Site Loader

Коллекторный и бесколлекторный двигатели

В ассортименте продукции Greenworks есть инструменты с коллекторным (щёточным) и бесколлекторным (бесщёточным) двигателями. Но везде делается акцент только на бесколлекторном электродвигателе. Почему только на нём, и для чего тогда устройства с щёточным? Расскажем в данной статье преимущества и недостатки каждого электродвигателя и ответим на эти два вопроса.

Коллекторный двигатель

Начнём с того, что двигатель — это устройство, которое преобразует какой-либо вид энергии в механический и наоборот. Эффективность данного процесса зависит от внутренней конструкции двигателя, которая в свою очередь зависит от источника тока (постоянного или переменного).

Устройство коллекторного двигателя

Якорь. Стержнем всей конструкции является якорь, он же металлический вал. Вал является движущимся элементом, от которого зависит крутящий момент. На нём также располагается ротор.

Ротор. Связан с ведущим валом. Его внешняя конструкция напоминает барабан, который вращается внутри статора. Задача ротора получать или отдавать напряжение рабочему телу.

Подшипники. Они расположены на противоположных концах якоря для его сбалансированного вращения.

Щётки. Выполнены обычно из графита. Их задача предавать напряжение через коллектор в обмотки.

Коллектор (коммутатор). Он выполнен в виде соединенных между собой медных контактов. Во время процесса вращения он принимает на себя энергию с щёток и направляет её в обмотки.

Обмотки. Расположены на роторе и статоре разных полярностей. Их функция в генерировании собственного магнитного поля под воздействием разных полярностей, за счёт чего якорь приходит в действие.

Сердечник статора. Выполнен из металлических пластин. Может иметь катушку возбуждения с полярным напряжением обмотки ротора. Или — постоянные магниты. Данная конструкция зависит от источника напряжения. Является статичным элементом всего механизма.

Плюсы:

  • Стоимость меньше, чем у бесколлекторных двигателей (БД).
  • Конструкция относительно проще конструкции БД.
  • В виду этого, техническое обслуживание проще.

Минусы:

На высоких оборотах увеличивается трение щёток. Отсюда вытекает:

  • Быстрый износ щёток.
  • Снижение мощности инструмента.
  • Появление искр.
  • Задымление инструмента.
  • Выход из строя инструмента раньше его «жизненного цикла».

Если рассматривать бытовую сферу применения, то коллекторный двигатель является традиционным и бюджетным вариантом эксплуатации (и самым часто используемым).
Инструменты на данном типе двигателя преданно и верно справятся с любой повседневной задачей в пределах своих возможностей.

Так как такие инструменты по стоимости значительно дешевле инструментов на бесколлекторном двигателе, их рассматривает категория потребителей, которая придерживается мнения: «ничто не вечно». Зачем переплачивать, если любой агрегат может выйти из строя? Мы же считаем, что при надлежащих условиях эксплуатации любой инструмент может прослужить верой и правдой довольно долгий срок. Но выбор за Вами.

Бесколлекторный двигатель

Если в коллекторном двигателе всё приходит в действие за счёт механики, то в бесщёточном — чистая электроника. Также позиции некоторых элементов в конструкции меняются местами. В коллекторном двигателе обмотки находились на роторе, а постоянные магниты — на статоре. У бесколлеторного — постоянные магниты переносятся на ротор, а катушки с обмоткой располагаются на статоре. Также ротор и статор могут менять свои позиции: есть модели двигателей с внешним ротором. Здесь отсутствуют щётки и коллектор, вместо них добавлен микропроцессор (контроллер) и кулер для охлаждения системы.

Микропроцессор контролирует положение ротора, скорость вращения, равномерное распределение напряжения по катушкам обмотки.

Основные типы бесщёточного двигателя :

  • Асинхронный — это двигатель, который преобразовывает электроэнергию переменного тока в механическую. Название происходит от разной скорости вращения магнитного поля и ротора. Частота вращения ротора меньше, чем у магнитного поля, создаваемого обмотками статора (Например, двигатель DigiPro, который используется в продукции Greenworks).
  • Синхронный — это двигатель переменного тока, у которого частота вращений ротора равна частоте вращений магнитного поля.

Тип двигателя с внешним ротором

Расположение ротора и статора в бесщёточном двигателе DigiPro

Плюсы:

  • Из-за отсутствия щёток меньше трения.
  • Меньше подвержены износу.
  • Отсутствие искр и возможного возгорания.
  • Упрощенная регулировка крутящего момента в больших пределах.
  • Экономия расходуемой энергии.
  • У инструментов с реверсом одинаковая мощность в обоих направлениях вращения.
  • Быстрый запуск с больших скоростей.
  • Могут разгоняться до предельных показателей.
  • Некоторые модели при сильной нагрузке оснащены системой защиты двигателя.

Минусы:

  • Значительно дороже в цене, чем коллекторные двигатели.
  • Техническое обслуживание более узкоспециализированное.

Несомненно бесколлекторные двигатели ориентированы на профессиональные работы с приличной нагрузкой. Несмотря на высокие показатели усовершенствованного типа двигателя, его единственный недостаток бьёт по кошельку. И перед тем, как приобретать инструмент на том или ином двигателе, прежде всего надо поставить перед собой вопрос: для каких целей он нужен. Уже исходя из ответа делать свой выбор.

Сколько людей — столько и мнений. Компания Greenworks старается делать качественную продукцию на разных типах двигателя, чтобы каждый мог подобрать себе инструмент по предпочтениям, функционалу и необходимой мощности под конкретные задачи, которые у каждого клиента свои. Именно поэтому, например, в разделе «Ручной инструмент» Вы можете наблюдать один тип агрегата на коллекторном и бесколлекторном двигателях. Какой лучше? Выбор за Вами!

Вернуться к списку

Коллекторный двигатель постоянного тока | Brushmotor

Преобразование электрического тока в механическое движение (вращение) осуществляется электромеханическим преобразователем энергии — электрической машиной. Принцип работы, которой, основан на явлениях электромагнитной индукции и силы Ампера, действующей на проводник с током, движущийся в магнитном поле.

Электрические машины делятся по видам преобразования энергии:

  • Генератор — преобразует механическую энергию в электрическую и тепло;
  • Электрический двигатель — преобразует электрическую энергию в механическую работу и тепло;
  • Электромеханический преобразователь (трансформатор) — преобразуют электрическую энергию одного вида в электрическую энергию другого вида, отличающуюся по напряжению, частоте и другим параметрам;
  • Электромагнитный тормоз — механическая и электрическая энергии преобразуются в тепло.

В большинстве случаев электрическая машина состоит из двух элементов рис. 1;

  • Ротор (якорь) — вращающаяся часть, состоит из обмотки якоря и коллекторного узла;
  • Статор — неподвижная часть, состоит из источника магнитного поля. Постоянный магнит или электромагнит.

Рисунок 1. Основные узлы двигателя.

Между ротором и статором присутствует воздушный зазор, который служит их разделителем.

Электрические машины делятся на:

КоллекторныеБесколлекторные
Постоянного токаСинхронные
УниверсальныеАсинхронные

Коллекторный электродвигатель — электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Щеточно-коллекторный узел — обеспечивает электрическое соединение цепи ротора с цепями, расположенными в неподвижной части двигателя. Состоит из коллектора (набора контактов, расположенных на роторе) и щёток (скользящих контактов, расположенных вне ротора и прижатых к коллектору), рис. 2.

Рисунок 2. Коллекторно-щеточный узел

Обычно в маломощных моторах всего два полюса обмотки возбуждения (одна пара) и трехзубцовый якорь. Три зуба это минимум для запуска из любого положения, но чем больше зубцов тем более эффективно используется обмотка, меньше токи и более плавный момент, т.к сила является проекцией на угол, а активный участок обмотки проворачивается на меньший угол.

В коллекторном электродвигателе щёточно-коллекторный узел одновременно выполняет две функции:

  • является датчиком углового положения ротора (датчик угла) со скользящими контактами;
  • переключателем направления тока со скользящими контактами в обмотках ротора в зависимости от углового положения ротора.

Щеточно-коллекторный узел является сам ненадежным элементом электрических машин, поскольку скользящие контакты интенсивно изнашиваются от трения.

Электродвигатели характеризуют два основных параметра — это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках.

Принцип работы коллекторного двигателя постоянного тока.

Рисунок 3. Принцип работы коллекторного двигателя постоянного тока.

Прямоугольная рамка (ротор), свободно вращающаяся вокруг своей оси, помещена между постоянными магнитами. Если через рамку пропустить ток, то на обе ее стороны начнут действовать электродинамические силы. Действие этих сил, приводит рамку в движение. Рамка будет двигаться до тех пор, пока не достигнет положения, когда щетки попадут на диэлектрический зазор между пластинами коллектора. Рамка по инерции проскочит это положение, направление тока в рамке поменяется на противоположное, но силы действующие на рамку не поменяют своего направления, и она продолжит свое вращение в том-же направлении.

Разновидности коллекторных двигателей постоянного тока:

Малой мощности (единицы Ватт), рабочее напряжение 3-9 В:

  • трёхполюсной ротор на подшипниках скольжения;
  • коллекторный узел из двух щёток — медных пластин;
  • двухполюсной статор из постоянных магнитов.

Более мощные (десятки Ватт), рабочее напряжение 12–24 В:

  • многополюсный ротор на подшипниках качения;
  • коллекторный узел из двух или четырёх графитовых щёток;
  • четырёхполюсный статор из постоянных магнитов.

Высокой мощности (сотни Ватт):

  • Четырех полюсный статор из электромагнитов.

Подключение обмотки статора

Обмотки статора могут подключаться несколькими способами:

  1. Последовательно с ротором (так называемое последовательное возбуждение, см. рис. 4

    Преимущество: большой максимальный момент;

    Недостаток: большие обороты холостого хода, способные повредить двигатель.

    Рисунок 4. Последовательное соединение.

  2. Параллельно с ротором (параллельное возбуждение), см. рис. 5

    Преимущество: большая стабильность оборотов при изменении нагрузки;

    Недостаток: меньший максимальный момент.

    Рисунок 5. Параллельное соединение

  3. Часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение), см. рис. 6.

    До некоторой степени совмещает достоинства предыдущих типов.

    Рисунок 6. Смешанное возбуждение

  4. Отдельным источником питания (независимое возбуждение), см. рис. 7.

    Рисунок 7. Независимое возбуждение

Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.
К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы.

Управление коллекторными двигателями постоянного тока.

Для работы двигателя достаточно подать на него напряжения питания постоянного тока. Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя. Нужно учитывать, что при вращении на малых скоростях, крутящий момент на валу будет то же мал. Если требуются низкие скорости вращения, то применяются редуктора.

В коллекторных двигателях постоянного тока ярко выражен пусковой ток, который превышает номинальный в несколько раз (10-40 раз). Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки, (8).

Рисунок 8

Ioя — ток обмотки якоря;
U — напряжение питающей сети;
∑r — сопротивление обмоток якоря;

Как только двигатель начнет движение, то возникает противоЭДС — Епр. Обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость, формула 9.

Рисунок 9

Снижение пускового тока можно добится уменьшением напряжения питания или повышением сопротивления обмотки якоря. Для повышения сопротивления обмотки якоря применяется ввод дополнительного сопротивления Rд, формула (10).

Рисунок 10

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Епр — противоэдс, зависит от конструкции двигателя, и оборотов, формула 11.

Рисунок 11

Ce — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет.
Ф — поток возбуждения. т.е. сила магнитного поля статора. В моторах, где она задается постоянным магнитом это тоже константа, а в двигателях с обмоткой возбуждения, этот параметр можно менять.
n — обороты якоря.
Зависимость момента M от тока и потока, формула 12.

Рисунок 12

См — конструктивная константа.

Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента.

Импульсный способ управления.

Следующий метод управления, как более перспективный, основан на применении широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. К двигателю подводятся импульсы неизменного по амплитуде напряжения управления U у.ном, в результате чего его работа состоит из чередующихся периодов разгона и торможения, рис 13. Если эти периоды малы по сравнению с полным временем разгона и остановки ротора, то угловая скорость ротора не успевает к концу каждого периода достигать установившихся значений и установится некоторая средняя угловая скорость. Значение при неизменных моменте нагрузки и напряжении возбуждения однозначно определяется относительной продолжительностью импульсов ε

Рисунок 13

tи — длительность импульса;
Ти — период.

С увеличением относительной продолжительности импульсов угловая скорость ротора растет (ωср>ωср).В период паузы tп ротор обязательно должен тормозиться. Если это условие не будет выполняться, то угловая скорость ротора при любом значении ω будет непрерывно увеличиваться, пока не достигнет значения угловой скорости х.х., так как во время импульса угловая скорость будет возрастать, а во время паузы — оставаться практически неизменной.
С ростом частоты управляющих импульсов амплитуда колебаний скорости уменьшается; среднее значение угловой скорости остается при этом неизменным.

Литература
  1. Щёточно-коллекторный узел
  2. Электрическая машина
  3. Коллекторный электродвигатель
  4. Электрические машины
  5. Двигатель постоянного тока
  6. Способы управления исполнительными двигателями постоянного тока
  7. Управление коллекторными электродвигателями постоянного тока
  8. Управление двигателями постоянного тока

Что такое коммутатор? — Советы по управлению движением

Вы здесь: Главная / Двигатели / Двигатели постоянного тока / Что такое коммутатор?

By Danielle Collins Оставить комментарий

Принцип работы двигателя постоянного тока основан на взаимодействии между магнитным полем вращающегося якоря и магнитным полем неподвижного статора. Поскольку северный полюс якоря притягивается к южному полюсу статора (и наоборот), на якорь действует сила, заставляющая его вращаться. Коммутация — это процесс переключения поля в обмотках якоря для создания постоянного крутящего момента в одном направлении, а коммутатор — это устройство, соединенное с якорем, которое обеспечивает такое переключение тока.

Плечо рычага для крутящего момента, создаваемого на якоре, зависит от угла катушки (cos α). Следовательно, когда катушка перпендикулярна (вертикальна) магнитному полю статора, крутящий момент не создается. Вот почему двигатели постоянного тока имеют несколько катушек; поэтому якорный механизм будет продолжать испытывать силу, даже если одна катушка перпендикулярна магнитному полю.
Изображение предоставлено: Государственный университет Джорджии

Основная цель коммутации — обеспечить, чтобы крутящий момент, действующий на якорь, всегда был в одном направлении. Напряжение, создаваемое в якоре, носит переменный характер, а коммутатор преобразует его в постоянный ток. Проще говоря, коммутатор включает и выключает катушки, чтобы контролировать, в каком направлении указывают электромагнитные поля. С одной стороны катушки электричество всегда должно течь «от себя», а с другой стороны электричество всегда должно течь «навстречу». Это гарантирует, что крутящий момент всегда создается в одном и том же направлении. В противном случае катушка повернется на 180 градусов в одну сторону, а затем изменит направление.


Отличное визуальное представление того, как ток переключается из-за положения катушек и щеток, см. в этой статье Университета Юты.


Сам коммутатор представляет собой разъемное кольцо, обычно изготовленное из меди, причем каждый сегмент кольца прикреплен к каждому концу катушки якоря. Если якорь имеет несколько катушек, коммутатор также будет иметь несколько сегментов — по одному на каждый конец каждой катушки. Подпружиненные щетки расположены с каждой стороны коммутатора и соприкасаются с коммутатором при его вращении, снабжая сегменты коммутатора и соответствующие катушки якоря напряжением.

Изображение предоставлено: electric4u.com

Когда щетки проходят через зазоры в коммутаторе, подаваемый электрический заряд переключает сегменты коммутатора, что меняет электрическую полярность катушек якоря. Это переключение полярности в катушках поддерживает вращение якоря в одном направлении. Напряжение между щетками колеблется по амплитуде между нулем и максимальным значением, но всегда сохраняет одну и ту же полярность.

Как упоминалось ранее, коммутатор состоит из сегментов, которые изолированы друг от друга. Когда щетки переходят от одного сегмента к другому, наступает момент, когда щетки соприкасаются с обоими сегментами одновременно. Это называется нейтральной плоскостью, и в этой точке индуцированное напряжение равно нулю. В противном случае щетки замкнули бы концы катушки вместе и вызвали искрение из-за высокого напряжения.

 

Термин «щетки» был придуман на заре двигателей постоянного тока, когда они были сделаны из жил медной проволоки. Эти устройства требовали частой замены и повреждали коллекторные кольца. В современных двигателях постоянного тока обычно используются угольные щетки, которые медленнее изнашиваются и меньше повреждают коллектор.

Важно отметить, что приведенное выше обсуждение относится к традиционным коллекторным двигателям постоянного тока, которые коммутируются механически. Бесщеточные двигатели постоянного тока также требуют коммутации, но для бесщеточных конструкций коммутация осуществляется электронным способом с помощью энкодера или датчиков Холла, которые отслеживают положение ротора, чтобы определить, когда и как подавать питание на катушки.

Автор изображения: Groschopp, Inc.

Что такое коммутация? | Технические документы Tecnotion

Что такое коммутация? Чтобы создать движение в трехфазном линейном двигателе, должно быть переключение между фазами для подачи питания на соответствующие обмотки. Процесс переключения между фазами называется коммутацией.

Чтобы создать желаемое движение, контроллер должен определить, какая фаза должна быть включена. Самый популярный метод определения того, где находится силовая установка в пределах магнитного поля, — это датчик на эффекте Холла.

ПРОЦЕСС КОММУТАЦИИ

Для понимания процесса коммутации может помочь круговая диаграмма. Ток, протекающий через катушку, имеет форму синуса. Компонент Y стрелки на круговой диаграмме ниже определяет величину этого тока. Когда стрелка делает полный оборот, величина соответствует синусоидальному закону. Токи сдвинуты по фазе на 120 градусов, что показано тремя стрелками, расположенными на одинаковом расстоянии друг от друга на 360 градусов.

 

МЕТОДЫ КОММУТАЦИИ

Существует несколько способов определения положения (электромагнитных) катушек над магнитной дорожкой (или ротором). Если детализация и точность энкодера (линейки) не требуются, для измерения положения катушки можно использовать аналоговый датчик Холла. Для коммутации тока используются цифровые датчики Холла.

Преимущества и риски

Простой способ «выровнять» ток через катушки с постоянными магнитами — использовать датчик Холла. Датчики Холла могут быть аналоговыми или цифровыми. Аналоговые датчики Холла точно измеряют магнитное поле. Сигнал будет сильнее, если центр находится над полюсом магнита. Магнит-фи05++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++поле равно нулю при измерении между двумя противоположными полюсами. Цифровые датчики Холла измеряют только положительный (северный) или отрицательный (южный) полюс магнита. Они показывают цифровое значение, означающее «1» или «0». Когда цифровой датчик Холла находится над полюсом своего типа (северным или южным), он подает сигнал.

Процесс коммутации в синхронном двигателе представляет собой переключение между фазами. Можно переключаться между фазами таким образом, чтобы обмотка поочередно притягивала и отталкивала постоянные магниты для создания желаемого движения по закону Лоренца. Все двигатели Tecnotion Iron Core, Ironless и Torque представляют собой трехфазные синхронизированные двигатели.

При переменном токе направление магнитного поля в катушках меняется на противоположное. Взаимодействие этого магнитного поля с дорожкой постоянного магнита (или ротором) создает движение.

КОММУТАЦИЯ ФАЗ ТОКА

Подводя итог тому, что необходимо для эффективного перемещения линейного или моментного двигателя: коммутация фаз тока и опционально датчик Холла. 3 фазы тока необходимо постоянно контролировать, чтобы генерировать движение.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *