Питание компьютера от бортовой сети автомобиля.
Этот материал написан посетителем сайта, и за него начислено вознаграждение.Питание компьютера от бортовой сети автомобиля (9в – 16в).
Здесь представлена методика переделки стандартного компьютерного БП ATX для питания его от +9в до +16в (бортовая сеть автомобиля). Можно использовать любой, даже низкокачественый БП ATX (всёравно, все критичные элементы будут заменены или выброшены) мощностью 250Вт и выше.
Максимальная нагрузка – 150-200Вт (в зависимости от типа применяемых транзисторов и мощности переделываемого БП).
С1- С3 – на напряжение не меньше 16в.
Q1 и Q3 – мощные p-mosfet транзисторы. На напряжение не меньше 35в. Максимальный ток – не менее 30А (IRF4905, IRF5210). Обязательно на радиатор через изолирующую прокладку (например, слюду).
R1 и R3 – на 0.125 Вт
R2 и R4 – не менее 0.5 Вт.
D1 и D2 – любые, на ток не менее 2А
Фильтрующий дроссель – 7-10вит. сложенного в двое провода диаметром 0.7мм на кольце диам. от 15мм.
Подключение: точка +12 – к бортовой сети автомобиля (9В -16В), через предохранитель 20-25А.
Из БП предварительно выпаиваются высоковольтные транзисторы и конденсатор и закорачиваются точки A и B (см. на рис. участка схемы БП).
Выводы схемы подключаются к соотв. точкам рисунка участка схемы БП.
Вывод от D1 подключается на 12й вывод мс. TL494 (питание мс. ШИМ контроллера).
Иногда необходима замена силовых диодных сборок в БП на более высоковольтные. Диод по +5 должен выдерживать не менее 35В, а по +12 не менее 75В обратного напряжения.
Нередко встречаются БП, у которых по шине 5vs не стоит кренка (7805), тогда D2 можно исключить, но необходимо дополнительно, на радиатор поставить кренку (7805), её вход — на вход +12, выход — на +5vs от БП.
Схема не нуждается в настройке.
Внимание! В доработанном БП на силовом трансформаторе высокое напряжение!
Основные правила работы с импульсниками:
2. все провода как можно короче делать.
3. при первом (пробном) запуске — питать через предохратиль гденить 3-4А, в качестве нагрузки, по 12В можно 2 параллельно резистора по 100 Om по 2Вт или больше на корпус повесить. И для старта БП — замкнуть зелёный на корпус (черный).
Вся схема БП ATX:
Универсальный автомобильный блок питания для ноутбуков
Всем привет!В сегодняшнем обзоре я хочу поделиться с вами своими впечатлениями об универсальном автомобильном блоке питания для ноутбуков, который был приобретен на просторах eBay.
Покупался он в связи с тем, что аккумулятор в моем повидавшем виды ноутбуки умер окончательно, а временами возникает необходимость использовать его в автомобиле. Долго думал как лучше поступить — прикупить новый аккумулятор или автомобильный блок питания, но в итоге остановился на втором варианте.
Мой блок питания пришел в обычном полиэтиленовом пакетике без какой-либо оригинальной упаковки, хотя встречались объявления в которых есть фото блока в блистере с симпатичной разноцветной картонной подложкой. Так что видимо я нарвался на «эконом вариант». В живую содержимое посылки выглядит следующим образом:
Перед тем, как перейти к непосредственному обзору устройства, думаю, будет не лишним ознакомить вас с его характеристиками (гуглоперевод текста из объявления на eBay):
Входное напряжение: 12V;
Выход: 15-24VDC;
Совместим с большинством ноутбуков / ноутбуков;
7 различных настроек напряжения (15 В, 16 В, 18 В, 19 В, 20 В, 22 В, 24 В) и 8 типов разъемов для ноутбуков, которые подходят для самых разных ноутбуков, таких как Acer, Dell, Compaq, IBM, NEC, Sony, Fujitsu, Gateway, HP, Sharp, Toshiba и так далее;
Светодиодный индикатор;
Авторегулируемый адаптер постоянного тока представляет собой универсальный, простой в настройке универсальный автомобильный адаптер постоянного тока.
Претензий к качеству изготовления данного устройства у меня нет, элементы корпуса плотно подогнаны друг к другу — никаких ненужных щелей и зазоров нет. Пластик не воняет, провода гибкие. В комплект поставки входит, собственно, сам блок питания и пластиковая планка с 8 различными коннекторами. В силу разнообразия этих самых коннекторов, данный блок питания может быть использован с большинством ноутбуков, питание которых обеспечивается за счет двухконтактного разъема. Выглядят они следующим образом:
К слову, в пластиковой планке все разъемы сидят надежно — не вываливаются. Чтобы их достать приходится даже прилагать усилие. Конечно, со временем отверстия в планке, что называется, разобьются, но так как часто извлекать/возвращать обратно разъемы не приходится, думаю, она мне прослужит достаточно долго.
Такие строение пинов обусловило и наличие отверстий разного диаметра в разъеме блока питания.
Чтобы подключить коннектор к разъему нужно надавить на него с приличным усилием. Если честно, я меня больше всего тревожил вопрос о том, что в месте соединения разъемов контакт будет теряться. Оказалось же, что переживать об этом не стоило. Сейчас больше волнуюсь за то, что при извлечении коннектора из разъема пины вырвутся и останутся внутри.
Включается данный блок питания в прикуриватель. Суммарная длина провода (от разъема прикуривателя до блока и от блока до коннектора, подключаемого к ноутбуку) около метра. Такой длины вполне достаточно для использования ноутбука пассажиром, сидящим на переднем сиденье, а как быть тем, кто сидит сзади и не имеет доступа к гнезду прикуривателя? Предохранителя в разъеме нет.
Корпус блока питания изготовлен из черного матового пластика, как я уже писал претензий к его качеству у меня нет. На его лицевой стороне расположен ползунок регулирования напряжения и индикационный светодиод красного цвета. Здесь же масса разнообразных надписей, включая основные характеристики:
Итак, как видно, данный адаптер умеет работать с напряжениями 15, 16, 18, 19, 20, 22 и 24В. Максимальный ток 3,3А. Мощность — 80Вт. В принципе, таких характеристик достаточно для того, чтобы запитать почти любой ноутбук.
На тыльной стороне устройства ничего интересного нет, если не считать прорези, выполняющие функцию отвода тепла — пассивного охлаждения.
После подключения адаптера к источнику питания, диод начинает светиться красным цветом:
Как показали полевые испытания, адаптер без проблем работает во всех режимах. Правда в режиме «холостого хода» (без нагрузки), напряжение на выходе в среднем на 1В выше заявленного. Ниже замеры мультиметром в каждом из режимов:
15В:
16В:
18В:
19В:
20В:
22В:
24В:
Под нагрузкой напряжение проседает на тот самый вольт и в итоге реальные показатели на выходе более-менее соответствуют положению ползунка. К слову, ползунок перемещается плавно, не заедает, не закусывает. Напротив каждой отметки он как бы фиксируется, так что, как мне показалось, проскочить нужный режим не получится, как и случайно сбить его.
Последний тест — проверка работоспособности в связке с ноутбуком:
Как видно, проблем не возникло. Ноутбук запустился, загрузился и успешно проработал до тех пор, пока не был выключен. К слову если верить написанному на штатном адаптере, то для работы моего ноутбука требуется напряжение в 19В. Но во время испытаний он без проблем работал при выставлении ползунка на 16В 🙂
Подводя итог всему, что тут было написано, могу сказать, что меня данный адаптер устроил на 100%. При невысокой цене он отличается неплохим качеством изготовления и хорошей работоспособностью. Сейчас мой ноутбук с полностью умершей батареей стал более мобильным, чем был ранее. Причем даже тратиться на это особо не пришлось 🙂
На этом, пожалуй, все. Спасибо за внимание и потраченное время.
Автомобиль для БП
Когда в Аду заканчивается место, мертвецы выходят на улицы.
«TAI» пишет:
все электронные элементы системы, это самое слабое звено и чем их больше тем сложнее и тяжелее ремонтЕсли говорить про контроллер, то да, элемент сложный. Остальное всё — типовое, элементарное, и при элементарном навыке, взаимозаменяемое. В отличии от древнего поплавкового мехкарба — звенья весьма надёжные и служат годами. Если замечал — автомобили 80-90х годов быстрее гниют и разваливаются нежели дохнут по причине отказа систем. Ну, и соответственно, поменять датчик куда быстрее, нежели снять карб и настраивать его.
«TAI» пишет:
Ты мозги инжектору не сможешь по среди поля вправить, ты убьешь топливный насос после в 5й раз опустевшего бака, современные форсунки напичканы датчиками,Посреди поля конечно нафик такие труды. Черпать отстой из пустого бака — ну это совсем уже край, в любых обстоятельствах. Тем не менее, добрые люди ставят насос увеличенной производительности + дублёр, это не сложно. Это практика трофийщиков, а там, я тебе скажу, эксплуатация хуже, чем в аду. Современные форсунки же никакими датчиками не напичканы, ну может быть только в случае с отключаемыми цилиндрами, но про такой фетиш вообще в теле нашей темы речи не идёт.
«TAI» пишет:
Ну где ты найдешь новый рабочий датчик на машину через 2 года? После ядерного удара?Пустая мечта, поскольку через два года после полноценного ядерного обмена мы все склеим копыта. Электронного говна на самом деле куда больше, чем тебе кажется. Оно вокруг нас там, где даже не ищешь. Например, люди ставят мощные вентиляторы от компов на радиаторы турбин — сам видел такую ерунду. То же с датчиками — по большому счёту, температурные, что от кадиллака, что от жиги, нешибко отличаются. Чего только не вживлялось неоригинального в души кибиток в начале девяностых, друг мой. Колодки тормозные вытачивались в ручную из жигулёвских)))) Всё это было, проходилось)))
«TAI» пишет:
Я с вами не спорю отличные машины, с высоким качеством сейчас лучше всего, но потом они станут одноразывами.Я говорю не про тот ширпотреб, которым забиты салоны. То, что делают сейчас — полное говно. Вот пример: звонит хороший знакомый, итальянец, неделю назад. Прикури, брат. Забыл свет в салоне на новом мондео вырубить и улетел на неделю по бизнесу. Приехал, пипец. С проводов завести не смогли — ак сдох, заряд не принимает. Решили в ночной сгонять за новым аком. Час, час блеать, пытались вынуть старый — так там намудохано. Сломали нах пласткофр ака от зла. Потратили три часа, со всеми делами. Ну нах такие проблемы? Современное гавно для менеджеров в кредит можно обслуживать только у АД.
Я говорю про добрые проверенные машины — ТЛК 80,70; Патруль 60, Гел дизельный, Рэнг, да много добрых машин создано, пока ебаная глобализация не заставила выпускать то дерьмо, которым торгуют сейчас. Имея возможность, езжу на Х-трейле в 30м кузове, и не жужжу. Хорошее соотношение технического уровня и всего остального, покупать новодел не стремлюсь.
Зарядное устройство из компьютерного БП — АВТО & МОТО — radio-bes
Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?
Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.
Итак: начали.
Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!
Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.
По пунктам:
- Перерезать дорожку идущую от канала 5В к 2-й ноге м/с и её обвязке и соединить её с +5VSB.
- выпаять всю обвязку 1-й и 3-й ноги м/с.
- выпаять детали через которые 4-я нога была связана с -5В и -12В, остальные трогать НЕ НАДО.
- выпаять детали делителя на 16-й ноге (все резисторы которые к ней подходят)
- Если будете оставлять канал 5В (зачем может пригодиться скажу далее), замените нагрузочный резистор на выходе этого канала с 10Ом на 15Ом аналогичного размера (мощности). Ибо после переделки там будет уже 6В и ему станет слишком жарко J
- Теперь можно демонтировать все детали каналов 3,3В -5В и -12В, а также и 5В если вы его решите не оставлять.
- Также выпаять все провода выходящие из БП кроме 3-х черных и 3-х желтых.
Стадия разрушения на этом окончена, пора переходить к созиданию.
- Согласно схеме на Рис.1 смонтировать делитель для 1-й и 3-й ноги м/с из резисторов R1, R3 и R2. Я это сделал в свободных дырках оставшихся от удаленных деталей. Теперь защита будет «довольна» и не будет нам мешать. Вот так это выглядело на этом этапе:
- Замкнуть 9-ю ногу м/с на землю или сделать это через выключатель если сетевого нет или вам его недостаточно. Это действие обеспечивает запуск БП (а теперь, без 5 минут, зарядного), PS-ON — так сказать.
- Далее (на схеме не обозначено), но очень рекомендую нагрузить канал 12В хотя бы на 0,5А. Чем угодно – лампочкой, резисторами или и тем и другим одновременно. Это нужно для адекватной работы БП на холостом ходу (хотя слабенькие БП, типа этого, могут обойтись штатным нагрузочным резистором).
- Теперь восстанавливаем делитель на 16-й ноге (R4, R6 и R12 по схеме).
- Включаем БП (лучше через лампочку на 60-100Вт вместо предохранителя) и меряем напряжение в бывшем 12В канале. Если необходимо подбираем резистор R12 до получения 14,35-14,4В (ну или ещё большего если вам покажется мало, хотя я считаю именно это значение наиболее правильным). Кроме того, можно установить регулятор. Делается это так: сначала подбором R6 добиваемся 13,5-14В на выходе, затем последовательно с ним ставим переменный резистор на 10кОм. Он обеспечит вам регулировку выходного напряжения от 13,5-14 до 14,9-15,4В. Этого диапазона должно хватить для аккумулятора в любом состоянии.
По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.
VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.
Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.
А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там — около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.
Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:
В итоге, что мы имеем?
Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.
Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:
Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).
Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:
План действий:
- Выпаиваем всё, что обведено или зачеркнуто на схеме Рис.3 розовым, и все провода. Должно получиться примерно так:
- Резистор R42 (по схеме, у вас может оказаться другим номером, так что будьте внимательны) заменяем на 10-11кОм. Включаем БП (желательно через лампу на 60-100Вт, на всякий случай) и меряем напряжение на выходе. Обратите внимание: БП должен запуститься сам, замыкать 4-ю ногу ШИМ на землю НЕ НАДО. Если вы это сделаете, то отключите защиту по току и при КЗ на выходе сможете наблюдать вылет силовых транзисторов и других элементов блока питания. Если напряжение не 14,35-14,45В, то подбором резисторов R44, R45 добиваетесь чтоб оно было в указанном диапазоне. Если этого недостаточно можно не сильно изменить и R42. В принципе на этом можете и закончить. Нет? Ааа…, вам нужно ограничение максимального зарядного тока как в варианте 1? Тогда продолжим. Изображен только фрагмен изменений в обвязке ШИМ. Это не значит что всё остальное вокруг него надо выпаять.
- В ШИМ TL494 имеется два встроенных усилителя ошибки, в данной схеме один из них не использовался, его мы и задействуем для ограничения максимального зарядного тока. Отключаем 15-ю ногу ШИМ от 13-й и 14-й, а16-ю ногу от земли. Можете дорожки перерезать, можете просто их отдельно выпаять, как вам нравится короче. Затем монтируем цепь из R5, C1, R7, R8, R9, R6 по схеме на Рис.4. При указанных номиналах БП больше 5А давать отказывается. При достижении порога, как и в первом случае, начинает падать выходное напряжение. Правда, есть и отличия, в данном варианте падение будет гораздо более резким. Фактически больше заданного тока, он не даст ни при каких обстоятельствах, напряжение упадет хоть до 0 (ну или почти). В то время, как в первом варианте, при достижении заданного порога напряжение снижается более плавно и не станет менее 2,5-3В даже если управляющий транзистор КТ361 откроется совсем. Но, вернемся к данной схеме. В режиме ограничения максимального тока возможно появление сверчков, убиваются подбором R5 и С1. Роль шунта (резистор R6 на схеме) на 0,005Ом у меня выполнял кусок медной проволоки длиной 2,5см, из телефонного кабеля. Изменение порога ограничения максимального тока достигается изменением номинала резистора R9 или R6. И предвосхищая вопрос: «зачем нужен R7?». Отвечу: «Не помню» J, очевидно что при разработке различных вариантов во время проектирования он был нужен в каком то из них. Но потом схема изменилась и теперь он, судя по всему, не играет никакой роли и вместо него можно ставить перемычку. Вот результат работы, испытание заряда реального аккумулятора от UPS, 12В 7А/ч. Напряжение 14,4В ток 0,44А. Пусть вас цифры тока не удивляют, он разряжен был не сильно.
- Вентилятор, как и в предыдущем случае, к бывшему каналу 5В. На провода крокодилы, землю платы заизолировать от корпуса. Защита от переполюсовки — аналогична. От КЗ щупов прекрасно защищает оставшаяся нетронутой штатная защита. Проверено неоднократно.
Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.
Вот плата в полном сборе:
Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.
Итак: наша следующая «жертва» — БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит — с него мы возьмем больше, например 10А.
Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.
Повторим в точности пункты 1 и 2 из второго варианта.
Канал 5В, в данном случае, я демонтировал полностью.
Далее собираем схему по Рис.5.
Чтобы не пугать вентилятор напряжением в 14,4В — собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.
С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь — иное.
Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо.
Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.
Вот этот вариант в готовом виде:
Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.
Вот готовая продукция:
Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?
Тогда позвольте представить:
За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).
Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.
Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:
А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.
То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.
Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.
- Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
- Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
- Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
- Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
- Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
- При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).
Теперь, кто за что отвечает:
- R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
- R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
- R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
- R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
- VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
- Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
- И наконец, самое важное — компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
- Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
- Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.
Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.
Вот фото устройства в собранном виде без корпуса и в корпусе:
Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.
Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.
Вот он, собственной персоной:
Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас — несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.
В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:
Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:
А это внутренности блока в сборе и внешний вид:
Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.
В целом это немного упрощённый вариант 4. Разница заключается в следующем:
- В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
- Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
- Регулировка оборотов вентилятора тоже была упрощена.
А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они — мерцают. В остальном — всё нормально.
Индикация выглядит так:
На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.
Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.
Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.
Да, чуть не забыл. Резистор R30 устанавливать именно так — совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.
Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.
Кота от всего сердца поздравляю с юбиелеем! В его честь, кроме статьи, ещё был заведён новый жилец — очаровательная серая киска Маркиза.