Site Loader

Электромагнитная индукция — это… Что такое Электромагнитная индукция?

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа[источник не указан 100 дней] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Закон Фарадея

Согласно закону электромагнитной индукции Фарадея (в СИ):

где

 — электродвижущая сила, действующая вдоль произвольно выбранного контура,
 — магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

где

 — электродвижущая сила,
 — число витков,
 — магнитный поток через один виток,
 — потокосцепление катушки.

Векторная форма

В дифференциальной форме закон Фарадея можно записать в следующем виде:

(в системе СИ)

или

(в системе СГС).

В интегральной форме (эквивалентной):

(СИ)

или

(СГС)

Здесь  — напряжённость электрического поля,  — магнитная индукция,  — произвольная поверхность,  — её граница. Контур интегрирования подразумевается фиксированным (неподвижным).

Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).

  • В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)
    [1]
    .

Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство продолжает соблюдаться, но ЭДС в левой части теперь не сводится к (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).

  • Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[2] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока)[3]. В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие
    закон Фарадея
    в точности совпадает с содержанием соответствующего уравнения Максвелла.
  • Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы ее рассчитали.

Потенциальная форма

При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:

(в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).

В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:

История

В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 г. наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.

В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.

М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.

См. также

Примечания

  1. Это уравнение Максвелла может быть переписано в эквивалентном виде
    (здесь просто производная по t внесена под знак интеграла). В таком виде уравнение также может быть включено в систему уравнений Максвелла, причем оговорка о неподвижности контура интегрирования теряет актуальность, так как производная теперь очевидно не действует на границу области (на пределы интегрирования), а само интегрирование в любом случае полагается «мгновенным». В принципе, в таком виде это уравнение также могут называть законом Фарадея (чтобы отличить его от других уравнений Максвелла), пусть в таком виде оно и не совпадает прямо с его обычной формулировкой (но эквивалентно ей в своей области применимости).
  2. М. Лившиц Закон электромагнитной индукции или «правило потока»? // Квант. — 1998. — № 3. — С. 37—38.
  3. Такой отказ объясняется тем, что, в отличие от закона для циркуляции электрического поля, выполняющегося всегда, «правило» корректно работает лишь для случаев, когда контур, в котором вычисляется ЭДС, совпадает физически с проводником (то есть совпадает их движение; в противном же случае правило может не работать (самый известный пример — униполярная машина Фарадея; контур, который в этом случае трудно определить, но кажется довольно очевидным, что он не меняется; во всяком случае, довольно затруднительно указать разумное определение для контура, который бы в этом случае менялся), то есть проявляется парадокс, что для «закона природы» недопустимо.

Ссылки

индукция — это… Что такое индукция?

  • ИНДУКЦИЯ — (лат. inductio, от in в, и duco веду). 1) возбуждение электричества в проволоке посредством приближения её к электризованному телу. 2) метод мышления, иначе наз. наведение, при котором из частных положений выводят общее заключение. Словарь… …   Словарь иностранных слов русского языка

  • Индукция —  Индукция  ♦ Induction    Вид доказательства, в классическом понимании определяемый как переход от частного к общему, или от фактов к закону. Тем самым противостоит дедукции, которая обычно идет от общего к частному, от принципа к следствиям.… …   Философский словарь Спонвиля

  • ИНДУКЦИЯ — в биологии 1) взаимодействие процессов возбуждения и торможения; торможение в группе нейронов вызывает (индуцирует) возбуждение (положительная индукция), которое индуцирует торможение (отрицательная индукция)2)] Воздействие путем контакта одних… …   Большой Энциклопедический словарь

  • ИНДУКЦИЯ — (от латинского inductio наведение), умозаключение от фактов к некоторой гипотезе (общему утверждению). Смотри Дедукция, Математическая индукция …   Современная энциклопедия

  • ИНДУКЦИЯ — ИНДУКЦИЯ, индукции, жен. (лат. inductio наведение). 1. Метод мышления, при котором из частных суждений выводится общее (филос.). 2. Возбуждение электрической и магнитной энергии под влиянием магнитного поля или приближением заряженного… …   Толковый словарь Ушакова

  • индукция — умозаключение, возбуждение, наведение, индуктирование Словарь русских синонимов. индукция сущ., кол во синонимов: 5 • возбуждение (58) • …   Словарь синонимов

  • индукция — движение знания от единичных утверждений к общим положениям. И. тесно связана с дедукцией. Логика рассматривает И. как вид умозаключения, различая полную и неполную И. Психология изучает развитие и нарушения индуктивных рассуждений. Движение от… …   Большая психологическая энциклопедия

  • Индукция — (от латинского inductio наведение), умозаключение от фактов к некоторой гипотезе (общему утверждению). Смотри Дедукция, Математическая индукция.   …   Иллюстрированный энциклопедический словарь

  • ИНДУКЦИЯ — (от лат. inductio наведение) умозаключение от фактов к некоторой гипотезе (общему утверждению). Различают полную индукцию, когда обобщение относится к конечнообозримой области фактов, и неполную индукцию, когда оно относится к бесконечно или… …   Большой Энциклопедический словарь

  • Индукция — (от лат. inductio выведение) процесс логического вывода на основании перехода от частных положений к общим. Среди наиболее важных законов индуктивной логики выступают правила доказательства, связывающие причину и следствие: всегда, когда… …   Психологический словарь

  • ИНДУКЦИЯ — ИНДУКЦИЯ, в физике, процесс электризации или намагничивания. В случае ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ электрический ток вызывается при помещении ПРОВОДНИКА в переменное МАГНИТНОЕ ПОЛЕ. Величина тока пропорциональна скорости изменения МАГНИТНОГО ПОТОКА …   Научно-технический энциклопедический словарь

  • ИНДУКЦИЯ — это… Что такое ИНДУКЦИЯ?

  • ИНДУКЦИЯ — (лат. inductio, от in в, и duco веду). 1) возбуждение электричества в проволоке посредством приближения её к электризованному телу. 2) метод мышления, иначе наз. наведение, при котором из частных положений выводят общее заключение. Словарь… …   Словарь иностранных слов русского языка

  • Индукция —  Индукция  ♦ Induction    Вид доказательства, в классическом понимании определяемый как переход от частного к общему, или от фактов к закону. Тем самым противостоит дедукции, которая обычно идет от общего к частному, от принципа к следствиям.… …   Философский словарь Спонвиля

  • ИНДУКЦИЯ — в биологии 1) взаимодействие процессов возбуждения и торможения; торможение в группе нейронов вызывает (индуцирует) возбуждение (положительная индукция), которое индуцирует торможение (отрицательная индукция)2)] Воздействие путем контакта одних… …   Большой Энциклопедический словарь

  • ИНДУКЦИЯ — (от латинского inductio наведение), умозаключение от фактов к некоторой гипотезе (общему утверждению). Смотри Дедукция, Математическая индукция …   Современная энциклопедия

  • ИНДУКЦИЯ — ИНДУКЦИЯ, индукции, жен. (лат. inductio наведение). 1. Метод мышления, при котором из частных суждений выводится общее (филос.). 2. Возбуждение электрической и магнитной энергии под влиянием магнитного поля или приближением заряженного… …   Толковый словарь Ушакова

  • индукция — умозаключение, возбуждение, наведение, индуктирование Словарь русских синонимов. индукция сущ., кол во синонимов: 5 • возбуждение (58) • …   Словарь синонимов

  • индукция — движение знания от единичных утверждений к общим положениям. И. тесно связана с дедукцией. Логика рассматривает И. как вид умозаключения, различая полную и неполную И. Психология изучает развитие и нарушения индуктивных рассуждений. Движение от… …   Большая психологическая энциклопедия

  • Индукция — (от латинского inductio наведение), умозаключение от фактов к некоторой гипотезе (общему утверждению). Смотри Дедукция, Математическая индукция.   …   Иллюстрированный энциклопедический словарь

  • ИНДУКЦИЯ — (от лат. inductio наведение) умозаключение от фактов к некоторой гипотезе (общему утверждению). Различают полную индукцию, когда обобщение относится к конечнообозримой области фактов, и неполную индукцию, когда оно относится к бесконечно или… …   Большой Энциклопедический словарь

  • Индукция — (от лат. inductio выведение) процесс логического вывода на основании перехода от частных положений к общим. Среди наиболее важных законов индуктивной логики выступают правила доказательства, связывающие причину и следствие: всегда, когда… …   Психологический словарь

  • Магнитная индукция — это… Что такое Магнитная индукция?

    Магни́тная инду́кция  — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

    Более конкретно,  — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

    где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

    Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

    Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

    В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)

    1 Тл = 104 Гс

    Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

    Основные уравнения

    Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряженность магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

    • (Здесь формулы приведем в системе единиц СИ, в виде для вакуума[3], где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

    В магнитостатике

    В магнитостатическом пределе[4] наиболее важными являются:

    В общем случае

    Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции :

    • Формула силы Лоренца
      • Следствия из нее, такие как
        • Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)
        • выражение для вращающего момента, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):
        • выражение для потенциальной энергии магнитного диполя в магнитном поле:
        • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т.д..
        • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
          • (это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).
    • Выражение для плотности энергии магнитного поля
      • Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

    Примечания

    1. Если учитывать и действие электрического поля E, то формула (полной) силы Лоренца принимает вид:
      При отсутствии электрического поля (или если член, описывающий его действие, специально вычесть из полной силы) имеем формулу, приведенную в основном тексте.
    2. Это определение с современной точки зрения менее фундаментально, чем приведенное выше (и является просто его следствием), однако с точки зрения близости к одному из практических способов измерения магнитной индукции может быть полезным; также и с исторической точки зрения.
    3. То есть в наиболее фундаментальном и простом для ознакомления виде.
    4. То есть в частном случае постоянных токов и постоянных электрического и магнитного полей или — приближенно — если изменения настолько медленны, что ими можно пренебречь.
    5. Являющаяся частным магнитостатическим случаем закона Ампера — Максвелла (см. в стаье далее).

    См. также

    Магнитная индукция — это… Что такое Магнитная индукция?

    Магни́тная инду́кция  — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

    Более конкретно,  — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

    где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

    Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

    Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

    В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)

    1 Тл = 104 Гс

    Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

    Основные уравнения

    Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряженность магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

    • (Здесь формулы приведем в системе единиц СИ, в виде для вакуума[3], где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

    В магнитостатике

    В магнитостатическом пределе[4] наиболее важными являются:

    В общем случае

    Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции :

    • Формула силы Лоренца
      • Следствия из нее, такие как
        • Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)
        • выражение для вращающего момента, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):
        • выражение для потенциальной энергии магнитного диполя в магнитном поле:
        • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т.д..
        • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
          • (это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).
    • Выражение для плотности энергии магнитного поля
      • Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

    Примечания

    1. Если учитывать и действие электрического поля E, то формула (полной) силы Лоренца принимает вид:
      При отсутствии электрического поля (или если член, описывающий его действие, специально вычесть из полной силы) имеем формулу, приведенную в основном тексте.
    2. Это определение с современной точки зрения менее фундаментально, чем приведенное выше (и является просто его следствием), однако с точки зрения близости к одному из практических способов измерения магнитной индукции может быть полезным; также и с исторической точки зрения.
    3. То есть в наиболее фундаментальном и простом для ознакомления виде.
    4. То есть в частном случае постоянных токов и постоянных электрического и магнитного полей или — приближенно — если изменения настолько медленны, что ими можно пренебречь.
    5. Являющаяся частным магнитостатическим случаем закона Ампера — Максвелла (см. в стаье далее).

    См. также

    ИНДУКЦИЯ — это… Что такое ИНДУКЦИЯ?

  • ИНДУКЦИЯ — (лат. inductio, от in в, и duco веду). 1) возбуждение электричества в проволоке посредством приближения её к электризованному телу. 2) метод мышления, иначе наз. наведение, при котором из частных положений выводят общее заключение. Словарь… …   Словарь иностранных слов русского языка

  • Индукция —  Индукция  ♦ Induction    Вид доказательства, в классическом понимании определяемый как переход от частного к общему, или от фактов к закону. Тем самым противостоит дедукции, которая обычно идет от общего к частному, от принципа к следствиям.… …   Философский словарь Спонвиля

  • ИНДУКЦИЯ — в биологии 1) взаимодействие процессов возбуждения и торможения; торможение в группе нейронов вызывает (индуцирует) возбуждение (положительная индукция), которое индуцирует торможение (отрицательная индукция)2)] Воздействие путем контакта одних… …   Большой Энциклопедический словарь

  • ИНДУКЦИЯ — (от латинского inductio наведение), умозаключение от фактов к некоторой гипотезе (общему утверждению). Смотри Дедукция, Математическая индукция …   Современная энциклопедия

  • ИНДУКЦИЯ — ИНДУКЦИЯ, индукции, жен. (лат. inductio наведение). 1. Метод мышления, при котором из частных суждений выводится общее (филос.). 2. Возбуждение электрической и магнитной энергии под влиянием магнитного поля или приближением заряженного… …   Толковый словарь Ушакова

  • индукция — умозаключение, возбуждение, наведение, индуктирование Словарь русских синонимов. индукция сущ., кол во синонимов: 5 • возбуждение (58) • …   Словарь синонимов

  • индукция — движение знания от единичных утверждений к общим положениям. И. тесно связана с дедукцией. Логика рассматривает И. как вид умозаключения, различая полную и неполную И. Психология изучает развитие и нарушения индуктивных рассуждений. Движение от… …   Большая психологическая энциклопедия

  • Индукция — (от латинского inductio наведение), умозаключение от фактов к некоторой гипотезе (общему утверждению). Смотри Дедукция, Математическая индукция.   …   Иллюстрированный энциклопедический словарь

  • ИНДУКЦИЯ — (от лат. inductio наведение) умозаключение от фактов к некоторой гипотезе (общему утверждению). Различают полную индукцию, когда обобщение относится к конечнообозримой области фактов, и неполную индукцию, когда оно относится к бесконечно или… …   Большой Энциклопедический словарь

  • Индукция — (от лат. inductio выведение) процесс логического вывода на основании перехода от частных положений к общим. Среди наиболее важных законов индуктивной логики выступают правила доказательства, связывающие причину и следствие: всегда, когда… …   Психологический словарь

  • ИНДУКЦИЯ — ИНДУКЦИЯ, в физике, процесс электризации или намагничивания. В случае ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ электрический ток вызывается при помещении ПРОВОДНИКА в переменное МАГНИТНОЕ ПОЛЕ. Величина тока пропорциональна скорости изменения МАГНИТНОГО ПОТОКА …   Научно-технический энциклопедический словарь

  • ИНДУКЦИЯ — это… Что такое ИНДУКЦИЯ?

  • ИНДУКЦИЯ — (лат. inductio, от in в, и duco веду). 1) возбуждение электричества в проволоке посредством приближения её к электризованному телу. 2) метод мышления, иначе наз. наведение, при котором из частных положений выводят общее заключение. Словарь… …   Словарь иностранных слов русского языка

  • Индукция —  Индукция  ♦ Induction    Вид доказательства, в классическом понимании определяемый как переход от частного к общему, или от фактов к закону. Тем самым противостоит дедукции, которая обычно идет от общего к частному, от принципа к следствиям.… …   Философский словарь Спонвиля

  • ИНДУКЦИЯ — в биологии 1) взаимодействие процессов возбуждения и торможения; торможение в группе нейронов вызывает (индуцирует) возбуждение (положительная индукция), которое индуцирует торможение (отрицательная индукция)2)] Воздействие путем контакта одних… …   Большой Энциклопедический словарь

  • ИНДУКЦИЯ — ИНДУКЦИЯ, индукции, жен. (лат. inductio наведение). 1. Метод мышления, при котором из частных суждений выводится общее (филос.). 2. Возбуждение электрической и магнитной энергии под влиянием магнитного поля или приближением заряженного… …   Толковый словарь Ушакова

  • индукция — умозаключение, возбуждение, наведение, индуктирование Словарь русских синонимов. индукция сущ., кол во синонимов: 5 • возбуждение (58) • …   Словарь синонимов

  • индукция — движение знания от единичных утверждений к общим положениям. И. тесно связана с дедукцией. Логика рассматривает И. как вид умозаключения, различая полную и неполную И. Психология изучает развитие и нарушения индуктивных рассуждений. Движение от… …   Большая психологическая энциклопедия

  • Индукция — (от латинского inductio наведение), умозаключение от фактов к некоторой гипотезе (общему утверждению). Смотри Дедукция, Математическая индукция.   …   Иллюстрированный энциклопедический словарь

  • ИНДУКЦИЯ — (от лат. inductio наведение) умозаключение от фактов к некоторой гипотезе (общему утверждению). Различают полную индукцию, когда обобщение относится к конечнообозримой области фактов, и неполную индукцию, когда оно относится к бесконечно или… …   Большой Энциклопедический словарь

  • Индукция — (от лат. inductio выведение) процесс логического вывода на основании перехода от частных положений к общим. Среди наиболее важных законов индуктивной логики выступают правила доказательства, связывающие причину и следствие: всегда, когда… …   Психологический словарь

  • ИНДУКЦИЯ — ИНДУКЦИЯ, в физике, процесс электризации или намагничивания. В случае ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ электрический ток вызывается при помещении ПРОВОДНИКА в переменное МАГНИТНОЕ ПОЛЕ. Величина тока пропорциональна скорости изменения МАГНИТНОГО ПОТОКА …   Научно-технический энциклопедический словарь

  • alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *