Site Loader

Содержание

Стробоскоп для дизельного двигателя

Стробоскоп для дизельного двигателя

Каталог

△

▽

  • Главная
  •  > 
  • Стробоскопы

Стробоскоп (от греч. «strobos» — «кружение», «беспорядочное движение» «skopeo» — «смотрю») представляет собой прибор, позволяющий быстро воспроизводить повторяющиеся яркие световые импульсы.

Cтробоскоп – это прибор для наблюдения быстрых периодических движений, его действие основано на стробоскопическом эффекте. На нем же основана и работа автомобильных стробоскопов.  Автомобильный стробоскоп нельзя назвать световым оборудованием. Автомобильные стробоскопы бывают светодиодными, то есть работают на светодиодах. Такие устройства представляют собой сигнальные устройства. Мы же расскажем Вам об автомобильных стробоскопах для установки зажигания и выставления УОЗ (угла опережения зажигания).

 

Они облегчают и упрощают обслуживание системы зажигания в автомобиле, правильная установка которой так важна для любого обладателя авто.

Установив момент зажигания неправильно, и сместив его всего на каких-то 2—3°, Вы приведете регуляторы в неисправность, а они в свою очередь станут причиной повышенного расхода топлива, перегрева двигателя потери мощности и могут даже сократить срок службы двигателя.

Автомобильный стробоскоп позволяет в течение 5-10 минут проверить исправность центробежного и вакуумного регуляторов опережения.

Стробоскоп – это прекрасная вещь для настройки и контроля угла опережения зажигания. Ведь любому автолюбителю известно, что момент зажигания должен быть настроен правильно и срабатывать в нужный момент. Благодаря действию автомобильного стробоскопа, Вы не только добьетесь максимальной мощности двигателя внутреннего сгорания и высокого КПД, но и продлите срок службы двигателя.

Если Вам не безразлично «здоровье» вашего автомобиля, советуем Вам зайти на сайт нашего интернет-магазина «НПП ОРИОН» и купить автомобильный стробоскоп отличного качества и по доступной цене. Мы ждем Вас!


Фильтр

Дополнительные функции

вольтметр (2) расширенные функции (1) тахометр (2)

Тип двигателя

двигатель с магнето/ магдино (1) дизель (2) инжектор (3) карбюратор (3)

Тип излучателя

ксеноновая лампа (4)

Тип датчика

бесконтактный, активный емкостной (3) пъезодатчик (2)


Автомобильный стробоскоп « схемопедия


Автомобилистам хорошо известно, насколько важна правильная установка начального момента зажигания, а также исправная работа центробежного и вакуумного регуляторов опережения зажигания. Неправильная установка момента зажигания всего на 2—3° и неисправности регуляторов могут явиться причиной повышенного расхода топлива, перегрева двигателя потери мощности и могут даже сократить срок службы двигателя.

Однако проверка и регулировка системы зажигания являются довольно сложными операциями, которые не всегда доступны даже опытному автолюбителю.

Автомобильный стробоскоп позволяет упростить обслуживание системы зажигания. С его помощью даже малоопытный автолюбитель может в течение 5—10 мин проверить и отрегулировать начальную установку момента зажигания, а также проверить исправность центробежного и вакуумного регуляторов опережения.

Работа стробоскопа основана на так называемом стробоскопическом эффекте. Суть его состоит в следующем: если осветит движущийся в темноте объект очень короткой яркой вспышкой, он зрительно будет казаться как бы неподвижно “застывшим’ в том положении, в каком его застала вспышка. Освещая, например, вращающееся колесо вспышками, следующими с частотой, равной частоте его вращения, можно зрительно остановить колесо, что легко заметить по положению какой – либо метки на нем.

Для установки момента зажигания запускают двигатель на холостые обороты и стробоскопом освещают специальные установочные метки. Одна из них — подвижная — размещена на коленчатом валу (либо на маховике, либо на шкиве привода генератора), а другая — на корпусе двигателя. Вспышки синхронизируют с моментами искрообразования в запальной свече первого цилиндра, для чего емкостный датчик стробоскопа крепят на ее высоковольтном проводе.

В свете вспышек будут видны обе метки, причем, если они находятся точно одна против другой, угол опережения зажигания оптимален, если же подвижная метка смещена, корректируют положение прерывателя—распределителя до совпадения меток. 

Основным элементом прибора является импульсная безынерционная стробоскопическая лампа Н1 типа СШ-5,  вспышки которой происходят в моменты появления искры в свече первого цилиндра двигателя. Вследствие этого установочные метки, нанесенные на маховике или шкиве коленчатого вала, а также другие детали двигателя, вращающиеся или перемещающиеся синхронно с коленчатым валом, при освещении их стробоскопической лампой кажутся неподвижными.

Это позволяет наблюдать сдвиг между моментом зажигания и моментом прохождения поршнем верхней мертвой точки на всех режимах работы двигателя, т. е. контролировать правильность установки начального момента зажигания и проверять работоспособность центробежного и вакуумного регуляторов опережения зажигания.

Электрическая принципиальная схема автомобильного стробоскопа приведена на рис. 1. Прибор состоит из двухтактного преобразователя напряжения на транзисторах VI, V2, выпрямителя, состоящего из выпрямительного блока VЗ и конденсатор С1, ограничивающих резисторов R5, R6, накопительных конденсаторов С2, С3, стробоскопической лампы Н1, цепи поджига лампы, состоящей ял конденсаторов С4, C5 и разрядника F1 и защитного диода V4.

Рис.1. Электрическая принципиальная схема автомобильного стробоскопа на германиевых транзисторах.

Прибор работает следующим образом. После подключения выводов Х5, Х6 к аккумулятору начинает работать преобразователь напряжения, представляющий собой симметричный мультивибратор. Первоначальное открывающее напряжение на базы транзисторов V1, V2 преобразователя подается с делителей R2—R1, R4—R3. Транзисторы V1, V2 начинают открываться, причем один из них обязательно быстрее. Это закрывает другой транзистор, так как к его базе при этом с обмотки w2 или wЗ будет прикладываться запирающее (положительное) напряжение. Затем транзисторы V1, V2 поочередно открываются, подключая то одну, то другую половины обмотки w1 трансформатора Т1 к аккумулятору. Во вторичных обмотках w4, w5 при этом индуцируется переменное напряжение прямоугольной формы с частотой около 800 Гц, значение которого пропорционально количеству витков обмоток.

В момент искрообразования в первом цилиндре двигателя высоковольтный импульс от гнезда распределителя через специальную вилку Х2 разрядника и конденсаторы С4, С5 поступает на поджигающие электроды стробоcкопической лампы Н1. Лампа зажигается, и накопительные конденсаторы С2, С3 разряжаются через нее. При этом энергия, накопленная в конденсаторах С2, С3, преобразуется в световую энергию вспышки лампы.

После разряда конденсаторов С2, С3 лампа Н1 гаснет, и конденсаторы снова заряжаются через резисторы R5, R6 до напряжения 420—450 В. Тем самым заканчивается подготовка схемы к следующей вспышке.

Резисторы R5, R6 предотвращают закорачивание обмоток w4, w5 трансформатора в момент вспышки лампы диод V4 защищает транзисторы преобразователя при случайном подключении стробоскопа в ошибочной полярности.

Разрядник F1, включенный между распределителем и свечей зажигания, обеспечивает необходимое напряжение высоковольтного импульса для поджига лампы вне зависимости от расстояния между электродами свечи, давления в камере сгорания и других факторов. Благодаря разряднику обеспечивается бесперебойная работа стробоскопа даже при закороченных электродах свечи зажигания.

В случае замены германиевых транзисторов П214А кремниевыми типа КТ837Д(Е) схема преобразователя, да и всего стробоскопа, должна быть существенно изменена. Изменяются данные трансформатора и выдвигаются дополнительные требования к его исполнению.

Это связано с тем, что кремниевые транзисторы серии КТ837 более высокочастотны и схема, выполненная на них, склонна к возбуждению. Кроме того, чтобы открыть эти транзисторы, нужно большее напряжение, чем для германиевых транзисторов. Так, например, если в стробоскоп, собранный по схеме рис. 1, впаять вместо транзисторов П214А, например, транзисторы КТ837Д, ничего не изменяя, преобразователь работать не будет, оба транзистора будут закрыты, для того чтобы преобразователь начал работать, сопротивления резисторов R2, R4 надо уменьшить до 200—300 Ом. При этом снижается коэффициент полезного действия преобразователя, а главное, он без каких-либо видимых причин может начать генерировать высокочастотные синусоидальные колебания с частотой 50—100 кГц. питания, предотвращают возникновение высокочастотной генерации.

Мощность, рассеиваемая в транзисторах, резко возрастает, и транзистор через несколько минут выходят из строя.

На рис. 2 приведена электрическая принципиальная схема автомобильного стробоскопа на кремниевых транзисторах КТ837д. Мощность, рассеиваемая в транзисторах преобразователя, в данном случае значительно меньше благодаря большему быстродействию транзисторов КТ837Д, и следовательно, большей крутизне фронтов импульсов преобразователя; выше и надежность преобразователя. Рассмотрим особенности этой схемы. Конденсаторы С1, С7, включенные между базами транзисторов преобразователи и минусом источника питания, предотвращают возникновение высокочастотной генерации.

Рис.2. Электрическая принципиальная схема автомобильного стробоскопа на кремниевых транзисторах

Начальное отпирающее смещение на базы транзисторов V6, V7 подается с достаточно высокоомных делителей напряжения R3, R2, R1, R9, R1О, R11 с суммарным сопротивлением около 1000 Ом, нижние плечи которых имеют сопротивление 100 Ом (коэффициент деления 1/10). Однако благодаря диодам V5, V10 базовый ток транзисторов от обмоток w1, w3 протекает через низкоомные резисторы R1, R11 (10 Ом). Таким образом, удается выполнить два противоречивых требования: получить высокоомный делитель для начального смещения при низкоомном резисторе в цепи тока базы.

Цепи С2, R5 и С3, R4 уменьшают до допустимого уровня выбросы напряжения, возникающие при закрывании транзисторов V6, V8, являющиеся следствием их чрезмерного быстродействия. Значения С2, С3, R4, R5 подбираются экспериментально для каждой конкретной конструкции трансформатора Т1. Резистор R8 обеспечивает разряд конденсаторов С4, С5, C6 в промежутках между этими выбросами, благодаря чему напряжение на конденсаторах при остановленном двигателе не превышает нормы. Диоды V7, V9 устраняют обратные выбросы тока коллектора транзисторов V6, V8 в моменты их закрывания. Без этих диодов амплитуда обратного выброса тока достигает 2 А. Кроме того, эти диоды защищают транзисторы V6, V8 в случае ошибочной полярности подключения стробоскопа.

К сожалению, срок службы импульсных ламп невелик, да и приобрести новую, нужного типа непросто. С появлением на рынке отечественных светодиодов с силой света более 2000 мкд (для сравнения — у светодиодов серии АЛЗО7-М при таком же токе  значение этого параметра 10…16 мкд) возможным использование их в любительских стробоскопических приборах. В ниже описываемой конструкции использована группа из девяти светодиодов КИПД21П-К красного свечения.

Питают прибор от бортовой сети автомобиля. Диод V1 (см. схему на рис. 3) защищает стробоскоп от ошибочной перемены полярности напряжения питания.

Рис.3. Электрическая принципиальная схема автомобильного стробоскопа на светодиодах.

Емкостным датчиком прибора служит обычный зажим “крокодил”, который прицепляют на высоковольтный провод первой запальной свечи двигателя. Импульс напряжения с датчика, пройдя через цепь С1 R1 R2 поступает на тактовый вход триггера DD1.1, включенного одновибратором.

До прихода импульса одновибратор находится в исходном состоянии, на прямом выходе триггера — низкий уровень, на инверсном — высокий. Конденсатор С3 заряжен (плюс со стороны инверсного выхода), заряжается он через резистор R3. Импульс высокого уровня запускает одновибратор, при этом триггер переключается и конденсатор начинает перезаряжаться через тот же резистор R3 с прямого выхода триггера. Примерно через 15 мс конденсатор зарядится настолько, что триггер будет снова переключен в нулевое состояние по входу R.

Таким образом, одновибратор на последовательность импульсов емкостного датчика реагирует генерацией синхронной последовательности прямоугольных импульсов высокого уровня постоянной длительностью — около 15 мс. Длительность импульсов определяют номиналы цепи RЗСЗ. Плюсовые перепады этой последовательности запускают второй одновибратор, собранный по такой же схеме на триггере DD1.2.

Длительность импульсов второго одновибратора — до 1,5 мс. На это время открываются транзисторы VT1 — VT3, составляющие электронный коммутатор, и через группу светодиодов НL1—НL9 протекают мощные импульсы тока — 0,7…0,8А.

Этот ток значительно превышает паспортное значение максимально допустимого импульсного прямого тока (100 мА), установленное для светодиодов. Однако, поскольку длительность импульсов мала, а их скважность в нормальном режиме не менее 15, перегрева и выхода из строя светодиодов не отмечено. Яркость же вспышек, которую обеспечивает группа из девяти светодиодов, оказывается вполне достаточной для работы со стробоскопом даже днем.

Для того чтобы убедиться в надежности прибора, был проведен контрольный электропрогон светоизлучателя при токе в импульсе 1 А в течение часа. Все светодиоды выдержали испытания, при этом их перегревания не было обнаружено. Заметим, что обычно время пользования прибором не превышает пяти минут.

Экспериментально установлено, что длительность вспышек должна быть в пределах 0,5…0,8 мс. При меньшей длительности увеличивается ощущение недостатка яркости освещения меток, а при большей — увеличивается их “размытость”. Необходимую длительность легко подобрать визуально во время работы со стробоскопом подстроечным резистором R4, входящим во времязадающую цепь R4С4 второго одновибратора.

Назначение первого одновибратора — защитить светодиоды от выхода из строя при случайном увеличении частоты вращения коленчатого вала двигателя в процессе пользования стробоскопом.

Нами была создана модель автомобильного стробоскопа на светодиодном принципе (см. рис. 4 (а, б)). Корпусом является корпус от фонаря. 

Рис.4(а). Стробоскоп электрический в сборе.

Рис.4(б). Стробоскоп электрический в сборе.

Испытания собранного прибора были произведены успешно, он используется в гараже Ставропольского Государственного Аграрного Университета.

Функции стробоскопа можно расширить, превратить его тахометр. Т.к. многие автомобили старого образца, которые еще эксплуатируются, не имеют данного прибора на щитке водителя.

С этой целью собран генератор регулируемой частоты (ГРЧ) следования импульсов 10 – 15 Гц, что соответствует частоте вращения коленчатого вала в пределах 600-900 об / мин. В этом диапазоне и лежит обычно  минимальная  частота вращения коленчатого вала двигателя при холостых оборотах, при которой производится настройка начального угла опережения  зажигания.

Рукоятку переменного резистора включенного в частотозадающую  цепь   RC генератора снабдили шкалой проградуированной с помощью лабораторного цифрового частотомера.

Выходной сигнал ГРЧ поступает на вход вместо датчика на вход стробоскопа.

Автомеханик, подключив прибор, направляет прерывистый световой поток, как и в предыдущем случае настройки зажигания на шкив коленчатого вала и в случае  необходимости регулирует ее до значения, указанного заводом-изготовителем для данного транспортного средства.

После настройки частоты вращения коленчатого вала он преступает к настройке момента зажигания по вышеописанной методике см 1-2.

Т.к. точность определения частоты вращения коленчатого вала невысока, то это позволило нам взять такое простое решение, не прибегая к разработке цифрового варианта тахометра.

Список используемой литературы:

  1. Беляцкий  П. Светодиодный автомобильный стробоскоп /П. Беляцкий – «Радио» – 2000 – №9, с. 43
  2. Синельников А.Х. Электроника в автомобиле/ А.Х. Синельников – Москва: Радио и связь, 1985, с.82  
  3. Ютт В.Е. «Электрооборудование автомобиля» – Москва: Транспорт, 1995
  4.  Чижков Ю.П. Анисимов А.В. «Электрооборудование автомобиля» – Москва: «За рулем», 1999
  5. Банников С.П. «Электрооборудование автомобиля» – Москва: Транспорт, 1993
  6. Сига Х. Мидзутани С. «Введение в автомобильную электронику»- Москва: МИР, 1989

Автор: КРУГ

Транзисторы

и микросхема таймера 555 Конструкция светодиодной стробоскопической схемы

Нет ничего более увлекательного, чем наблюдать, как электрическая цепь включает и выключает светодиод. Создать световой стробоскоп несложно, если использовать подходящую схему привода. В любом магазине DIY найдется то, что вам нужно. В этой статье основное внимание уделяется двум простым способам сборки стробоскопа своими руками, таким как метод на основе транзистора и метод на основе таймера IC 555. В этой статье вы сможете изучить множество вариантов контроллеров стробоскопов. Кроме того, в этой статье представлены самодельные стробоскопические контроллеры в зависимости от их энергопотребления, такие как самодельный стробоскопический контроллер с питанием от переменного напряжения, самодельные стробоскопические контроллеры с питанием от постоянного напряжения. Тем не менее, большинство цепей работают при напряжении 12 В (схемы стробоскопов на 12 В)

  1. 1. Транзисторный метод
  2. 2. Таймер IC 555, метод

Вы попали на правильный сайт, если хотите узнать больше о стробоскопах своими руками и о том, как они работают.

Введение

Стробоскопическое устройство создает стробоскопические эффекты. Проще говоря, светодиодный стробоскоп излучает интенсивные вспышки света. Он создает устойчивую, мощную вспышку света. Синие и красные фары на полицейской машине — отличная иллюстрация стробоскопа.

Проблесковые огни полезны в качестве инструмента самообороны в дополнение к освещению. В настоящее время они играют значительную роль в фонарях. Типичные источники света для стробоскопических комплектов включают светодиоды, галогенные лампы и ксеноновые лампы-вспышки. Кроме того, они являются стандартным механизмом мигания в клубах и на вечеринках. Стробы имеют быстрое время перезарядки и диапазон выходной мощности для полной вспышки от 100 до 1000 Вт. Прежде всего, специальное осветительное оборудование излучает быструю вспышку светодиодного стробоскопа, создающего стробоскопические эффекты. Они также используются в промышленных, коммерческих и медицинских целях.

Термины «стробоскопическая вспышка» и «стробоскопический свет» часто неправильно понимаются любителями электроники. Не менее привлекательна стробоскопическая вспышка света. В результате они служат нескольким целям в качестве развлекательного оборудования. Однако энергия вспышки является ключевым различием между стробированием и вспышкой. Однако вспыхивает стробоскоп, и манера вспышки, несомненно, различна.

Кроме того, используются более мощные и очень короткие импульсы света, стробоскопы. В то же время у стробоскопа есть импульсный свет. В отличие от мигания, двойная вспышка стробоскопа предназначена для создания резких мигающих световых вспышек (2 x 20 мс в секунду). Хотя у вспышек явно короткая продолжительность вспышки по сравнению со стробоскопами, они также имеют более длительное время перезарядки и менее точную цветопередачу.

Метод 1: на основе транзисторов

Электронный компонент, известный как транзистор, может использоваться в цепях для усиления или переключения электрических импульсов или мощности, что позволяет создавать широкий спектр электронных устройств. Два PN-диода, соединенные встречно-параллельно, образуют транзистор. Он имеет выводы эмиттера, базы и коллектора в качестве трех выводов. Фундаментальный принцип транзистора заключается в том, что он позволяет вам изменять интенсивность гораздо меньшего тока, протекающего через второй канал, для регулирования тока, протекающего через один канал.

Транзистор является компонентом усиления. Он присутствует в ценных предметах, таких как слуховые аппараты, одно из первых устройств, которые люди использовали до появления транзисторов. Слуховые аппараты используют небольшой микрофон для улавливания шумов из окружающей среды и преобразования их в различные электрические токи. Кроме того, микрофоны встроены в транзистор, который усиливает крошечный громкоговоритель, так что вы можете слышать улучшенную версию звуков вокруг вас.

Кроме того, транзисторы служат переключателями. Крошечный электрический ток может вызвать протекание значительно более значительного тока через одну из частей транзистора и наоборот.

Все компьютерные чипы работают одинаково. Например, микросхема памяти состоит из сотен транзисторов, каждый из которых может быть включен или выключен по отдельности. У каждого транзистора есть два возможных состояния, что позволяет ему независимо хранить целые числа 0 и 1. С миллиардами транзисторов и таким же количеством символов и цифр чип может хранить много нулей и единиц.

В этой статье представлены несколько конструкций схем в зависимости от компонентов.

  1. 1. Простой контроллер стробоскопа, сделанный своими руками
  2. 2. Контроллер стробоскопа для лампы фонарика своими руками
  3. 3. Контроллер стробоскопа для лазера своими руками
  4. 4. Контроллер стробоскопа для лампы переменного тока своими руками

Все эти схемы прошли тестирование нашими модераторами схем, чтобы убедиться в их работоспособности. Таким образом, пользователи могут выбрать любую схему и начать строить по своему вкусу.

Простой контроллер стробоскопа, сделанный своими руками

Список компонентов:

  1. 1. 330 Ом x 1
  2. 2. Предустановка 100k (POT) x 1
  3. 3. 1 кОм x 2
  4. 4. 56 кОм x 1
  5. 5. 10 мкФ x 2
  6. 6. BC547 x 2
  7. 7. Светодиоды x 2

Как и в схеме 1, в схеме используется напряжение постоянного тока 12 В. Следовательно, эта схема представляет собой схему стробоскопа на 12 В. Однако, чтобы использовать входное напряжение 5 В, рекомендуется не использовать резистор 330 Ом из-за падения напряжения.

Контур 1  

Предустановка 100k может изменить частоту освещения, переключившись на соответствующее сопротивление. Схема стробоскопа на 12В может быть дополнительно модифицирована следующим образом.

Цепь 2  

Список компонентов:

  1. 1. 680 Ом x 2
  2. 2. 10K x 2
  3. 3. 100K пресетов x 2
  4. 4. BC547 x 2
  5. 5. 10 мкФ/25 В x 2
  6. 6. Светодиоды x 2

Самодельный контроллер стробоскопа для лампы накаливания

Здесь в качестве источника света используется лампа фонарика, как показано на схеме ниже. Здесь заметны небольшие изменения в схеме стробоскопа 12v.

Цепь 3

Список компонентов:

  1. 1. 680 Ом x 3
  2. 2. 10K x 2
  3. 3. 100K пресетов x 2
  4. 4. BC547 x 2
  5. 5. СОВЕТ127
  6. 6. 10 мкФ/25 В x 2
  7. 7. Лампа фонарика (мотоцикл)

В этой схеме стробоскопа на 12 В используется PNP-транзистор TB122. Это упрощает процесс стробоскопа. Тем не менее, пресеты 100k необходимо соответствующим образом настроить для достижения лучших результатов.

Контроллер стробоскопа для лазера, сделанный своими руками

Небольшая модификация приведенной выше схемы стробоскопа на 12 В позволяет использовать лазерный свет вместо светодиодов или мотоциклетных ламп, как показано в схеме 4. :

  1. 1. 680 Ом x 3
  2. 2. 10K x 2
  3. 3. 100K пресетов x 2
  4. 4. BC547 x 2
  5. 5. СОВЕТ122
  6. 6. 10 мкФ/25 В x 2
  7. 7. Лазерный диод
  8. 8. Стабилитрон (Напряжение стабилитрона не должно быть больше напряжения лазерного луча)

Лазерные фонари очень популярны в последнее время. Большинство проектов DIY, как правило, включают в свои проекты хотя бы один лазерный луч. Вышеприведенная схема демонстрирует простой способ использования лазера в качестве стробоскопа своими руками. В нескольких модификациях можно отчетливо заметить. Диод Зенера можно использовать в зависимости от спецификации максимального напряжения лазера. Значение стабилитрона можно найти в паспорте лазерного диода. Причиной использования стабилитрона является защита лазерного диода. Стабилитрон гарантирует, что через него проходит правильный ток, поэтому он не будет получать слишком много света, чтобы причинить какой-либо вред. Стабилитрон работает, обеспечивая постоянный ток и постоянное напряжение.

Самодельный контроллер стробоскопа для лампы переменного тока

Основное различие между переменным и постоянным напряжением заключается в том, что полярность волны переменного напряжения меняется со временем и всегда остается неизменной в постоянном напряжении. Все вышеперечисленные схемы рассчитаны на использование постоянного напряжения. Следующая схема показывает, как использовать лампу переменного тока в качестве стробоскопа своими руками. Эта схема имеет два основных изменения. Присутствует участие симистора, и в схеме используются напряжения переменного и постоянного тока. Напряжение постоянного тока работает как первичная цепь стробоскопа, в то время как напряжение переменного тока приводит в действие лампу переменного тока с помощью симистора.

Цепь 5

Список компонентов:

  1. 1. 680 Ом x 3
  2. 2. 10K x 2
  3. 3. 100K пресетов x 2
  4. 4. BC547 x 2
  5. 5. 10 мкФ/25 В x 2
  6. 6. Лампа переменного тока (230 В / 120 В)
  7. 7. Триак = BT136

Метод 2: На основе ИС 555 Ttimer

В этом разделе статьи мы представляем два самодельных контроллера стробоскопов, использующих ИС 555 таймера.

  1. 1. Контроллер стробоскопа с одним светодиодом
  2. 2. Контроллер стробоскопа Police Light

Модель 555 представляет собой нестабильный мультивибратор в этой цепи высокоинтенсивного светодиодного стробоскопа. На выходе он будет обеспечивать прямоугольные импульсы, которые являются постоянными. Светодиод будет включаться и выключаться этими импульсами. Изменяя потенциометр, подключенный к цепи, мы можем изменить скорость, с которой мигает светодиод. Это время зависит от рабочего цикла прямоугольной волны. Несколько приложений используют 555 IC, некоторые из них следующие.

  • В самолетах, чтобы показать свое присутствие.
  • В полицейских автомобилях и машинах скорой помощи.
  • В развлекательных целях.

Кроме того, благодаря простоте установки и эксплуатации, таймер 555 можно использовать во многих проектах DIY.

Самодельный контроллер стробоскопа с одним светодиодом

В этом разделе статьи представлен простой, но эффективный метод использования микросхемы 555 для разработки самодельных контроллеров стробоскопа.

Цепь 6

Список компонентов:

  1. 1. Аккумуляторная батарея 12 В или источник питания постоянного тока
  2. 2. Таймер IC 555
  3. 3. Питающие провода 12В
  4. 4. Макет
  5. 5. Переменный резистор 100 кОм (1 МОм)
  6. 6. Керамический конденсатор (0,1 мкФ, 0,01 мкФ)
  7. 7. Белый светодиод высокой мощности размера Т-1 ¾
  8. 8. Резистор 10 кОм, 10 Ом/1 Вт (10 кОм)

Вышеупомянутые компоненты необходимы для самодельного контроллера стробоскопа, использующего микросхему таймера 555. Таймер IC 555 размещен с несколькими переменными и постоянными резисторами, как показано на схеме стробоскопа 12 В. Эта схема стробоскопа на 12 В питается от источника питания постоянного тока на 12 В. Если вы используете внешний источник питания, установите напряжение на 12 вольт. Соединители питающих проводов также необходимы для подключения отдельного резистора и конденсатора к таймеру 555. Соединение схемы можно объяснить следующим образом. Сначала подключите положительную клемму источника питания, в данном случае источника питания постоянного тока 12 В, к контактам 4 и 8 таймера IC 555. Затем подключите отрицательную клемму источника питания, которую также можно назвать клеммой заземления в эту схему, к контакту 1 таймера IC 555. Затем клеммы конденсатора можно подключить, как показано на схеме стробоскопа 12 В. Затем переменный резистор и постоянный резистор размещаются между шестым и седьмым контактами таймера IC 555. Пороговый конденсатор емкостью 0,1 мкФ подключается между землей и контактом 2 таймера IC 555. Конденсатор 0,01 мкФ должен подключаться через контакт 5 таймера IC 555 и заземление. Затем между контактом 7 микросхемы таймера и держателем батареи необходимо поместить резистор 10 кОм. В качестве последнего шага выходной контакт таймера IC 555 (вывод 3) можно использовать для подключения светодиодов, как показано на схеме 6.9.0003

Объяснение работы микросхемы таймера 555

В этой конструкции микросхема таймера 555 будет работать как нестабильный мультивибратор. На выходе он будет непрерывно создавать прямоугольные импульсы. Анод и катод — это две клеммы белого светодиода мощностью 1 Вт. Продолжительность этих волн, которые включают и выключают светодиод, определяется рабочим циклом прямоугольной волны. Регулируя ручку потенциометра, мы можем изменить частоту мигания светодиода. Используйте светодиодный радиатор со светодиодом, если вы хотите, чтобы эта схема работала непрерывно.

Самодельный контроллер стробоскопа полицейского фонаря

Цепь 7  

Мы использовали две идентичные нестабильные схемы, настроенные на разные частоты, чтобы создать эту схему мигающего светодиода в стиле полицейского стробоскопа. Поскольку первая микросхема таймера 555 имеет большой конденсатор, переключение выхода занимает больше времени. Выход переключается очень быстро второй микросхемой таймера 555, так как она имеет меньший конденсатор. При наличии положительного напряжения на аноде и отрицательного напряжения на катоде загорается первая группа светодиодов (красные светодиоды). Этот сценарий возникает, когда выходы первой и второй ИС таймера 555 включены одновременно. При одновременном выключении выходов первой и второй ИМС таймера 555 происходит описанный выше сценарий. Следовательно, только первая группа светодиодов имеет шанс загореться, когда включен выход первых 555 таймеров IC. Они мигают с частотой, с которой вторая микросхема таймера 555 переключает выход. Подобно тому, как только вторая группа светодиодов имеет шанс загореться, когда первая микросхема таймера 555 переключает выход, и они мигают с той же частотой, что и вторая микросхема таймера 555. Этот цикл можно повторять бесконечно, чтобы обеспечить заметный эффект светодиодных мигалок, напоминающий мигалки полицейских машин. Конструкция контроллера стробоскопа своими руками показана на схеме 7. 

Заключение

В этой статье представлены несколько способов реализации самодельного контроллера стробоскопа. Здесь статья посвящена проектированию схем на основе транзисторов и таймеров 555 IC. Существует пять вариантов транзисторного метода в зависимости от типа источника света. Тем не менее, схема каждой стробоскопической лампы была расширением схемы самостоятельного светового стробоскопа на основе первичного транзистора. Имеются две реализации схемы стробоскопа на 12 В в конструкции светового стробоскопа на основе 555 таймеров IC. В первом использовался один светодиод для реализации эффекта стробоскопа, а во втором — эффект полицейского света. Две микросхемы таймера 555, объединенные для использования в цепях освещения полицейской машины. Однако существует множество других способов реализации самодельных контроллеров стробоскопов. Предположим, вы любитель и хотите глубже покопаться в области электроники и схемотехники. В таком случае, эта статья не конец.

Автомобильные проблесковые огни: советы по установке нужно замедлить. Эти фонари используются пожарными-добровольцами и бригадами скорой помощи, а также на строительных площадках. Также может быть полезно иметь набор под рукой на случай, если ваша машина сломается.

Знание того, как установить эти фонари, является важной частью обеспечения безопасности вашего автомобиля, поэтому ознакомьтесь с некоторыми важными советами по настройке стробоскопов на вашем автомобиле.

Основы стробоскопа

Прежде чем мы рассмотрим все тонкости установки, давайте рассмотрим некоторые основы стробоскопа.

Проблесковый маячок создает уникальный тип освещения. Стандартная лампочка дает постоянный поток света. Стробоскопы бывают разные. Вместо непрерывного, непрерывного потока света стробоскопы генерируют непрерывные вспышки света.

Как правило, стробоскопическая подсветка очень яркая. Создаваемые вспышки света довольно мощные и видны с больших расстояний.

Проблесковые маяки отлично подходят для экстренных ситуаций, но они подходят не только для транспортных средств или аварийных ситуаций. Набор стробоскопов также можно использовать дома, чтобы добавить света или создать собственное световое шоу.

Советы по установке проблесковых ламп

Вот несколько советов по установке проблесковых ламп автомобиля:

  • Следуйте инструкции по эксплуатации. При покупке стробоскопов вы получите руководство по эксплуатации и комплект, содержащий большинство деталей, необходимых для установки. Вам также, вероятно, понадобится дрель и другие основные инструменты. Если вы хотите, чтобы установка прошла гладко, обязательно внимательно следуйте шагам, перечисленным в руководстве по эксплуатации.
  • Перед началом убедитесь, что вы отключили аккумулятор автомобиля. Это важно в целях безопасности, так как установка стробоскопов требует взаимодействия с электрическими компонентами автомобиля. Если батарея подключена во время установки, вы рискуете получить удар током.
  • Отметьте место, где вы хотите разместить источники света. Если вы сделаете это до того, как начнете сверлить, вы сможете убедиться, что сверление сделано в правильном месте. Когда вы выбираете место, убедитесь, что источники света не расположены рядом с движущимися частями.
  • При установке коммутатора выберите легкодоступное место. Проблесковые маяки поставляются с переключателем, который позволяет включать и выключать их, когда вы находитесь за рулем. Этот переключатель необходимо установить в салоне вашего автомобиля. Обязательно выберите место, к которому легко добраться, когда вы находитесь на сиденье водителя.
  • Проверьте стробоскопы после их подключения. Вновь подключите аккумулятор, а затем проверьте свет, чтобы убедиться, что он работает.
  • Получите профессиональную помощь, если она вам нужна. Установка проблесковых маячков автомобиля может оказаться сложной задачей, если у вас нет большого опыта работы с электрикой. Если процесс кажется сложным, не стесняйтесь заказать профессиональную установку фонарей в местном отделении NAPA AutoCare, которое занимается этим типом работ.

Проблесковые маяки могут спасти жизнь, если вы столкнетесь с чрезвычайной ситуацией на дороге. Тем не менее, правила их использования варьируются от штата к штату, поэтому обязательно узнайте, какие законы существуют у вас на шее, прежде чем устанавливать их.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *