Site Loader

Содержание

Двадцатеричная система счисления — Википедия

Материал из Википедии — свободной энциклопедии

Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Грузинская
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Двадцатеричная (двадцатичная, вигезимальная) система счисления — позиционная система счисления по целочисленному основанию 20. Двадцатеричная система — вторая по распространённости после десятичной[1]. Считается, что она, как десятичная и двенадцатеричная, связана со счетом на пальцах[2][3][4].

Двадцатеричная система используется во многих языках, в частности в языке йоруба, у тлинкитов, в системе записи чисел майя, некоторых кавказских и азиатских языках. Во многих (в основном европейских) языках используется основание 20, по крайней мере в лингвистической структуре.

Африка[править | править код]

Америка[править | править код]

Азия[править | править код]

Европа[править | править код]

Кавказ[править | править код]

Двадцатеричная система распространена в кавказских языках.

  • В грузинском 11 t’ert’meti < at’-ert’-meti «10-1−больше», 12 t’ormeti; счёт идёт по двадцаткам (20 otsi, 40 ormotsi < or-me-otsi «2-20», 50 — ormotsdaati <ormotsi-da-ati (дважды двадцать и десять, «сорок и десять»), 70 samotsdaat’i < sami-otsi-da-at’i «3-20-и-10»)[1]. Имеется в виду вместо слов «тридцать» или «тридцать один» говорится как бы «двадцать десять», «двадцать одиннадцать» и т. д. А, например, 97 — «четырежды двадцать и семнадцать»
  • В абхазском 20 — ҩажәа, 30 — ҩажәижәаба (двадцать десять) 40 — ҩынҩажәа (два раза двадцать) 50 — ҩынҩажәижәаба (два раза двадцать и десять, «сорок десять») 78 — хынҩажәижәаба жәаа (три раза двадцать восемнадцать)
  • В адыгейском 11 пшӏыкӏузы (пшӏы 10, зы 1), 20 тӏокI, 30 щэкӏы, 40 тӏокӏитӏу[1].
  • В нахско-дагестанских языках принята двадцатеричная система — у ингушей, чеченцев, аварцев, лезгин.

Армянская система счисления — Википедия

Материал из Википедии — свободной энциклопедии

Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Грузинская
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Армянская система счисления — историческая система счисления, созданная с использованием маюскулов (заглавных букв) армянского алфавита.

В старой системе не было обозначения для цифры ноль, а числовые значения отдельных букв суммировались. Принципы, лежащие в основе этой системы, такие же, как в древнегреческом счислении и древнееврейском счислении. В современной Армении используются хорошо всем известные арабские цифры. Армянскими же цифрами пользуются более или менее подобно римским цифрам в современном английском языке, например: Գարեգին Բ. означает Гарегин II и Գ. գլուխ означает

Глава III (в заголовке).

Поскольку не все браузеры поддерживают показ Unicode Армянских букв, приводится транслитерации (REArm).

Обратите внимание, что последние две буквы армянского алфавита, «O» (Օ) и «фе» (Ֆ) были добавлены в армянский алфавит уже после того, как начали использоваться арабские цифры, чтобы облегчить транслитерацию других языков. Поэтому им не было назначено числового значения.

Числа в армянской системе счисления получаются путём простого сложения. Армянские числительные пишутся слева направо (как в армянском языке). Хотя порядок цифр не имеет значения, поскольку выполняется просто сложение, принято записывать их в порядке убывания значения.

Примеры:

  • ՌՋՀԵ = 1975 = 1000 + 900 + 70 + 5
  • ՍՄԻԲ = 2222 = 2000 + 200 + 20 + 2
  • ՍԴ = 2004 = 2000 + 4
  • ՃԻ = 120 = 100 + 20
  • Ծ = 50

Для чисел, превышающих 9000, над соответствующей буквой или группой букв рисуется черта, что означает умножение числового значения на 10 000. Это схоже с римскими цифрами, в которых черта над символом обозначает умножение соответствующего числового значения на 1000.

Примеры:

  • Ա = 10 000
  • Ջ = 9 000 000
  • ՌՃԽԳՌՄԾԵ = 11 431 255
  • Титло — программа для перевода армянских чисел

десятичная, двоичная, таблица перевода чисел

Система счисления – это способ записи чисел с помощью определенных знаков.

Давайте рассмотрим самые распространенные позиционные системы – в зависимости от местоположения (разряда) в записи числа один и тот же знак имеет различные значения.

Целое число “x” в позиционной системе счисления можно выразить следующим образом:

Запись числа в системе счисления

  • b – основание системы
  • ak – цифры числа (0 ≤ ak ≤ b-1)
  • k – количество разрядов

Развернутая форма записи целого числа:

Запись числа в системе счисления

Двоичная система счисления: основание – 2

Используется в дискретной математике, информатике и программировании. Содержит только две цифры – 0 и 1. Число, записанное в данной системе, обозначается буквой

B на конце (префикс).

Примеры:

  • 101012 = 10101B = 1×24+0×23+1×22+0×21+1×2= 16+4+1= 21
  • 101112 = 10111B = 1×24+0×23+1×22+1×21+1×2= 16+4+2+1= 23
  • 1000112 = 100011B = 1×25+0×24+0×23+0×22+1×21+1×2=32+2+1= 35

Восьмеричная система счисления: основание – 8

Для записи числа используются восемь цифр – от 0 до 7.

Примеры:

  • 278 = 2×81+7×8= 16+7 = 23
  • 308 = 3×8
    1
    +0×8= 24
  • 43078 = 4×83+3×82+0×81+7×80= 2247

Десятичная система счисления: основание -10

Самая распространенная система, которая используется повсеместно. Содержит цифры от 0 до 9.

Пример:

253810 = 2×103+5×102+3×101+8×100

Шестнадцатеричная система счисления: основание – 16

Используются цифры от 0 до 9, а также буквы от A до F. Для обозначения чисел служит префикс H. Система применяется в информатике и программировании.

Примеры:

  • 2816 = 28H = 2×161+8×16= 40
  • 2F16 = 2FH = 2×161+15×16= 47
  • BC1216 = BC12H = 11×163+12×162+1×161+2×160= 48146

Таблица соответствия чисел систем счисления

Двоичная
система
Восьмеричная
система
Десятичная
система
Шестнадцатеричная
система
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 1A
27 11011 33 1B
28 11100 34 1C
29 11101 35 1D
30 11110 36 1E
31 11111 37 1F
32 100000 40 20

microexcel.ru

Еврейские цифры — Википедия

Материал из Википедии — свободной энциклопедии

Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Грузинская
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400. Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю.

Алфавитные обозначения чисел были заимствованы евреями у древних греков, по-видимому из Милета, которые изобрели эти обозначения ещё в VII в. до н. э. У евреев использование алфавитных обозначений чисел окончательно вошло в обиход ко II в. до н. э.[1]

Еврейские числа записываются справа налево, в порядке убывания разрядов; перед последней (левой) буквой ставится двойная кавычка — гершаим. Если буква всего одна, то после неё ставится одиночная кавычка — гереш.

Для обозначения 1-9 тысяч используются первые девять букв с числовым значением 1-9, после которых ставится апостроф (гереш).

Еврейская система счисления — аддитивная (не позиционная): числа, обозначаемые буквами, просто складываются.[2]

Числа 15 и 16 традиционно записываются как ‏ט״ו‏‎ (9 + 6) и ‏ט״ז‏‎ (9 + 7). Это делается, чтобы избежать сочетаний ‏י»ה‏‎ (10 + 5) и ‏י»ו‏‎ (10 + 6)‬, которые напоминают написание имени Бога. В еврейском календаре эти числа месяца (15 и 16) падают на полнолуние, так как еврейский месяц всегда начинается с новолуния.

Если сочетание букв, построенное по этим правилам, получается похоже на слово с негативным значением, то иногда меняют порядок букв. Например, 1983-84 году по общепринятому летоисчислению соответствует 5744 год (или 744 год текущего тысячелетия) от Сотворения мира. В данном случае число 744, выражаемое буквами תשמ״ד («будешь уничтожен»), заменяется на תמש»ד («конец чёрта»).

Система счисления — это… Что такое Система счисления?

Системы счисления в культуре
Индо-арабская система счисления
Арабская
Индийские
Тамильская
Бирманская
Кхмерская
Лаоская
Монгольская
Тайская
Восточноазиатские системы счисления
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные системы счисления
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Эфиопская
Еврейская
Катапаяди
Другие системы
Вавилонская
Египетская
Этруская
Римская
Аттическая
Кипу
Майская
Позиционные системы счисления
Десятичная система счисления (10)
2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 60
Нега-позиционная система счисления
Симметричная система счисления
Смешанные системы счисления
Фибоначчиева система счисления
Непозиционные системы счисления
Единичная (унарная) система счисления
Список систем счисления

Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления:

Системы счисления подразделяются на позиционные, непозиционные и смешанные.

Позиционные системы счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :

, где  — это целые числа, называемые цифрами, удовлетворяющие неравенству .

Каждая степень в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно, в ненулевых числах , левые нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются:

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Смешанные системы счисления

Смешанная система счисления является обобщением -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число в ней представляется как линейная комбинация:

, где на коэффициенты , называемые как и прежде цифрами, накладываются некоторые ограничения.

Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.

В зависимости от вида как функции от смешанные системы счисления могут быть степенными, показательными и т. п. Когда для некоторого , смешанная система счисления совпадает с показательной -ричной системой счисления.

Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина « дней, часов, минут, секунд» соответствует значению секунд.

Факториальная система счисления

В факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:

, где .

Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 — (1,2,3,4,5) до перестановки с номером 119 — (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti — коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) — таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.

Фибоначчиева система счисления

Фибоначчиева система счисления основывается на числах Фибоначчи. Каждое натуральное число в ней представляется в виде:

, где  — числа Фибоначчи, , при этом в коэффициентах есть конечное количество единиц и не встречаются две единицы подряд.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

Представление, использующее биномиальные коэффициенты

, где .

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов , где

При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка .

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленых в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям .

Система счисления Штерна–Броко

Система счисления Штерна–Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна–Броко.

Системы счисления разных народов

Единичная система счисления

По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т.д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком — так возникают прообразы будущих цифр.

Древнеегипетская система счисления

Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 10², 10³, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.[2]

Вавилонская система счисления

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.[2]

Еврейская система счисления

Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400 (см. т. ж. Гематрия). Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю.

Греческая система счисления

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
I обозначает 1,
V — 5,
X — 10,
L — 50,
C — 100,
D — 500,
M — 1000

Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.

На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:

IV = 4, в то время как:
VI = 6

Система счисления майя

Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году.

Для записи основными знаками были точки (единицы) и отрезки (пятёрки).

Кипу инков

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[3], так и не числовых записей в двоичной системе кодирования[4]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[5]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись[6].

См. также

Примечания

Ссылки

Унарная система счисления — Википедия

Материал из Википедии — свободной энциклопедии

Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Грузинская
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Уна́рная (едини́чная, ра́зная) систе́ма счисле́ния — непозиционная система счисления с единственной цифрой, обозначающей 1.

В качестве единственной «цифры» используется «1», чёрточка (|), камешек, костяшка счётов, узелок, зарубка и др.[1] В этой системе число n{\displaystyle n} записывается при помощи n{\displaystyle n} единиц. Например, 3 в этой системе будет записано как |||. По-видимому, это хронологически первая система счисления каждого народа, овладевшего счётом.

Унарная система счисления применяется:

  • Последовательность

A000042 (единичное представление натуральных чисел) в OEIS.

Аттическая система счисления — Википедия

Материал из Википедии — свободной энциклопедии

Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Грузинская
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Аттическая система счисления — непозиционная система счисления, применявшаяся в древней Греции до III века до н. э. Она употребляет в качестве цифр греческие буквы, причём цифрами служили первые буквы слов, которые обозначали соответствующие числа. После III века до н. э. аттическая система счисления была вытеснена ионийской.

знакзначениеназвание
Ι1ἴος «иос»
Π5πέντε «пенте»
Δ10δέκα «дека»
Η100ἑκατόν «хекатон»
Χ1 000χίλιοι «хилиой»
Μ10 000μύριοι «мюриой»

Употреблялись также дополнительные цифры для обозначения чисел 50, 500, 5 000 и 50 000, которые представляли собой сочетание цифры 5 с цифрами 10, 100, 1 000, 10 000.

При записи чисел сначала записывали большие числа, потом — меньшие. Например,

ΗΔΔΠΙΙΙ 128

25 040

Принцип записи чисел в аттической системе счисления имеет значительное сходство с римской системой. Это может быть связано с влиянием восточносредиземноморских культур на этрусков, у которых римляне позаимствовали систему счисления.

  • Титло — программа для перевода греческих аттических и ионических чисел

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *