Site Loader

Сила магнитная. Сила, действующая на проводник в магнитном поле. Как определить силу магнитного поля

Один из самых важных разделов современной физики — это электромагнитные взаимодействия и все связанные с ними определения. Именно этим взаимодействием объясняются все электрические явления. Теория электричества охватывает многие другие разделы, включая и оптику, поскольку свет представляет собой электромагнитное излучение. В этой статье мы попытаемся объяснить суть электрического тока и силы магнитной на доступном, понятном языке.

Магнитизм — основа основ

В детстве взрослые показывали нам различные фокусы с использованием магнитов. Эти удивительные фигурки, которые притягиваются к друг другу и могут притягивать к себе мелкие игрушки, всегда радовали детский глаз. Что же такое магниты и каким образом магнитная сила действует на железные детали?

Объясняя научным языком, придется обратиться к одному из основных законов физики. Согласно закону Кулона и специальной теории относительности, на заряд действует определенная сила, которая прямо пропорционально зависит от скорости самого заряда (v). Именно это взаимодействие и называется силой магнитной.

Физические особенности

Вообще следует понимать, что любые магнитные явления возникают только при движении зарядов внутри проводника или при наличии в них токов. При изучении магнитов и самого определения магнитизма следует понимать, что они тесно взаимосвязаны с явлением электрического тока. Поэтому давайте разберемся в сути электрического тока.

Электрическая сила — это та сила, которая действует между электроном и протоном. Она численно намного больше значения гравитационной силы. Она порождается электрическим зарядом, а точнее, ее движением внутри проводника. Заряды же, в свою очередь, бывают двух видов: положительные и отрицательные. Как известно, положительно заряженные частицы притягиваются к отрицательно заряженным. Однако одинаковые по знаку заряды имеют свойство отталкиваться.

Так вот, когда в проводнике начинают двигаться эти самые заряды, в нем возникает электрический ток, который объясняется как отношение количества заряда, протекающего через проводник в 1 секунду. Сила, действующая на проводник с током в магнитном поле, называется силой Ампера и находится по правилу «левой руки».

Эмпирические данные

Столкнуться с магнитным взаимодействием можно в повседневной жизни, когда имеешь дело с постоянными магнитами, катушками индуктивности, реле или электрическими моторами. У каждого из них присутствует магнитное поле, которое невидимо для глаз. Проследить за ним можно только по его действию, которое оно оказывает на движущиеся частицы и на намагниченные тела.

Сила, действующая на проводник с током в магнитном поле, была изучена и описана французским физиком Ампером. В честь него названа не только эта сила, но еще и величина силы тока. В школе законы Ампера определяются как правила «левой» и «правой» руки.

Характеристики магнитного поля

Следует понимать, что магнитное поле всегда возникает не только вокруг источников электрического тока, но и вокруг магнитов. Его обычно изображают с помощью магнитных силовых линий. Графически это выглядит, как если бы на магнит положили лист бумаги, а сверху насыпали опилок железа. Они примут точно такой же вид, как на картинке снизу.

Во многих популярных книгах по физике сила магнитная вводится как результат экспериментальных наблюдений. Она считается отдельной фундаментальной силой природы. Такое представление ошибочно, на самом деле существование магнитной силы следует из принципа относительности. Ее отсутствие привело бы к нарушению этого принципа.

В магнитной силе нет ничего фундаментального — она представляет собой просто релятивисткое следствие закона Кулона.

Применение магнитов

Если верить легенде, в первом веке нашей эры на острове Магнесия древними греками были обнаружены необычные камни, которые обладали удивительными свойствами. Они притягивали к себе любые вещи, сделанные из железа или стали. Греки стали вывозить их с острова и изучать их свойства. А когда камни попали в руки уличных фокусников, то они стали незаменимыми помощниками во всех их выступлениях. Используя силы магнитных камешков, им удавалось создавать целое фантастическое шоу, которое привлекало множество зрителей.

По мере того как камни распространялись по всем частям света, о них стали ходить легенды и различные мифы. Однажды камни оказались в Китае, где их назвали в честь острова, на котором они были найдены. Магниты стали предметом изучения всех великих ученых того времени. Было замечено, что если положить магнитный железняк на деревянный поплавок, зафиксировать, а затем повернуть его, то он попытается вернуться в исходное положение. Проще говоря, магнитная сила, действующая на него, будет поворачивать железняк определенным образом.

Используя это свойство магнитов, ученые придумали компас. На круглую форму, изготовленную из дерева или пробки, были начерчены два основных полюса и установлена маленькая магнитная стрелка. Эту конструкцию опускали в небольшую посуду, наполненную водой. С течением времени модели компаса усовершенствовались и становились более точными. Ими пользуются не только мореплаватели, но и обычные туристы, которые любят изучать пустынные и горные местности.

Интересные опыты

Ученый Ханс Эрстед практически всю свою жизнь посвятил электричеству и магнитам. Однажды во время лекции в университете он показал своим студентам следущий опыт. Через обычный медный проводник он пропустил ток, через некоторое время проводник нагрелся и начал гнуться. Это было явлением теплового свойства электрического тока. Студенты продолжили эти опыты, и один из них заметил, что электрический ток обладает еще одним интересным свойством. Когда в проводнике протекал ток, стрелка находящегося рядом компаса начинала понемногу отклоняться. Изучая это явление более подробно, ученый обнаружил так называемую силу, действующую на проводник в магнитном поле.

Токи Ампера в магнитах

Учеными были предприняты попытки найти магнитный заряд, однако изолированный магнитный полюс не удалось обнаружить. Объясняется это тем, что, в отличие от электрических, магнитных зарядов не существует. Ведь иначе можно было бы отделить единичный заряд, просто отломав один из концов магнита. Однако при этом на другом конце образуется новый противоположный полюс.

В действительности любой магнит представляет собой соленоид, по поверхности которого циркулируют внутриатомные токи, они называются токами Ампера. Получается, что магнит можно рассматривать как металлический стержень, по которому циркулирует постоянный ток. Именно по этой причине введение в соленоид железного сердечника значительно увеличивает магнитное поле.

Энергия магнита или ЭДС

Как и любое физическое явление, магнитное поле обладает энергией, которую затрачивает на перемещение заряда. Существует понятие ЭДС (электродвижущая сила), она определяется как работа по перемещению единичного заряда из точки А0 в точку А1.

Описывается ЭДС законами Фарадея, которые применяются в трех различных физических ситуациях:

  1. Проводимый контур движется в создаваемом однородном магнитном поле. В этом случае говорят о магнитной ЭДС.
  2. Контур покоится, но движется сам источник магнитного поля. Это уже явление электрического ЭДС.
  3. И, наконец, контур и источник магнитного поля неподвижны, но меняется ток, который создает магнитное поле.

Численно ЭДС по формуле Фарадея равно: ЭДС = W/q.

Следовательно, электродвижущая сила не является силой в буквальном смысле, так как она измеряется в Джоулях на Кулон или в Вольтах. Получается, что она представляет собой энергию, которая сообщается электрону проводимости при обходе цепи. Каждый раз, совершая очередной обход вращающейся рамки генератора, электрон приобретает энергию, численно равную ЭДС. Эта дополнительная энергия может не только передаваться при столкновениях атомов внешней цепи, но и выделяться в виде Джоулева тепла.

Сила Лоренца и магниты

Сила, действующая на ток в магнитном поле, определяется по следующей формуле: q*|v|*|B|*sin a (произведение заряда магнитного поля, модули скорости этой же частицы, вектора индукции поля и синуса угла между их направлениями). Силу, которая действует на движущийся единичный заряд в магнитном поле, принято называть силой Лоренца. Интересен тот факт, что для этой силы недействителен 3-й закон Ньютона. Она подчиняется лишь закону сохранения импульса, именно поэтому все задачи по нахождению силы Лоренца следует решать, исходя из него. Давайте разберемся, как можно определить силу магнитного поля.

Задачи и примеры решений

Для нахождения силы, которая возникает вокруг проводника с током, необходимо знать несколько величин: заряд, его скорость и значение индукции возникающего магнитного поля. Следующая задача поможет понять, как вычислять силу Лоренца.

Определить силу, действующую на протон, который движется со скоростью 10 мм/с в магнитном поле индукцией 0,2 Кл (угол между ними 90о, так как заряженная частица движется перпендикулярно линиям индукции). Решение сводится к нахождению заряда. Заглянув в таблицу заядов, мы обнаружим, что протон обладает зарядом в 1,6*10-19 Кл. Далее вычисляем силу по формуле: 1,6*10-19 * 10 * 0,2 * 1 (синус прямого угла равен 1) = 3,2*10-19 Ньютонов.

Действие магнитной силы между магнитами