Site Loader

Содержание

5 минут об электричестве в человеке

Всем привет, я Маша Осетрова, и сегодня я немного расскажу вам про электричество в теле человека.

Сюжет о Викторе Франкенштейне, создавшем монстра из неживой материи, идейно восходит к проведенным в XVIII веке опытам Луиджи Гальвани, который заставил мышцы лягушки сокращаться под действием электрического тока. Его эксперименты вдохновили многих исследователей на изучение функций электричества в теле живых существ. На сегодняшний день ученые сильно продвинулись в этой области: придумали обезболивающие, выяснили, что заставляет наше сердце биться, что происходит в голове у влюбленных и многое другое.

Между электричеством нашего организм, и электричеством, которое обеспечивает наши дома, есть два фундаментальных различия. Электричество из розетки представляет собой поток электронов. В отличие от этого практически все токи в живых существах являются потоками ионов — атомов, имеющих электрический заряд. Токи в нашем организме связаны с пятью типами частиц: четырьмя положительными ионами — натрия, калия, кальция и водорода — и одним отрицательным хлорид-аниона.

Второе важное различие связано с направлением движения частиц. Ток в электрической цепи течет вдоль проводника, в то время как распространению электрического импульса по нейрону способствует движение ионов в перпендикулярном направлении.

В книге «Искра жизни» Фрэнсис Эшкрофт собрала воедино имеющиеся на сегодняшний день знания об электрических токах в организме человека и процессах на клеточном и молекулярном уровне, управляющих передачей электрических импульсов.

В состоянии покоя на мембране всех клеток существует разность потенциалов в 70 мВ, которую также называют потенциалом покоя. Изменение этого потенциала возможно при проходе заряженных частиц через мембрану внутрь и наружу клетки через специальные шлюзы — ионные каналы.

Для управления ионными каналами соседей нервные клетки выпускают в синаптическую щель — место контакта нейронов — специальные вещества, нейромедиаторы. Они специфично взаимодействуют с ионными каналами в мембране целевой клетки, подходя к определенному типу каналов как ключ к замку. В результате взаимодействия канал открывается, пропуская через себя ионы внутрь или наружу клетки. Направление движения частиц при этом зависит от концентрации ионов и распределения зарядов.

В состоянии покоя потенциал-зависимые натриевые и калиевые каналы клеток нервной и мышечной ткани находятся в закрытом состоянии под действием потенциала покоя. Они открываются только тогда, когда потенциал смещается в положительную сторону: когда это происходит, генерируется нервный импульс.

Хотя потенциально нервные волокна могут проводить импульсы в любую сторону, обычно они передают их только в одном направлении. Двигательные нервы передают сигнал от головного и спинного мозга к мышцам для управления их сокращением, а чувствительные нервы передают информацию в обратном направлении — от органов чувств к головному мозгу.

Поддержание клеток в поляризованном состоянии жизненно важно для организма и крайне энергозатратно. Один лишь мозг использует около 10% вдыхаемого кислорода для поддержания работы натриевого насоса и подзарядки аккумуляторов нервных клеток.

Наибольшее значение для генерации нервного импульса имеют калиевые и натриевые каналы. Это подчеркивает тот факт, что яды пауков, моллюсков, актиний, лягушек, змей, скорпионов и множества других экзотических существ воздействуют именно на них и, таким образом, нарушают функционирование нервов и мышц. Многие токсины крайне специфичны и нацелены на какой-нибудь один вид ионных каналов.

Разные яды имеют разный механизм действия: некоторые из них закупоривают ионные поры, а некоторые выступают в роли «распора», фиксируя канал в открытом состоянии. Это приводит к тому, что результатом проникновения в организм одних токсинов является паралич, а других — чрезмерное возбуждение, вызывающее судороги.

К примеру, яд тетродотоксин, содержащийся во внутренностях иглобрюха, которого японцы называют «рыба фугу», обладает специфичностью к натриевым каналам. Прочно закупоривая ионные поры, он препятствует нормальной передаче нервных импульсов, вызывая паралич и зачастую приводя к летальному исходу. Тем не менее, гурманы со всего мира регулярно рискуют жизнью, чтобы отведать фугу: при правильном приготовлении она перестает быть ядовитой, и лишь слегка покалывает небо.

Еще один токсин, ради эффекта которого люди готовы рискнуть — ботокс, используемый в косметических целях для разглаживания морщин. Ботокс, он же ботулотоксин — яд бактерий вида Clostridium botulinum, — один из самых сильных известных природных ядов. Он препятствует сокращению мышц и постепенно приводит к смерти от удушья. В количестве, умещающемся на кончике иглы, он смертелен для взрослого человека, однако инъекции ботокса под кожу в ничтожных концентрациях способствуют избавлению от мимических морщин.

На этом все, читайте умные книги, не суйте пальцы в розетку и читайте портал «Чердак»! А в следующем выпуске я расскажу вам о том, как мы делаем ЭТО.

 Анастасия Тмур

Что такое электрический ток? Природа электричества


Что мы действительно знаем на сегодняшний день об электричестве? Согласно современным взглядам многое, но если более детально углубиться в суть данного вопроса, то окажется, что человечество широко использует электричество, не понимая истинной природы этого важного физического явления.

Целью данной статьи не является опровержение достигнутых научно-технических прикладных результатов исследований в области электрических явлений, которые находят широкое применение в быту и промышленности современного общества. Но человечество непрерывно сталкивается с рядом феноменов и парадоксов, которые не укладываются в рамки современных теоретических представлений относительно электрических явлений ‒ это указывает на отсутствие всецелого понимания физики данного явления.

Также на сегодняшний день науке известны факты, когда, казалось бы, изученные вещества и материалы проявляют аномальные свойства проводимости (Исследование влияния солнечного затмения на электрическую проводимость дистиллированной воды)

.

Такое явление как сверхпроводимость материалов также не имеет полностью удовлетворительной теории в настоящее время. Существует лишь предположение, что сверхпроводимость является квантовым явлением, которое изучается квантовой механикой. При внимательном изучении основных уравнений квантовой механики: уравнения Шрёдингера, уравнения фон Неймана, уравнения Линдблада, уравнения Гейзенберга и уравнения Паули, то станет очевидной их несостоятельность. Дело в том, что уравнение Шрёдингера не выводится, а постулируется методом аналогии с классической оптикой, на основе обобщения экспериментальных данных. Уравнение Паули описывает движение заряженной частицы со спином 1/2 (например, электрона) во внешнем электромагнитном поле, но понятие спина не связано с реальным вращением элементарной частицы, а также относительно спина постулируется то, что существует пространство состояний, никак не связанных с перемещением элементарной частицы в обычном пространстве.

В книге Анастасии Новых «Эзоосмос» есть упоминание относительно несостоятельности квантовой теории: «А вот квантомеханическая теория строения атома, которая рассматривает атом как систему микрочастиц, не подчиняющихся законам классической механики, абсолютно не актуальна. На первый взгляд доводы немецкого физика Гейзенберга и австрийского физика Шрёдингера кажутся людям убедительными, но если всё это рассмотреть с другой точки зрения, то их выводы верны лишь отчасти, а в целом, так и вовсе оба не правы. Дело в том, что первый описал электрон, как частицу, а другой как волну. Кстати и принцип корпускулярно-волнового дуализма также неактуален, поскольку не раскрывает перехода частицы в волну и наоборот. То есть куцый какой-то получается у учёных господ. На самом деле всё очень просто. Вообще хочу сказать, что физика будущего очень проста и понятна. Главное дожить до этого будущего. А что касательно электрона, то он становится волной только в двух случаях. Первый — это когда утрачивается внешний заряд, то есть когда электрон не взаимодействует с другими материальными объектами, скажем с тем же атомом. Второй, в предосмическом состоянии, то есть когда снижается его внутренний потенциал» [1].

Те же электрические импульсы, сгенерированные нейронами нервной системы человека, поддерживают активное сложное многообразное функционирование организма. Интересно отметить, что потенциал действия клетки (волна возбуждения, перемещающаяся по мембране живой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки) находится в определённом диапазоне (рис. 1).

Нижняя граница потенциала действия нейрона находится на уровне -75 мВ, что очень близко к значению окислительно-восстановительного потенциала крови человека. Если проанализировать максимальное и минимальное значение потенциала действия относительно нуля, то оно очень близко к процентному округлённому 

значению золотого сечения, т.е. деление интервала в отношении 62% и 38%:

Δ=75мВ+40мВ=115мВΔ=75мВ+40мВ=115мВ

115 мВ / 100% = 75 мВ / х1 или 115 мВ / 100% = 40 мВ / х2

х1 = 65,2%, х2 = 34,8%

Все, известные современной науке, вещества и материалы проводят электричество в той или иной мере, поскольку в их составе присутствуют электроны, состоящие из 13 фантомных частичек По, которые, в свою очередь, являются септонными сгустками («ИСКОННАЯ ФИЗИКА АЛЛАТРА» стр. 61) [2]. Вопрос заключается только в напряжении электрического тока, которое необходимо для преодоления электрического сопротивления.

Поскольку электрические явления тесно связаны с электроном, то в докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» [2] приведена следующая информация относительно этой важной элементарной частицы: «Электрон является составной частью атома, одним из основных структурных элементов вещества. Электроны образуют электронные оболочки атомов всех известных на сегодняшний день химических элементов. Они участвуют почти во всех электрических явлениях, о которых ведают ныне учёные. Но что такое электричество на самом деле, официальная наука до сих пор не может объяснить, ограничиваясь общими фразами, что это, например, «совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов». Известно, что электричество не является непрерывным потоком, а переносится 

порциями ‒ дискретно».

Согласно современным представлениям: «электрический ток – это совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов». Но что такое электрический заряд?

Электрический заряд (количество электричества) — это физическая скалярная величина (величина, каждое значение которой может быть выражено одним действительным числом), определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Электрические заряды разделяют на положительные и отрицательные (данный выбор считается в науке чисто условным и за каждым из зарядов закреплён вполне определённый знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм).

Электродинамика изучает электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля.

Квантовая электродинамика изучает электромагнитные поля, которые обладают прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.

Стоит задуматься, почему магнитное поле появляется вокруг проводника с током, или же вокруг атома, по орбитам которого перемещаются электроны? Дело в том, что «то, что сегодня называют электричеством ‒ это на самом деле особое состояние септонного поляв процессах которого электрон в большинстве случаев принимает участие наравне с другими его дополнительными «компонентами»

» («ИСКОННАЯ ФИЗИКА АЛЛАТРА» стр. 90) [2].

А тороидальная форма магнитного поля обусловлена природой его происхождения. Как сказано в статье «Концепция мирового эфира. Часть 2: Собственное септонное поле. Тор в основе строения материи»: «Учитывая фрактальные закономерности во Вселенной, а также тот факт, что септонное поле в материальном мире в пределах 6-ти измерений является тем фундаментальным, единым полем, на котором основаны все известные современной науке взаимодействия, то можно утверждать, что все они также имеют форму тора. И это утверждение может представлять особый научный интерес для современных исследователей»

. Поэтому электромагнитное поле всегда будет принимать форму тора, подобно тору септона.

Рассмотрим спираль, через которую протекает электрический ток и как именно формируется её электромагнитное поле (https://www.youtube.com/watch?v=0BgV-ST478M).

Рис. 2. Силовые линии прямоугольного магнита

Рис. 3. Силовые линии спирали с током

Рис. 4. Силовые линии отдельных участков спирали

Рис. 5. Аналогия между силовыми линиями спирали и атомов с орбитальными электронами

Рис. 6. Отдельный фрагмент спирали и атом с силовыми линиями

ВЫВОД: человечеству еще только предстоит узнать тайны загадочного явления электричества.

Пётр Тотов

Ключевые слова: ИСКОННАЯ ФИЗИКА АЛЛАТРА, электрический ток, электричество, природа электричества, электрический заряд, электромагнитное поле, квантовая механика, электрон.

Литература:

[1] – Новых. А., Эзоосмос, К.: ЛОТОС, 2013. – 312 с. http://schambala.com.ua/book/ezoosmos

[2] – Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. http://allatra-science.org/publication/iskonnaja-fizika-allatra

Источник: https://allatra-science.org/publication/chto-takoe-elektricheskiy-tok


Конец света: что будет, если во всем мире отключится электричество

  • Ричард Грей
  • BBC Future

Автор фото, Getty Images

Останемся надолго в темноте? Как могут подтвердить пациенты больниц Венесуэлы, это далеко не самое страшное, что нас ждет, когда отключается электричество.

…Врачи просто ничего не могли поделать. В кромешной тьме, нарушаемой только лучами пары фонариков и зыбким светом экранов смартфонов, медицинские работники беспомощно смотрели, как пациент умирал у них на глазах.

Пожилая женщина поступила в больницу с тромбом в легких. Довольно распространенный случай, угрожающий жизни, если не применить соответствующие лекарства и оборудование.

Все, что было нужно врачам для того, чтобы спасти женщину, в том числе и аппарат для искусственной вентиляции легких, находилось совсем рядом — в палате интенсивной терапии несколькими этажами ниже.

Но электричества не было, и лифты не работали.

Примерно такая же ситуация повторялась во многих больницах по всей Венесуэле в марте этого года, когда случилось отключение электроэнергии аж на пять дней, что еще глубже погрузило эту страну в политический и экономический кризис.

Больницы оказались неподготовлены к такому. Резервные генераторы в ряде медицинских учреждений тут же вышли из строя, другим хватило энергии лишь для самых нуждающихся в этом палат.

Когда эти пять дней прошли, оказалось, что в больницах умерло 26 человек — таким был результат отключения электричества по данным организации Doctors for Health, отслеживающей кризис здравоохранения в Венесуэле.

Автор фото, Getty Images

Подпись к фото,

В марте 2019 года больницы по всей Венесуэле остались без света на пять дней

Среди умерших пациентов — те, кому требовался аппарат «искусственная почка», и раненые в перестрелке, которых хирурги не могли прооперировать в почти полной темноте.

Рассказывали также о женщинах, которые рожали в темных больничных палатах, о хирургах, оперировавших при свете экранов мобильных телефонов, о младенцах, замерзавших в отключенных инкубаторах в неонатальных отделениях…

Но проблемы коснулись не только больниц. Некоторых пожилых людей, живущих в высотных домах, пришлось на руках выносить вниз по лестнице. Люди готовили пищу на кострах и ужинали при свечах. Без электричества продукты портились в быстро нагревшихся холодильниках. Светофоры на улицах не работали, что привело к хаосу в транспортной системе.

Насосы, качающие воду, тоже перестали работать, люди отправлялись за водой к рекам и источникам. Использовали даже воду из канализации.

В течение этого года в Венесуэле уже случилось множество отключений. Некоторые из них — короткие и локализованные, длящиеся всего несколько минут. Чтобы устранить другие, требуется несколько часов, а то и дней. Организация Doctors for Health засвидетельствовала новые случаи смерти пациентов в больницах.

«Даже когда в больнице нет электричества в течение четырех часов, это ненормально, — подчеркивает Хулио Кастро из школы медицины Центрального университета Венесуэлы, собирающий сведения для Doctors for Health. — А ситуация с водой еще хуже. В некоторых больницах даже просят пациентов приносить воду с собой».

Ситуация, которую описывает Кастро, похожа на апокалипсис — и это в стране, которая всего несколько лет назад считалась одной из самых богатых в Южной Америке, поскольку обладает крупнейшими в мире разведанными запасами нефти.

И хотя правительство Венесуэлы обвиняет во всем саботажников и террористов, многие указывают на то, что годами в инфраструктуру ничего не инвестировалось, что привело к ужасающему состоянию электросетей.

Автор фото, Getty Images

Подпись к фото,

Из-за отключения электричества в Венесуэле перестали работать насосы, подающие воду в дома. Еда в неработающих холодильниках быстро портилась

Однако такие долгие и широкомасштабные отключения электричества необязательно происходят только в странах, стоящих на грани коллапса.

Каждый год дома миллионов людей в США и Канаде погружаются во тьму из-за бурь, приводящих к повреждению линий электропередач.

В июне этого года почти вся Аргентина, Уругвай и Парагвай испытали последствия отключения, оставившего почти 40 млн людей без света.

Летом 2012 года более 600 млн жителей Индии провели более двух дней без электричества. В 2018 году землетрясение на японском острове Хоккайдо оставило без света более 5 млн человек.

В августе 2019 года почти миллион жителей Великобритании из-за сбоя в работе национальной энергосистемы страны остался без электричества. Люди, ехавшие в тот момент на работу, несколько часов просидели в остановившихся поездах.

Впрочем, все эти случаи могут показаться детскими играми по сравнению с тем, какие отключения электричества (и с какими последствиями) прогнозируют эксперты в будущем.

Растущие потребности мира в электроэнергии, рост населения, новые технологии (такие как электромобили) ведут к дальнейшим сбоям в снабжении энергией, особенно по мере того, как мы все больше переходим на возобновляемые, но нестабильные ее источники — ветер и солнце.

Экстремальные погодные условия, связанные с изменениями мирового климата, еще больше повышают риск отключений.

«Очень многое в нашей жизни (и почти все, что мы делаем) зависит от энергоснабжения, особенно — от электричества, — подчеркивает Джулиет Миан, технический директор в Resilience Shift, организации, помогающей подготовиться к сбоям в работе инфраструктуры.

«Мы привыкли говорить «когда не будет света». Но отсутствие света — это далеко не самое главное, что нас тревожит», — говорит Миан.

И она права. В современном мире почти всё — от финансовой системы до связи — зависит от электричества.

Автор фото, Getty Images

Подпись к фото,

Неработающие светофоры — это лишь один из аспектов проблемы транспортной инфраструктуры, лишенной электроэнергии

Другие важнейшие элементы инфраструктуры, как, например, водоснабжение и системы канализации, полагаются на насосы, приводимые в движение электричеством. Без электричества не будут работать заправочные станции, дорожные знаки, светофоры, не будут ходить поезда.

Торговля, доставка товаров и топлива, системы хранения продуктов, полностью полагающиеся на компьютеры, остановятся. Не будут работать кондиционеры, газовые бойлеры, системы отопления.

Чуть более века назад наши города доставляли товары и вывозили мусор, полагаясь исключительно на мускульную силу человека и животных. В современной инфраструктуре их заменило электричество.

«Сегодняшний мир, все его системы в высшей степени взаимосвязаны и переплетены. Очень трудно найти систему, которая не зависела бы полностью от энергоснабжения, — говорит Миан. — Полное отключение коснется каждого».

Полное отключение? Но что может быть причиной такой катастрофы?

Причин на самом деле множество — от природных бедствий (извержения вулканов, землетрясения) до геомагнитных бурь, вызванных вспышками на Солнце, посылающими заряженные частицы по всей Солнечной системе, создавая перегрузку в электрических сетях.

В 1989 году такая геомагнитная буря стала причиной 9-часового отключения электричества на больших территориях Канады.

Автор фото, Getty Images

Подпись к фото,

Люди используют экраны телефонов, чтобы осветить полки супермаркета в Буэнос-Айресе (Аргентина)

Международная организация Electric Infrastructure Security Council («Совет по безопасности электроэнергетической инфраструктуры»), следящая за угрозами электросетям, перечисляет также человеческие факторы, которые могут повлечь масштабное отключение электричества.

Среди них — кибератаки, скоординированные физические нападения на такие объекты инфраструктуры, как электростанции, а также электромагнитные импульсы, которыми можно отключить электросети.

Меры против подобных потенциальных угроз дорогостоящи и сложны. Да, главные объекты инфраструктуры можно защитить от нападений людей и электромагнитных импульсов. Можно также построить новые системы для защиты трансформаторов от вспышек на Солнце.

Но порой случается такое, необходимость защиты от чего невозможно предусмотреть, особенно если учитывать сложную, взаимосвязанную структуру наших электросетей, делающую их особенно уязвимыми.

Вспомним хотя бы то, что случилось в сентябре 2003 года, когда упавшее дерево оборвало электрический провод на альпийском перевале, ведущем из Швейцарии в Италию. Еще через 24 минуты другое дерево упало на линию электропередач на знаменитом перевале Большой Сен-Бернар.

Неожиданное отключение двух линий вызвало перегрузку сетей Европы, в результате чего остановили работу электростанции по всей Италии.

Автор фото, Getty Images

Подпись к фото,

Одно упавшее дерево может спровоцировать энергетический кризис в целой стране

Целая европейская страна осталась без электричества из-за двух упавших деревьев, спровоцировавших эффект домино.

Современные электроэнергетические сети очень сложны и объединены в единую систему. Большая часть Европы сейчас представляет из себя огромную электросеть — возможно, крупнейшую в мире.

Она снабжает электричеством более 400 млн потребителей в 24 странах. Электросистема США состоит из пяти разных электросетей.

Но есть специалисты, которые ищут способы прогнозирования отключений электроэнергии и привлекают к решению этой сложнейшей проблемы искусственный интеллект.

Например, если выходит из строя электростанция, это резко повышает нагрузку на другие, входящие в эту сеть, их генераторы работают медленнее, и по всей сети падает напряжение.

В итоге возникает риск дестабилизации хрупкого баланса между электросетями. Операторам приходится очень быстро, почти мгновенно принимать меры, чтобы предотвратить отключение целых участков сетей.

Исследователи из немецкого института Ильменау, входящего в ведущее европейское объединение институтов прикладных исследований Fraunhofer Gesellschaft (Фраунгоферовское общество), недавно сообщили, что разрабатывают систему искусственного интеллекта, которая сможет автоматически засекать подобные неполадки в сетях и предпринимать шаги для их устранения.

Автор фото, Getty Images

Подпись к фото,

В начале 2019 года масштабный блэкаут оставил в темноте и улицы Манхэттена, и нью-йоркское метро

Министерство энергетики США вкладывает 7 млн долларов в финансирование исследования способов с помощью искусственного интеллекта прогнозировать аварии в электросетях, а также — в случае возникновения неполадок — поддерживать подачу электричества на прежнем уровне.

Компания General Electric использует алгоритмы машинного обучения для анализа прошлых отключений из-за капризов погоды, а также информацию с мест от персонала — для прогнозирования ущерба, который могут нанести сетям бури и ураганы, и для правильного размещения ремонтных бригад в случае аварии.

Но полностью защитить наши электросети от сбоев в работе практически невозможно, подчеркивает Миан.

«Мы не можем создать такую систему, в которой отключения не будут случаться, — говорит она. — Наши сети так сложны, что при отключениях начинает действовать эффект домино, и часто такого просто нельзя избежать. Но мы можем разработать системы, которые будут очень быстро реагировать на сбои и быстро восстанавливаться».

Именно над этим сейчас и работает Resilience Shift. В сотрудничестве с Советом по безопасности электроэнергетической инфраструктуры она организует учебу (в том числе онлайн) для больших организаций, университетов, школ, общественных групп и даже семей, готовя их к правильным действиям в случаях масштабного и длительного отключения электроэнергии.

Эффект домино в таких ситуациях несет главную опасность. Как уже знают граждане Венесуэлы, при отключении электричества перестают действовать даже такие службы, как водоснабжение.

«В итоге мы как будто возвращаемся в средневековье», — говорит Джон Хелтзел, директор по планированию обеспечения жизнестойкости в Совете по безопасности электроэнергетической инфраструктуры.

Автор фото, Getty Images

Подпись к фото,

Во время отключений электричества многие могут надолго застрять в лифтах

Будут и тяжелые социальные последствия. Обычно во время отключений происходит скачок преступности — темнота и неработающая сигнализация открывают больше возможностей для воровства и мошенничества.

Перестанут работать банкоматы и считывающие устройства, и общество, привыкшее полагаться на электронные платежи, будет вынуждено вернуться к наличным. Но многие ли сейчас держат большой запас наличных у себя под матрасом?

Не будет работать связь, и вы уже не сможете узнать по WhatsАpp у близкого человека, как его дела. Инвалиды и пожилые люди окажутся в полной изоляции.

Без электроснабжения бизнес не сможет вести дела, и экономический эффект всего этого будет непредсказуемым. В 2004 году американское министерство энергетики обнародовало оценку ущерба от отключений в США — около 80 млрд долларов в год.

Когда в октябре этого года 2 млн потребителей в Калифорнии на два дня остались без электричества, эксперты оценили ущерб экономике примерно в 2,5 млрд долларов.

Джон Хелтзел знает как никто, к какому хаосу может привести масштабное отключение электроэнергии, — он 33 года занимал должность бригадного генерала национальной гвардии в штате Кентукки.

В 2009 году на штат обрушилась череда ледяных штормов и снежных буранов, провода обрывались под тяжестью льда и налипшего снега.

Обледенение было таким серьезным, что разрушались металлические конструкции, выдерживающие ураганные ветры, вспоминает он. А деревянные столбы ломались, как зубочистки.

Автор фото, Getty Images

Подпись к фото,

Обледеневшие столбы могут ломаться, как спички

«Отключенным оказался весь запад Кентукки, — рассказывает Хелтзел. — В 114 из 120 округов было объявлено чрезвычайное положение. Люди не могли покинуть дома, чтобы съездить за покупками в магазин. Колодцы замерзли, муниципальные системы водоснабжения не работали, люди сидели голодные. Связь тоже отключилась, и позвонить, попросить помощи было невозможно».

Национальная гвардия штата Кентукки мобилизовала 12 тыс. резервистов, чтобы обойти все дома, от двери к двери, и обеспечить людей продуктами.

Были доставлены аварийные генераторы для возобновления водоснабжения. Из других штатов привезли аварийные станции связи, чтобы заработали радио и телефонная связь.

И при всем при этом наиболее пострадавшие районы оставались без электричества на протяжении недель.

«Мы доставляли на наших вертолетах ремонтников всюду, куда им было надо, по всем местам обрывов, — вспоминает Хелтзел. — Но даже со всеми задействованными ресурсами понадобилось более месяца, чтобы все дома были вновь подключены».

В те недели погибло около 35 человек в Кентукки и 30 — в соседних штатах. Причиной по меньшей мере восьми смертей было отравление угарным газом от работы дизельных генераторов и керосиновых обогревателей, которые использовались в закрытом помещении без надлежащей вентиляции.

Вот поэтому Хелтзел и считает, что подготовка и планирование действий на случай масштабных отключений электроэнергии так важны — особенно для больших организаций и больниц.

Но и каждый из нас может предпринять определенные шаги, чтобы беда не застала врасплох. Начать можно с таких простых вещей, как фонарики и достаточное количество запасных батареек к ним, а также с создания запасов питьевой воды.

Автор фото, Getty Images

Подпись к фото,

На случай длительного отключения электричества в доме рекомендуется иметь двухнедельный запас воды в бутылках

Международная организация Совет по безопасности электроэнергетической инфраструктуры рекомендует иметь запас воды на две недели из расчета 2 литра в день на человека и один литр — на домашнее животное.

Стоит также позаботиться о том, чтобы в доме имелся запас нескоропортящихся продуктов — риса, макаронных изделий, консервированных овощей.

Но у Хелтзела и его команды припасено и несколько небанальных советов.

Детские консервы, например, — очень питательная вещь, даже если в вашем доме и нет малышей.

Важен и запас черных мусорных мешков — они помогут вам избавляться от отходов жизнедеятельности, когда в унитазе не будет воды и единственным выходом станет выносить все на улицу (мешок закрепляется с помощью сиденья унитаза).

Подумайте и о том, чтобы дома всегда был запас наличных на черный день. Это может спасти вам жизнь.

«Нам хотелось бы, чтобы в случае чрезвычайной ситуации люди были не проблемой, а решением проблемы, не жертвами, а теми, кто помогает восстановительным работам, помогает тем, кто оказался не готов к ЧП», — говорит Хелтзел.

Поведение медиков в Венесуэле — хороший пример. С каждым новым отключением электричества количество смертей в больницах неуклонно снижалось.

Отчасти из-за того, что отключения стали короче, но и потому, указывает Хулио Кастро, что работники больниц уже были лучше подготовлены к ним.

«Теперь они заботятся о том, чтобы в больнице было достаточно горючего, а все резервные генераторы были исправны, — говорит он. — У них составлено специальное расписание смен на тот случай, если понадобится вручную осуществлять вентиляцию легких, и так далее».

«Все это сохраняет людям жизнь».

Прочитать оригинал этой статьи на английском языке можно на сайте BBC Future.

Базовые понятия о электричестве

Движение электронов в проводнике

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе. Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля. Главное — понять, что электричество — энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении.

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения и величину.

Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую. С током это происходит намного быстрее — 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор. Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации. Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко — во всех видах батарей, в химической промышленности и некоторых других областях.

Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно. Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть — это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.

Передача на расстояние переменного тока

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается — нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °C. Более подробно на этот вопрос поможет ответить учебник по электромеханике. Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически — не нужны еще два нулевых провода.

Схема однофазной цепи

Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее. Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере. В случае, когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю.

Схема трехфазной цепи

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что но- левой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции. Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

Простейшая схема заземления

Внимание!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте. При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

 

 

 

 

Что бы еще почитать?

Электричество — Vaillant

Отопление электричеством отличается простотой монтажа и сравнительно невысокой ценой оборудования. Тем не менее, в долгосрочной перспективе более эффективными являются системы отопления, использующие другие источники энергии: газ, твердое топливо, солнечную и геотермальную энергию.

Отопление электричеством может быть весьма полезным в качестве дополнения к другим вариантам обогрева или в местах, которые не используются очень часто, например, загородных домах. Электрические устройства также рекомендуется в некоторых местах, где центральное отопление не представляется возможным или целесообразным, таких как небольшой офис или на складе.

Большинство устройств не требуют много места и не дороги. Другими преимуществами являются низкие затраты на установку и техническое обслуживание. Кроме того, проточные нагреватели производят тепло сразу, поэтому, они подходят для того, чтобы быстро принять душ.

Практические выгоды компенсируются относительно низкими затратами на использование электроэнергии. Сжигание ископаемых видов топлива для выработки электроэнергии влечет за собой потери вследствие преобразования в электричество. Кроме того, часть энергии теряется на своем пути по сети. Это означает, что потребление энергии является более высоким по сравнению с отопительной системой в доме. Таким образом, использование электроэнергии для долгосрочного отопления в постоянно используемых зданиях не рекомендуется.

Преимущества электроэнергии:

  • Высокая доступность
  • Низкие требования к пространству
  • Низкие закупочные цены
  • Низкие расходы на установку и техническое обслуживание
  • Возможность использовать дифференциальные тарифы для получения максимальной выгоды

Требования, которые должны быть выполнены в вашем доме:

  • Он должен быть подключен к сети общего пользования или иметь автономный источник питания
  • Некоторые устройства, такие как автономные емкостные нагреватели, требуют высоких токов

Электрические отопительные приборы

Существует ряд устройств, которые нагревают помещения с помощью электричества: автономные емкостные нагреватели, тепловентиляторы, радиаторы или электрические инфракрасные обогреватели. Радиаторы и электрические инфракрасные обогреватели являются прямыми отопительными приборами, которые сразу же передают свое тепло в окружающую среду.

Электрические водонагреватели

Часто электроэнергия используется для нагрева воды для кухонь и ванных комнат, например, через проточные водонагреватели.

Тепловые насосы

Тепловым насосам также требуются электрическая энергия. Они используют ее для привода насосов.

Что такое электричество?

 

Каждый из нас ещё из школьного курса помнит, что электрический ток – направленное движение электрических частиц под воздействием электрического поля. Такими частицами могут быть электроны, ионы и т. д. Тем не менее, несмотря на простую формулировку, многие признаются, что не до конца знают, что же такое электричество, из чего оно состоит, как и, вообще, почему работает вся электротехника.

Для начала стоит обратиться к истории этого вопроса. Впервые термин «электричество» появился ещё в 1600 году в сочинениях английского естествоиспытателя Уильяма Гилберта. Он изучал магнитные свойства тел, в своих сочинениях затрагивая магнитные полюса нашей планеты, описывал несколько опытов с наэлектризованными телами, которые сам провёл. 

Об этом можно прочитать в его труде «О магните, магнитных телах и о большом магните — Земле». Главным выводом его работы был такой, что многие тела и вещества могут наэлектризоваться, из-за чего у них появляются магнитные свойства. Его исследования применялись при создании компасов и во многих других областях.

Но Ульям Гилберт отнюдь не является первым, кто обнаружил подобные свойства тел, он просто первый, кто стал изучать их. Ещё в 7 веке до нашей эры греческий философ Фалес заметил, что янтарь, потёртый о шерсть, приобретает удивительные свойства – он начинает притягивать к себе предметы. Знания об электричестве ещё на протяжении нескольких веков так и оставались на этом уровне.

Такое положение оставалось вплоть до 17-18 веков. Это время можно назвать рассветом науки об электричестве. Ульям Гилберт был первым, после него этим вопросом занимались множество других учёных со всего мира: Франклин, Кулон, Гальвани, Вольт, Фарадей, Ампер, а также, русский учёный Василий Петров, открывший в 1802 году вольтову дугу. 

Все эти учёные сделали выдающиеся открытия в области электричества, которые положили основу для последующего изучения этого вопроса. С тех пор электричество перестало быть чем-то загадочным, но, несмотря на большие достижения в этом вопросе, загадок и неясностей оставалось ещё очень много.

Самым главным вопросов, как и всегда, был: как же использовать все эти достижения на благо человечества? Потому что, несмотря на значительные успехи в области изучения природы электричества, до внедрения его в жизнь было ещё далеко. Оно всё ещё казалось чем-то загадочным и недостижимым. 

Это можно сравнить с тем, как сейчас учёные всего мира изучают космос и ближайшую планету Марс. Уже получено множество сведений, установлено, что до него можно долететь и даже высадиться на поверхность и прочее, но до реального достижения подобных целей пока ещё очень много работы.

Электричество в природе

Говоря о природе электричества, нельзя не упомянуть о самом главном проявлении его в природе. Ведь именно там человек столкнулся с ним впервые, именно в природе он начал его изучать и старался понять, и делал первые попытки приручить и извлечь пользу для себя.

Конечно, когда мы говорим о природном проявлении электричества, то каждому на ум приходят молнии. Хотя сначала ещё было не понятно, что они собой представляют, а их электрическая природа была установлена только в 18 веке, когда началось активное изучение этого феномена в совокупности с ранее полученными знаниями. Кстати, по одной из версий, именно молнии повлияли на появления жизни на Земле, потому что без них бы не начался бы синтез аминокислот.

Внутри тела человека также есть электричество, без него бы не работала нервная система, а нервный импульс возникает в результате кратковременного напряжения. В океанах и морях живёт множество рыб, которые используют электричество для охоты и защиты. К примеру, электрический угорь может достигать напряжения до 500 Вольт, а у ската мощность разрядов составляет примерно 0,5 киловатт.

Некоторые виды рыб создают вокруг себя легкое электрическое поле, которое искажается от всех предметов в воде, так они могут с лёгкостью ориентироваться даже в очень мутной воде и имеют преимущества перед другими рыбами.

Так что с древних времён электричество часто встречалось в природе, без него невозможно было бы появление человека, а многие животные используют его для нахождения пропитания. Впервые человек столкнулся с этими явлениями именно в природном проявлении, это и подталкивало его на дальнейшие изучения.

Практическое применение электричества

Со временем человек продолжал накапливать знания об этом удивительном феномене. Электричество нехотя раскрывало свои тайны перед ним. Примерно с середины 19 века электричество начало проникать в жизнь человеческой цивилизации. В первую очередь оно стало использоваться для освещения, когда была изобретена лампочка. С его помощью стали передавать информацию на большие расстояния: появилось радио, телевидение, телеграф и т.д.

Но отдельное внимание заслуживает появление различных механизмов и устройств, которые приводились в движение с помощью электричества. И по сей день трудно представить работу какого-либо прибора или машины без электричества. Вся бытовая техника в современном доме работает только на электричестве.

Большим прорывом были и достижения в области добывания электричества, так начали создаваться всё более мощные электростанции, генераторы; для хранения были придуманы аккумуляторные батареи.

Электричество помогло сделать множество других открытий, оно помогает в науке и при исследовании новых вопросов. Некоторые технологии работают на основе электрических свойств, они используются в медицине, промышленности и, конечно, в быту.

Так что же такое электричество?

Как бы странно это не звучало, но повсеместное использование электричества не делает его более понятным. Все знают основные принципы работы, техники безопасности и всё. Одни люди признаются, что вообще не представляют, что такое электричество, другие не знают, почему оно работает именно так, а не иначе, третьи не понимают разницы между напряжением, мощностью и сопротивлением и подобных примеров множество. 

Проще всего понять природу электричества на молекулярном уровне. Все вещества состоят из молекул, все молекулы состоят из атомов, а каждый атом же, состоит из ядра, вокруг которого вращаются электроны.

Электроны (находящиеся далее других от ядра и имеющие меньшую с ним связь) могут переходить, отрываясь от одного атома к другому, от которого, в свою очередь освобождаются также, «свои» электроны, направляясь к соседнему.

Электроны и являются «переносчиками» электричества, а электрический ток – это непрерывное перемещение большого количества таких электронов.

Электротехника достигла больших успехов за время своего развития, однако, по-прежнему изучение её природы требует больших усилий, ведь многие задачи до сих пор остаются нерешёнными или те решения, которые найдены, не столь эффективны, как могли бы быть. В основе всего лежит превращение сил. Электрическую энергию сегодня можно легко преобразовать в световую, используя для освещения, с её помощью можно двигать различные механизмы и прочее.

Другой особенностью и главным преимуществом электрической перед другими видами энергии является её распространённость, неограниченность в пространстве. Электричество непрерывно сопровождает человека во всех сферах его жизни, считается примером эволюции и взглядов в будущее, а процесс развития техники непрерывно связан с развитием науки и новыми достижениями.

Это расширяет возможности человека, совершенствует его инструменты и гарантирует ему постоянное развитие и движение вперёд в будущее, а многие задачи со временем уже перестают казаться невыполнимыми.

Интересные факты об электричестве | ИГЭУ

 

 

Интересные факты об электричестве

Электрические угри могут поразить электрическим током напряжением около 500 вольт для самообороны и во время охоты.

Крупнейший в мире источник энергии для электростанций — это уголь. Сжигание угля в топках котлов нагревает воду, а поднимающийся пар вращает турбины генераторов.

Молния — разряд электричества в атмосфере, достигающий десятков тысяч вольт.

Электричество играет важную роль в здоровье человека. Мышечные клетки сердца сокращаются и производят электроэнергию. Электрокардиограмма (ЭКГ) измеряет ритм сердца благодаря этим импульсам.

В далекие 1880-е была «война токов» между Томасом Эдисоном (который придумал постоянный ток) и Николой Теслой (который открыл переменный ток). Оба хотели, чтобы их системы широко использовались, но победил переменный ток за простоту получения, больший КПД и меньшую опасность.

Интересно, что американский президент Бенджамин Франклин провел обширные исследования электричества в 18 веке и изобрел громоотвод.

Древние греки считали, что больше всего янтаря находят на побережье Северного моря. Именно там Фаэтон был повержен молнией на землю. Вероятно, что они видели связь между молнией и свойствами янтаря.

Словарь Академии Российской 1794 года издания так описывал когда-то электричество: «Вообще это означает действие вещества весьма текучего и тонкого, свойствами своими весьма различного от всех жидких известных тел; имеющее способность сообщаться почти со всеми телами, но с иными более, с другими менее, движущееся с необъятной скоростью и производящее своим движением весьма странные явления».

В конце 30-х годов 18 века член Парижской Академии Шарль Ф. Дюфе писал: «Возможно, что в конце концов удастся найти средство для получения электричества в больших масштабах и, следовательно, усилить мощь электрического огня, который во многих из этих опытов представляется… как бы одной природы с молнией».

В старину место разряда молнии в землю указывало грабителям скифских курганов, что именно здесь зарыты сокровища. Понятно, что молнии бьют в курганы, содержащие металлическую «начинку».

Аналогично, что на Руси место, куда попала молния, считалось лучшим для рытья колодца. Вероятность близкой воды была очень высока!

Не зря знаменитого Луиджи Гальвани, вовсе даже не физика, прозвали когда-то волшебником. Он заставлял шевелиться трупы телят, кошек, мышей и лягушек! В его честь названы химические источники тока — гальванические элементы.

Изучение статического электричества начиналось с помощью простейшего прибора: металлический диск, стеклянная ручка, кошка, сургучная подушка, палец. Именно с таким набором «инструментов» работал знаменитый Алессандро Вольта.

Вероятно, одной из первых электрических цепей была живая электрическая цепь, составленная из 180 взявшихся за руки солдат Людовика XV, которые содрогались от проходившего через них разряда Лейденской банки во время опыта при дворе короля.

Многие единицы физических величин в электротехнике носят имена ученых. Но интересно, что лишь один из них, а это был Георг Ом, дважды удостоен такой чести. Всем знакома единица измерения сопротивления «Ом», но оказывается, что в некоторых странах физическую величину, обратную сопротивлению — электропроводность, измеряют в величинах, называющихся «мо».

Казус, но! В 1827 году немец по имени Георг Ом, снискавший позднее всемирную славу, не сдал экзамен и не был допущен к преподаванию физики в школе из-за крайне низкого уровня знаний и отсутствия педагогических способностей.

Интересно, что к широкому использованию переменного тока, полученного еще в 30-х годах 19 века, приступили лишь спустя 70 лет! Передачу переменного тока с помощью высоковольтных ЛЭП пытались даже запретить законом. Среди противников переменного тока был и Томас Эдисон!

Знаете ли вы, что в некоторых районах Южной Америки и Африки, где не было проведено электричество, можно было внутри жилища увидеть закрытые стеклянные банки, наполненные светляками! Такие «лампы» давали на зависть яркий свет!

Ученые считают, что мы все могли неоднократно наблюдать движение частиц со скоростью, вдвое меньшей скорости света, по каналу диаметром в 1,27 см. Это всякий раз происходит в молнии!

Тематическую подборку подготовила Л.А. Попова

Объяснитель: Что такое электричество?

Что такое электричество?

Электричество — это форма энергии. Электричество — это поток электронов. Вся материя состоит из атомов, и у атома есть центр, называемый ядром. Ядро содержит положительно заряженные частицы, называемые протонами, и незаряженные частицы, называемые нейтронами. Ядро атома окружено отрицательно заряженными частицами, называемыми электронами. Отрицательный заряд электрона равен положительному заряду протона, а количество электронов в атоме обычно равно количеству протонов.Когда уравновешивающая сила между протонами и электронами нарушается внешней силой, атом может получить или потерять электрон. Когда электроны «теряются» из атома, свободное движение этих электронов образует электрический ток.

Электричество — это основная часть природы и одна из наиболее широко используемых форм энергии. Мы получаем электричество, которое является вторичным источником энергии, путем преобразования других источников энергии, таких как уголь, природный газ, нефть, ядерная энергия и другие природные источники, которые называются первичными источниками.Многие города были построены рядом с водопадами (основным источником механической энергии), которые вращали водяные колеса для выполнения работы. До того, как производство электроэнергии началось чуть более 100 лет назад, дома освещались керосиновыми лампами, продукты охлаждались в холодильниках, а комнаты обогревались дровяными или угольными печами. Начиная с эксперимента Бенджамина Франклина с воздушным змеем одной бурной ночью в Филадельфии, постепенно стали понятны принципы электричества. В середине 1800-х годов жизнь всех изменилась с изобретением электрической лампочки.До 1879 года электричество использовалось в дуговых лампах для наружного освещения. Изобретение лампочки использовало электричество для внутреннего освещения наших домов.

Как используется трансформатор?

Чтобы решить проблему отправки электричества на большие расстояния, Джордж Вестингауз разработал устройство, называемое трансформатором. Трансформатор позволял эффективно передавать электричество на большие расстояния. Это позволило подавать электроэнергию в дома и предприятия, расположенные вдали от электростанции.

Несмотря на его огромное значение в нашей повседневной жизни, большинство из нас редко задумывается, какой была бы жизнь без электричества. Тем не менее, как воздух и вода, мы склонны воспринимать электричество как должное. Ежедневно мы используем электричество для выполнения многих функций — от освещения и обогрева / охлаждения наших домов до источника энергии для телевизоров и компьютеров. Электричество — это управляемая и удобная форма энергии, используемая для производства тепла, света и энергии.

Сегодня Соединенные Штаты (U.S.) электроэнергетика создана для того, чтобы обеспечить наличие достаточного количества электроэнергии для удовлетворения всех требований спроса в любой конкретный момент.

Как вырабатывается электроэнергия?

Электрогенератор — это устройство для преобразования механической энергии в электрическую. Процесс основан на взаимосвязи между магнетизмом и электричеством. Когда провод или любой другой электропроводящий материал перемещается в магнитном поле, в проводе возникает электрический ток.Большие генераторы, используемые в электроэнергетике, имеют стационарный провод. Магнит, прикрепленный к концу вращающегося вала, расположен внутри неподвижного токопроводящего кольца, обернутого длинным непрерывным куском проволоки. Когда магнит вращается, он индуцирует небольшой электрический ток в каждом отрезке провода, когда он проходит. Каждая секция провода представляет собой небольшой отдельный электрический проводник. Все малые токи отдельных секций составляют один ток значительной величины.Этот ток используется для выработки электроэнергии.

Как турбины используются для выработки электроэнергии?

Электростанция общего пользования использует турбину, двигатель, водяное колесо или другую аналогичную машину для приведения в действие электрогенератора или устройства, преобразующего механическую или химическую энергию в электричество. Паровые турбины, двигатели внутреннего сгорания, газовые турбины, водяные турбины и ветряные турбины являются наиболее распространенными методами производства электроэнергии.

Большая часть электроэнергии в США производится паровыми турбинами.Турбина преобразует кинетическую энергию движущейся жидкости (жидкости или газа) в механическую энергию. Паровые турбины имеют ряд лопастей, установленных на валу, на который нагнетается пар, таким образом вращая вал, соединенный с генератором. В паровой турбине, работающей на ископаемом топливе, топливо сжигается в печи, чтобы нагреть воду в котле для производства пара.

Уголь, нефть (нефть) и природный газ сжигаются в больших печах для нагрева воды и образования пара, который, в свою очередь, воздействует на лопатки турбины.Знаете ли вы, что уголь — это самый крупный первичный источник энергии, используемый для производства электроэнергии в Соединенных Штатах? В 1998 году более половины (52%) из 3,62 триллиона киловатт-часов электроэнергии округа использовали уголь в качестве источника энергии.

Природный газ не только сжигается для нагрева воды для получения пара, но также может сжигаться для получения горячих дымовых газов, которые проходят непосредственно через турбину, вращая лопасти турбины для выработки электроэнергии. Газовые турбины обычно используются, когда электроэнергия пользуется большим спросом.В 1998 году 15% электроэнергии в стране производилось за счет природного газа.

Нефть также можно использовать для производства пара для вращения турбины. Остаточное жидкое топливо, продукт, очищенный из сырой нефти, часто является нефтепродуктом, используемым на электростанциях, которые используют нефть для производства пара. Нефть использовалась для выработки менее трех процентов (3%) всей электроэнергии, произведенной на электростанциях США в 1998 году.

Ядерная энергия — это метод, при котором пар производится путем нагрева воды в процессе ядерного деления.На атомной электростанции реактор содержит активную зону из ядерного топлива, в основном обогащенного урана. Когда на атомы уранового топлива попадают нейтроны, они делятся (расщепляются), выделяя тепло и новые нейтроны. В контролируемых условиях эти другие нейтроны могут поражать большее количество атомов урана, расщепляя большее количество атомов и т. Д. Таким образом, может происходить непрерывное деление с образованием цепной реакции с выделением тепла. Тепло используется для превращения воды в пар, который, в свою очередь, вращает турбину, вырабатывающую электричество.В 2015 году ядерная энергия используется для производства 19,47% всей электроэнергии страны.

По данным на 2013 год, гидроэнергетика составляет 6,8% производства электроэнергии в США. Это процесс, в котором проточная вода используется для вращения турбины, подключенной к генератору. В основном есть два основных типа гидроэлектрических систем, производящих электроэнергию. В первой системе проточная вода накапливается в резервуарах, созданных с помощью дамб. Вода падает через трубу, называемую напорным затвором, и оказывает давление на лопасти турбины, заставляя генератор производить электричество.Во второй системе, называемой руслом реки, сила речного течения (а не падающая вода) оказывает давление на лопасти турбины для производства электроэнергии.

Другие источники генерации

Геотермальная энергия исходит из тепловой энергии, скрытой под поверхностью земли. В некоторых районах страны магма (расплавленное вещество под земной корой) течет достаточно близко к поверхности земли, чтобы нагревать подземную воду до пара, который можно использовать на паротурбинных установках.По состоянию на 2013 год этот источник энергии вырабатывает менее 1% электроэнергии в стране, хотя, по оценке Управления энергетической информации США, девять западных штатов потенциально могут производить достаточно электроэнергии для обеспечения 20% потребностей страны в энергии.

Солнечная энергия получается из энергии солнца. Однако солнечная энергия недоступна постоянно, и она широко разбросана. Процессы, используемые для производства электроэнергии с использованием солнечной энергии, исторически были более дорогими, чем использование традиционных ископаемых видов топлива.Фотоэлектрическое преобразование генерирует электроэнергию непосредственно из солнечного света в фотоэлектрических (солнечных) элементах. Солнечно-тепловые электрические генераторы используют лучистую энергию солнца для производства пара для привода турбин. В 2015 году менее 1% электроэнергии в стране было произведено за счет солнечной энергии.

Энергия ветра получается путем преобразования энергии ветра в электричество. Энергия ветра, как и солнце, обычно является дорогостоящим источником производства электроэнергии. В 2014 году он использовался примерно 4.44 процента электроэнергии страны. Ветряная турбина похожа на типичную ветряную мельницу.

Биомасса (древесина, твердые бытовые отходы (мусор) и сельскохозяйственные отходы, такие как кукурузные початки и солома пшеницы, являются некоторыми другими источниками энергии для производства электроэнергии. Эти источники заменяют ископаемое топливо в котле. При сжигании древесины и отходов образуется пар, который обычно используется на обычных пароэлектрических установках.В 2015 году биомасса составляла 1,57 процента электроэнергии, вырабатываемой в Соединенных Штатах.

Электроэнергия, произведенная генератором, проходит по кабелям к трансформатору, который меняет напряжение с низкого на высокое напряжение. Электричество можно перемещать на большие расстояния более эффективно, используя высокое напряжение. Линии электропередачи используются для передачи электроэнергии на подстанцию. На подстанциях есть трансформаторы, которые преобразуют электричество высокого напряжения в электричество более низкого напряжения. От подстанции по распределительным линиям электричество доставляется в дома, офисы и фабрики, которым требуется электричество низкого напряжения.

Как измеряется электроэнергия?

Электричество измеряется в единицах мощности, называемых ваттами. Он был назван в честь Джеймса Ватта, изобретателя паровой машины. Один ватт — это очень небольшая мощность. Для получения мощности в одну лошадиную силу потребуется около 750 ватт. Киловатт представляет 1000 ватт. Киловатт-час (кВтч) равен энергии 1000 ватт, работающих в течение одного часа. Количество электроэнергии, производимой электростанцией или потребляемой потребителем в течение определенного периода времени, измеряется в киловатт-часах (кВтч).Киловатт-часы определяются путем умножения количества требуемых киловатт на количество часов использования. Например, если вы используете 40-ваттную лампочку 5 часов в день, вы израсходовали 200 ватт мощности или 0,2 киловатт-часа электроэнергии.

Подробнее о Электричество: История, электроника и известные изобретатели

Простая английская Википедия, бесплатная энциклопедия

Электричество — это наличие и поток электрического заряда. Используя электричество, мы можем передавать энергию способами, которые позволяют нам выполнять простые домашние дела. [1] Его самая известная форма — это поток электронов через проводники, такие как медные провода.

Слово «электричество» иногда используется в значении «электрическая энергия». Это не одно и то же: электричество — это среда передачи электроэнергии, как морская вода — среда передачи энергии волн. Предмет, через который проходит электричество, называется проводником. Медные провода и другие металлические предметы являются хорошими проводниками, позволяя электричеству проходить через них и передавать электрическую энергию.Пластик — плохой проводник (также называемый изолятором) и не пропускает много электричества через него, поэтому он остановит передачу электрической энергии.

Передача электроэнергии может происходить естественным путем (например, молния) или производиться людьми (например, в генераторе). Его можно использовать для питания машин и электрических устройств. Когда электрические заряды неподвижны, электричество называется статическим электричеством. Когда заряды движутся, они представляют собой электрический ток, иногда называемый «динамическим электричеством».Молния — самый известный и опасный вид электрического тока в природе, но иногда статическое электричество заставляет вещи слипаться и в природе.

Электричество может быть опасным, особенно вокруг воды, потому что вода является хорошим проводником, поскольку в ней есть примеси, такие как соль. Соль может способствовать протеканию электричества. С девятнадцатого века электричество использовалось во всех сферах нашей жизни. До тех пор это было просто любопытство, увиденное в молнии грозы.

Электрическая энергия может быть создана, если магнит проходит близко к металлической проволоке. Это метод, используемый генератором. Самые большие генераторы находятся на электростанциях. Электроэнергия также может быть высвобождена путем объединения химикатов в банке с двумя разными видами металлических стержней. Это метод, используемый в батарее. Статическое электричество может быть создано за счет трения между двумя материалами — например, шерстяной шапочкой и пластиковой линейкой. Это может вызвать искру. Электроэнергия также может быть создана с использованием энергии солнца, как в фотоэлектрических элементах.

Электроэнергия поступает в дома по проводам от мест, где она производится. Он используется в электрических лампах, электрических обогревателях и т. Д. Многие приборы, такие как стиральные машины и электрические плиты, используют электричество. На заводах электрическая энергия приводит в действие машины. Людей, которые имеют дело с электричеством и электрическими устройствами в наших домах и на фабриках, называют «электриками».

Идея электричества или тот факт, что янтарь приобретает способность притягивать световые объекты при трении, могла быть известна греческому философу Фалесу из Милета, который жил около 600 г. до н. Э.С.

Другой греческий философ, Теофраст, заявил в трактате, что этой силой обладают другие субстанции.

Первое научное исследование электрических и магнитных явлений, однако, появилось только в 1600 году нашей эры, благодаря исследованиям, проведенным английским врачом Уильямом Гилбертом. Гилберт был первым, кто применил термин электрический (греч., электрон, , «янтарь») к силе, которая проявляется веществами после их втирания. Он также различал магнитное и электрическое действие.

Бен Франклин много времени уделял исследованиям в области электричества. Его знаменитый эксперимент с воздушным змеем доказал, что атмосферное электричество (вызывающее явления молнии и грома) идентично электростатическому заряду лейдановской банки. Франклин разработал свою теорию о том, что электричество — это единая «жидкость», существующая во всей материи, и что его эффекты можно объяснить избытком и нехваткой этой жидкости.

Есть два типа электрических зарядов, которые толкают и притягивают друг друга: положительные заряды и отрицательные заряды.Электрические заряды толкают или тянут друг друга, если они не соприкасаются. Это возможно, потому что каждый заряд создает вокруг себя электрическое поле . Электрическое поле — это область, окружающая заряд. В каждой точке около заряда электрическое поле указывает в определенном направлении. Если в эту точку поместить положительный заряд, он будет толкаться в этом направлении. Если в эту точку поместить отрицательный заряд, он будет выталкиваться в прямо противоположном направлении.

Он работает как магнит, и на самом деле электричество создает магнитное поле, в котором одинаковые заряды отталкиваются друг от друга, а противоположные — притягиваются.Это означает, что если вы поместите два негатива близко друг к другу и отпустите их, они разойдутся. То же верно и для двух положительных зарядов. Но если вы поместите положительный заряд и отрицательный заряд близко друг к другу, они потянутся друг к другу. Краткий способ запомнить эту фразу: противоположности привлекают, отталкивают.

Вся материя во Вселенной состоит из крошечных частиц с положительным, отрицательным или нейтральным зарядом. Положительные заряды называются протонами, а отрицательные — электронами.Протоны намного тяжелее электронов, но оба они имеют одинаковое количество электрического заряда, за исключением того, что протоны положительны, а электроны отрицательны. Поскольку «противоположности притягиваются», протоны и электроны слипаются. Несколько протонов и электронов могут образовывать более крупные частицы, называемые атомами и молекулами. Атомы и молекулы все еще очень крошечные. Они слишком малы, чтобы их можно было увидеть. Любой большой объект, такой как ваш палец, содержит больше атомов и молекул, чем кто-либо может сосчитать. Мы можем только оценить, сколько их.

Поскольку отрицательные электроны и положительные протоны слипаются, образуя большие объекты, все большие объекты, которые мы можем видеть и чувствовать, электрически нейтральны. Электрически — это слово, означающее «описывающее электричество», а нейтральный — слово, означающее «сбалансированный». Вот почему мы не чувствуем, как объекты толкают и тянут нас на расстоянии, как если бы все было электрически заряжено. Все большие объекты электрически нейтральны, потому что в мире одинаковое количество положительного и отрицательного заряда.Можно сказать, что мир точно сбалансирован или нейтрален. Ученые до сих пор не знают, почему это так.

Чертеж электрической цепи: ток (I) течет от + вокруг цепи обратно к — Электричество передается по проводам.

Электроны могут перемещаться по всему материалу. Протоны никогда не движутся вокруг твердого объекта, потому что они такие тяжелые, по крайней мере, по сравнению с электронами. Материал, который позволяет электронам перемещаться, называется проводником . Материал, который плотно удерживает каждый электрон на месте, называется изолятором . Примеры проводников: медь, алюминий, серебро и золото. Примерами изоляторов являются резина, пластик и дерево. Медь очень часто используется в качестве проводника, потому что это очень хороший проводник, а ее очень много в мире. Медь содержится в электрических проводах. Но иногда используются и другие материалы.

Внутри проводника электроны подпрыгивают, но не могут долго двигаться в одном направлении. Если внутри проводника создается электрическое поле, все электроны начнут двигаться в направлении, противоположном направлению, на которое указывает поле (поскольку электроны заряжены отрицательно).Батарея может создавать электрическое поле внутри проводника. Если оба конца куска провода подключены к двум концам батареи (называемые электродами , ), образовавшаяся петля называется электрической цепью . Электроны будут течь по цепи и вокруг нее, пока батарея создает электрическое поле внутри провода. Этот поток электронов по цепи называется электрическим током .

Проводящий провод, используемый для передачи электрического тока, часто оборачивают изолятором, например резиной.Это потому, что провода, по которым проходит ток, очень опасны. Если человек или животное коснутся оголенного провода, по которому проходит ток, они могут получить травму или даже умереть, в зависимости от того, насколько сильным был ток и сколько электроэнергии он передает. Будьте осторожны с электрическими розетками и оголенными проводами, по которым может проходить ток.

Можно подключить электрическое устройство к цепи, чтобы электрический ток проходил через устройство. Этот ток будет передавать электрическую энергию, заставляя устройство делать то, что мы хотим от него.Электрические устройства могут быть очень простыми. Например, в лампочке ток переносит энергию через специальный провод, называемый нитью накала, который заставляет ее светиться. Электрические устройства тоже могут быть очень сложными. Электрическая энергия может использоваться для привода электродвигателя внутри такого инструмента, как дрель или точилка для карандашей. Электрическая энергия также используется для питания современных электронных устройств, включая телефоны, компьютеры и телевизоры.

Некоторые термины, связанные с электричеством [изменить | изменить источник]

Вот несколько терминов, с которыми человек может столкнуться, изучая, как работает электричество.Изучение электричества и того, как оно делает электрические цепи возможными, называется электроникой. Есть область инженерии, называемая электротехникой, где люди придумывают новые вещи, используя электричество. Им важно знать все эти термины.

  • Ток — это количество протекающего электрического заряда. Когда 1 кулон электричества проходит где-то за 1 секунду, ток составляет 1 ампер. Чтобы измерить ток в одной точке, мы используем амперметр.
  • Напряжение, также называемое «разностью потенциалов», представляет собой «толчок» за током.Это количество работы, которую может выполнить электрический заряд на один электрический заряд. Когда 1 кулон электричества имеет 1 джоуль энергии, он будет иметь электрический потенциал 1 вольт. Для измерения напряжения между двумя точками воспользуемся вольтметром.
  • Сопротивление — это способность вещества «замедлять» течение тока, то есть уменьшать скорость, с которой заряд проходит через вещество. Если электрическое напряжение в 1 вольт поддерживает ток в 1 ампер через провод, сопротивление провода составляет 1 Ом — это называется законом Ома.Когда течению тока противостоит, энергия «расходуется», что означает, что она преобразуется в другие формы (например, свет, тепло, звук или движение)
  • Электрическая энергия — это способность выполнять работу с помощью электрических устройств. . Электрическая энергия является «сохраняемым» свойством, что означает, что она ведет себя как вещество и может перемещаться с места на место (например, по передающей среде или в батарее). Электрическая энергия измеряется в джоулях или киловатт-часах (кВтч).
  • Электроэнергия — это скорость, с которой электрическая энергия используется, хранится или передается.Расход электроэнергии по линиям электропередачи измеряется в ваттах. Если электрическая энергия преобразуется в другую форму энергии, она измеряется в ваттах. Если часть его преобразуется, а часть хранится, она измеряется в вольт-амперах, а если она хранится (например, в электрических или магнитных полях), она измеряется в реактивной вольт-амперной энергии.
Паровая машина в центре приводит в движение два генератора по бокам, конец XIX века.

Электроэнергия в основном вырабатывается на электростанциях.Большинство электростанций используют тепло для превращения воды в пар, который превращает паровой двигатель. Турбина парового двигателя вращает машину, называемую «генератором». Спиральные провода внутри генератора вращаются в магнитном поле. Это заставляет электричество течь по проводам, неся электрическую энергию. Этот процесс называется электромагнитной индукцией. Майкл Фарадей открыл, как это сделать.

Для кипячения воды для генераторов можно использовать многие источники тепла. Источники тепла могут использовать возобновляемые источники энергии, в которых поставки тепловой энергии никогда не заканчиваются, и невозобновляемые энергоресурсы, в которых поставки в конечном итоге будут израсходованы.

Иногда естественный поток, такой как энергия ветра или воды, может использоваться непосредственно для вращения генератора, поэтому нагрев не требуется.

Что такое электричество и как оно работает?

Электричество приводит в действие многие важные вещи в нашей повседневной жизни, от холодильников, которые хранят нашу еду в холоде, до ламп, которые освещают наши дома. Легко принять удобство, которое предлагает электричество, как должное, особенно когда оно достигается щелчком переключателя или нажатием кнопки.Но большинство из нас полагается на электричество, чтобы поддерживать свои дома в рабочем состоянии, поэтому стоит знать, что такое электричество и как оно работает. Чем больше вы знаете об этом чудесном источнике энергии, тем больше вероятность, что вы лучше поймете свой счет за электричество.

Что такое электричество и из чего оно сделано?

Электричество — это поток электрической энергии, вызванный движением крошечных частиц, называемых электронами. Но ответ на вопрос «из чего сделано электричество?» это не электроны.Эти заряженные частицы просто высвобождают электрическую энергию, когда движутся определенным образом. Итак, чтобы полностью понять электричество, вам нужно понять электроны и строительные блоки материи: атома .

Каждый атом состоит из трех основных составных частей:

  1. Протоны — положительно заряженные частицы
  2. Нейтроны — частицы без заряда
  3. Электроны — отрицательно заряженные частицы

Протоны и нейтроны остаются в центре атома, или в ядре , в то время как электроны вращаются вокруг ядра.Как правило, противоположные заряды притягиваются, а одноименные — отталкиваются. Положительно заряженное ядро ​​притягивает отрицательно заряженные электроны, удерживая их на орбите. У сбалансированного атома такое же количество протонов, как и электронов.

Чем ближе электроны к ядру, тем сильнее притяжение. Но когда электроны дальше от ядра, они могут быть освобождены от своей орбиты достаточно сильной внешней силой. Теперь свободный электрон с его отрицательным зарядом можно толкать или тянуть в поисках нового атома.И при контакте его отрицательный заряд отталкивает другой электрон в виде эффекта домино, известного как электрический ток .

Электрическая энергия — это движущийся заряд, когда эти электроны текут от атома к атому. Некоторые атомы, такие как медь, имеют внешние (или валентные) электроны, которые легче высвободить и поменять местами. Такие материалы, как медь, известны как проводники , и, сделав провода из токопроводящих материалов, мы можем перемещать электрический ток на большие расстояния — и питать ваш дом.

Как производится электричество?

Один из интересных фактов об электричестве заключается в том, что это вторичный источник энергии. Это означает, что он создается за счет преобразования других источников энергии. Чтобы преобразовать другую форму энергии в электричество, требуется устройство, называемое электромагнитным генератором.

Существуют различные типы электромагнитных генераторов, но генераторы с турбинным приводом являются наиболее распространенными. Есть даже различия в типах турбин, а также в видах топлива, которое они потребляют для выработки электроэнергии.Однако все они работают в основном одинаково: внешняя движущая сила (кинетическая энергия) перемещает турбину, которая вращает электромагнитный вал внутри цилиндра, сделанного из проволочных катушек. У магнитов есть заряд, и именно этот заряд отделяет электроны от их атомов и создает электрический ток.

Источники электрической энергии

Нет единственного способа производить электричество. Тремя основными категориями энергии для производства электроэнергии являются ископаемое топливо (уголь, природный газ и нефть), ядерная энергия и возобновляемые источники энергии.Ниже приведены несколько различных источников энергии и способы их использования в процессе производства:

  • Использование угля для производства электроэнергии. Уголь превращается в порошок и сжигается, образуя при этом пар. Затем этот пар проходит через турбину, которая приводит в действие генератор, вырабатывающий электричество.
  • Производство электроэнергии с помощью природного газа. Сжигается природный газ, и образующиеся горячие газы приводят в действие турбогенератор.
  • Преобразование ядерной энергии в электричество. Атомные электростанции используют процесс, называемый ядерным делением, для столкновения нейтронов с атомами урана. Ядро атома урана распадается при столкновении, выделяя много тепла, которое затем используется для кипячения воды для образования пара. Этот пар вращает турбину, вырабатывающую электричество.
  • Производство электроэнергии с помощью энергии ветра. Дующий ветер вращает большой набор лопастей на ветряной турбине. Эти лопасти затем вращают вал, который соединен с генератором.
  • Производство электроэнергии с помощью проточной воды. Как электричество производится из воды? Гидроэлектроэнергия производится путем использования силы стремительной воды для вращения лопастей гидроэлектрической турбины. Турбина соединена валом с генератором, и вырабатывается электричество.

Как работает электричество?

Электроэнергия должна перемещаться по замкнутой цепи, что означает, что она должна иметь полный путь, чтобы течь из одного места в другое. Каждый раз, когда вы включаете выключатель в своем доме, вы замыкаете цепь и позволяете электричеству течь к данному прибору.Выключив тот же выключатель питания, вы снова включите цепь и ограничите поток электричества.

Откуда у вас электричество

Как правило, источник электроэнергии зависит от конкретной компании, обслуживающей ваш адрес. Например, некоторые коммунальные компании и поставщики энергии могут владеть электростанциями, вырабатывающими их электроэнергию, в то время как другие могут решить приобрести ее у стороннего поставщика.

Важно отметить, что поставщик электроэнергии отличается от коммунального предприятия.Поставщик электроэнергии может помочь вам обеспечить ваши тарифы на электроэнергию, а также может предоставить другие услуги. С другой стороны, коммунальное предприятие владеет и управляет проводами, которые подводят электричество к вашему дому.

В периоды низкого спроса дополнительная электроэнергия может генерироваться и храниться до тех пор, пока спрос снова не восстановится. Есть много способов хранения электричества, например, сжатый воздух, батареи и маховики.

Как электричество попадает в ваш дом?

Потребляемая вами электроэнергия должна пройти некоторое расстояние (и сделать несколько пит-стопов), прежде чем вы сможете ее использовать.Важно знать, как электричество попадает в ваш дом, поскольку это поможет вам лучше понять свои затраты на электроэнергию и сумму, которую вы платите за каждый месяц.

Вот путь, по которому должно пройти электричество, чтобы запитать ваш дом:

  1. Электроэнергия вырабатывается на электростанции.
  2. Трансформатор увеличивает напряжение.
  3. Электроэнергия транспортируется по линиям электропередачи.
  4. Местный трансформатор понижает напряжение.
  5. Распределительные линии приближают электроэнергию к потребителю.
  6. Третий трансформатор еще больше снижает напряжение.
  7. Ваша электроэнергия готова к использованию, и она проходит по линиям электропередач по соседству через ваш электросчетчик в ваш дом.

Максимально эффективное использование электроэнергии

Теперь, когда вы понимаете, как работает электричество, у вас есть представление о том, сколько уходит на его создание и транспортировку в ваш дом.Стоимость электроэнергии часто зависит от стоимости первичных источников, таких как уголь или природный газ, и их доступности. Обслуживание оборудования также требует труда и ресурсов. И даже самые современные линии передачи — медный провод, движущийся электронами со скоростью света — теряют небольшое количество энергии по пути, что может быть расходом, который ложится на плечи потребителей.

Вы также можете поближе познакомиться с тем, как вы используете электричество. Вы можете обнаружить, что есть несколько способов, которыми вы тратите энергию по всему дому, или что ваше среднее энергопотребление в доме выше среднего по стране.Затем эту информацию можно использовать, чтобы ограничить потребление электроэнергии и сэкономить на ежемесячных расходах.

Ищете практическое занятие, чтобы узнать больше о том, как вырабатывается, транспортируется и хранится электроэнергия? Посмотрите наш план уроков по электричеству и производству электроэнергии или ознакомьтесь с некоторыми другими нашими энергетическими мероприятиями для детей.

Что такое электричество? — Чудеса физики — UW – Madison

Большинство людей знают, что такое электричество. Он выходит из розеток в наших домах и заставляет свет включаться.Если вы прикоснетесь к нему, это может повредить вам. Это почему? Почему вы испытываете шок, когда дотрагиваетесь до дверной ручки? Молния похожа на электричество. Это почему?

Все в мире состоит из крошечных частиц, называемых атомами. Они настолько малы, что их невозможно увидеть даже в микроскоп. Атомы состоят из двух видов электрического заряда. В середине атомов находятся положительные заряды, а с внешней стороны — отрицательные. В большинстве случаев положительных зарядов столько же, сколько отрицательных.У каждого положительного заряда есть отрицательный партнер. Однако иногда бывает слишком много зарядов одного вида. Эти дополнительные расходы идут на поиски компаньона. Эти отрицательные заряды называются электронами и не удерживаются в атоме очень плотно, поэтому им легко перемещаться. Движущиеся электроны составляют то, что мы называем электричеством. Есть два вида электричества: статическое и текущее.

Статическое электричество — это то, что заставляет ваши волосы встать дыбом, когда вы трете о них воздушный шар или трясете дверной ручкой.В статическом электричестве электроны перемещаются механически (т. Е. Когда кто-то трет два предмета друг о друга). Когда вы волочите ногу по ковру, с ковра соскребается дополнительный заряд, который накапливается на вашем теле. Когда вы касаетесь дверной ручки, весь заряд хочет покинуть вас и перейти к дверной ручке. Вы видите искру и получаете ток, когда электроны покидают вас.

Молния является результатом статического электричества. Во время грозы отрицательно заряженные частицы могут накапливаться в облаке. Электроны отталкиваются друг от друга; они действительно не любят друг друга и хотят уйти друг от друга как можно дальше.Наибольшее расстояние, на которое они могут уйти друг от друга, — это войти в землю, потому что это самая большая вещь вокруг. Когда электроны прыгают в группу, мы видим молнию. Это похоже на большую искру. Бенджамин Франклин выяснил, что молния может быть очень опасной. У молнии более 20 миллионов вольт!

В современном электричестве электричество должно течь по замкнутому контуру, называемому контуром. Если петля где-нибудь разорвется, электричество не пройдет. Это похоже на кровь в теле.Кровь прокачивается сердцем по артериям и в конечном итоге возвращается к сердцу по венам. В цепи электрические заряды — это кровь, а провода — это артерии и вены. Электрические заряды обладают определенным количеством энергии. Мера этой энергии называется напряжением (Вольт). Батарея фонарика имеет около 1 ½ вольт, а ваша настенная розетка — около 120 вольт. Электроны, движущиеся по цепи, называются током. Вы можете получить удар электрическим током, когда через ваше тело протекает большой ток — много электронов.

Электроны в цепи должны выталкиваться чем-то, например батареей. Если вы посмотрите на один конец батареи, есть знак +, где находятся дополнительные положительные заряды. На другом конце, где стоит знак -, есть дополнительные отрицательные заряды (электроны). Когда мы включаем фонарик, электроны вылетают из батареи по проводам и попадают туда, где находятся положительные заряды. По пути они пробегают провод внутри лампочки. Тонкий провод внутри колбы сильно нагревается и зажигает свет.

Think Energy — Часто задаваемые вопросы об электроэнергии

Электричество окружает нас повсюду, куда бы мы ни пошли, и буквально питает наш современный мир. Хотя подавляющее большинство людей ежедневно используют электричество и не могут представить себе жизнь без него, многие люди не знают, что такое электричество и как работает электричество. Здесь, в Think Energy, мы хотели бы ответить на некоторые часто задаваемые вопросы об электричестве, потому что, хотя технологии в мире электричества развиваются быстрее, чем когда-либо, полезно знать об электричестве в его простейшей, самой базовой форме.

Что такое электричество ? Из чего сделано электричество?

Проще говоря, электричество — это поток электрического заряда. [1] Электричество — это тип энергии, который может накапливаться в одном месте или перемещаться из одного места в другое. [2]

Что такое электрический заряд ?

Электрический заряд, также называемый электрическим зарядом, переносится электронами и протонами внутри атома. Есть два типа электрических зарядов: положительный и отрицательный.[3]

Что такое электрическое поле?

Электрическое поле, также называемое электрическим полем, представляет собой электрически активную область вокруг электрических зарядов. [4]

Что такое статическое электричество?

Есть разные виды электричества, точнее два. Первый — статическое электричество. Статическое электричество — это электричество, которое собирается в одном месте. [5]

Сколько сейчас электричества ?

Текущее электричество — второй из двух видов электричества.Текущее электричество — это электричество, которое перемещается из одного места в другое. [6]

Что такое электрический ток?

Электрические токи — это просто еще один способ обозначить текущее электричество. Электрические токи, как и текущее электричество, означают перемещение электрической энергии из одного места в другое посредством движения электронов. [7]

Как производится электричество ?

Электростанции преобразуют такие ресурсы, как нефть, уголь, вода, солнце, ветер и природный газ, в электричество.Чтобы это преобразование произошло, вода или пар под высоким давлением активируют турбину, прикрепленную к генератору. Это вращательное движение вращает большой магнит внутри проволочных петель. Когда магнит вращается внутри этих катушек с проволокой, вырабатывается электричество. [8]

Как работает электричество ?

Электроэнергия, произведенная на электростанции, доставляется на подстанцию ​​по электросети высоковольтных линий электропередачи. Здесь напряжение снижается, и электричество поступает в ваш дом по воздушным или подземным распределительным линиям.[9]

Хотя это лишь некоторые из многих вопросов, которые кто-то может задать об электричестве, все они стоит знать и повторять. Think Energy верит в постоянное обучение своих клиентов по вопросам энергетики, какими бы базовыми или сложными они ни были.


[1] https://learn.sparkfun.com/tutorials/what-is-electricity

[2] http://www.explainthatstuff.com/electricity.html

[3] http://www.livescience.com/53144-electric-charge.html

[4] http: // www.exploainthatstuff.com/electricity.html

[8] https://www.pacificpower.net/ed/se/hew.html

Что такое электричество? — Урок

Предпосылки и концепции урока для учителей

Приготовьтесь показать учащимся слайд из 19 «Что такое электричество?» Презентация, файл PowerPoint®, руководствуясь примечаниями к слайду ниже. Обратите внимание на вопросы / ответы критического мышления, включенные в примечания к слайдам 8, 10 и 12.Для двух простых демонстраций в классе имейте под рукой воду и контейнеры, а также несколько надутых воздушных шаров.

Электричество — это поток или присутствие заряженных частиц (обычно электронов). Напомните учащимся о двух типах заряженных частиц в атоме (протонах и электронах). Ожидайте, что учащиеся уже осознают важность электричества, что можно развивать, обсуждая в классе или творчески записывая, на что может быть похож день без электричества (как показано на слайдах 1-2).

(Слайд 1) Пока ученики смотрят на изображения башни электропередач и стены из телевизоров в магазине, спросите их: Как бы изменилась ваша жизнь без электричества?

(слайд 2) Подсказка: в вашем городе только что отключилось электричество. Какие действия из вашей повседневной жизни были бы невозможны без электричества? Используйте этот гипотетический сценарий, чтобы начать обсуждение в классе или творческое письменное упражнение. Например, проведите мозговой штурм в классе, а затем дайте учащимся 15–20 минут, чтобы они могли написать самостоятельно.

Почему мы так беспокоимся об электричестве? Смысл крючков на первых двух слайдах состоит в том, чтобы подчеркнуть, что мы постоянно используем электричество и что наша жизнь резко изменилась бы, если бы у нас не было доступа к электричеству. Таким образом, понимание электричества важно в нашей повседневной жизни.

(Слайд 3) Превью темы: электричество, проводники, изоляторы, ток, статический заряд.

(Слайд 4) Что такое атомы? Ожидайте, что структура атома станет обзором для студентов.Если нет, уделите больше времени этой теме. Атомы — основная единица всех элементов материи. Они состоят из электронов, протонов и нейтронов. Центральное ядро ​​содержит протоны и нейтроны.

(Слайд 5) Что такое электроны? Электрический заряд — это физическое свойство материи, которое заставляет ее испытывать силу, когда она находится рядом с другим электрически заряженным веществом. Существуют два типа электрических зарядов — положительный и отрицательный. Положительно заряженные вещества отталкиваются от других положительно заряженных веществ, но притягиваются к отрицательно заряженным веществам; отрицательно заряженные вещества отталкиваются от отрицательно заряженных веществ и притягиваются к положительно заряженным веществам.Объект заряжен отрицательно, если в нем избыток электронов; в противном случае он заряжен положительно или не заряжен (нейтральный).

(Слайд 6) Студенты могут не иметь представления о потоке. При необходимости внесите ясность в простую демонстрацию: попросите учащихся перелейть воду из одного контейнера в другой, чтобы получить осязаемое понимание концепции потока. Ключевым моментом является то, что поток — это движение ! Технически электричество — это поток любых заряженных частиц. Мнемоническое устройство «ЭЛЕКТРИЧЕСТВО и ЭЛЕКТРОНЫ» может помочь учащимся запомнить.

(Слайд 7) Проводники — это материалы, которые хорошо проводят электричество! В проводниках электроны могут свободно перемещаться и легко течь. Это не относится к изоляторам, в которых электроны более тесно связаны с ядрами (что мы обсудим далее). Когда подается ток, электроны движутся в том же направлении.

При подготовке к контрольным вопросам попросите учащихся подумать о других металлах, о которых они знают. Вы можете обсудить свойства металлов (гибкость / пластичность, металлический цвет), чтобы проверить знания учащихся о материалах.

(Слайд 8) Металлы, например медь, являются проводниками. Медь — отличный проводник электричества.

Вопрос критического мышления: как мы можем проверить, является ли что-то хорошим проводником? Ответ: Подключив провод из материала, который мы хотим проверить, к низковольтной батарее с подключенной к ней лампочкой. (Может быть полезно нарисовать набросок этой установки на классной доске.) Если проверяемый провод является хорошим проводником, лампочка загорается.

(Слайд 9) В изоляторах электроны более тесно связаны с ядрами (множественное число для ядра) атомов.Итак, в этих материалах электроны не текут легко. Какие бытовые примеры? Например, в большинстве наших домов есть изоляция из стекловолокна, которая предотвращает утечку тепла изнутри наружу через стены наших домов, и пену, которая не дает газировке согреться при жарких летних температурах воздуха.

Подумайте о мерах безопасности для электриков. Где бы вы хотели поставить изоляторы? (Ответ: В любом месте вокруг проводников, к которым вы можете прикоснуться, например, на проводах, переносящих электричество.)

Являются ли слова «проводник» и «изолятор» антонимами или синонимами? (Ответ: Антонимы или противоположности.)

Считаются ли изоляторы, такие как стекло, дерево и резина, металлами или неметаллами? Подумайте о периодической таблице и основных элементарных компонентах этих материалов (кремний для стекла, углерод для дерева, углерод и кислород для резины). (Ответ: Неметаллы.)

(Slide 10) Резина — пример хорошего изолятора. Вопрос критического мышления: мы знаем, что изоляторы и проводники противоположны.Как вы думаете, резина — хороший проводник или плохой? Почему? (Ответ: Поскольку резина — хороший изолятор, она должна быть плохим проводником, потому что у них противоположные свойства.) Когда учащиеся ответят правильно, щелкните мышью, чтобы увидеть пулю «плохой проводник».

(Слайд 11) Правильно ли на фотографии указано, какой проводник, а какой изолятор? (Ответ: Да, это изображение обозначено правильно. Медь — это металл; большинство металлов являются хорошими проводниками. Ток не проходит легко через резину, что делает ее хорошим изолятором для обертывания медной проволоки.)

(Слайд 12) Далее мы обсудим ток, который представляет собой поток электричества / электронов. Мы часто используем воду для понимания электрических систем из-за их сходства. Например, вода может создавать давление, как в плотине, и течь, как в реке. Так же действует и электричество.

Вопрос о критическом мышлении: какие примеры того, как мы используем аналогии для объяснения более сложных научных явлений? Примеры: люди используют такие истории, как греческие мифы, для объяснения времен года и восхода / захода солнца.Мы часто думаем о материалах и животных как о человеческих «личностях» и поведении, например, о том, что проводники «направляют» и перемещают электроны.

(Слайд 13) В водных системах ток — это поток воды. В электрических системах ток — это поток электронов. Обратитесь к рисункам на этом слайде, когда вы относитесь к демонстрации расхода воды.

(Слайд 14) Рассмотрим статический заряд. Как это можно объяснить на примере нашей водной системы? Запруденная вода собирается (как в плотине), но не может течь.Статический заряд или статическое электричество собирает заряд, но не может течь. Можно подумать о мнемоническом приеме: «СТАТИЧЕСКОЕ электричество СТАТИОННО» — оно не движется. Ситуация, когда электроны не могут перемещаться между атомами. Таким образом, заряд накапливается аналогично тому, как вода собирается за плотиной.

(Слайд 15) Показывая этот слайд, попросите учащихся потереть надутые воздушные шары о волосы на голове. Спросите их: от чего у вас волосы встают дыбом? Объекты могут получать или терять электроны.При трении шара о волосы больше электронов попадает на шар из волос. Волосы теряют электроны, таким образом становясь положительно заряженными (чистый положительный заряд). Воздушный шар заряжается отрицательно (чистый отрицательный заряд). Что означает термин «нетто»? (Ответ: «Нетто» означает «всего».)

(Slide16) Давайте рассмотрим некоторые обзорные вопросы и ответы. (Примечание: щелкните, чтобы увидеть ответы.) Как вы думаете, легче ли протекает электрический ток в проводниках или изоляторах? (Ответ: электрический ток легче течет в проводниках, потому что электроны лучше движутся в проводниках.Статическое электричество легче накапливается в изоляторах, потому что электроны не могут хорошо двигаться в изоляторах.)

(Слайд 17) Как мы называем поток заряженных частиц? (Ответ: Электричество.) Имеет ли значение, положительные или отрицательные частицы? (Ответ: Нет, но обычно электричество — это поток электронов — отрицательный заряд.)

(Слайд 18) Мы показали, что медь является проводником. Назовите еще трех проводников. (Ответы: золото, серебро и алюминий.) Где электрик может использовать изолятор? Какой это будет материал? Зачем электрику использовать изолятор? (Ответ: Электрики используют изоляционный материал вокруг электрических проводов и ручек инструментов и другого оборудования.Часто в качестве материала электрики используют резину. Изоляторы защищают электриков от поражения электрическим током, потому что ток не очень хорошо проходит через изоляторы.)

(Слайд 19) Если бы вы хотели спроектировать электрическую систему, накапливающую статическое электричество, вы бы использовали проводник или изолятор? Почему? (Ответ: Чтобы построить систему накопления статического электричества, вам нужно использовать изолятор, потому что изоляторы уменьшают поток электронов.)

(Если учащиеся знакомы с аналогиями, что является частью учебной программы шестого класса во многих штатах, используйте вопрос по аналогии.В противном случае учащимся может потребоваться помощь в том, как работают аналогии.) Завершите аналогию: река ЕСТЬ ДЛЯ молекул воды КАК провод к ______. (Ответ: Электроны.)

Оценка

Оценка перед уроком

Обсуждение : Как представлено в разделе «Введение / Мотивация», научите учащихся осознать, что все пять предложений на классной доске связаны с электричеством. Кроме того, попросите учащихся выбрать, какое из предложений касается инженеров и электричества.Затем попросите учащихся написать свои собственные сценарии с участием электриков и инженеров. Может быть полезно посоветовать инженерам продумать, спроектировать, создать и контролировать способы использования электричества.

Оценка после введения

Вопросы критического мышления : В рамках курса «Что такое электричество?» Презентация, вопросы и ответы на критическое мышление включены в примечания к слайдам 8, 10 и 12. Они также подходят в качестве вопросов классной доски или рукописных вопросов викторины.

Контрольные вопросы: Проверьте понимание учащимися основ электричества, задав им семь контрольных вопросов в конце урока «Что такое электричество?». Презентация (слайды 16-19). Щелкните, чтобы увидеть ответ после каждого вопроса. В качестве альтернативы, аналогичные вопросы представлены в приложении к рабочему листу проверки электроэнергии перед выполнением соответствующего действия.

Итоги урока Оценка

Tiny Pen Pals : Чтобы проверить понимание электрических терминов, дайте ученикам задание Particle Pen Pals Assignment, в котором им предлагается использовать термины, изученные на уроке, в контексте для описания электричества посредством рассказывания историй: Представьте, что вы электрон, а вы напишите письмо любимому протону, сообщая ему / ей, что вы уезжаете. В этом творческом письменном упражнении учащихся просят использовать по крайней мере четыре из следующих терминов, представленных в банке слов в раздаточном материале: электричество, атом, статическое электричество, протон, нейтрон, электрон, проводник, изолятор и ток.

Почему я получил удар электрическим током? (для детей)

Были ли вы когда-нибудь «шокированы», когда дотрагивались до дверной ручки, дверной ручки автомобиля или фонтана с водой? Ой! Что ж, тогда вы уже кое-что знаете о влиянии статического электричества .

Шокирующий атом

Вы могли бы не знать, как возникает статическое электричество. Все начинается с крошечной штуки, называемой атомом . Все в мире состоит из атомов — от карандаша до носа. Атом настолько мал, что его невозможно увидеть глазами — понадобится специальный микроскоп. Думайте об атомах как о строительных блоках для всего в мире.

Каждый крошечный атом состоит из еще более мелких вещей:

  • протонов (скажем: PRO-tahnz), которые имеют положительный заряд
  • электронов (скажем: ih-LEK trahnz), которые имеют отрицательный заряд
  • нейтронов (скажем: NOO-trahns), которые не имеют заряда

В большинстве случаев атомы имеют одинаковое количество протонов и электронов, а заряд атома нейтральный (не положительный или отрицательный).Статическое электричество создается, когда положительный и отрицательный заряды не сбалансированы. Протоны и нейтроны мало двигаются, но электроны любят прыгать повсюду!

Когда у объекта (или человека) есть лишние электроны, он имеет отрицательный заряд. Вещи с противоположными зарядами всегда притягиваются друг к другу, поэтому положительные заряды ищут отрицательные, а отрицательные — положительные. Ух! Понятно?

Остерегайтесь проводников!

Если вы потрете ногой о коврик в гостиной, вы уловите лишние электроны и получите отрицательный заряд.Электроны легче проходят через определенные материалы, такие как металл, которые ученые называют проводниками . Когда вы касаетесь дверной ручки (или чего-то еще, сделанного из металла), который имеет положительный заряд с небольшим количеством электронов, лишние электроны хотят перескочить с вас на ручку.

Этот крошечный толчок, который вы чувствуете, является результатом быстрого движения этих электронов. Вы можете представить себе шок как реку из миллионов электронов, летящих по воздуху. Довольно круто, да? Статическое электричество чаще возникает в холодное время года, потому что воздух более сухой и на поверхности кожи легче накапливаются электроны.В теплую погоду влага в воздухе помогает электронам быстрее удаляться от вас, поэтому вы не получаете такой большой статический заряд.

Итак, в следующий раз, когда вы получите легкий шок от прикосновения к дверной ручке, вы узнаете, что это просто электроны, прыгающие вокруг. Думайте об этом, как о том, чтобы добавить искру в вашу жизнь!

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.