Site Loader

Содержание

Информационные сигналы. Аналоговые сигналы. Дискретные сигналы — Мегаобучалка

Сигнал информационный — физический процесс, имеющий для человека или технического устройства информационноезначение. Он может быть непрерывным (аналоговым) или дискретным

Термин “ «сигнал» очень часто отождествляют с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны и не существуют одно без другого, но относятся к разным категориям.

Сигнал— это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды, а целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко — полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Передается информация в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др

Сигнал является материальным носителем информации, которая передается от источника к потребителю. Он может быть дискретным и непрерывным (аналоговым)

Аналоговый сигнал— сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом . Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые).

Примеры непрерывных пространств и соответствующих физических величин: (прямая: электрическое напряжение; окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала; отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал , ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал .)

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов .



Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте «количество информации» будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал , неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение:

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал , снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона — о быстрых изменениях давления в звуковой волне, и т.п.

 

Дискретный сигналслагается из счетного множества (т.е. такого множества, элементы которого можно пересчитать) элементов (говорят – информационных элементов). Например, дискретным является сигнал “кирпич”. Он состоит из следующих двух элементов (это синтаксическая характеристика данного сигнала): красного круга и белого прямоугольника внутри круга, расположенного горизонтально по центру. Именно в виде дискретного сигнала представлена та информация, которую сейчас осваивает читатель. Можно выделить следующие ее элементы: разделы (например, “Информация”), подразделы (например, “Свойства”), абзацы, предложения, отдельные фразы, слова и отдельные знаки (буквы, цифры, знаки препинания и т.д.). Этот пример показывает, что в зависимости от прагматики сигнала можно выделять разные информационные элементы. В самом деле, для лица, изучающего информатику по данному тексту, важны более крупные информационные элементы, такие как разделы, подразделы, отдельные абзацы. Они позволяют ему легче ориентироваться в структуре материала, лучше его усваивать и готовиться к экзамену. Для того, кто готовил данный методический материал, помимо указанных информационных элементов, важны также и более мелкие, например, отдельные предложения, с помощью которых излагается та или иная мысль и которые реализуют тот или иной способ доступности материала. Набор самых “мелких” элементов дискретного сигнала называется алфавитом, а сам дискретный сигнал называют также

сообщением.

Дискретизация – это преобразование непрерывного сигнала в дискретный (цифровой).

Разница между дискретным и непрерывным представлением информации хорошо видна на примере часов. В электронных часах с цифровым циферблатом информация представляется дискретно – цифрами, каждая из которых четко отличается друг от друга. В механических часах со стрелочным циферблатом информация представляется непрерывно – положениями двух стрелок, причем два разных положения стрелки не всегда четко отличимы (особенно если на циферблате нет минутных делений).

 

 

Непрерывный сигнал– отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука. В виде непрерывного сигнала представлена настоящая информация для тех студентов – потребителей, которые посещают лекции по информатике и через звуковые волны (иначе говоря, голос лектора), носящие непрерывный характер, воспринимают материал.

 

Как мы увидим в дальнейшем, дискретный сигнал лучше поддается преобразованиям, поэтому имеет преимущества перед непрерывным. В то же время, в технических системах и в реальных процессах преобладает непрерывный сигнал. Это вынуждает разрабатывать способы преобразования непрерывного сигнала в дискретный.\

Для преобразования непрерывного сигнала в дискретный используется процедура, которая называется

квантованием.

 

Цифровой сигнал — сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал , поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым . Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный ) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

Дискретным называют сигнал — прерывный информационный сигнал

Сигнал — это любая переменная содержащая какой-либо вид информации. Причем эту информацию можно передавать на расстояние, переносить на устройства хранения, выводить на экран и через динамики или совершать с ней подобные действия. Существующие аналоговый и цифровой кардинально отличаются природой происхождения, способом передачи и хранения.

Аналоговый сигнал

Это природный тип сигналов окружает нас повсеместно и постоянно. Звук, изображение, тактильные ощущения, запах, вкус и команды мозга. Все возникающие, во Вселенной без участия человека, сигналы являются аналоговыми.

В электронике, электротехнике и системах связи аналоговую передачу данных применяют со времени изобретения электричества. Характерной особенностью является непрерывность и плавность изменения параметров. Графически сеанс аналоговой связи можно описать как непрерывную кривую, соответствующую величине электрического напряжения в определённый момент времени. Линия изменяется плавно, разрывы возникают только при обрыве связи. В природе и электронике аналоговые данные генерируются и распространяются непрерывно. Отсутствие непрерывного сигнала означает тишину или черный экран.

В непрерывных системах связи аналогом звука, изображения и любых других данных является электрические или электромагнитные импульсы. Например, громкость и тембр голоса передаются от микрофона на динамик посредством электрического сигнала. Громкость зависит от величины, а тембр от частоты напряжения. Поэтому при голосовой связи сначала напряжение становится аналогом звука, а потом звук аналогом напряжения. Таким же образом происходит передача любых данных в аналоговых системах связи.

Что такое дискретный сигнал

В цифровой системе хранения и передачи данных, отсутствие сигнала, также является формой обмена информацией. В какой-то момент времени он равен нулю, в другой принимает какое-либо значение. Поэтому дискретным называют сигнал прерывный, отсюда и название discretus или разделённыйАналоговые данные разбиваются на отдельные блоки, обрабатываются и передаются в виде цифрового кода.

Аналоговый и цифровой сигнал

Аналоговый и цифровой сигнал

Дискретность не подразумевает разрыв связи. В цифровых системах широко используется двоичная система обработки и обмена информацией. Двоичная подразумевает кодировку данных с помощью единицы и нулей. В доли секунды сигнал прерывисто принимает значение 1 или 0. Вместо непрерывной кривой имеем отдельные дискретные значения. Определенный набор нулей и единичек уже несёт в себе какую либо информацию. Примитивный набор это бит или двоичный разряд. Сам по себе он ничего не значит. Данные могут кодироваться только при объединении восьми битов в следующую по сложности комбинацию – байт. Чем больше объединённых байтов, тем больше и точнее можно описать передаваемую информацию.

На качество генерируемых данных влияет не только количество объединённых битов, но и скорость передачи. Непрерывная аналоговая кривая должна быть разбита на как много больше мини участков прерывного сигнала. Полученный таким образом звук и цвет будут соответствовать оригиналу. Качественный дискретный сигнал формирует точную копию аналогового. Например, звуковая дорожка MP3 закодированная со скоростью 320 000 бит в секунду (320 kbps) значительно лучше кодированной в 128 kbps. Дорожки скоростью меньше 128 слушать вообще невозможно.

Чем отличается непрерывный сигнал от дискретного

На первый взгляд отличия в сигналах можно не различить. Оба передаются в виде электрических импульсов по проводам или электромагнитными волнами в эфире. Преобразовываются в звук и изображение, выводятся на динамики и экран. Но разница существенна. Отличие аналогового сигнала от цифрового обусловлено особенностями обработки и передачи данных.

Аналоговые данные не кодируются и не шифруются, просто отображаются в электрические или электромагнитные импульсы. Приёмник преобразовывает импульсы в полном соответствии с полученным сигналом. Передаваемый и принимаемый импульс многогранен и характеризуются постоянным плавным изменением с течением времени. Величина и частота определяют параметры информации. Примером может быть соответствие определённого цвета экрана заданному напряжению. С течением времени цвета плавно меняются следуя изменению напряжения.

Казалось бы, природное происхождение, простота генерации, передачи и приёма благоприятствуют использованию аналогового сигнала. Но в дело вмешиваются электрические и электромагнитные помехи. Это могут быть электромагнитные наводки от электрических сетей, работающих механизмов, рельеф местности, грозы, бури на солнце, шумы создаваемые работой передающего и принимающего оборудования, прочие. Они изменяют плавную кривую. На приёмник информация поступает с изменениями. Шипение, хрипы и искаженное изображение обычная история для аналоговой связи.

Цифровая технология использует совсем иной принцип передачи. Аналоговые данные сначала кодируются и только потом передаются. Кодировка заключается в описании непрерывной кривой аналоговой информации. В каждый конкретный момент времени, передаваемый импульс имеет значение единицы или нуля, и определенная последовательность битов отображает всю полноту оригинальной картинки или звука.

Дискретный сигнал как азбука Морзе, только вместо точек и тире — чёткие биты. Ничего более, шумы и помехи им не мешают. Цифровой информации главное дойти до цели. Цифры без примесей передадут данные и без изменений перевоплотятся в звук и цвет. Но слабый сигнал может не донести полную картину. Как пример — пропадание слов или изображения полностью. Поэтому сотовые передатчики, устанавливают как можно ближе друг от друга, также используют повторители.

Примером непрерывных и дискретных сигналов могут служить старая проводная и новая сотовая связь. Через старые АТС иногда невозможно было разговаривать с соседним домом. Шумы и плохое усиление сигнала мешали слышать друг друга. Что бы вести полноценную беседу, приходилось громко кричать самому и прислушиваться к собеседнику. Другое дело сотовая связь основанная на цифровой технологии. Звук закодирован и хорошо передаётся на далёкие расстояния. Отчетливо слышно собеседника даже с другого континента.

Оба вида связи не лишены недостатков, а ключевыми отличиями являются:

  1. Аналоговый подвержен помехам и поступает с искажениями. В то время как цифровой доходит полностью без искажений или отсутствует вовсе.
  2. Принять или перехватить аналоговое вещание может любой приёмник такого принципа. Дискретная передача адресована конкретному адресату, кодируется и мало доступна к перехвату.
  3. Объём передаваемых данных у аналоговой связи конечен, поэтому она практически исчерпала себя в передаче теле сигнала. Напротив с развитием технологии преобразования аналоговой информации в цифровой код растут объемы и качество трансляции. Например, главным отличием цифрового от аналогового телевидения является превосходное качество изображения.

Цифровая технология выигрывает по всем показателям. Споры идут только среди любителей музыки. Многие меломаны и звукорежиссеры утверждают, что могут различить аналоговый оригинал и цифровую копию. Однако большинство слушателей этого сделать не в состоянии. Да и с развитием цифровых систем аналоговые данные кодируются точнее. Оригинальное звучание и цифровая копия делаются практически неразличимым.

Как аналоговый сигнал преобразуется в цифровой и наоборот

Первой в цифровую форму преобразовали математическую, физическую и компьютерную информацию. Описать формулы и расчеты не составило труда. А вот для преображения аналоговой действительности в цифровые массивы уже потребовались специальные устройства. Ими стали аналого-цифровые преобразователи или сокращенно АЦП. Они предназначены для преобразования различных физических величин в цифровые коды. Обратное действие совершают устройства ЦАП.

Любые цифровые передатчики и приёмники оснащены такими преобразователями. Например, сотовому телефону, поступивший звук необходимо обработать и передать в оцифрованном виде. В то же время необходимо принять от другого абонента код, преобразовать и передать напряжение на динамик. Так же и с изображением на смартфонах и в телевизорах. В любом случае первоначальной информацией выступает напряжение.

АЦП и ЦАП

АЦП и ЦАП

Существует много видов АЦП, но самыми распространёнными являются следующие:

  • параллельного преобразования;
  • последовательного приближения;
  • дельта-сигма, с балансировкой заряда.

Преобразования в АЦП понятийно связаны с измерением и сравнением. Кодировка, это процесс сравнения полученных от источника данных с эталоном. То есть полученная аналоговая величина сравнивается с эталонной (с заданным напряжением). Эталоном выступает информация о конкретном цвете, звуке и т.п. Она соответствует заложенным в устройство представлениям о преобразуемом сигнале. Потом данные эталонной величины кодируются для передачи. Во время аналого-цифровой обработки физических превращений сигнала не происходит. С аналогового делается цифровой матрица (модель).

Упрощенно работу любого АЦП можно представить так:

  1. Измерение через определенные интервалы времени амплитуды напряжения.
  2. Сравнение с эталоном и формирование данных.
  3. Отгрузка оцифрованных сведений об изменениях амплитуды на передатчик.

Качество передаваемой информации зависит от двух параметров — точности и частоты измерений. Чем точнее измеряется и зашифровывается входящее напряжение, тем качественней передаваемая информация. Поэтому, имеет большое значение, сколько бит может зашифровать преобразователь. Чем плотнее информационный поток, тем точней передача данных. Это выражается в красках экрана, контрастности картинки и чистоте звука. Следующим важным показателем является дискретизация, то есть частота измерений. Чем чаще, тем меньше провалов в измерениях и необходимости сглаживания. В совокупности, чем чаще и точнее преобразователь может измерять и обрабатывать полученное напряжение, тем он лучше.

Как выглядят спектры аналогового и дискретного сигнала

Изображение сигналов можно представить как две функции. На рисунке наглядно представлено, чем отличается непрерывный сигнал от дискретного. Напряжение исходного изменяется плавно, обработанного прерывисто. Спектр дискретного периодически ступенчато совпадает с непрерывным.

Отличия аналогового сигнала от цифры

Отличия аналогового сигнала от цифры

Изменения дискретного происходят резко, через определённый период времени. Уровень в цифровой системе зашифровывается и любую величину напряжения описывают двоичным кодом. От частоты измерений зависит сглаженность преобразования и оригинальность передаваемых данных. Чем точнее описан уровень сигнала и чем чаще проводится и обрабатывается измерение, тем точнее совпадает спектр начального и переданного сигналов.

Спектр аналогового и цифрового сигнала

Спектр аналогового и цифрового сигнала

Какие системы связи используют цифровой сигнал а какие аналоговый

Несмотря на архаичность аналоговая технология ещё используется для телефонной и радио связи. Многие проводные сети до сих пор остаются аналоговыми. В основном это традиционные телефонные линии местных операторов. Но, для магистральной передачи данных связи уже повсеместно используют цифровые каналы. Так же аналоговая технология применяется в простых и дешёвых переносных радиостанциях.

Во всех вновь создаваемых системах используют цифровую технологию обработки сигнала. Это оптоволоконные и проводные линии, сигнализация и телеметрия, военная и гражданская промышленная связь. И конечно же на цифровое вещание переходит телевидение. Аналоговый способ передачи данных исчерпал себя. На смену пришла новая высококачественная и защищенная связь.

Список книг помогающих разобраться в аналоговых и цифровых сигналах

Более подробно изучить и сравнить принципы обработки и передачи данных можно прочитав следующую литературу:

  • Сато Ю. Обработка сигналов. Первое знакомство. / Пер. с яп.; под ред. Ёсифуми Амэмия. — М: Изд-кий дом «Додэка-XXI», 2002. Книга даёт основы знаний о способах ЦОС. Адресована радиолюбителям, студентам и школьникам, только начинающим изучение систем передачи данных.
  • Введение в цифровую фильтрацию /под ред. Р. Богнера и А. Константинидиса; перевод с англ. — М: Изд-во «Мир», 1977. В этой книге популярно и доступно изложена информация о различных системах обработки данных. Сравниваются аналоговая и цифровая системы, описаны плюсы и минусы.
  • Основы цифровой обработки сигналов: Курс лекций /Авторы: А.И. Солонина, Д.А. Улахович, С.М. Арбузов, Е.Б. Соловьев, И.И. Гук. — СПб: Изд-во «БХВ-Петербург», 2005. Книга написана по курсу лекций для студентов ГУТ им. Бонч-Бруевича. Изложены теоретические основы обработки данных, описаны дискретные и цифровые системы разных способов преобразования. Предназначена для изучения в вузах и повышения квалификации специалистов.
  • Сергиенко А.Б. Цифровая обработка сигналов (второе издание) — СПб: Изд-во «Питер», 2006. Электронный учебно-методический комплекс по дисциплине «Цифровая обработка сигналов». Представлены курс лекций, лабораторный практикум и методические рекомендации по самостоятельной работе. Предназначена для преподавателей и самостоятельного изучения для студентов уровня подготовки бакалавр.
  • Лайонс Р. Цифровая обработка сигналов. 2-е изд. Пер. с англ. – М.: ООО «Бином-Пресс», 2006. Книга представляет подробную информацию о ЦОС. Написана понятным языком и снабжена большим количеством иллюстрации. Одна из самых простых и понятных книг на русском языке.

Старая добрая аналоговая связь быстро сдаёт позиции. Несмотря на модернизацию и улучшения, возможность обмена данными достигла предела. К тому же, остались старые болезни – искажения и шумы. В то же время цифровая связь лишена этих недостатков, и передаёт большие объёмы информации быстро, качественно, без ошибок.

Урок 24. информация и электрические сигналы — Естествознание — 11 класс

Естествознание, 11 класс

Урок 24. Информация и электрические сигналы

Перечень вопросов, рассматриваемых в теме:

  • Почему в современных устройствах информация преобразуется в электрические сигналы?
  • Что такое аналоговые и цифровые сигналы и в чём у них отличие?
  • Как преобразуется информация?

Глоссарий по теме:

Данные — удобная форма представления информации – сигналы, зарегистрированные на материальные носители.

Информация – полезное содержание данных – это вся совокупность сведений об окружающем нас мире, о всевозможных протекающих в нем процессах, которые могут быть восприняты живыми организмами, электронными машинами и другими информационными системами.

Сигнал – изменяющийся во времени физический процесс.

Информационные технологии – все, что связано с обработкой, передачей, хранением, воспроизводством информации.

Аналоговый сигнал – сигнал аналогичный изменению физической величины во времени.

Датчик – устройство, преобразовывающее изменение физических процессов в сигнал.

Цифровые сигналы – последовательность электрических импульсов, содержащих закодированную информацию

Усилитель – устройство, усиливающее сигнал.

Аналогоцифровые преобразователи – приборы, осуществляющие перевод сигнала из аналогового в цифровой.

Цифро-аналоговые преобразователи – приборы, осуществляющие перевод сигнала из цифрового в аналоговый.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

Теоретический материал для самостоятельного изучения

Наш век называют веком информационных технологий. Под этим понятием понимают все, что связано с обработкой, передачей, хранением, воспроизводством информации.

Информация — это вся совокупность сведений об окружающем нас мире, о всевозможных протекающих в нем процессах, которые могут быть восприняты живыми организмами, электронными машинами и другими информационными системами.

Человек еще с древности научился искусственно сохранять и передавать информацию: наскальные рисунки, скрижали, книги… Но лишь во второй половине 20 века появились информационные технологии.

В наше время для обработки информации используются электрические сигналы, являющиеся посредниками между устройствами, воспринимающими, воспроизводящими и хранящими информацию. Удобства этой системы в универсальности электрического сигнала. Разобраться в его сути проще всего на примере угольного микрофона, которым до недавнего времени снабжались все телефонные аппараты.

Устройство представляет собой коробочку с угольным порошком, закрытую гибкой мембраной, к которой прикреплен диффузор. Чем больше давление звуковой волны на диффузор, тем сильнее сжимается угольный порошок. Чем больше сжимается угольный порошок, тем меньше его сопротивление. Если к коробочке с угольным порошком подсоединить источник тока и воздействовать на диффузор звуковой волной, то по цепи пойдет ток. Этот ток является электрическим сигналом, несущим информацию о звуковой волне. Такой сигнал аналогичен изменению во времени некоторой физической величины (в нашем случае давление), поэтому он называется аналоговым. Устройства, преобразовывающие изменение физических процессов в сигнал, называются датчиками. Описанный микрофон – простейший датчик давления воздуха.

Немаловажным прибором является усилитель. Он используется, например, в концертных залах для увеличения громкости звука без его искажения. Иногда сигнал тех же музыкальных инструментов искажают, получая новое звучание.

Сейчас аналоговый сигнал почти вышел из употребления. Ему на смену пришел цифровой. Переход от аналогового сигнала к цифровому осуществляют аналого-цифровые преобразователи. Для обратного перевода из цифрового в аналоговый сигнал используется цифроаналоговые преобразователи. В результате мы получаем искаженный сигнал. Этот недостаток компенсируется возможностью легкой работы с цифровым сигналом в приборах по определенной заложенной программе.

Обычно запись сигнала ведется в двоичной системе счисления. Запись в двоичной системе используется для общения азбукой Морзе. Нас интересует перевод из двоичной в десятичную и обратно.

Рассмотрим перевод из десятичной в двоичную на примере числа 53.

Для перевода достаточно разделить исходное число на 2 до получения 1 в остатке, а потом записать числа промежуточных ответов в обратном порядке. То есть число 5310=1101012.

Примеры и разбор решения заданий тренировочного модуля:

1. Решите кроссворд.

По горизонтали:

1. Система счисления, в которой запись ведется только числами 1 и 0.

2. устройство, преобразовывающее изменение физических процессов в сигнал.

По вертикали:

3. Изменяющийся во времени физический процесс.

Правильные ответы:

2. Ответьте на вопросы:

  1. Какому числу в десятичной системе счисления соответствует число 111011110в двоичной?
  2. В каком веке появилось понятие информационные технологии?
  3. Сколько букв в русской азбуке Морзе?

Правильные варианты:

1. 478

2. 20

3. 33

3. Вставьте слова в предложение:

Микрофон представляет собой коробочку с _____________ порошком, закрытую гибкой _____________, к которой прикреплен диффузор.

Варианты ответа: вольфрамовый, металлический, угольный, мембраной, крышкой.

Правильный вариант/варианты: угольный, мембраной.

Квантование (обработка сигналов) — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 июня 2016; проверки требуют 45 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 июня 2016; проверки требуют 45 правок. У этого термина существуют и другие значения, см. Квантование. Квантованный сигнал Неквантованный сигнал с дискретным временем

Квантова́ние (англ. quantization) — в обработке сигналов — разбиение диапазона отсчётных значений сигнала на конечное число уровней и округление этих значений до одного из двух ближайших к ним уровней[1]. При этом значение сигнала может округляться либо до ближайшего уровня, либо до меньшего или большего из ближайших уровней в зависимости от способа кодирования[2]. Такое квантование называется скалярным. Существует также векторное квантование — разбиение пространства возможных значений векторной величины на конечное число областей и замена этих значений идентификатором одной из этих областей[3].

Не следует путать квантование с дискретизацией (и, соответственно, шаг квантования с частотой дискретизации). При дискретизации изменяющаяся во времени величина (сигнал) замеряется с заданной частотой (частотой дискретизации), таким образом, дискретизация разбивает сигнал по временной составляющей (на графике — по горизонтали). Квантование же приводит сигнал к заданным значениям, то есть округляет сигнал до ближайших к нему уровней (на графике — по вертикали). В АЦП округление может производиться до ближайшего меньшего уровня. Сигнал, к которому применены дискретизация и квантование, называется цифровым.

Квантование часто используется при обработке сигналов, в том числе при сжатии звука и изображений.

При оцифровке сигнала количество битов, кодирующих один уровень квантования, называют глубиной квантования или разрядностью. Чем больше глубина квантования и чем больше частота дискретизации, тем точнее цифровой сигнал соответствует аналоговому. В случае равномерного квантования глубина квантования определяет динамический диапазон, измеряемый в децибелах (1 бит на 6 дБ)[4].

Равномерное (однородное) квантование — разбиение диапазона значений отсчётов сигнала y{\displaystyle y} на отрезки равной длины и замена этих значений на ближайший уровень квантования yq{\displaystyle y_{q}}. В этом случае возможны два варианта квантования[5]:

1. Если значения сигнала находятся в интервале [0,h]{\displaystyle [0,h]}, где h{\displaystyle h} — шаг квантования, то они округляются до уровня h/2{\displaystyle h/2} (midrise — характеристика квантования с нулём на границе шага квантования):

yq=(⌊yh⌋+0.5)⋅h{\displaystyle y_{q}=\left(\left\lfloor {y \over h}\right\rfloor +0.5\right)\cdot h}

2. Если значения сигнала находятся в интервале [−h/2,h/2]{\displaystyle [-h/2,h/2]}, то они округляются до нулевого уровня (midtread — характеристика квантования с нулём в центре шага квантования):

yq=⌊yh+0.5⌋⋅h{\displaystyle y_{q}=\left\lfloor {y \over h}+0.5\right\rfloor \cdot h},

где ⌊.⌋{\displaystyle \left\lfloor {.}\right\rfloor } — округление до ближайшего меньшего целого.

После дискретизации и квантования получается цифровой сигнал. Затем уровень квантования yq{\displaystyle y_{q}} заменяется набором чисел. Для квантования в двоичном коде диапазон изменения сигнала от минимального значения ymin{\displaystyle y_{\min }} до максимального значения ymax{\displaystyle y_{\max }} делится на 2n{\displaystyle 2^{n}} уровней квантования, где n{\displaystyle n} — разрядность квантования. Величина получившегося интервала между уровнями (шаг квантования):

h=ymax−ymin2n.{\displaystyle h={\frac {y_{\max }-y_{\min }}{2^{n}}}.}

Каждому уровню присваивается n{\displaystyle n}-разрядный двоичный код — номер уровня, записанный двоичным числом. Каждому отсчёту сигнала присваивается код ближайшего к нему уровню. Таким образом, после дискретизации и квантования аналоговый сигнал представляется последовательностью двоичных чисел, соответствующих значениям сигнала в определённые моменты времени, то есть двоичным сигналом. При этом каждое двоичное число представляется последовательностью импульсов высокого (1) и низкого (0) уровня. Разрядность квантования звука обычно выбирается равной от 8 до 32 битов (сравнение цифровых аудиоформатов), но обычно 16 или 24 бита[6].

Неравномерное квантование — квантование, при котором разбиение диапазона значений сигнала производится на отрезки неравной длины. Применяется с целью повышения точности квантования в случае, когда распределение значений сигнала неравномерное, например при квантовании звука. При этом уровни квантования должны располагаться чаще в тех областях, где значения сигнала более вероятны. При квантовании речевых сигналов чаще используется компрессор, увеличивающий малые значения сигнала и уменьшающий большие значения, и последующее равномерное квантование.

Информативный сигнал — это… Что такое Информативный сигнал?


Информативный сигнал

«…Информативный сигнал — электрические сигналы, акустические, электромагнитные и другие физические поля, по параметрам которых может быть раскрыта конфиденциальная информация (персональные данные), обрабатываемая в информационной системе персональных данных…»

Источник:

«Базовая модель угроз безопасности персональных данных при их обработке в информационных системах персональных данных» (Выписка) (утв. ФСТЭК РФ 15.02.2008)

Официальная терминология. Академик.ру. 2012.

  • Информативный предварительный элемент
  • Информатизация

Смотреть что такое «Информативный сигнал» в других словарях:

  • информативный сигнал — информативный сигнал: Сигнал, по параметрам которого может быть определена защищаемая информация. [Р 50.1.053 2005, пункт 3.2.6] Источник: ГОСТ Р 53114 2008: Защита информации. Обеспечение информационной …   Словарь-справочник терминов нормативно-технической документации

  • информативный сигнал — Физический сигнал или химическая среда, содержащие информацию с ограниченным доступом. [Домарев В.В. Безопасность информационных технологий. Системный подход.] Тематики защита информации EN informative signal …   Справочник технического переводчика

  • информативный параметр сигнала — Параметр несущего воздействия сигнала, количественно отображающий передаваемую информацию. Примечание Аналогично терминам 46—78 могут быть построены термины и определения для сигналов с заменой слов главный признак (параметр) на… …   Справочник технического переводчика

  • дискретный сигнал — Cигнал, информативный параметр которого может изменяться только прерывисто и иметь только конечное число значений в заданном диапазоне в течение определенного интервала времени. [Источник] EN discretely timed signal discrete signal a signal… …   Справочник технического переводчика

  • температурный сигнал — ∆T (x, y, τ)=Т (х, у, τ) Тref(x, у, τ) амплитудный информативный параметр; Tref(x, у, τ) эталонная температура. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения… …   Справочник технического переводчика

  • дискретный сигнал — Cигнал, информативный параметр которого может изменяться только прерывисто и иметь только конечное число значений в заданном диапазоне в течение определенного интервала времени. [Источник] EN discretely timed signal discrete signal a signal… …   Справочник технического переводчика

  • ГОСТ Р 53114-2008: Защита информации. Обеспечение информационной безопасности в организации. Основные термины и определения — Терминология ГОСТ Р 53114 2008: Защита информации. Обеспечение информационной безопасности в организации. Основные термины и определения оригинал документа: 3.1.19 автоматизированная система в защищенном исполнении ; АС в защищенном исполнении:… …   Словарь-справочник терминов нормативно-технической документации

  • Р 50.1.053-2005: Информационные технологии. Основные термины и определения в области технической защиты информации — Терминология Р 50.1.053 2005: Информационные технологии. Основные термины и определения в области технической защиты информации: 3.2.18 (компьютерный) вирус: Вредоносная программа, способная создавать вредоносные программы и (или) свои копии.… …   Словарь-справочник терминов нормативно-технической документации

  • Базовая модель угроз безопасности персональных данных при их обработке, в информационных системах персональных данных (выписка) — Терминология Базовая модель угроз безопасности персональных данных при их обработке, в информационных системах персональных данных (выписка): Автоматизированная система система, состоящая из персонала и комплекса средств автоматизации его… …   Словарь-справочник терминов нормативно-технической документации

  • СПЕКТРАЛЬНЫЕ ПРИБОРЫ — приборы для исследования в оптич. диапазоне (10 3 103 мкм; (см. СПЕКТРЫ ОПТИЧЕСКИЕ)) спектр. состава эл. магн. излучений по длинам волн, нахождения спектр. хар к излучателей и объектов, взаимодействовавших с излучением, а также для спектрального… …   Физическая энциклопедия

Цифровой сигнал — это… Что такое Цифровой сигнал?

Цифровой сигнал — сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.[1]

Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала. Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания — это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы (baseband) передают данные в виде цифрового сигнала одной частоты.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

Важным свойством цифрового сигнала, определившего его доминирование в современных системах связи, является его способность к полной регенерации вплоть до некоторого порогового отношения сигнал/шум, в то время как аналоговый сигнал удаётся лишь усилить вместе с наложившимися на него шумами. Здесь же кроется и недостаток цифрового сигнала: если цифровой сигнал утопает в шумах, восстановить его невозможно (эффект крутой скалы (англ.)), в то время как человек (не машина) может усвоить информацию из сильно зашумлённого сигнала на аналоговом радиоприёмнике, хотя и с трудом. Если сравнивать сотовую связь аналогового формата (AMPS, NMT) с цифровой связью (GSM, CDMA), то при помехах на цифровой линии из разговора выпадают порой целые слова, а на аналоговой можно вести разговор, хотя и с помехами. Выход из данной ситуации — почаще регенерировать цифровой сигнал, вставляя регенераторы в разрыв линии связи, или уменьшать длину линии связи (например, уменьшать расстояние от сотового телефона до базовой станции (БС), что достигается более частым расположением БС на местности).

Ссылки

См. также

Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 мая 2011.

Информационные сигналы (1-сигналы) — это… Что такое Информационные сигналы (1-сигналы)?


Информационные сигналы (1-сигналы)

15. Информационные сигналы (1-сигналы)

Электрические сигналы, несущие информацию о величине или состоянии исследуемого объекта или процесса

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • информационные ресурсы сети электросвязи
  • информационные средства

Смотреть что такое «Информационные сигналы (1-сигналы)» в других словарях:

  • информационные сигналы в электрической сети — Сигналы, создаваемые в электрической сети поставщиком или потребителем электрической энергии, а также другими субъектами хозяйственной деятельности, как правило, на негармонических частотах, для передачи данных, команд управления, оповещения и… …   Справочник технического переводчика

  • сигналы набора номера — импульсы набора номера — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы импульсы набора номера EN numerical signals …   Справочник технического переводчика

  • сигналы процесса вызова в СДОП — — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN X.96 …   Справочник технического переводчика

  • сигналы с одинаковыми средними скоростями передачи — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN mesochronous signals …   Справочник технического переводчика

  • сигналы управления установлением вызова соединения — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN call setup signals …   Справочник технического переводчика

  • сигналы, передаваемые по обоим проводам абонентского шлейфа — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN leg signals …   Справочник технического переводчика

  • информационные надписи — 3.4 информационные надписи: Надписи, содержащие текстовую информацию о ведомственной принадлежности и/или функциональном назначении транспортного средства. Источник …   Словарь-справочник терминов нормативно-технической документации

  • СТ СЭВ 1610-79: Приборы электронные измерительные. Интерфейс НИС-1. Логические и электрические условия, информационные, управляющие и программные сигналы — Терминология СТ СЭВ 1610 79: Приборы электронные измерительные. Интерфейс НИС 1. Логические и электрические условия, информационные, управляющие и программные сигналы: 12. Аналоговый сигнал Сигнал, связанный с информацией о представляемой… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р ИСО/МЭК 19762-4-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 4. Общие термины в области радиосвязи — Терминология ГОСТ Р ИСО/МЭК 19762 4 2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 4. Общие термины в области радиосвязи оригинал документа: ALOHA [ALOHA slotted]:… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р ИСО/МЭК 19762-1-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 1. Общие термины в области АИСД — Терминология ГОСТ Р ИСО/МЭК 19762 1 2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 1. Общие термины в области АИСД оригинал документа: Accredited Standards… …   Словарь-справочник терминов нормативно-технической документации

Книги

  • Основы мультимедийных технологий, Катунин Геннадий Павлович. Мультимеди a-технологии являются одним из наиболее перспективных и популярных направлений информатики. Они имеют целью создание продукта, содержащего коллекции изображений, текстов и данных,… Подробнее  Купить за 4970 руб
  • Введение в теоретическую информатику. Часть 2, Василий Губарев. В пособии с единых методических позиций рассматриваются системные аспекты модельного представления объектов различной природы, излагаются основные элементарныесведения теоретической… Подробнее  Купить за 360 руб электронная книга
  • Люди и биты. Люди и биты. Информационный взрыв. Что он несет, Н. Т. Петрович. Современный человек живет в условиях стремительно нарастающего потока информации. Это и радио, и телевидение, это миллионы книг, газет, журналов, горы научной, технической и всякой другой… Подробнее  Купить за 100 руб
Другие книги по запросу «Информационные сигналы (1-сигналы)» >>

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *