнино
Ступино
Суворов
Судак
Суджа
Судогда
Суздаль
Суоярви
Сураж
Сургут
Суровикино
Сурск
Сусуман
Сухиничи
Сухой Лог
Сызрань
Сыктывкар
Сысерть
Сычевка
Сясьстрой
Тавда
Таганрог
Тайга
Тайшет
Талдом
Талица
Тамбов
Тара
Тарко-Сале
Таруса
Татарск
Таштагол
Тверь
Теберда
Тейково
Темников
Темрюк
Терек
Тетюши
Тимашевск
Тихвин
Тихорецк
Тобольск
Тогучин
Тольятти
Томари
Томмот
Томск
Топки
Торжок
Торопец
Тосно
Тотьма
Трехгорный
Трехгорный-1
Троицк
Троицк
Трубчевск
Туапсе
Туймазы
Тула
Тулун
Туран
Туринск
Тутаев
Тында
Тырныауз
Тюкалинск
Тюмень
Уварово
Углегорск
Углич
Удачный
Удомля
Ужур
Узловая
Улан-Удэ
Ульяновск
Унеча
Урай
Урень
Уржум
Урус-Мартан
Урюпинск
Усинск
Усмань
Усолье
Усолье-Сибирское
Уссурийск
Усть-Джегута
Усть-Илимск
Усть-Катав
Усть-Кут
Усть-Лабинск
Устюжна
Уфа
Ухта
Учалы
Уяр
Фатеж
Феодосия
Фокино
Фокино
Фролово
Фрязино
Фурманов
Хабаровск
Хадыженск
Ханты-Мансийск
Харабали
Харовск
Хасавюрт
Хвалынск
Хилок
Химки
Холм
Холмск
Хотьково
Цивильск
Цимлянск
Чадан
Чайковский
Чапаевск
Чаплыгин
Чебаркуль
Чебоксары
Чегем
Чекалин
Челябинск
Чердынь
Черемхово
Черепаново
Череповец
Черкесск
Чермоз
Черноголовка
Черногорск
Чернушка
Черняховск
Чехов
Чехов-2
Чехов-3
Чехов-8
Чистополь
Чита
Чкаловск
Чудово
Чулым
Чулым-3
Чусовой
Чухлома
Шагонар
Шадринск
Шали
Шарыпово
Шарья
Шатура
Шахтерск
Шахты
Шахунья
Шацк
Шебекино
Шелехов
Шенкурск
Шилка
Шимановск
Шиханы
Шлиссельбург
Шумерля
Шумиха
Шуя
Щекино
Щелкино
Щелково
Щербинка
Щигры
Щучье
Электрогорск
Электросталь
Электроугли
Элиста
Энгельс
Энгельс-19
Энгельс-2
Эртиль
Юбилейный
Югорск
Южа
Южно-Сахалинск
Южно-Сухокумск
Южноуральск
Юрга
Юрьев-Польский
Юрьевец
Юрюзань
Юхнов
Юхнов-1
Юхнов-2
Ядрин
Якутск
Ялта
Ялуторовск
Янаул
Яранск
Яровое
Ярцево
Ясногорск
Ясный
Яхрома
Ротор — это… Что такое Ротор?
Роторный экскаватор как экспонат в бывшем угольном карьере — «стальном городе» Феррополис (Германия), превращенном в музей под открытым небомРо́тор — от лат. roto )— вращаться
В математике:
- Ротор — то же, что вихрь векторного поля, то есть вектор, характеризующий вращательное движение в данной точке векторного поля.
В медицине:
В технике:
- Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела (например, ротор двигателя Ванкеля) или отдающие её рабочему телу (например, ротор роторного насоса). Ротор двигателей связан с ведущим валом, ротор рабочих машин — с приводным валом. Ротор выполняется в виде барабанов, дисков, колёс.
- Ротор — вращающаяся часть паровой турбины, компрессора, гидронасоса, гидромотора и т. д.
- Буровой ротор — механизм, являющийся многофункциональным оборудованием буровой установки, который предназначен для вращения бурильных труб и поддержания колонны бурильных или обсадных труб при свинчивании и развинчивании в процессе спуско-подъемных операций, при поисковом бурении и капитальном ремонте скважин. Привод — цепной или карданный. Роторное бурение.
- Ротор — устройство управления поворотом антенны в направлении приёма или передачи сигнала.
- Ротор — любое вращающееся тело в теории балансировки.
- Ротор — система вентилятора.
В электротехнике:
- Ротор — вращающаяся часть электрической машины (генератора или двигателя переменного тока внутри неподвижной части — статора). Ротор асинхронной электромашины обычно представляет собой собранное из листовой электротехнической стали цилиндрическое тело с пазами для размещения обмотки. Ротор в электромашинах постоянного тока называется якорем.
- Ротор — автоматически управляемая машина (транспортное устройство, прибор), в которой заготовки двигаются вместе с обрабатывающими их орудиями по дугам окружности. Роторная печь. Ротороный экскаватор. Роторная линия (комплекс роторов).
В авиации:
В ветроэнергетике:
- Ротор Дарье — составная часть вертикально-осевого ветрогенератора, крыльчатка которого представляет собой двояковыпуклые лопасти, закреплённые при помощи штанг на вертикально вращающейся оси.
- Ротор Савониуса — составная часть вертикально-осевого ветрогенератора в виде двух смещенных относительно друг друга полуцилиндрических лопастей и небольшого (10—15 % от диаметра лопасти) перекрытия, которые образуют параллельно оси вращения роторы.
В судостроении:
- Ротор Флеттнера — «парусная мачта» или заменяющий паруса ротор (на судне их устанавливается несколько), с помощью которого судно приводится в движение посредством ветра, благодаря эффекту Магнуса. Роторное судно Флеттнера.
Собственные имена:
Принцип работы статора и ротора
Подписка на рассылку
Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.
По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.
Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.
Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.
Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.
Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.
Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.
Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.
Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.
Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.
В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.
Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.
Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.
Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.
В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.
В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.
Принцип работы электродвигателей. Основные понятия.
Магнетизм
Наиболее характерное магнитное явление – притяжение магнитом кусков железа – известно со времен глубокой древности. Ещё одной очень важной особенностью магнитов является наличие у них полюсов: северного (отрицательного) и южного (положительного). Противоположные полюса притягиваются, а одинаковые – отталкиваются друг от друга.
Магнитное поле
Магнитное поле можно условно изобразить линиями в виде магнитного потока, движущегося от северного полюса к южному. В некоторых случаях определить, где северный, а где южный полюс, достаточно сложно.
Электромагнетизм
Вокруг проводника, при пропускании по нему электрического тока, создаётся магнитное поле. Это явление называется электромагнетизмом. Физические законы одинаковы для магнетизма и электромагнетизма.
Магнитное поле вокруг проводников можно усилить, если намотать их на катушку со стальным сердечником. Когда проводник намотан на катушку, все линии магнитного потока, образуемого каждым витком, сливаются и создают единое магнитное поле вокруг катушки.
Чем больше витков на катушке, тем сильнее магнитное поле. Это поле имеет такие же характеристики, что и естественное магнитное поле, а, следовательно, у него тоже есть северный и южный полюса.
Вращение вала электродвигателя обусловлено действием магнитного поля. Основные части электродвигателя: статор и ротор.
Ротор:
Подвижная часть электродвигателя, которая вращается с валом электродвигателя, двигаясь вместе с магнитным полем статора.
Статор:
Неподвижный компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.
Вращение под действием магнитного поля
Преимуществом магнитных полей, которые создаются токопроводящими катушками, является возможность менять местами полюса магнита посредством изменения направления тока. Именно эта возможность смены полюсов и используется для преобразования электрической энергии в механическую.
Одинаковые полюса магнитов отталкиваются друг от друга, противоположные полюса – притягиваются. Можно сказать, что это свойство используется для создания непрерывного движения ротора с помощью постоянной смены полярности статора. Ротором здесь, является магнит, который может вращаться.
Чередование полюсов с помощью переменного тока
Чередование полюсов с помощью переменного тока
Полярность постоянно меняется с помощью переменного тока (AC). Далее мы увидим, как ротор заменяется магнитом, который вращается под действием индукции. Здесь важную роль играет переменный ток, поэтому будет полезно привести здесь краткую информацию о нём:
Переменный ток – AC
Под переменным током понимается электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. Вращающееся магнитное поле можно создать с помощью трёхфазного питания. Это означает, что статор подсоединяется к источнику переменного тока с тремя фазами. Полный цикл определяется как цикл в 360 градусов. Это значит, что каждая фаза расположена по отношению к другой под углом в 120 градусов. Фазы изображаются в виде синусоидальных кривых, как представлено на рисунке.
Трёхфазный переменный ток
Трёхфазное питание – это непрерывный ряд перекрывающихся напряжений переменного тока (AC).
Смена полюсов
На следующих страницах объясняется, как взаимодействуют ротор и статор, заставляя электродвигатель вращаться.
Для наглядности мы заменили ротор вращающимся магнитом, а статор – катушками. В правой части страницы приведено изображение двухполюсного трёхфазного электродвигателя. Фазы соединены парами: 1-й фазе соответствуют катушки A1 и A2, 2-й фазе – B1 и B2 , а 3-й соответствуют C1 и C2. При подаче тока на катушки статора одна из них становится северным полюсом, другая – южным. Таким образом, если A1 – северный полюс, то A2 – южный.
Питание в сети переменного тока
Обмотки фаз A, B и C расположены по отношению друг к другу под углом в 120 градусов.
Количество полюсов электродвигателя определяется количеством пересечений поля обмотки полем ротора. В данном случае каждая обмотка пересекается дважды, что означает, что перед нами двухполюсный статор. Таким образом, если бы каждая обмотка появлялась четыре раза, это был бы четырехполюсный статор и т.д.
Когда на обмотки фаз подаётся электрический ток, вал электродвигателя начинает вращаться со скоростью, обусловленной числом полюсов (чем меньше полюсов, тем ниже скорость)
Вращение ротора
Ниже рассказывается о физическом принципе работы электродвигателя (как ротор вращается внутри статора). Для наглядности, заменим ротор магнитом. Все изменения в магнитном поле происходят очень быстро, поэтому нам необходимо разбить весь процесс на этапы. При прохождении трёхфазного переменного тока по обмоткам статора в нем создается магнитное поле, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля.
Начав вращение, магнит будет следовать за меняющимся магнитным полем статора. Поле статора меняется таким образом, чтобы поддерживалось вращение в одном направлении.
Индукция
Ранее мы установили, как обыкновенный магнит вращается в статоре. В электродвигателях переменного тока AC установлены роторы, а не магниты. Наша модель очень схожа с настоящим ротором, за исключением того, что под действием магнитного поля ротор поляризуется. Это вызвано магнитной индукцией, благодаря которой в проводниках ротора наводится электрический ток.
Индукция
В основном ротор работает так же, как магнит. Когда электродвигатель включен, ток проходит по обмотке статора и создаёт электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Таким образом, в обмотках ротора индуцируется ток, который затем создаёт вокруг ротора электромагнитное поле и поляризацию ротора.
В предыдущем разделе, чтобы было проще объяснить принцип действия ротора, заменив его для наглядности магнитом. Теперь заменим магнитом статор. Индукция – это явление, которое наблюдается при перемещении проводника в магнитном поле. Относительное движение проводника в магнитном поле приводит к появлению в проводнике так называемого индуцированного электрического тока. Этот индуцированный ток создаёт магнитное поле вокруг каждой обмотки проводника ротора. Так как трёхфазное AC питание заставляет магнитное поле статора вращаться, индуцированное магнитное поле ротора будет следовать за этим вращением. Таким образом вал электродвигателя будет вращаться. Электродвигатели переменного тока часто называют индукционными электродвигателями переменного тока, или ИЭ (индукционными электродвигателями).
Принцип действия электродвигателей
Индукционные электродвигатели состоят из ротора и статора.
Токи в обмотках статора создаются фазовым напряжением, которое приводит в движение индукционный электродвигатель. Эти токи создают вращающееся магнитное поле, которое также называется полем статора. Вращающееся магнитное поле статора определяется токами в обмотках и количеством фазных обмоток.
Вращающееся магнитное поле формирует магнитный поток. Вращающееся магнитное поле пропорционально электрическому напряжению, а магнитный поток пропорционален электрическому току.
Вращающееся магнитное поле статора движется быстрее ротора, что способствует индукции токов в обмотках проводников роторов, в результате чего образуется магнитное поле ротора. Магнитные поля статора и ротора формируют свои потоки, эти потоки будут притягиваться друг к другу и создавать вращающий момент, который заставляет ротор вращаться. Принципы действия индукционного электродвигателя представлены на иллюстрациях справа.
Таким образом, ротор и статор являются наиболее важными составляющими индукционного электродвигателя переменного тока. Они проектируются с помощью САПР (системы автоматизированного проектирования). Далее мы подробнее поговорим о конструкции ротора и статора.
Статор элетродвигателя
Статор – это неподвижный электрический компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых всё время меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.
Все статоры устанавливаются в раму или корпус. Корпус статора электродвигателей Grundfos для электродвигателей мощностью до 22 кВт чаще всего изготавливается из алюминия, а для электродвигателей с большей мощностью – из чугуна. Сам статор устанавливается в кожухе статора. Он состоит из тонких пластин электротехнической стали, обмотанных изолированным проводом. Сердечник состоит из сотен таких пластин. При подаче питания переменный ток проходит по обмоткам, создавая электромагнитное поле, перпендикулярное проводникам ротора. Переменный ток (AC) вызывает вращение магнитного поля.
Изоляция статора должна соответствовать требованиям IEC 62114, где приведены различные классы защиты (по уровням температуры) и изменения температуры (AT). Электродвигатели Grundfos имеют класс защиты F, а при увеличении температуры – класс B. Grundfos производит 2-полюсные электродвигатели мощностью до 11 кВт и 4-полюсные электродвигатели мощностью до 5,5 кВт. Более мощные электродвигатели Grundfos закупает у других компаний, уровень качества продукции которых соответствует принятым в Grundfos стандартам. Для насосов, в основном, используются статоры с двумя, четырьмя и шестью полюсами, так как частота вращения вала электродвигателя определяет давление и расход насоса. Можно изготовить статор для работы с различными напряжениями, частотами и мощностями на выходе, а также для переменного количества полюсов.
Ротор элетродвигателя
В электродвигателях используются так называемые «беличьи колеса» (короткозамкнутые роторы), конструкция которых напоминает барабаны для белок.
При вращении статора магнитное поле движется перпендикулярно обмоткам проводников ротора; появляется ток. Этот ток циркулирует по обмоткам проводников и создаёт магнитные поля вокруг каждого проводника ротора. Так как магнитное поле в статоре постоянно меняется, меняется и поле в роторе. Это взаимодействие и вызывает движение ротора. Как и статор, ротор изготовлен из пластин электротехнической стали. Но, в отличие от статора, с обмотками из медной проволоки, обмотки ротора выполнены из литого алюминия или силумина, которые выполняют роль проводников.
Асинхронные электродвигатели
В предыдущих разделах мы разобрали, почему электродвигатели переменного тока называют также индукционными электродвигателями, или электродвигателями типа «беличье колесо». Далее объясним, почему их ещё называют асинхронными электродвигателями. В данном случае во внимание принимается соотношение между количеством полюсов и числом оборотов, сделанных ротором электродвигателя.
Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать следующим образом: частота сети (F), умноженная на 120 и разделенная на число полюсов (P).
Если, например, частота сети 50 Гц, то синхронная частота вращения для 2-полюсного электродвигателя равна 3000 мин-1.
Синхронная частота вращения уменьшается с увеличением числа полюсов. В таблице, приведенной ниже, показана синхронная частота вращения для различного количества полюсов.
Число полюсов
Синхронная частота вращения 50 Гц
Синхронная частота вращения 60 Гц
Из всего спектра выпускаемых в настоящее время электрических моторов наибольшее распространение получил двигатель асинхронный трёхфазный. Практически половина производимой в мире электроэнергии используется именно этими машинами. Они широко применяются в металлообрабатывающей и деревообрабатывающей промышленности. Асинхронный двигатель незаменим на фабриках и насосных станциях. Без таких машин не обойтись и в быту, где они используются и в другой домашней технике, и в ручном электроинструменте.
Область применения этих электрических машин расширяется с каждым днём, так как совершенствуются и сами модели, и используемые для их изготовления материалы.
Каковы же основные части этой машины
Разобрав двигатель асинхронный трехфазный, можно наблюдать два главных элемента.
Одна из важнейших деталей – статор. На фото сверху эта часть двигателя расположена слева. Он состоит из следующих основных элементов:
1. Корпус. Он необходим для соединения всех деталей машины. Если двигатель небольшой, то корпус изготавливают цельнолитым. В качестве материала используют чугун. Применяются также сталь или сплавы алюминия. Иногда корпус малых двигателей совмещает функции сердечника. Если же двигатель имеет большие размеры и мощность, то корпус сваривают из отдельных частей.
2. Сердечник. Этот элемент двигателя запрессовывается в корпус. Служит он для улучшения качеств магнитной индукции. Выполняется сердечник из пластин электрической стали. Для того чтобы снизить потери, неизбежные при появлении вихревых токов, каждая пластина покрывается слоем специального лака.
3. Обмотка. Она размещается в пазах сердечника. Состоит из витков медной проволоки, которые собираются в секции. Соединённые в определённой последовательности, они образуют три катушки, которые в совокупности являются обмоткой статора. Подключается она непосредственно к сети, поэтому называется первичной.
Ротор — это подвижная часть двигателя. На фото он находится справа. Служит он для преобразования силы магнитных полей в механическую энергию. Состоит ротор асинхронного двигателя из следующих деталей:
1. Вал. На хвостовиках его закреплены подшипники. Они запрессовываются в щиты, крепящиеся болтами к торцовым стенкам коробки статора.
2. Сердечник, который собирается на валу. Состоит из пластин специальной стали, обладающей таким ценным свойством, как низкое сопротивление магнитным полям. Сердечник, обладая формой цилиндра, и является основой для укладки обмотки якоря. Роторная, или, как её ещё называют, вторичная обмотка получает энергию благодаря магнитному полю, которое появилось вокруг катушек статора при прохождении по ним электрического тока.
Двигатели по типу изготовления подвижной части
1. Имеющие короткозамкнутую обмотку ротора. Один из вариантов исполнения этой детали показан на рисунке.
Асинхронный двигатель с короткозамкнутым ротором имеет обмотку, сделанную из алюминиевых стержней, которые располагаются в пазах сердечника. В торцевой части они замкнуты кольцами накоротко.
2. Электродвигатели, имеющие ротор, изготовленный с контактными кольцами.
У обоих типов асинхронных двигателей конструкция статора одинаковая. Различаются они только исполнением якоря.
Каков же принцип работы
Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.
Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.
Что происходит в обмотке статора
Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.
Как работает ротор
Теперь необходимо рассмотреть, какие процессы возникают во вторичной обмотке. Асинхронный двигатель с короткозамкнутым ротором имеет конструкционную особенность. Дело в том, что к его якорной обмотке напряжение не подводится. Оно там возникает благодаря магнитоиндукционной связи с первичной обмоткой. Поэтому и происходит процесс, обратный тому, что наблюдался в статоре, в соответствии с законом, который гласит, что при пересечении проводника, а в нашем случае это короткозамкнутая обмотка ротора, магнитным потоком в нём возникает электрический ток. Откуда берётся магнитное поле? Оно возникло вокруг первичной катушки при подключении трёхфазного источника питания.
Соединим статор и ротор. Что получится?
Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.
Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.
Эффект скольжения
Ситуация, когда силовые потоки ротора как бы отталкиваются от вращающегося магнитного поля статора, получила название скольжения. Следует отметить, что частота асинхронного двигателя (n1) всегда меньше той, с которой перемещается магнитное поле статора. Объяснить это можно так. Чтобы в роторной обмотке возник ток, она должна быть пересечена магнитным потоком с определённой угловой скоростью. И поэтому справедливо утверждение, что скорость вращения вала больше либо равна нулю, но меньше интенсивности перемещения магнитного поля статора. Ротор имеет частоту вращения, зависящую от силы трения в подшипниках, а также от величины отбора мощности с вала ротора. Поэтому он как бы отстаёт от магнитного поля статора. Именно из-за этого частота называется асинхронной.
Таким образом, электроэнергия питающего источника преобразовалась в кинетическую энергию вращающегося вала. Скорость его вращения прямо пропорциональна частоте тока питающей сети и количеству пар полюсов статора. Для увеличения частоты вращения якоря можно использовать частотные преобразователи. Однако работа этих устройств должна быть согласована с количеством пар полюсов.
Как подключить двигатель к источнику питания
Чтобы осуществить пуск асинхронного двигателя, его необходимо подключить к сети трёхфазного тока. Схема асинхронного двигателя собирается двумя способами. На рисунке показана схема соединения выводов двигателя, в которой статорные обмотки собраны способом «звезда».
На этом рисунке изображён другой способ соединения, именуемый «треугольник». Собираются схемы в клеммной коробке, закреплённой на корпусе.
Следует знать, что начала каждой из трёх катушек, их ещё называют обмотками фаз, именуются С1, С2, С3 соответственно. Аналогично подписываются концы, которые имеют названия С4, С5, С6. Если в клеммной коробке нет маркировки выводов, то начала и концы придётся определить самостоятельно.
Как сделать реверс
При возникновении потребности осуществить пуск асинхронного двигателя, изменив направление вращения якоря, надо просто поменять местами два провода подключаемого источника трехфазного напряжения.
Однофазный асинхронных двигателей
В быту проблематично использовать трёхфазные двигатели из-за отсутствия требуемого источника напряжения. Поэтому существует однофазный асинхронный двигатель. Он также имеет статор, но с существенным конструкционным отличием. Оно заключается в количестве и способе расположения обмоток. Это определяет и схему запуска машины.
Если однофазный асинхронный двигатель имеет статор с двумя обмотками, то расположены они будут со смещением по окружности под углом в 90˚. Катушки называются пусковой и рабочей. Соединяются они параллельно, но, чтобы создать условия для появления вращающееся магнитного поля, дополнительно вводится активное сопротивление или конденсатор. Это создаёт сдвиг фаз токов обмоток, близкий к 90˚, благодаря чему создаётся условие для образования вращающегося магнитного поля.
Если статор имеет только одну катушку, то подключённый к ней однофазный источник питания будет причиной пульсирующего магнитного поля. В замкнутой накоротко обмотке ротора появится переменный ток. Он станет причиной возникновения своего магнитного потока. Результирующая двух образовавшихся сил будет равна нулю. Поэтому для запуска двигателя, имеющего такую конструкцию, требуется дополнительный толчок. Создать его можно, подключив конденсаторную схему пуска.
Подключить двигатель к однофазной цепи
Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.
Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.
Параметры асинхронного двигателя
При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические – это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.
Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.
Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.
Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.
Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.
Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.
Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.
Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.
В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.
В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.
Роторы, статоры
Шнековая пара (героторная пара) состоит из частей ротор и статор. Здесь вы можете подобрать необходимый ротор и статор марки PFT для штукатурных станций, растворонасосов, шпаклёвочных машин и прочего оборудования. Представленные роторы и статоры содержат информацию с указанием технических характеристик, для каких видов работ и материалов они рекомендуются.
Штукатурные станции, кроме смесительных спиралей, в основных расходниках числят роторы и статоры, или шнековую пару. Героторный насос приходится менять после переработки 30-50 тонн гипсовых штукатурок, а если шнековая пара работает на переработке цементных растворов, то менять ее надо после 25-35 тонн. Учитывая, что производительность героторного насоса 22-25 литров в минуту, нетрудно посчитать, что менять эти детали приходится довольно часто.
Поэтому задача увеличения срока службы шнековой пары для всех производящих ее фирм является первоочередной. Компания PFT, выпускающая штукатурные машины, разработала насосный комплект, состоящий из качественных роторов, оптимально настроенных, имеющих одинаковую толщину стенок. Это новая технология, позволяющая экономично производить статоры со стенками из металла и эластомера в корпусе из стальной трубки. На обоих концах установлены торцевые уплотнения. Кроме того, такие статоры имеют разные размеры и приспособлены к конкретным условиям эксплуатации, что позволяет обходиться без технического обслуживания.
Статоры со стенками из эластомера с равной толщиной имеют неоспоримые преимущества, так как имеют лучшую теплоотдачу и не подвергаются воздействию высокого давления. Уровень износа заметно уменьшился, а значит, вырос эксплуатационный ресурс. При использовании новых статоров можно генерировать давление более высокой и постоянной величины. То есть те же работы, что и раньше, можно выполнять с насосом меньших размеров.
Мощность привода при использовании оборудования одинаковой длины, давления и объема подачи уменьшается, в итоге стоимость эксплуатации становится меньше. Высокотехнологичная штукатурная техника PFT укомплектована качественными, изготовленными по новым технологиям, шнековыми парами, которые имеют большой рабочий ресурс при низкой стоимости.
Разница между статором и ротором (со сравнительной таблицей)
Статор и ротор являются частями электродвигателя. Существенная разница между ротором и статором заключается в том, что ротор — это вращающаяся часть двигателя, а статор — это неподвижная часть двигателя. Другие различия между статором и ротором показаны ниже в сравнительной таблице.
Рама статора , сердечник статора и обмотка статора являются частями статора .Рама поддерживает сердечник статора и защищает их трехфазную обмотку. Сердечник статора несет вращающееся магнитное поле, индуцируемое трехфазным питанием.
Ротор расположен внутри сердечника статора . Беличья клетка и ротор с фазовой намоткой являются типами ротора. Обмотка ротора возбуждается источником постоянного тока. Обмотка возбуждения создает постоянное магнитное поле в сердечнике ротора.
Содержание: Статор против ротора
- Сравнительная таблица
- Определение
- Ключевые отличия
- Заключение
Сравнительная таблица
Основа для сравнения | Статор | Ротор |
---|---|---|
Определение | Это неподвижная часть станка | Это вращающаяся часть двигателя. |
Детали | Наружная рама, сердечник статора и обмотка статора. | Обмотка ротора и сердечник ротора |
Электропитание | Трехфазное электропитание | Электропитание постоянного тока |
Обмотка | Сложная | Легкая |
Изоляция | Тяжелая | Меньше |
Потери на трение | Высокая | Низкая |
Охлаждение | Легко | Сложно |
Определение статора
Статор — это статическая часть двигателя.Основная функция статора — создание вращающегося магнитного поля. Рама статора, сердечник статора и обмотка статора являются тремя частями статора. Сердечник статора поддерживает и защищает трехфазную обмотку статора. Штамповка из высококачественной кремнистой стали составляет сердечник статора.
Определение ротора
Вращающаяся часть двигателя называется ротором. Сердечник ротора и обмотка ротора являются частью ротора. Обмотка ротора возбуждается источником постоянного тока.Беличья клетка и фазовая намотка — это типы ротора.
Сердечник ротора с короткозамкнутым ротором выполнен из железного цилиндрического сердечника. На внешней поверхности сердечника имеется полукруглая прорезь, на которой размещаются медные или алюминиевые проводники. На концах жилы закорачиваются с помощью алюминиевых или медных колец.
Работа ротора и статора
Статор создает вращающееся магнитное поле из-за трехфазного питания.Если ротор находится в состоянии покоя, то в них возникает электромагнитная сила из-за явления электромагнитной индукции.
Электромагнитная индукция — это явление, при котором ЭДС индуцируется в проводнике с током из-за переменного магнитного поля. В роторе возникает ток, который заставляет ротор двигаться.
Ключевые различия между статором и ротором
- Статор — это неподвижная часть машины, а ротор — это подвижная часть машины.
- Сердечник статора, обмотка статора и внешняя рама являются тремя частями статора, тогда как сердечник ротора и обмотка возбуждения являются частями ротора.
- Трехфазное питание подается на обмотку статора. Ротор возбуждается источником постоянного тока.
- Обмотка статора более сложная по сравнению с ротором.
- Обмотка статора хорошо изолирована, так как в ней индуцируется высокое напряжение. А у ротора низкая изоляция.
- Размер обмотки статора больше для пропускания сильного тока по сравнению с обмоткой возбуждения.
- Система охлаждения статора хороша по сравнению с ротором, потому что статор неподвижен.
- Потери на трение меньше в роторе по сравнению со статором из-за его небольшого веса.
Заключение
Статическая часть машины известна как статор. А вращающаяся часть машины известна как ротор. Ротор размещен внутри сердечника статора.Трехфазный ток подается на обмотку статора, которая создает вращающееся магнитное поле. Ротор вращается во вращающемся магнитном поле. Таким образом, ЭДС возникает из-за взаимодействия магнитного поля ротора и статора.
8 Разница между статором и ротором
В двигателях или генераторах обе части, такие как ротор и статор играет ключевую роль. Основное различие между ними в том, что статор неактивная часть двигателя, тогда как ротор является вращающей частью.
Что такое статор?
Статор — неподвижный элемент электромагнитного схемы. В различных конфигурациях статор может действовать как полевые магниты, которые взаимодействуют с ротором для создания движения или как якоря, которые работают с движением катушки возбуждения на роторе. Они есть обычно постоянные магниты или электромагниты, которые поддерживают выравнивание поля причем последняя представляет собой катушку возбуждения или обмотку.
Статор в двигателях переменного тока состоит из тонкого стального сердечника. прослоек и вставленных в них катушек изолированного провода, которые называются обмотки и подключены непосредственно к источнику питания.При подаче тока вместе они становятся электромагнитом. В двигателях постоянного тока статор несет оба обмотки возбуждения и полюса, составляющие магнитную цепь с ротор. Обмотки возбуждения в таком случае на статоре могут быть как обмотки, так и постоянные магниты; на полюсах размещается обмотка возбуждения, количество которой определяется напряжением и током.
Статор, являющийся неподвижной частью вращающейся системы, может быть встречается в электрических генераторах, электродвигателях, сиренах, грязевых двигателях или биологические роторы.Энергия течет через статор к вращающемуся компонент системы. В электродвигателе статор обеспечивает вращающийся магнитное поле, приводящее в движение вращающийся якорь; в генераторе статор преобразует вращающееся магнитное поле в электрический ток. В гидравлической силе устройств, статор направляет поток жидкости к вращающейся части или от нее. система.
Что вам нужно Знайте о статоре
- Статор — неподвижная часть машина.
- Три основные части статора включают статор сердечник, обмотка статора и внешний каркас.
- Потери на трение статора велики.
- Система охлаждения статора простая.
- Обмотка статора сильно изолирована из-за высокого в нем индуцирует напряжение.
- Размер обмотки статора большой для несущий сильный ток.
- Обмоточное расположение статора больше сложный.
- На обмотку подано трехфазное питание. статора.
Что такое ротор?
Ротор — это общее название основной прядильной части электрическая машина и происходит от слова «вращающийся».Поэтому ротор может быть описан как движущийся компонент электромагнитной системы, т.е. генератор переменного тока, электрогенератор или электродвигатель. Его вращение связано с взаимодействие между обмотками и магнитными полями, создающее крутящий момент вокруг оси ротора.
Есть разные типы роторов (вращающихся частей). Они включают Беличья клетка, контактное кольцо, воздушный тип, намотанный и явнополюсный.
Что вам нужно Знайте о роторе
- Ротор — это вращающаяся часть станка.
- Две основные части ротора включают ротор сердечник и обмотка возбуждения.
- Потери на трение ротора низкие.
- Система охлаждения ротора сложная.
- Обмотка ротора имеет низкую изоляцию.
- Размер обмотки ротора небольшой.
- Расположение обмоток ротора простое.
- Ротор подключен к источнику постоянного тока.
Также читайте: Разница между ИБП и инвертором
Разница Между статором и ротором в табличной форме
ОСНОВА СРАВНЕНИЯ | СТАТОР | РОТОР |
Описание | Статор — это неподвижная часть машины. | Ротор — это вращающаяся часть машины. |
Основные части | Три основные части статора включают сердечник статора, обмотку статора. и внешняя рамка. | Две основные части ротора включают сердечник ротора и обмотку возбуждения. |
Потери на трение | Потери на трение статора велики. | Потери на трение ротора низкие. |
Система охлаждения | Система охлаждения статора проста. | Система охлаждения ротора сложная. |
Обмотка | Обмотка статора имеет высокую изоляцию, так как высокое напряжение индуцирует в Это. | Обмотка ротора имеет низкую изоляцию. |
Размер | Размер обмотки статора велик для пропускания сильного тока. | Размер обмотки ротора небольшой. |
Обмотка | Обмоточное устройство статора более сложное. | Устройство обмотки ротора простое. |
Источник питания | Трехфазное питание подается на обмотку статора. | Ротор подключен к источнику постоянного тока. |
Также читайте: Разница между последовательной и параллельной цепями
Разница между статором и ротором
Привет, друзья, надеюсь, у вас все отлично.В сегодняшнем руководстве мы обсудим разницу между статором и ротором . Существует два основных типа электрических машин, первая из которых — это машины переменного тока, такие как генератор переменного тока и двигатель переменного тока. Которые далее делятся на другие типы, такие как асинхронный двигатель, однофазный асинхронный двигатель, трехфазный асинхронный двигатель, синхронный двигатель и введение в синхронный генератор, индукционный генератор. Второй тип — это двигатель постоянного тока и генераторы. Все эти машины переменного или постоянного тока состоят из двух основных частей: статора и ротора.Основное различие между ними состоит в том, что статор является статической частью, а ротор — вращающейся частью этих машин.Составными частями статора являются сердечник статора, рама статора и обмотки статора. Рама статора служит опорой для сердечника и защищает раненую обмотку от воздействия внешней среды. В сердечнике статора течет вращающееся магнитное поле, которое создается за счет входного трехфазного питания. Ротор машин размещен в сердечнике статора. Обычно используются роторы с короткозамкнутым ротором и ротор с обмоткой.Электропитание, подаваемое на статор, индуцирует в статоре магнитное поле, которое, как и сердечник ротора, создает в роторе ЭДС. В сегодняшнем посте мы подробно рассмотрим ротор и статор и найдем их различия. Итак, давайте начнем с разницы между статором и ротором .
Разница между статором и ротором
Статор
- Статическая часть электрических машин называется статором, в этой части намотана обмотка возбуждения, а на двигатель подается входное питание.
- Статор состоит из 3 основных частей: внешней рамы, сердечника статора и обмотки статора.
- На статоре необходима большая изоляция, чем у ротора.
- Потери на трение в статоре велики.
- Процесс охлаждения статора прост.
- Энергия передается от статора и поступает к статору к вращающейся части машины, то есть к ротору.
- В случае гниения двигателей на статоре создается магнитное поле, которое передается обмоткам ротора и наведенная при работе двигателя ЭДС.
- В статоре генератора используется для преобразования поля в ток
- На статоре подается переменный ток.
- Обмотка на статоре сложнее обмоток ротора.
- Статор закрывает внутреннюю часть машин и также спасает от повреждений
- Статор может быть постоянным магнитом или электромагнетом
- В электромагните, полевые катушки используются для изготовления электромагнита
Ротор
- Вращающаяся часть электрической машины называется ротором.
- Ротор состоит из двух основных частей: первая находится в обмотке ротора, а вторая является сердечником ротора.
- Питание постоянного тока подается на статор.
- Существуют различные типы ротора, такие как ротор с короткозамкнутым ротором, ротор с явнополюсным ротором с намоткой.
- Конфигурация обмоток на роторе проще, чем на статоре.
- На роторе требуется меньше изоляции.
- Процесс охлаждения ротора сложен по сравнению со статором.
- В случае трехфазной индукции двигатель переменного тока подается на статор, а магнитный поток индуцируется в роторе.
- Из-за магнитного потока создается поле и ток, проходящий через ротор.
- Скорость ротора с короткозамкнутым ротором меньше скорости поля у статора. Ротор
- имеет постоянное значение скорости выключения и работает при меньшем токе
Вот и все о разнице между ротором и статором, если у вас есть какие-либо вопросы, задавайте их в комментариях. Я изо всех сил старался сделать этот пост для вас простым.Надеюсь, вам понравился этот урок. Хорошего дня. увидимся в следующем посте.
Автор: Генри
http://www.theengineeringknowledge.comЯ профессиональный инженер и закончил известный инженерный университет, а также имею опыт работы инженером в различных известных отраслях. Я также пишу технический контент, мое хобби — изучать новые вещи и делиться ими с миром. Через эту платформу я также делюсь своими профессиональными и техническими знаниями со студентами инженерных специальностей.
11 Различия между статором и ротором электрической машины
В электрической машине (особенно в двигателе и генераторе) статор и ротор являются основными компонентами. Эти два компонента помогают создать электромагнитную силу из-за взаимодействия между ними.
Генерируемая электромагнитная сила активирует вращающуюся систему с точки зрения электрической или механической энергии.
Оба компонента машины встроены в одну машину.Но у них разные функции и другие характеристики.
В этой статье мы изучим, в чем разница между статором и ротором электрической машины.
Статор против. Ротор [в трубчатой форме]
# | Содержание | Статор | Ротор |
01 | Что такое статор и ротор? | Статор — это стационарная (или фиксированная) часть электродвигателя. | Ротор представляет собой вращающуюся (или подвижную) часть электродвигателя. |
02 | Как происходит название статора и ротора? | По неподвижной части двигателя получается название статора. | Название ротора происходит от вращающейся части двигателя. |
03 | Конструкция | Статор расположен снаружи ротора. | Ротор расположен внутри сердечника статора. |
04 | Детали статора и ротора, встроенные в двигатель | Он состоит из трех основных частей , таких как сердечник, обмотка и внешняя рама. | Он состоит из двух основных частей , таких как сердечник и обмотка возбуждения. |
05 | Источник питания | Как правило, для обмотки статора требуется переменного тока (трехфазный) . | Ротор требует источника питания постоянного тока для создания вращающегося поля. |
06 | Обмотка Установка | В статоре расположение обмоток на сложнее по сравнению с ротором. | В роторе расположение обмоток простое по сравнению со статором. |
07 | Обмотка Размер | Статор имеет обмоток большого размера . | Обмотка ротора находит в малом размере . |
08 | Вес | Обмотка статора (или сердечника) имеет больший вес по сравнению с ротором. | Обмотка ротора имеет облегченный по сравнению со статором. |
09 | Изоляция | Высокая изоляция обеспечивается в обмотке статора для пропускания сильного тока. | Низкая изоляция предусмотрена в обмотке ротора. |
10 | Потери на трение | В статоре возникают потери на трение . | Меньшее трение потерь в роторе. |
11 | Охлаждение Система. | Система охлаждения статора easy . | Система охлаждения ротора сложная . |
Это основное различие между статором и ротором. Надеюсь, каждый пункт ясен.
Если у вас есть какие-либо сомнения или какие-либо моменты, которые следует включить, не стесняйтесь обсуждать в разделе комментариев.
Другие связанные отличия, которые вы хотели бы прочитать:
Спасибо за чтение!
Если вы цените то, что я делаю здесь, в DipsLab, вам следует принять во внимание:
DipsLab — это самый быстрорастущий и пользующийся наибольшим доверием сайт сообщества инженеров по электротехнике и электронике.Все опубликованные статьи доступны БЕСПЛАТНО всем.
Если вам нравится то, что вы читаете, пожалуйста, купите мне кофе (или 2) в знак признательности.
Это поможет мне продолжать оказывать услуги и оплачивать счета.
Я благодарен за вашу бесконечную поддержку.
Я получил степень магистра в области электроэнергетики. Я работаю и пишу технические руководства по ПЛК, программированию MATLAB и электричеству на DipsLab.com портал.
Я счастлив, поделившись своими знаниями в этом блоге. А иногда вникаю в программирование на Python.
Статор против ротора | Разница между статором и ротором
В этой статье описаны различия между статором и ротором. Перед сравнением давайте взглянем на их определения.
Что такое статор?
Статор представляет собой набор неподвижных частей, выполняющих функцию поддержки — хотя бы частично — двигателя, но по существу он составляет часть магнитной цепи, которая включает в себя обмотки индуктора, размещенные в специальных пазах, выполненных в соответствии с его внутренней поверхностью. .
Статор состоит из сплава кремнистой стали или стальных пластин, изолированных друг от друга. От его структуры зависит, насколько сильно на него влияют переменные во времени магнитные потоки, которые вызывают потери из-за гистерезиса (связанного с нелинейным намагничиванием материала) и индуцированных «вихревых токов».
В прорези, полученные в структуре пластин, вставлены три первичные обмотки (каждая из которых состоит из большего количества катушек, по-разному подключенных между ними), на которые подается напряжение питания и которые генерируют магнитное поле.Обмотки трехфазного статора могут быть соединены звездой или треугольником; это может быть достигнуто с помощью двигателей, оснащенных клеммной коробкой с 6 клеммами, чтобы можно было питать один и тот же двигатель с различными трехфазными сетевыми напряжениями. Примером двойной индикации может быть 230VΔ — 400VY или 400VΔ — 690VY, где символ Y или Δ относится к соединению обмоток статора; например, принимая во внимание второй случай (400VΔ — 690VY), индикация означает, что дельта-обмотки двигателя могут быть подключены к трехфазной сети на 400 В (межфазные напряжения), тогда как, если для у того же двигателя обмотки соединены звездой, сам двигатель может быть подключен к питающей сети на 690 В (на обмотки звездой должно подаваться сетевое напряжение, уменьшенное в 3 раза).
Что такое ротор?
Ротор — это вращающаяся часть двигателя, которая находится внутри статора.
Как и в случае статора, сердечник ротора также состоит из листов стали, ламинированной электрически. Внутри пазов ротора находятся алюминиевые обмотки, отлитые вместе с короткозамыкающими кольцами.
Это делается путем проделывания отверстий в пластинах, чтобы при их укладке в сердечник ротора образовывались каналы. Во время литья эти каналы заполняются алюминием и образуют обмотки, которые вместе с кольцами короткого замыкания имеют форму беличьей клетки.Отсюда и название асинхронный двигатель с короткозамкнутым ротором.
Обмотки внутри ротора не прямые, а скошены для уменьшения электрических шумов и вибрации. Сердечник ротора помогает проводить магнитное поле от статора к обмоткам ротора.
Между статором и ротором имеется воздушный зазор, и, поскольку известно, что воздух плохо проводит магнитные поля, зазор не может быть слишком большим. Воздушный зазор также не может быть слишком маленьким, поскольку металлические предметы расширяются при нагревании, и по мере того, как ротор нагревается, ему не будет достаточно места для вращения внутри статора.Обмотки ротора также можно назвать стержнями ротора.
Различия между статором и ротором
Характеристика | Статор | Ротор |
Определение | Это неподвижная часть двигателя. | Это вращающаяся часть двигателя. |
Детали | Три основные части статора включают сердечник статора, обмотку статора и внешнюю раму. | Две основные части ротора включают сердечник ротора и обмотку возбуждения. |
Поставка | Трехфазное питание подается на обмотку статора. | Ротор подключен к источнику постоянного тока |
Обмотка | Обмотка статора более сложная. | Устройство обмотки ротора простое. |
Изоляция обмотки | Обмотка статора сильно изолирована, так как в ней индуцируется высокое напряжение. | Обмотка ротора имеет низкую изоляцию. |
Потери на трение | Потери на трение статора велики. | Потери на трение ротора низкие. |
Охлаждение | Система охлаждения статора проста. | Система охлаждения ротора сложная. |
Размер | Размер обмотки статора большой для пропускания сильного тока. | Размер обмотки ротора небольшой. |
Продолжить чтение
Разница между статором и ротором | Linquip
Сегодня в Linquip мы хотим поговорить о разнице между статором и ротором! Эти две маленькие детали имеют решающее значение почти для всех электродвигателей.Вот почему вы должны знать, чем они отличаются и какие параметры позволяют им работать по-разному. Давайте углубимся в детали…
Основное различие между статором и ротором
Существует множество факторов, которые можно принять во внимание при сравнении статоров и роторов, таких как движение, детали, изоляция, питание, расположение обмоток, потери на трение и т. Д. Каждый из этих параметров может влиять на разницу между статором и ротором в определенных условиях. способ.Мы рассмотрим их один за другим, чтобы увидеть, чем они отличаются в этих двух частях. Но сначала давайте немного прочитаем о статорах и роторах и узнаем, что они из себя представляют, чтобы полностью понять разницу между статором и ротором.
Что такое статор?
Основное различие между статором и ротором состоит в том, что статор считается статической частью двигателя. Статор содержит раму, обмотку и статический сердечник. Корпус или рама статора изготовлена из алюминия. Хотя это только для моторов до 22 кВт.Этот материал меняется для двигателей с более высокой мощностью. В этих случаях корпус должен быть из чугуна. Корпус удерживает все детали внутри. Статор состоит из тонких и уложенных друг на друга пластин. Эти пластинки намотаны изолированным проводом, и сердечник статора содержит множество (почти сотни) таких пластин.
Статорысоздают вращающееся магнитное поле, а его сердечник, сделанный из штампованной высококачественной кремнистой стали, отвечает за защиту и поддержку трехфазной обмотки.При подаче переменного или переменного тока полярность обмотки статора меняется. Это приводит к вращению магнитного поля статора.
Доступность статоров хорошая, поскольку они имеют разную конструкцию, что позволяет им работать с разными частотами, выходными сигналами и напряжениями. Вы можете легко выбрать тот, который соответствует вашим потребностям и идеально подходит для вашего желаемого применения.
Что такое ротор?
Итак, чтобы понять разницу между статором и ротором, мы должны также узнать о роторах.Роторы — это вращающаяся часть двигателя. Он содержит сердечник и обмотку. Источник постоянного тока запускает обмотку ротора. Ротор — это сердце статора. Статор использует трехфазное питание для создания вращающегося магнитного поля. Роторы бывают разных типов, в том числе с короткозамкнутым ротором и фазовой намоткой.
Ротор, как и статор, состоит из пакетов ламинации. Но, в отличие от статора, ламинат ротора заполнен силумином или алюминиевыми стержнями. С другой стороны, статор заполнен медной проволокой.Прутки в роторе действуют как необходимые проводники.
Когда ротор не движется, в них действует электромагнитная сила из-за явления электромагнитной индукции. Когда движущееся магнитное поле статора пересекает токопроводящие шины ротора, возникает ток. Произведенный ток циркулирует по стержням статора. В результате вокруг каждой полоски создаются магнитные поля. При изменении магнитного поля вокруг стержней статора изменяется и поле в роторе.Этот процесс и взаимодействие заставляют ротор двигаться.
Теперь давайте рассмотрим параметры, которые разделяют роторы и статоры, чтобы понять, почему они разные.
Механизм
Наиболее очевидная разница между статором и ротором заключается в их движении. В то время как ротор вращается внутри двигателя и считается вращающейся частью, статор неподвижен и не движется.
Детали
Еще одно различие между этими двумя компонентами.Статор имеет каркас, на котором крепится сердечник и его обмотка. Статор имеет трехфазную обмотку, которая находится внутри корпуса. Вращающееся магнитное поле статора переносится сердечником. Здесь важно то, что ротор находится внутри сердечника статора! Ротор также содержит обмотку и сердечник.
Изоляция
Еще один параметр, который следует учитывать при этом сравнении, чтобы найти разницу между статором и ротором, — это изоляция.Статор имеет прочную изоляцию. Это при низкой изоляции ротора.
Поставка
Ротор имеет питание постоянного тока. Статор же имеет трехфазное питание. Трехфазное питание может выдерживать более высокую нагрузку.
Определение
Да, они тоже различаются по определению! Определение этих двоих заключается в их стиле движения. В то время как ротор является вращающейся частью двигателя, статор считается неподвижной частью машины.
Потери на трение
Еще одно различие между статором и ротором заключается в их параметрах потерь на трение. Потери на трение зависят от конструкции детали. Потери на трение статора велики. При этом ротор имеет низкие потери на трение.
Обмотка
Расположение обмоток между ротором и статором отличается тем, что расположение обмоток статора является сложным. С другой стороны, роторы имеют простое устройство.
Размер
Размер обмотки статора большой, так как по ней проходит сильный ток. С другой стороны, размер обмотки возбуждения не такой большой, как у статора.
Охлаждение
Еще одно различие между статором и ротором заключается в их системе охлаждения. Система охлаждения статора считается лучше, чем ротор, потому что статор неподвижен, а ротор движется.
Теперь, когда вы дошли до конца этой статьи, вы знаете, что такое роторы и статоры, а также можете отличить статор от ротора.Что вы думаете об этих двух частях? Прокомментируйте ниже и поделитесь с нами своими мыслями. У вас есть вопросы об этой отрасли, но вы не можете найти на них ответ? Тогда зарегистрируйтесь на Linquip, и наши специалисты быстро ответят на все ваши вопросы. Кроме того, вы можете получить удовольствие от чтения множества связанных статей на нашем веб-сайте.
Конструкция, детали и их работа
В настоящее время производительность двигателей увеличилась, в частности, за счет улучшения материалов, используемых в двигателях. Кроме того, повышение производительности обеспечивается с помощью методов оптимизации статора и ротора.Статор является неотъемлемой частью электрических машин, которые можно найти в электродвигателях, генераторах, биологических роторах, грязевых двигателях и сиренах. Поток энергии через статор будет исходить от вращающейся части системы. В двигателе статор создает вращающееся магнитное поле для вращения якоря, тогда как в генераторе он преобразует вращающееся магнитное поле в электрический ток. В устройствах с жидкостным приводом статор направляет поток жидкости от вращающегося элемента системы.
Что такое статор?
Определение: Статор — неподвижная часть электродвигателя, которая включает в себя несколько обмоток.После того, как к нему будет приложен переменный ток, его полярность будет постоянно меняться. Когда питание подается на статор, переменный ток течет через обмотки статора, создавая электромагнитное поле на стержнях ротора. Переменный ток (AC) заставляет магнитное поле вращаться. Сюда входят тонкие и многослойные листы, намотанные изолированным проводом. Сердечник статора включает несколько таких пластин.
статор в двигателе
Корпус статора двигателя выполнен из алюминия мощностью до 22 кВт, тогда как двигатели с высокой мощностью содержат чугунные корпуса статора.Статоры с разными полюсами обычно используются в сочетании с насосом для определения силы и расхода через скорость. Статор в основном предназначен для работы с различными частотами, напряжениями, выходными сигналами, а также с нестабильным током. полюсов.
Конструкция статора
Конструкция статора может быть выполнена из пластин из высокопрочной легированной стали, что снижает потери на вихревые токи. Важнейшими частями статора являются внешняя рама, сердечник и обмотка.Схема статора показана ниже.
конструкция статора
1) Наружная рама
Это внешняя часть двигателя. Основная функция этой рамы — обеспечивать опору как для сердечника, так и для внутренних частей машины. Для небольших двигателей внешняя часть отлита, а для огромной машины. Ниже показана конструкция статора.
2). Сердечник статора
Проектирование может быть выполнено с помощью штамповки из кремнистой стали в высоком положении.Основная функция этого сердечника — удерживать нерегулярное магнитное поле, которое генерирует потери, такие как вихревой ток и гистерезис.
Штамповки соединены с рамой статора, где каждая штамповка изолирована небольшим слоем лака. Обычно толщина штамповки изменяется от 0,3 мм до 0,5 мм. Прорези соединяются внутри штамповок.
3). Обмотки статора
Сердечник статора содержит 3-фазные обмотки, которые получают питание от 3-фазной системы питания.Обмотки статора включают шесть клемм, по две каждой фазы подключены к клеммной коробке машины.
обмотки статора
Статор в двигателе повреждается на определенное количество полюсов в зависимости от скорости двигателя. Если нет. полюсов больше, то скорость двигателя будет уменьшена. Точно так же, если нет. полюсов меньше, тогда скорость двигателя будет увеличиваться.
Соотношение между скоростью и двигателем можно представить следующим образом.
Ns ∝ 1 / p (или) Ns = 120f / p
Соединение обмоток в двигателе может осуществляться по схеме «пуск и треугольник».
Принцип работы
В двигателях статор является неподвижной частью, и его основная функция заключается в создании вращающегося магнитного поля за счет трехфазного питания. Если статор находится в состоянии покоя, то электромагнитная энергия будет индуцироваться из-за явления электромагнитной индукции.
Статор в двигателях
Статор в основном работает на основе конфигурации вращающегося электродвижущего устройства, такого как полевой магнит или якорь.Полевой магнит используется для связи с якорем для создания движения, в то время как якорь получает свое влияние от движущихся катушек возбуждения на роторе.
В первых двигателях постоянного тока и генераторах постоянного тока катушки возбуждения размещены на статоре. Это важно из-за постоянно перемещающегося переключателя мощности, а именно коммутатора, и необходимо поддерживать правильное выравнивание поля на роторном роторе. Когда ток увеличивается, коммутатор становится больше и сильнее.
Статор двигателя может быть электромагнитом, иначе — постоянным магнитом.Поскольку статор представляет собой электромагнит, катушка усиливается, что называется обмоткой возбуждения и катушкой возбуждения.
Катушка в двигателе может быть с алюминиевым или железным сердечником. Но производители всегда используют медную проволоку в обмотках как проводящий материал. Алюминий имеет меньшую электропроводность, поэтому его можно использовать в качестве альтернативного материала с частичной мощностью (двигатели в лошадиных силах), особенно в течение очень коротких периодов времени.
Статор турбины
Статор турбины включает отверстия или лопасти, используемые для перенаправления потока жидкости.В состав такого рода устройств входит паровая турбина, а также преобразователь крутящего момента.