Чем электрический ток отличается от напряжения. Какая разница между током и напряжением
Как только мы начинаем изучать по школьной программе физику, практически сразу же нам учителя начинают говорить о том, что между током и напряжением очень большая разница, и ее знание крайне нам понадобиться в дальнейшей жизни. И все же, сейчас об отличиях между двумя понятиями зачастую не может рассказать даже взрослый человек. А ведь знать эту разницу нужно каждому, потому как с током и напряжением мы имеем дело в повседневной жизни, например, включая телевизор или зарядное устройство телефона в розетку.
Определение
Током называется процесс, когда под воздействием электрического поля начинается упорядоченное движение заряженных частиц. Частицами могут выступать самые разные элементы, все зависит от конкретного случая. Если мы говорим о проводниках, то частицами в данной ситуации являются электроны. Изучая электричество, люди стали понимать, что возможности тока позволяют использовать его в самых разных областях, включая медицину.
Напряжение – понятие куда более сложное, нежели ток. Единичные положительные заряды перемещаются из разных точек: из низкого потенциала в высокий. И напряжением называется энергия, затрачиваемая на это перемещение. Для простоты понимания часто приводят пример с течением воды между двумя банками: ток – это сам поток воды, а напряжение показывает разницу уровней в двух банках. Соответственно, течение будет до тех пор, пока уровни не сравнятся.
Отличие
Наверное, основную разницу между током и напряжением можно было заметить уже из определения. Но для удобства мы приведем два основных различия между рассматриваемыми понятиями с более подробным описанием:
- Ток – это количество электричества, в то время как напряжением называют меру потенциальной энергии. Иными словами, оба этих понятия сильно зависят друг от друга, но при этом являются очень разными. I (сила тока) = U (напряжение) / R (сопротивление). Это главная формула, по которой можно вычислить зависимость силы тока от напряжения. На сопротивление влияет целый ряд факторов, включая материал, из которого сделан проводник, температура, внешние условия.
- Разница в получении. Воздействие на электрические заряды в разных приборах (например, батареях или генераторах) создает напряжение. А ток получается путем прикладывания напряжения между точками схемы.
Неспособность воочию видеть электрический ток и поток зарядов всегда была проблемой для тех, кто пытается воспринимать основные электрические понятия. Два основных компонента исследований сила тока и напряжение, как правило, неверно истолкованы теми, кто пытается разобраться в теме. Эта статья поможет вам понять разницу между ними.
Основные понятия электричества вращаются вокруг одного атомного компонента ― электрона.
С помощью внешнего электрохимического источника, можно создать движение электронов. Любые две клеммы могут быть использованы для подключения этого источника заряда и создания двух контактов один с положительным потенциалом, а другой с отрицательным.
Разница потенциалов между двумя такими точками, одна из которых выступает в качестве источника, а другая приемника электронов, называется напряжением. Единицей измерения напряжения является вольт, и его символ «
Поток электронов в проводнике, вызывает током. Направление тока идет от положительного полюса к отрицательному. Но электрические заряды, т. е. электроны, на самом деле путешествуют от отрицательного к положительному потенциалу источника. Количество электрического заряда, протекающего через единицу площади поперечного сечения проводника, называется силой тока. Сила тока измеряется в амперах, и имеет символ «
Предохранитель используется в электрической цепи и электромонтажных работах, чтобы прервать поток чрезмерного тока через его компоненты. Производители электрических предохранителей указывают характеристики с помощью двух параметров — напряжения и силы тока. Критерии выбора предохранителя зависят от номинального напряжения цепи, в которой он будет работать.
Текущие характеристики предохранителя не зависят от вида, протекающего через него тока — переменного или постоянного. Это зависит только от величины тока в момент расплавления плавкой проволоки. Хотя толщина провода и тип используемой металлической проволоки является фактором, непосредственно связанным с текущей характеристикой оборудования. Это происходит потому, что теплота, выделяемая плавкой проволокой, является функцией квадрата тока, протекающего через проводник, умноженного на сопротивление и время протекания тока.
Аккумуляторы (батареи) как правило оцениваются по силе тока (амперам) который они могут поставлять непрерывно в течение одного часа. Поэтому характеристики аккумуляторов указаны в ампер-часах. Срок службы батареи зависит от подключенной через нее нагрузки. Тяжелые нагрузки, как правило, сокращают срок службы батареи, в то время как легкие нагрузки увеличивают ее срок службы.
Если аккумуляторы соединены в последовательном сочетании в электрической цепи, сети питания, напряжение в цепи будет увеличиваться, а сила тока в цепи останется на том же уровне.
Параллельное соединение источников напряжения используется для увеличения тока без увеличения напряжения.
Аналогия с потоком водыРассмотрим два резервуара соединенных прозрачной трубкой, вода в них держится на одинаковой высоте от земли. В трубке потока воды нет.
Теперь, если мы изменим положение одного из резервуаров, чтобы создать разность потенциалов, мы заметим, что вода поступает по трубке из контейнера с большим потенциалом в контейнер с более низким потенциалом. Вместо изменения уровня водоемов, мы можем также использовать водяные насосы для той же цели.
Можно провести аналогию между этой ситуацией и простой электрической цепью. Водяной насос используется для создания давления воды в потоке, назовем это «напряжением». Вода ведет себя как заряженные электроны. Поток воды аналогичен движению электронов, и количество воды, протекающей через единицу площади поперечного сечения трубы аналогично «силе тока». Резервуар более высокого потенциала является «источником питания», и количество содержащейся в нем воды, является «емкостью аккумулятора». Любой кран устанавливаемый вдоль трубы можно рассматривать в качестве «нагрузки». электромонтажные работы
Дурацкий вопрос, скажете вы? Отнюдь. Опыт показал, что не так уж и много людей могут на него ответить правильно. Известную путаницу вносит и язык: в выражении «имеется в продаже источник 12 В» смысл искажен. На самом деле в данном случае имеется в виду, конечно, источник напряжения, а не тока, так как ток в вольтах не измеряется, но так говорить не принято.
Чтобы разобраться во всем этом, для начала напомним строгие определения из учебника (зазубривать их- очень полезное занятие!). Итак, ток, точнее, его величина, есть количество электрического заряда, протекающее через сечение проводника за единицу времени: / = Qlt. Единица тока называется «ампер», и ее размерность в системе СИ- кулоны в секунду, знание сего факта пригодится нам позднее.
Куда более запутанно выглядит определение напряжения- величина напряжения есть разность электрических потенциалов между двумя точками пространства. Измеряется она в вольтах, и размерность этой единицы измерения — джоуль на кулон, то есть U – EIQ. Почему это так, легко понять, вникнув в смысл строгого определения величины напряжения: 1 вольт есть такая разность потенциалов, при которой перемещение заряда в 1 кулон требует затраты энергии, равной 1 джоулю.
Все это наглядно можно представить себе, сравнив проводник с трубой, по которой течет вода. При таком сравнении величину тока можно себе представить, как количество (расход) протекающей воды за секунду (это довольно точная аналогия), а напряжение — как разность давлений на входе и выходе трубы. Чаще всего труба заканчивается открытым краном, так что давление на выходе равно атмосферному давлению, и его можно принять за нулевой уровень. Точно так же в электрических схемах существует общий провод (или «общая шина» — в просторечии для краткости ее часто называют «землей», хотя это и не точно — мы еще вернемся к этому вопросу позднее), потенциал которого принимается за ноль и относительно которого от-считываются все напряжения в схеме. Обычно (но не всегда!) за общий провод принимают минусовой вывод основного источника питания схемы.
Итак, вернемся к вопросу, сформулированному в заголовке: так чем же отличается ток от напряжения? Правильный ответ будет звучать так: ток — это количество электричества, а напряжение — мера его потенциальной энергии. Неискушенный в физике собеседник, разумеется, начнет трясти головой, пытаясь вникнуть, и тогда можно дать такое пояснение. Представьте себе падающий камень. Если он маленький (количество электричества мало), но падает с большой высоты (велико напряжение), то он может наделать столько же несчастий, сколько и большой камень (много электричества), но падающий с малой высоты (напряжение невелико).
Вопрос только на первый взгляд может показаться глупым. Опыт показал, что не многие люди могут ответить на него грамотно. Известную сумятицу вносит язык: в выражении вроде таких — » в продаже имеется источник постоянного тока 6 вольт» смысл искажен. На самом деле в этом случае предполагается, конечно, источник напряжения, а не тока, ведь ток в вольтах никто не измеряет, но так говорить нельзя. Точнее всего будет сказать — «источник питания постоянного напряжения 6 вольт», а писать можно и «источник питания = 6 В» тогда символ «=» будет говорить нам, что это именно постоянное напряжение, а ни в коем случае не переменное. Впрочем, и здесь мы иногда можем «ошибаться» — язык это язык.
Чтобы понять все это, напомним точные определения из справочника (зазубривать их — очень полезно). Итак, ток, а точнее, его величина, это количество заряда, проходящее через сечение проводника за единицу времени: I = Qlt. Единицу тока называют «ампер» и размерность ее- кулоны в секунду. Знание сего факта пригодится нам позднее. Куда запутанней выйдет история с напряжением — величина напряжения это разность потенциалов между двумя точками материи. Меряют ее в вольтах, и размерность этой единицы измерения — джоуль
на кулон. Почему это так, легко осознать, погрузившись в понимание точного определения величины напряжения: 1 вольт это такая разность потенциалов, при которой передвижение заряда в 1 кулон потребует затраты энергии, которая будет равна 1 джоулю.
Все это прекрасно можно представить, сравнивая проводник и трубу, по которой течет вода. Используя такое сравнение, видим что величину тока можно себе легко представить как количество воды протекающей за секунду (это замечательная в своей точности аналогия), тогда напряжение — как разница давлений на выходе и входе нашей трубы. Обычно труба заканчивается открытым сливом, поэтому давление на выходе будет равно атмосферному давлению, и его можно принять за эталонный уровень. Таким же образом в электрических схемах есть общий провод (или «общая шина» -для краткости ее называют «землей», хотя это и неправильно, потенциал которого принимается за ноль, и относительно которого отсчитываются все напряжения в схеме. Обычно (но не всегда!) за общий провод принимают минусовой вывод основного источника питания схемы.
Итак, вернемся к вопросу как же отличить ток от напряжения? Правильно будет сказать так: ток — это количество электричества, а напряжение — мера потенциальной энергии. Не разбирающийся в физике человек, само собой, начнет трясти головой, пытаясь понять, тогда вы дополните: представь себе камень который падает. Если камень небольшой (количество электричества мало), но падает с высоты (велико напряжение), то он может создать удар такой же мощный, как и большой камень (много электричества), падающий с скромной высоты (напряжение небольшое).
На самом деле пример с камнем красив, но не точен — труба с текущей водой гораздо точнее отображает процесс. Надо знать, что напряжение и ток обычно взаимосвязаны. (Слово «обычно» я использую так как в некоторых случаях — источники напряжения или тока — от этих связи пытаются избавиться, пусть полностью это никогда и не удается.) Да да, если вернуться к примеру с водой в трубе, то легко получить представление, как с увеличивающимся давлением в трубе(напряжения) увеличивается количество текущей воды (ток). Говоря по-другому, зачем нам приходится использовать насосы? Сложнее представить себе точно обратную зависимость — каким образом ток может влиять на напряжение. Для этого нужно понять, саму сущность сопротивления.
В первой половине девятнадцатого века физики не знали, как охарактеризовать зависимость тока от напряжения. Этому простое объяснение. Попробуйте выяснить экспериментально, как выглядит эта зависимость.
Только благодаря таланту Георга Ома удалось за всеми зарослями и преградами увидеть истинную природу сопротивления. То есть, вывести, что зависимость тока от напряжения можно описать формулой: I = U/R. Величина сопротивления R зависит от материала из которого сделан проводник и от внешних условий в среде- особенно, от температуры.
Ток – это направленное движение электронов (заряженных частиц). Возникает он, если в цепи существует разность потенциалов, то есть с одной стороны проводника электрического тока избыток заряженных частиц, а с другой их недостаток. Разность потенциалов, позволяющая электрическому току течь по проводнику, и есть напряжение. Без возникновения напряжения не будет электрического тока.
В физике эту связь выражают формулой I=U/R, где I – сила тока в проводнике, U — напряжение на концах данной электрической цепи, а R – сопротивление этой цепи. Чем выше напряжение в цепи, тем больше пройдет через нее заряженных частиц и, наоборот.
Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.
НапряжениеУсловно напряжение обозначается буквой «U» . Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.
Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х10 18 электронов.
Напряжение разделяется на несколько видов, в зависимости от видов тока.
- Постоянное напряжение . Оно присутствует в электростатических цепях и цепях постоянного тока.
- Переменное напряжение . Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
мгновенное напряжение , которое выражается в определенный момент времени;
действующее напряжение , определяется по выполняемой активной работе 1-го полупериода;
средневыпрямленное напряжение , определяемое по модулю величины выпрямленного напряжения за один гармонический период.
При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением , а напряжение между землей и каждой из фаз – фазным напряжением . Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.
Электрический токТок в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I ». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.
Условно считается, что ток в течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.
Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.
Напряжение образуется от воздействия на электрические заряды в генераторах, и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.
Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться . На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.
Ток и напряжение подчиняются правилам:- Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
- В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
- Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I . Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.
По такому принципу действуют все в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.
В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, и других частей, проводящих ток.
Также существуют другие способы создания внутреннего тока в:
- Жидкостях и газах за счет передвижения заряженных ионов.
- Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
- , вследствие движения носителей заряда.
- Нагревание проводников (не сверхпроводников).
- Приложение к носителям заряда разности потенциалов.
- Химическая реакция с выделением новых веществ.
- Воздействие магнитного поля на проводник.
- Прямая линия.
- Переменная синусоида гармоники.
- Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
- Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.
- Световое излучение, создающееся приборами освещения.
- Создание тепла с помощью нагревательных элементов.
- Механическая работа (вращение электродвигателей, действие других электрических устройств).
- Создание электромагнитного излучения.
- Перегрев контактов и токоведущих частей.
- Возникновение вихревых токов в сердечниках электрических устройств.
- Электромагнитные излучения во внешнюю среду.
Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.
Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.
Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.
Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
- Низкочастотные сигналы с меньшей величиной частоты тока.
- Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.
Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.
Электрический ток в металлахДвижение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.
В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.
При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.
Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.
Что такое напряжение, и сила тока ?
Сегодня речь пойдет о самых базовых понятиях силы тока, напряжения, без общего понимания которых невозможно построение любого электротехнического устройства.
Итак, что же такое напряжение?
Попросту говоря напряжение — разница потенциала между двумя точками электрической цепи , измеряется в Вольтах. Стоит заметить что, напряжение всегда измеряется между двумя точками! То есть, когда говорят что напряжение на ножке контроллера 3 Вольта, подразумевается что разница потенциалов между ножкой контроллера и землей те самые 3 Вольта.
Земля(Масса, Ноль) — это точка электрической схемы с потенциалом 0 Вольт . Однако стоит заметить, что напряжение не всегда измеряется относительно земли. Например, замерив напряжение между двумя выводами контроллера, мы получим разницу электрических потенциалов данных точек схемы. То есть если на одной ножке 3 Вольта(То есть данная точка обладает потенциалом 3 Вольта относительно земли), а на второй 5Вольт(Опять же потенциал относительно земли), мы получим значение напряжения равное 2 вольтам, что равняется разнице потенциалов между точками 5 и 3 Вольта.
Из понятия напряжение вытекает следующее понятие — электрический ток. Из курса общей физики мы помним, что электрический ток есть направленное движение заряженных частиц по проводнику, измеряется в Амперах. Заряженные частицы движутся благодаря разнице потенциалов между точками. Принято считать, что ток происходит из точки с большим зарядом, в точку, обладающую меньшим зарядом. То есть, именно напряжение (разность потенциалов) создает условия протекания тока. При отсутствии напряжения — невозможен ток, то есть между точками с равным потенциалом ток отсутствует.
На своем пути, ток встречает препятствие в виде сопротивления, что препятствует его протеканию. Сопротивление измеряется в Омах. Подробнее о нем мы поговорим в следующем уроке. Однако, между током, напряжением и сопротивлением уже давно выведена следующая зависимость:
Где I — Сила тока в Амперах,U — Напряжение в Вольтах,R — Сопротивление в Омах.
Данное соотношение называется законом Ома. Так же справедливы следующие выводы из закона Ома:
Если у Вас ещё остались вопросы, задавайте их в комментариях. Лишь благодаря Вашим вопросам Мы сможем улучшить материал представленный на данном сайте!
На этом всё, в следующем уроке поговорим о сопротивлении.
Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG .RU . Незаконное копирование, цитирование, воспроизведение преследуется по закону!
Чем отличается ток от напряжения
» Что же такое напряжение тока?
20.01.2014
Как только дети по школьной программе начинают изучать такой предмет как физика, то преподаватели им практически сразу начинают говорить о том, что между напряжением и током очень большая разница, и ее знания всем понадобится дальше по жизни. А это значит что выражение «напряжение тока» не совсем правильное.
Это необходимо всем знать
И все-таки об отличиях между этими двумя понятиями нынче чаще всего даже взрослый индивидуум не может рассказать. А ведь каждому необходимо знать эту разницу, потому как с напряжением и током мы сталкиваемся в повседневной жизни, к примеру, когда включаем зарядное устройство для телефона или телевизор в розетку.
Сейчас постараемся объяснить, что такое напряжение тока. Понятие ток и напряжение это два понятия, которых смешали. Ток это величина, которая показывает количество электронов (других частиц), которые движутся куда-либо. Напряжение является мерой суровости данного движения.
Все проще, чем кажется
Как пример малого напряжения может прослужить спокойный ламинарный вход людей, которые торопятся в вагон метро. А как пример большего напряжения может прослужить случай, когда в конце очереди двое молодых человек с огромной силой проталкивают людей в двери, и люди трутся об стены и косяки.
Мощность является произведение этих двух значений. При помощи трансформатора можно увеличить ток и уменьшить напряжение, и наоборот, но при этом произведение остается прежней, ток может уменьшиться в два раза, если увеличить напряжение в столько же раз.
Это имеет достаточно большое значение. Дело в том, что провода имеют сопротивление, и сразу большое количество электронов начинают мешать друг другу двигаться. А это значит, что при большом токе имеется большое сопротивление, и чем больше будет ток, тем больше становится сопротивление.
А если пустить маленькое количество электронов, но с большим напряжением дает возможность передать такую, же мощность по тонким проводам с незначительными потерями. Именно по этой причине имеются высоковольтные линии передач и рядом с каждым домом понижающие трансформаторы.
Определение электрического тока
Электрический ток является упорядоченным движением заряженных электронов, отрицательных и положительных ионов. Как направление тока электрического принимается направление движения заряженных положительных частиц. По его действием определяют о наличии тока:
- химическому;
- тепловому;
- магнитному.
Одной из самых важных характеристик электрического тока это, конечно же, его сила. Сила тока является отношением
заряда q переносимый по поперечное сечение проводника за определенное время t к данному промежутку. I = q /t Измеряется сила тока в амперах.
Если со временем сила тока не меняется, то этот ток называют постоянным. Группа электрических устройств называется электрической цепью. Которая в свою очередь составляет путь для прохода электрического тока. К таким устройствам относятся:
- 1. Источник электромагнитной энергии, то есть генератор, либо источник электрических сигналов — аккумуляторы, гальванические элементы;
- 2. Потребители или приемники;
- 3. Конструкция передачи и перевод электрической энергии (трансформаторы, различные провода и кабели). В источниках электроэнергии, а именно в генераторах, гальванических элементах, аккумуляторах происходит превращение механической, тепловой и химической энергии в электрическую энергию. Электрические двигатели, лампы, а также электронагревательные приборы, то есть приемники электроэнергии наоборот превращают электроэнергию в тепловую, механическую, а также световую энергию.
Вывод:
Различие между напряжением и током заключается в определении, но в тоже время оба понятия зависят друг от друга. Их можно получить в результате различных процессов.
Видео: Что такое напряжение тока
Похожие материалы:
В основном реле максимального тока применяют как интерфейсные модули, которые могут устанавливаться рядом с периферийными коммуникациями разных технологических процессов. Они…
Электричество — вещь серьёзная и опасная, особенно если не знать, как с ним обращаться. Поэтому каждый приступающий к работам, связанным с напряжением, должен знать прописные…
Как только мы начинаем изучать по школьной программе физику, практически сразу же нам учителя начинают говорить о том, что между током и напряжением очень большая разница, и ее знание крайне нам понадобиться в дальнейшей жизни. И все же, сейчас об отличиях между двумя понятиями зачастую не может рассказать даже взрослый человек. А ведь знать эту разницу нужно каждому, потому как с током и напряжением мы имеем дело в повседневной жизни, например, включая телевизор или зарядное устройство телефона в розетку.
Определение
Током называется процесс, когда под воздействием электрического поля начинается упорядоченное движение заряженных частиц. Частицами могут выступать самые разные элементы, все зависит от конкретного случая. Если мы говорим о проводниках, то частицами в данной ситуации являются электроны. Изучая электричество, люди стали понимать, что возможности тока позволяют использовать его в самых разных областях, включая медицину. Ведь электрические заряды помогают реанимировать больных, восстанавливать работу сердца. Кроме того, ток применяют в лечении таких сложных заболеваний, как эпилепсия или болезнь Паркинсона. В быту же электрический ток просто незаменим, ведь с его помощью в наших квартирах и домах горит свет, работают электроприборы.
Напряжение – понятие куда более сложное, нежели ток. Единичные положительные заряды перемещаются из разных точек: из низкого потенциала в высокий. И напряжением называется энергия, затрачиваемая на это перемещение. Для простоты понимания часто приводят пример с течением воды между двумя банками: ток – это сам поток воды, а напряжение показывает разницу уровней в двух банках. Соответственно, течение будет до тех пор, пока уровни не сравнятся.
В чем отличие тока от напряжения
Наверное, основную разницу между током и напряжением можно было заметить уже из определения. Но для удобства мы приведем два основных различия между рассматриваемыми понятиями с более подробным описанием:
Ток – это количество электричества, в то время как напряжением называют меру потенциальной энергии. Иными словами, оба этих понятия сильно зависят друг от друга, но при этом являются очень разными. I (сила тока) = U (напряжение) / R (сопротивление). Это главная формула, по которой можно вычислить зависимость силы тока от напряжения. На сопротивление влияет целый ряд факторов, включая материал, из которого сделан проводник, температура, внешние условия.
Разница в получении. Воздействие на электрические заряды в разных приборах (например, батареях или генераторах) создает напряжение. А ток получается путем прикладывания напряжения между точками схемы.
Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.
Напряжение (условное обозначение U, иногда Е). Напряжение между двумя точкми — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой . Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах , милливольтах или микровольтах (см. разд. «Приставки для образования кратных и дольных единиц измерения», напечатанный мелким шрифтом). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно электронов.) Напряжение, измеряемое в нановольтах или в мегавольтах , встречается редко; вы убедитесь в этом, прочитав всю книгу.
Ток (условное обозначение ). Ток — это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах , микроамперах
Наноамперах и иногда в пикоамперах . Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.
Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-нибудь элемент схемы.
Говорить «напряжение в резисторе» нельзя — это неграмотно. Однако часто говорят о напряжении в какой-либо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», т. е. такой точкой схемы, потенциал которой всем известен. Скоро вы привыкните к такому способу измерения напряжения.
Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т.п. Ток мы получаем, прикладывая напряжение между точками схемы.
Здесь, пожалуй, может возникнуть вопрос, а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени. Мы будем прибегать к показаниям осциллографов, а также вольтметров для характеристики сигналов. Для начала советуем посмотреть приложение А, в котором идет речь об осциллографе, и разд. «Универсальные измерительные приборы», напечатанный мелким шрифтом.
В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо, и в свое время мы обсудим этот вопрос. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять по-разному.
Запомните несклько простых правил, касающихся тока и напряжения.
1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.
2. При параллельном соединении элементов (рис. 1.1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.
3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:
Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд) (заряд/время). Если напряжение U измерено в вольтах, а ток I — в амперах, то мощность P будет выражена в ваттах. Мощность величиной 1 ватт — это работа в 1 джоуль, совершенная за 1 с .
Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, передатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).
В дальнейшем при изучении периодически изменяющихся токов и напряжений нам придется обобщить простое выражение для того, чтобы определять среднее значение мощности. В таком виде оно справедливо для определения мгновенного значения мощности.
Кстати, запомните, что не нужно называть ток силой тока — это неграмотно. Нельзя также называть резистор сопротивлением. О резисторах речь пойдет в следующем разделе.
ток без напряжения и напряжение без тока?
$\begingroup$
В школе я всегда учил, что ток и напряжение можно просматривать следующим образом:
Ток — это поток заряда в секунду, а — напряжение — насколько сильно ток «хочет» течь.
Но у меня проблемы с этим представлением. Как мы можем иметь напряжение без тока? Нечего «течь», так как же оно может быть там? Или это «скрытое» напряжение, я имею в виду, что напряжение всегда есть, и если ток вводится, он течет?
Кроме того, я считаю, что ток невозможен без напряжения. Мне это кажется логичным из самого определения тока. А если у тебя «зарядка» без напряжения, разве она не остается на 1 месте? Вы можете смотреть на это так? Если вы введете заряд в цепь без напряжения, она просто не будет двигаться?
- напряжение
- электрический ток
$\endgroup$
4
$\begingroup$
Когда вы думаете об электричестве, думайте о воде. Давайте возьмем водопад в качестве примера для этой аналогии:
Вода, перемещающаяся от верхней точки к нижней точке водопада, подобна электронам, протекающим через проводник. Это текущий: текущий поток $\equiv$.
Напряжение по определению будет «разницей потенциалов» в аналогии с водопадом, напряжение будет между самой высокой точкой и нижней точкой водопада. Чем выше подъем, тем выше напряжение. Когда одна точка больше заряжена электричеством, чем другая, это напряжение.
Если водопад высох и течения нет, разница между двумя точками сохраняется. Одна точка выше другой (одна точка заряжена сильнее, чем другая). Это напряжение без тока.
Если бы напряжение было равно нулю (если бы верхняя и нижняя точки водопада находились на одном уровне), вода все равно падала бы вниз? Нет, вода останется неподвижной. Все еще = нет потока = нет тока без напряжения.
Надеюсь, это поможет 🙂
$\endgroup$
2
$\begingroup$
Течет не напряжение, а заряд, и этот поток называется током. Может быть напряжение без тока; например, если у вас есть один заряд, этот заряд индуцирует напряжение в пространстве, даже если оно пусто. Напряжение в наиболее физическом смысле — это скалярное поле, определяющее потенциальную энергию на единицу заряда в каждой точке пространства.
У вас не может быть тока без напряжения, потому что если есть ток, то движется заряд, и каждый заряд создает напряжение, но у вас могут быть токи без разницы напряжений в пространстве. Например, если у вас есть заряженная сфера, и вы заставляете ее вращаться, заряд будет находиться на поверхности, и при вращении сферы у вас будет ток на поверхности, но напряжение будет одинаковым во всех точках поверхности. Точно так же намагничивание материалов может индуцировать токи.
Если вы вводите заряд в цепь без напряжения, это просто не двигается?
Верно, он не будет двигаться, если у вас нет изменяющегося магнитного поля, которое может вызвать «разность напряжений» между одной и той же точкой, делая $\nabla\times E\not =0$, хотя это не было бы электростатическим напряжение так, как вы его видите.
$\endgroup$
7
$\begingroup$
Например, для на батарее есть напряжение даже она никуда не подключена. Таким образом, напряжение (разность потенциалов между двумя точками) существует без тока (поток заряда во времени), но ток не существует без напряжения.
$\endgroup$
1
Влияние настроек тока, напряжения и мощности на SDS-PAGE
Если вы новичок в вестерн-блоттинге или впервые пробуете новый протокол, вам необходимо оптимизировать условия электрофореза.
Во время Вестерн-блоттинга есть два момента, когда подается электрический ток: во время начального этапа «прогонки» (SDS-PAGE) и во время этапа переноса (иногда называемого этапом «блоттинга»). Каждый этап необходимо оптимизировать отдельно, так как каждый может повлиять на конечный результат. Здесь мы изложили некоторые основные принципы оптимизации первого шага — SDS-PAGE.
В чем разница между постоянным током, постоянным напряжением и постоянной мощностью?
Поскольку состояние геля, буфера и образца может меняться во время этапов электрофореза, большинство современных блоков питания предлагают различные варианты поддержания постоянного напряжения, постоянного тока (амперы) и постоянной мощности (ватты). Прежде чем перейти к некоторым рекомендуемым настройкам, кратко освежим в памяти основы электрических цепей:
Напряжение (В) — разница электрических потенциалов между двумя зарядами — является основным параметром для определения скорости, с которой ваш белок будет двигаться через гель во время SDS-PAGE. Если вы думаете об электричестве, как о водонапорной башне, напряжение — это давление воды, создаваемое размещением воды на некоторой высоте. Чем выше напряжение, тем выше электрическое «давление» и тем быстрее будут работать ваши белки.
Ток (I) относится к потоку электрического заряда через точку в цепи. Используя ту же аналогию с водой, что и выше, ток — это скорость, с которой вода течет по трубе.
Мощность (P) — обычно определяемая как работа, выполняемая в единицу времени — просто равна напряжению, умноженному на силу тока, что можно записать следующим образом:
P = I x V
Один дополнительный параметр для Рассмотрим сопротивление (R), которое (как следует из названия) является мерой того, насколько трудно заряду пройти через проводник. В вестерн-блоттинге сопротивление является мерой того, насколько эффективно ионы в буфере SDS-PAGE позволяют заряду «протекать» через гель.
Сопротивление связано с напряжением и током по закону Ома:
В = I x R
Как тепло влияет на условия SDS-PAGE?
Heat — палка о двух концах, когда речь идет о SDS-PAGE.
С одной стороны, небольшое количество тепла полезно для содействия денатурации белков, которые, возможно, не подверглись полной реакции во время пробоподготовки.
Однако слишком сильный нагрев вызывает расширение акриламидных гелей, что может привести к неравномерному движению полос (иногда называемых «улыбающимися» полосами) или, что еще хуже, сделать гель непригодным для переноса.
Выработка тепла, измеряемая в джоулях, прямо пропорциональна потребляемой мощности и, следовательно, зависит как от тока, так и от напряжения. Более высокие значения для любого из параметров повысят температуру вашего буфера и геля.
По мере того, как электролиты в вашем рабочем буфере израсходованы, сопротивление, естественно, имеет тенденцию к увеличению. Это увеличение может косвенно увеличивать выработку тепла при настройке постоянного тока, поскольку напряжение должно увеличиваться пропорционально.
И наоборот, при постоянном напряжении тепло будет оставаться более равномерным, так как увеличение сопротивления приводит к уменьшению тока.
Соответствующие преимущества и недостатки каждой настройки в отношении нагрева описаны ниже:
Преимущество | Недостаток | |
Постоянный ток | Может потребоваться меньше мониторинга, поскольку время, необходимое для завершения анализа, будет одинаковым для нескольких гелей | Напряжение (и нагрев) будет иметь тенденцию к увеличению позже во время цикла, вызывая «улыбающиеся полосы» или деформацию гелей |
Постоянное напряжение | Ток будет уменьшаться по мере прохождения цикла, что ограничивает производство тепла | Миграция замедлится в конце выполнения, что может потребовать корректировки времени выполнения |
Постоянная мощность | Может ограничивать выработку тепла при сохранении более постоянной скорости миграции | Мощность является произведением двух переменных, напряжения и тока, поэтому трудно определить «постоянные» условия |
Общие рекомендации по условиям SDS-PAGE
Каждый протокол и эксперимент отличаются друг от друга, но есть некоторые общие рекомендации по началу оптимизации SDS-PAGE.
- Старт медленный. Независимо от того, используете ли вы стопинг-гель или другой градиентный акриламидный гель, лучше всего начинать SDS-PAGE при низком напряжении или токе, чтобы белки выровнялись в геле. Этот шаг должен занять около 30 минут при 50-60В.
- Чем больше гель, тем выше напряжение. Как только ваши белки попадут на растворяющий гель, вы можете увеличить напряжение. Одно эмпирическое правило заключается в том, чтобы установить напряжение около 5-15 В на сантиметр геля. Маленькие гели будут работать ближе к 100 В, в то время как большие гели могут приближаться к 300 В. Время будет варьироваться для этого шага, в пределах от 45 минут до 2 часов.
- При использовании постоянного тока сохраняйте спокойствие. Как обсуждалось выше, настройка постоянного тока является хорошим вариантом для поддержания постоянной синхронизации, но может привести к увеличению тепловыделения. Рассмотрите возможность погружения корпуса SDS-PAGE в ванну со льдом при температуре 4°C или хранения в холодной комнате, чтобы ограничить деформацию геля.