Стабилизированный адаптер из нестабилизированного — Меандр — занимательная электроника
В магазинах, киосках подземных переходов, на радиорынках можно купить так называемые адаптеры, оформленные в виде сетевой вилки. Большие пульсации выходного напряжения и его зависимость от тока нагрузки затрудняют питание от них какой-либо радиоэлектронной аппаратуры. Как стабилизировать выходное напряжение таких адаптеров и рассказывается в данной статье.
Для фиксирования «круглых» значений выходного напряжения проще всего использовать микросхемы КР142ЕН5 и КР142ЕН8 с соответствующими буквенными индексами [1], устанавливая их на теплоотводе в корпус адаптера и дополняя выходным конденсатором емкостью не менее 10 мкФ. Если же необходимо «нестандартное» напряжение, следует применить микросхему КР142ЕН12А [2].
На рис.1 приведена схема зарядно-питающего устройства для портативного радиоприемника, в котором установлены четыре аккумулятора ЦНК-0,45. Конденсатор C1 устраняет высокочастотные помехи, возникающие в момент закрывания диодов выпрямительного моста. Выходное напряжение 5.6В устанавливают подстроечным резистором R3, а максимальный ток зарядки (примерно 150 мА) — подборкой резистора R1 при подключенной разряженной аккумуляторной батарее. Блок удобен тем, что зарядка аккумуляторов происходит быстро (4…6 ч), и перезарядить их невозможно [3,4].
Устройство собрано на основе адаптера RW-900 [5]. Чертеж печатной платы приведен на рис.2, а внешний вид блока — на рис.3. Использованы резисторы МЛТ: они установлены на плате вертикально, R3 — СП3-19а. Диоды VD1-VD4 и конденсатор C2 — от адаптера, остальные — RV-6. Конденсатор C4 можно установить также и любой оксидный, но его емкость должна быть не менее 10 мкA. Диод VD5 — практически любой выпрямительный или импульсный.
Микросхема DA1 установлена на ребристый теплоотвод размерами 10x18x38 мм от промышленного устройства. Для хорошего охлаждения в нижней и верхней стенках корпуса адаптера (ориентация при включении его в настенную розетку) просверлены по шесть отверстий диаметром 6 мм.
Если ограничение выходного тока не требуется, резистор R1 и конденсатор C3 можно исключить. В таком варианте максимальный выходной ток составлял 0.5А при напряжении пульсаций около 1 мВ. Подобрав сопротивления резисторов R3 и R4, можно можно собрать стабилизатор на любое выходное напряжение в пределах, допустимых трансформатором адаптера.
Используя универсальный адаптер, можно изготовить стабилизированный блок питания с переключаемым выходным напряжением. Схема доработанного адаптера «FIRST ITEM NO:57» приведена на рис.4. Вторичная обмотка трансформатора Т1 использована полностью, ее отводы заизолированы. Диоды VD5, VD6 — защитные [2].
Диоды VD1-VD4, конденсатор C2, светодиод HL1 и переключатели SA1 и SA2 — от адаптера. Резисторы R3-R8 не обязательно должны иметь указанные сопротивления, они могут отличаться в любую сторону в 1.5 раза. Важно, чтобы сопротивления R3-R7 были равны между собой с точностью 1…2%, а сопротивление R8 было вдвое большим, поскольку ими определяется погрешность установки выходных напряжений.
Все элементы, кроме трансформатора Т1, установлены на печатной плате, чертеж которой приведен на рис.5, а внешний вид устройства — на рис.6.
Для сверления крепежных отверстий и отверстий для установки переключателей и светодиода удобно применить печатную плату от используемого адаптера как трафарет. Чтобы выпаять переключатель из платы и при этом не повредить ее, необходимо, прогревая одновременно несколько соседних контактов паяльником, изгибать плату. Переходя постепенно к другим контактам, можно выпаять переключатель целиком.
Микросхема DA1 установлена на медную пластину размерами 52x38x1 мм, выполняющую роль теплоотвода. Пластина имеет отбортовку для крепления на плате, а по ее периметру просверлены отверстия диаметром 4 мм для обеспечения вентиляции. Для тех же целей в верхней и нижней стенках корпуса просверлено по восемь отверстий диаметром 6 мм.
Налаживание устройства заключается в установке выходных напряжений без нагрузки подборкой резисторов R2 и R9. Резистор R9 можно сразу поставить указанного на схеме сопротивления, а параллельно ему и вместо R2 впаять переменные резисторы сопротивлением 10 кОм и 56 Ом соответственно. Резистором, подключенным параллельно R9, устанавливают выходное напряжение 12 В, резистором R2 — 1.5 В. Поскольку эти установки взаимосвязаны, их надо повторить несколько раз. После этого устанавливают постоянные резисторы с подобранными сопротивлениями, причем резистор параллельно R9 подпаивают со стороны печатных проводников.
Стабилизированный адаптер обеспечивал выходной ток до 200 мА. При напряжении 12 В ток ограничен появлением пульсаций, при меньших — температурой микросхемы DA1. Увеличением поверхности теплоотвода можно существенно повысить выходной ток при малых выходных напряжениях.
Литература:
1. Щербина А., Благий С. Микросхемные стабилизаторы серий 142, К142, КР142. — Радио, 1990, #8, с. 89, 90; #9, с. 73
2. Нефедов А., Головина В. Микросхемы КР142ЕН12. — Радио, 1993, #8, с. 41
3. Нечаев И. Ускоренная зарядка аккумуляторов. — Радио, 1995, #9, с. 52, 53
4. Алексеев С. Зарядные устройства для Ni-Cd аккумуляторов и батарей. — Радио, 1997, #1, с. 44-46; #2, с. 44-46
5. Бирюков С. Сетевые адаптеры. — Радио, 1998, #6, с. 66, 67
Стабилизатор напряжения или ИБП (бесперебойник) – что лучше, чем оиличается
Источники бесперебойного питания и стабилизаторы напряжения относятся к преобразователям электроэнергии. Их объединяет то, что они являются промежуточными устройствами между бытовой электрической сетью и приборами-потребителями. Чем отличается стабилизатор напряжения от бесперебойника? В каких условиях и для решения каких задач применяются эти преобразователи? В этой статье мы ответим на эти и другие вопросы, связанные с защитой компьютеров, периферийных устройств, домашней техники от перенапряжения и других проблем бытовой электрической сети.
Для каких целей применяются стабилизаторы напряжения
Стабилизаторы защищают подключаемое оборудование от нестабильных параметров входного напряжения. Их функция – поддерживать номинал электрического тока в допустимых пределах.
Проблемы бытовой сети, для решения которых предназначены стабилизаторы:
- Повышенное напряжение. Встречается в сетях, которые сильно удалены от линий электропередач. Энергетики практикуют передачу тока повышенного напряжения, что позволяет свести к минимуму потери при его трансляции на значительные расстояния.
- Пониженное напряжение. Эта проблема характерна для сильно загруженных электросетей и периодам пиковых перегрузок.
- Резкие скачки напряжения. Происходят в непогоду, а также из-за включения мощного электрооборудования.
Этот прибор обеспечивает высокое качество выходного электрического тока. Благодаря ему, лампочки светят ровно, без мерцания, продлевается срок службы бытовой техники. Установка стабилизаторов необходима в местах, где поблизости расположены ремонтные или производственные мастерские, в которых используются сварочные аппараты или мощные электрические двигатели.
Виды стабилизаторов
В продаже имеются следующие типы стабилизаторов:
- Релейные (ступенчатые). Это распространенная надежная конструкция, в которой используется трансформатор с несколькими обмотками, подключаемыми с помощью реле. Недостаток – невозможность плавного регулирования.
- Электромеханические. Регулировка напряжения осуществляется передвижением контакта по трансформаторным обмоткам. Движение контакта осуществляется с помощью электрического двигателя. Регулировка плавная. Минусы – шум при работе и медленная реакция на изменения параметров электросети.
- Электронные. Это современные стабилизаторы, они бесшумные, с высоким быстродействием и качеством результата. Минусом можно считать только высокую стоимость.
- Инверторные. Выполняют двойное преобразование переменного электрического тока бытовой сети в постоянный, а затем снова в переменный, имеющий высокую точность параметров. Эффективны в широком диапазоне входных напряжений.
Разновидности и основные функции источников бесперебойного питания
ИБП – это приборы, имеющие в конструкции встроенные аккумуляторные батареи. Производители предлагают ИБП разной функциональности. Резервные источники бесперебойного электропитания типа Off-line обеспечивают автономное электроснабжение подключенных приборов при отказе централизованной электрической сети. Это может произойти из-за погодных условий, аварий, веерных отключений. При отключении бытовой электросети или при выходе ее параметров за пределы допустимых значений ИБП переключают обслуживаемые приборы на автономное электропитание от аккумуляторных батарей. Такие ИБП функции стабилизаторов не выполняют, то есть не улучшают параметры выходного напряжения.
Преимущества этих устройств:
- высокий КПД;
- низкий уровень шума;
- незначительное выделение тепла;
- невысокая стоимость.
Недостатками ИБП Off-line являются: относительно длительный период переключения (до 12 мс), невозможность улучшить параметры выходного напряжения. Такие бесперебойники обычно приобретают для защиты несохраненной информации при внезапном отключении электропитания. Устройства позволяют нормально завершить работу всех компонентов ПК. В ноутбуках функции бесперебойника выполняет встроенный аккумулятор.
Производители предлагают еще один тип источников бесперебойного питания – Line-interaktive (интерактивный). От ИБП Off-line он отличается присутствием ступенчатого стабилизатора, изготовленного на базе трансформатора. Этот бесперебойник позволяет получить в автономном режиме выходное напряжение с требуемыми параметрами. Параметры напряжения бытовой сети прибор корректировать не может. Время переключения на автономное питание у ИБП Line-interaktive меньше, чем у ИБП Off-Line, но и КПД тоже ниже. Ограничение по применению приборов Off-Line – невозможность применения для питания техники с асинхронными двигателями: холодильниками, электрическими плитами, микроволновыми печами, стиральными машинами.
В каких условиях лучше использовать стабилизатор, а в каких бесперебойник?
Источники бесперебойного питания Off-line и Line-interaktive устанавливают в тех случаях, если параметры сети приближены к нормальным, но возможны эпизодические или периодические отключения централизованного электроснабжения.
В электросетях с частыми или постоянными нестабильными характеристиками обычно применяют стабилизаторы. В местах с плохим качеством электроэнергии и частыми отключениями рекомендуется применить комплексный подход, установив одновременно источник бесперебойного питания и стабилизатор.
Можно ли использовать бесперебойник как стабилизатор?
В продаже есть устройства, выполняющие одновременно функции бесперебойников и стабилизаторов сетевого напряжения – ИБП с функцией двойного преобразования On-line.
ИБП On-line обеспечивают:
- стабилизацию и нормализацию напряжения электрической централизованной сети в широком интервале значений в режиме онлайн;
- высокое качество выходного напряжения;
- при пропадании напряжения в бытовой сети – переход на режим автономного электропитания от аккумуляторных батарей.
Эти устройства используют для защиты:
- телекоммуникационного оборудования, выход из строя которого может оставить без внутренней и внешней связи крупные предприятия и учреждения;
- сетевого оборудования – серверов, хранилищ, их сбой может остановить производственные процессы на длительное время;
- касс, терминалов, без которых невозможно нормальное функционирование коммерческих учреждений;
- медицинского оборудования;
- энергозависимой котельной техники;
- другого оборудования с высокими требованиями к качеству электроснабжения.
Промежуток для переключения ИБП On-line с централизованного электропитания на автономное от АКБ отсутствует, поскольку аккумуляторные батареи функционируют в буферном режиме. Прибор позволяет скорректировать частоту синусоиды тока и является эффективным стабилизатором.
При выборе подходящего стабилизатора или ИБП для защиты бытовой, медицинской и офисной техники учитывают: задачи, которые она должна выполнять, условия работы, бюджет, запланированный для покупки.
В данном разделе представлены блоки питания (сетевые адаптеры) и зарядные устройства, распределенные по следующим подгруппам:
Внимание!При подборе блока питания для Вашей бытовой аппаратуры (взамен поломанного или утраченного) соблюдайте несколько простых правил:
Информационные знаки, обозначающие полярность питания на круглых разъемах:
Примечание! Во многих случаях незначительная разница (в несколько десятых долей вольта) питающего напряжения не сказывается отрицательно на работе бытовых приборов. В большей степени это касается нестабилизированных блоков питания и блоков с переменным выходным напряжением. Если Вы не можете найти блок питания с “экзотическими” параметрами, то попробуйте применить блок с несколько меньшим напряжением. Если Вы затрудняетесь самостоятельно подобрать блок питания для Вашего бытового прибора то принесите его и(или) старый неисправный блок питания в наш магазин – продавцы-консультанты будут рады Вам помочь, а также провести проверку на месте. ©Sergey Kitsya (KSV®) 2008г. | Для фиксирования “круглых” значенийвыходного напряжения проще всего использовать микросхемы КР142ЕН5 и КР142ЕН8с соответствующими буквенными индексами [1], устанавливаяих на теплоотводе в корпус адаптера и дополняя выходным конденсаторомемкостью не менее 10 мкФ. Если же необходимо “нестандартное”напряжение, следует применить микросхему КР142ЕН12А [2]. На рис.1 приведена схема зарядно-питающегоустройства для портативного радиоприемника, в котором установлены четыреаккумулятора ЦНК-0,45. Конденсатор C1 устраняет высокочастотные помехи,возникающие в момент закрывания диодов выпрямительного моста. Выходноенапряжение 5. 6В устанавливают подстроечным резистором R3, а максимальныйток зарядки (примерно 150 мА) – подборкой резистора R1 при подключеннойразряженной аккумуляторной батарее. Блок удобен тем, что зарядкааккумуляторов происходит быстро (4…6 ч), и перезарядить их невозможно [3,4].
Диоды VD1-VD4 и конденсатор C2 – от адаптера,остальные – RV-6. Конденсатор C4 можно установить также и любой оксидный, ноего емкость должна быть не менее 10 мкA. Диод VD5 – практически любойвыпрямительный или импульсный. Микросхема DA1 установлена на ребристыйтеплоотвод размерами 10x18x38 мм от промышленного устройства. Для хорошегоохлаждения в нижней и верхней стенках корпуса адаптера (ориентация привключении его в настенную розетку) просверлены по шесть отверстий диаметром6 мм. Если ограничение выходного тока не требуется,резистор R1 и конденсатор C3 можно исключить. В таком варианте максимальныйвыходной ток составлял 0.5А при напряжении пульсаций около 1 мВ. Подобравсопротивления резисторов R3 и R4, можно можно собрать стабилизатор на любоевыходное напряжение в пределах, допустимых трансформатором адаптера.
Диоды VD1-VD4, конденсатор C2, светодиод HL1 ипереключатели SA1 и SA2 – от адаптера. Резисторы R3-R8 не обязательно должныиметь указанные сопротивления, они могут отличаться в любую сторону в 1.5раза. Важно, чтобы сопротивления R3-R7 были равны между собой с точностью1…2%, а сопротивление R8 было вдвое большим, поскольку ими определяетсяпогрешность установки выходных напряжений. Все элементы, кроме трансформатора Т1,установлены на печатной плате, чертеж которой приведен на рис.5, а внешнийвид устройства – на рис.6. Для сверления крепежных отверстий и отверстий дляустановки переключателей и светодиода удобно применить печатную плату отиспользуемого адаптера как трафарет. Чтобы выпаять переключатель из платы ипри этом не повредить ее, необходимо, прогревая одновременно несколькососедних контактов паяльником, изгибать плату. Переходя постепенно к другимконтактам, можно выпаять переключатель целиком.
Налаживание устройства заключается в установкевыходных напряжений без нагрузки подборкой резисторов R2 и R9. Резистор R9можно сразу поставить указанного на схеме сопротивления, а параллельно ему ивместо R2 впаять переменные резисторы сопротивлением 10 кОм и 56 Омсоответственно. Резистором, подключенным параллельно R9, устанавливаютвыходное напряжение 12 В, резистором R2 – 1.5 В. Поскольку эти установкивзаимосвязаны, их надо повторить несколько раз. После этого устанавливаютпостоянные резисторы с подобранными сопротивлениями, причем резисторпараллельно R9 подпаивают со стороны печатных проводников.
Литература |
В данном разделе представлены блоки питания (сетевые адаптеры) и зарядные устройства, распределенные по следующим подгруппам:
При подборе блока питания для Вашей бытовой аппаратуры (взамен поломанного или утраченного) соблюдайте несколько простых правил:
|
Стабилизированные источники питания
Чувствительность выходного напряжения источника питания к изменению тока нагрузки можно уменьшить, используя стабилизацию (автоматическое регулирование) напряжения. Этот метод позволяет поддерживать выходное напряжение источника питания на постоянном уровне при изменении тока нагрузки. Существуют два способа стабилизации: параллельная стабилизация и последовательная стабилизация.
Параллельные стабилизаторы
Блок-схема параллельного стабилизатора (или, более точно, стабилизатора с параллельным включением регулирующего элемента) представлена на рис. 29.13. На рис. 29.14 приведена схема источника питания с параллельной стабилизацией, где в качестве регулирующего элемента используется стабилитрон. Схема рассчитывается так, чтобы стабилитрон работал на участке пробоя. При этом падение напряжения на нем практически не изменяется даже при очень больших изменениях тока, поэтому неизменным остается и выходное напряжение источника питания.
Параллельная стабилизация основана на принципе разделения тока, в соответствии с которым сумма тока нагрузки ILи тока стабилитрона IZ поддерживается постоянной. Если, например, ток нагрузки возрастает на 2 мА, то на те же 2 мА уменьшается ток регулирующего элемента, и наоборот.
Через гасящий резистор R1, включенный последовательно с нагрузкой, протекает полный ток, и падение напряжения V1 на этом резисторе разности между нестабилизированным напряжением выпрямителя VAB и напряжением пробоя стабилитрона VZ:
V1= VAB– VZ
Рис. 29.13. Блок-схема параллельного стабилизатора напряжения.
Рис. 29.14. Источник питания с параллельной стабилизацией.
При указанных на рис. 29.13 параметрах стабилизатора напряжение на нагрузке VL= VL = 9 В.
V1 = VAB – VZ = 30 – 9 = 21 В.
21 В
Общий ток IT= ———— = 21 мА.
1 к0м
Напряжение на нагрузке 9 В
Ток нагрузки IL= ———————————— = ———— = 7,5 мА.
Сопротивление нагрузки 1, 2 к0м
Ток стабилитрона IZ = IT— IL= 21 — 7, 5 = 13, 5 мА.
Если ток нагрузки уменьшить теперь на 2,5 мА (до 5 мА), то ток стабилитрона возрастет на 2,5 мА и станет равным 13,5+2,5 = 16 мА.
На холостом ходу, когда IL= 0, весь полный ток ITбудет протекать через стабилитрон: IZ = IT.Таким образом, независимо от того, есть нагрузка или она отключена, источник питания постоянно потребляет максимальный ток IT.Это один из недостатков параллельного стабилизатора.
На рис. 29.15 показана типичная нагрузочная характеристика источника питания с параллельной стабилизацией, схема которого представлена на рис. 29.14. Напряжение на нагрузке начинает быстро падать, когда ток нагрузки превысит номинальное значение (близкое к 21 мА). При этих значениях тока нагрузки почти весь общий ток ITответвляется в нагрузку. Ток стабилитрона становится слишком мал и не может удержать стабилитрон в области пробоя, в результате происходит резкое падение сходного напряжения стабилизатора. Для обеспечения эффективной стабилизации значение нестабилизированного напряжения обычно выбирается таким, чтобы оно приблизительно втрое превышало напряжение стабилизации стабилитрона.
Рис. 29.15. Нагрузочная характеристика
стабилизированного источника питания.
Рис. 29.16. Блок-схема последовательного
стабилизатора напряжения.
Лучшими параметрами и более высокой эффективностью характеризуются последовательные стабилизаторы (или, более точно, стабилизаторы с последовательным включением регулирующего элемента), в которых применяется транзистор или тиристор, включаемый последовательно с нагрузкой. Простая блок-схема последовательного стабилизатора представлена на рис. 29.16. Стабилизатор состоит из «последовательного» регулирующего элемента и стабилизирующего нагрузочного резистора, обеспечивающего некоторый минимальный нагрузочный ток.
Последовательный транзисторный стабилизатор
Базовая схема последовательного стабилизатора с использованием транзистора показана на рис. 29.17. Выходное напряжение снимается с эмиттера транзистора T1, и, как хорошо видно из рис. 29.18, где та же схема изображена по-иному, этот транзистор включен по схеме эмиттерного повторителя. Стабилитрон поддерживает на постоянном уровне потенциал базы. Поскольку при прямом смещении потенциал эмиттера отслеживает потенциал базы, оставаясь всегда ниже последнего на 0,6 В (для кремниевого транзистора), то выходное напряжение стабилизатора также сохраняет свой постоянный уровень.
Эмиттерный повторитель работает как усилитель тока и обеспечивает работу источника питания на нагрузку, потребляющую большой ток. Стабилитрон является регулирующим элементом и источником опорного напряжения и потребляет меньший ток по сравнению со стабилитроном, работающим в параллельном стабилизаторе. Для эффективной стабилизации ток через стабилитрон должен быть приблизительно в 5 раз больше базового тока транзистора.
Рассмотренный выше простой последовательный стабилизатор имеет Два главных недостатка.
Рис. 29.17. Источник питания с последовательной стабилизацией напряжения.
Рис. 29.18. Нарисованная по-другому схема рис. 29.17. Здесь явно видно, что транзистор T1 включен по схеме эмиттерного повторителя.
1. При больших токах нагрузки необходимо использовать мощные стабилитроны и транзисторы с большим коэффициентом усиления тока.
2. Стабильность выходного напряжения такого стабилизатора недостаточна для некоторых применений.
Первый недостаток можно преодолеть, если увеличить коэффициент усиления тока с помощью дополнительного транзистора T2, образующего второй каскад эмиттерного повторителя (рис. 29.19). При этом ток нагрузки может быть очень велик (амперы), тогда как ток стабилитрона по-прежнему остается очень малым. Стабильность выходного напряжения можно улучшить, если усилить изменение напряжения еще до сравнения его с опорным напряжением стабилитрона, как показано на рис. 29.20. Здесь T1 — обычный последовательный транзистор, а транзистор T2 работает как усилитель изменения напряжения. Стабилитрон выполняет только функцию источника опорного напряжения и, следовательно, может быть маломощным.
Транзистор T2 сравнивает выходное напряжение с опорным напряжением стабилитрона. Любое изменение выходного напряжения усиливается и подается на базу транзистора T1, который поддерживает выходное напряжение на постоянном уровне.
Рис. 29.19. Последовательный стабилизатор с двухкаскадным эмиттерным повторителем (приведены два варианта изображения одной и той же схемы).
Рис. 29.20. Последовательный стабилизатор с усилителем изменения напряжения, который обеспечивает улучшение стабильности выходного напряжения.
Предположим, например, что некоторое внешнее возмущение вызвало увеличение выходного напряжения Vвых. Тогда потенциал базы транзистора T2 возрастет относительно потенциала эмиттера, который зафиксирован опорным напряжением стабилитрона. и ток через этот транзистор увеличится, а напряжение на его коллекторе уменьшится. В результате уменьшится разность потенциалов между базой и эмиттером транзистора T1 и, как следствие, уменьшится ток через транзистор T1 и напряжение на нагрузке Vвых. Таким образом, компенсируется изменение Vвых. Различными модификациями базовой схемы последовательного стабилизатора можно добиться улучшения его параметров.
Цепь защиты от перегрузки
Одна из проблем, с которой приходится сталкиваться при использовании последовательного стабилизатора, обеспечение защиты последовательного регулирующего транзистора от перегрузки. Резкое возрастание тока через этот транзистор при перегрузке или коротком замыкании в цепи нагрузки может привести к необратимому повреждению транзистора. Один из возможных способов защиты от перегрузки представлен на рис. 29.21. Здесь T2 — транзистор защиты or перегрузки. Ток нагрузки IL протекает через измерительный резистор R1 и создает на нем падение напряжения, обеспечивающее прямое смещение эмиттерного перехода этого транзистора. Когда ток нагрузки находится в пределах нормы, падение напряжения на R1 мало и транзистор T2 закрыт. При увеличении тока нагрузки выше допустимого уровня падение напряжения на резисторе R1 возрастает и открывает транзистор T2, он начинает проводить ток. В проводящем состоянии транзистор T2 «отбирает» часть тока у транзистораT1, обеспечивая его защиту. В схему защиты можно также включить устройство автоматического отключения источника питания от сети, если ток нагрузки превышает допустимый уровень.
Рис. 29.21. Последовательный стабилизатор с цепью защиты
от перегрузки на транзисторе T2.
Инверторы
Инверторы преобразуют входное напряжение постоянного тока в выходной синусоидальный сигнал. Они часто содержат схемы стабилизации выходного напряжения. Инверторы применяются главным образом в качестве резервных генераторов при аварийных сбоях питания.
Инверторы, вырабатывающие гармоническое напряжение, могут быть реализованы как генераторы класса А или В. Однако линейный режим работы таких генераторов связан с высокими потерями, поэтому обычно используются переключающие элементы, вырабатывающие прямоугольный периодический сигнал, который затем фильтруется для получения на выходе гармонического напряжения (рис. 29.22).
Рис. 29.22.
Конверторы
Конверторы преобразуют постоянное напряжение одной величины в постоянное напряжение другой величины. Конвертор состоит из инвертора, за которым следует выпрямитель. На рис. 29.23 показана простая схема конвертора на основе блокинг-генератора. Выходной сигнал блокинг-генератора представляет собой последовательность прямоугольных импульсов с периодом, определяемым постоянной времени R1C1. К вторичной обмотке трансформатора подключен диод D1 для выпрямления импульсного сигнала. Усовершенствованная схема конвертора показана на рис. 29.24. Два блокинг-генератора на транзисторах T1 и T2 по очереди передают ток в трансформатор.
Импульсные источники питания
Более эффективными являются импульсные источники питания. В источниках этого типа последовательный регулирующий элемент (однооперационный триодный тиристор или транзистор) работает в режиме переключения. Он открывается или закрывается под управлением прямоугольных импульсов, обеспечивающих подстройку и стабилизацию выходного напряжения.
Рис. 29.23.
Рис. 29.24.
Импульсный источник питания по существу ничем не отличается от конвертора. Он преобразует нестабилизированное входное напряжение постоянного тока в пульсирующее напряжение и затем в стабилизированное постоянное напряжение (рис. 29.25). Частота переключения регулирующего элемента определяет частоту пульсаций на выходе, которые в значительной степени сглаживаются фильтром нижних частот.
Рис. 29.25.
Как видно из рис. 29.25, переменное сетевое напряжение сначала поступает на выпрямитель. После выпрямителя полученное нестабилизированное напряжение постоянного тока подается на анод переключающего элемента. Этот элемент, который может быть транзистором или тиристором, открывается и закрывается в определенные моменты времени под действием импульсов, поступающих от блока управления. Через открытый переключающий элемент заряжается накопительный конденсатор Заряд, запасаемый конденсатором (и, следовательно, выходное напряжение источника питания), определяется временем проводящего состояния этого элемента. Стабилизация выходного напряжения осуществляется путем изменения соотношения длительностей открытого или закрытого состояния переключающего элемента (т. е. изменения коэффициентазаполнения последовательности управляющих импульсов) в зависимости от величины выходного напряжения, регистрируемой специальным датчиком. Уменьшение выходного напряжения относительно установленного уровня компенсируется подачей более широких управляющих импульсов удерживающих переключающий элемент в открытом состоянии в течение более длительных промежутков времени, и наоборот.
В этом видео рассказывается о стабилизированном блоке питания:
Добавить комментарий
отличие блока питания от зарядного устройства
Адаптер питания, он же блок питания выполняет свою задачу: из переменного напряжения сети 220 вольт получить постоянное напряжение 12 вольт (или 5v или 6v). Это напряжение не должно изменятся в зависимости от протекающего тока нагрузки. Это стабилизированный источник питания. Еще раз — на выходе его ВСЕГДА 12 вольт в пределах тока, на который он рассчитан. К примеру на фото слева БП рассчитан на ток до 1.5 ампера, свыше, он сгорит или если «умный» отключится по перегреву.
Зарядное устройство к примеру на 12 вольт, на своем выходе имеет в зависимости от стадии зарядки 14,6 вольта. При этом ток ограничен значением, которое написано на ЗУ.
Почему 14.6 вольта? Чтобы ток потек в направлении аккумулятора нужна разность потенциалов между зарядкой и емкостью (аккумулятором). Если АКБ на 12 вольт, то заряжать его надо большим потенциалом (напряжением). Иначе ток не потечет в него (образно говоря).
Блок питания, выдающий ровно 12 вольт никогда не зарядит батарею на те же 12 вольт. Ток не потечет, нет разности потенциалов. Если батарея сильно разряжена и ее напряжение меньше 12 вольт, ДА Блок питания ее подзарядит, этим можно воспользоваться, если под рукой не настоящего ЗУ, НО уровень заряженности будет процентов 10-15 от номинальной емкости батареи, не более.
Напряжение на полностью заряженной батареи должно быть не 12 вольт, а 12,6-12,8 вольт. Батарея, на клеммах которой 12.0 — 12.3 вольт срочно требует зарядки — иначе, если это AGM батарея, теряется емкость (происходит необратимый процесс сульфатации пластин).
Зарядные устройства сложнее технически, поэтому дороже, чем адаптеры. Поэтому часто поставщики фонарей или детских машинок комплектуют свои изделия именно адаптерами, причем не стабилизированными. Результатом является снижение срока службы АКБ в 3-4 раза от систематического недозаряда.
Мы рекомендуем недорогие зарядные устройства для AGM и GEL, которые действительно дадут реальный срок службы аккумулятору.