Site Loader

Читать онлайн Химия 8 9 класс страница 8

2 атома водорода;

1 атом кислорода.

Фосфорная кислота h4PO4

В молекуле фосфорной кислоты:

3 атома водорода;

1 атом фосфора;

4 атома кислорода.

Бутан C4h20

В молекуле бутана:

4 атома углерода;

10 атомов водорода.

У немолекулярных веществ молекулярных формул нет.

Последовательность записи символов элементов в простейших и молекулярных формулах определяется правилами химического языка, с которыми вы познакомитесь по мере изучения химии. На информацию, передаваемую этими формулами, последовательность символов влияния не оказывает.

Структурная формула – химическая формула, составленная из символов химических элементов и специальных знаков, отражающих строение данного химического вещества, исключая взаимное расположение атомов в пространстве.

Из знаков, отражающих строение веществ, мы будем использовать пока только

валентный штрих (» черточку» ). Этот знак показывает наличие между атомами так называемой ковалентной связи (что это за тип связи и каковы его особенности, вы скоро узнаете).

Химия - 8-9 класс

В молекуле воды атом кислорода связан простыми (одинарными) связями с двумя атомами водорода, а атомы водорода между собой не связаны. Именно это наглядно показывает структурная формула воды. Химия - 8-9 класс

Другой пример: молекула серы S8. В этой молекуле 8 атомов серы образуют восьмичленный цикл, в котором каждый атом серы связан с двумя другими атомами простыми связями. Сравните структурную формулу серы с объемной моделью ее молекулы, показанной на рис. 3. Обратите внимание на то, что структурная формула серы не передает форму ее молекулы, а показывает только последовательность соединения атомов ковалентными связями.

Химия - 8-9 класс

Структурная формула фосфорной кислоты показывает, что в молекуле этого вещества один из четырех атомов кислорода связан только с атомом фосфора двойной связью, а атом фосфора, в свою очередь, связан еще с тремя атомами кислорода простыми связями. Каждый из этих трех атомов кислорода, кроме того, связан простой связью с одним из трех имеющихся в молекуле атомов водорода.

Пространственная формула – химическая формула, составленная из символов элементов и специальных знаков, отражающих строение данного вещества, включая взаимное пространственное расположение атомов в молекулах этого вещества (или других сложных частицах).

Сравните приведенную ниже объемную модель молекулы метана с его пространственной, структурной и молекулярной формулой:

В пространственной формуле метана клиновидныевалентные штрихи как бы в перспективе показывают, какой из атомов водорода находится » ближе к нам» , а какой » дальше от нас» .

Иногда в пространственной формуле указывают длины связей и значения углов между связями в молекуле, как это показано на примере молекулы воды.

Химия - 8-9 класс

Немолекулярные вещества не содержат молекул. Для удобства проведения химических расчетов в немолекулярном веществе выделяют так называемую формульную единицу.

Формульная единица – группа атомов, входящих в состав немолекулярного вещества, соответствующая простейшей формуле этого вещества.

Примеры состава формульных единиц некоторых веществ: 1) диоксид кремния (кварцевый песок, кварц) SiO2 – формульная единица состоит из одного атома кремния и двух атомов кислорода; 2) хлорид натрия (поваренная соль) NaCl – формульная единица состоит из одного атома натрия и одного атома хлора; 3) железо Fe – формульная единица состоит из одного атома железа.Как и молекула, формульная единица – наименьшая порция вещества, сохраняющая его химические свойства.

Таблица 4

Информация, передаваемая формулами разных типов

Тип формулы

Информация, передаваемая формулой.

ПростейшаяМолекулярная

Структурная

Пространственная

Химия - 8-9 класс

* Атомы каких элементов входят в состав вещества.

* Соотношения между числами атомов этих элементов.

* Число атомов каждого из элементов в молекуле.

* Типы химических связей.

* Последовательность соединения атомов ковалентными связями.

* Кратность ковалентных связей.

* Взаимное расположение атомов в пространстве.

* Длины связей и углы между связями (если указаны).

Рассмотрим теперь на примерах, какую информацию дают нам формулы разных типов.

1. Вещество: уксусная кислота. Простейшая формула – СН2О, молекулярная формула – C2h5O2, структурная формула

Химия - 8-9 класс

Простейшая формула говорит нам, что

1) в состав уксусной кислоты входит углерод, водород и кислород;

2) в этом веществе число атомов углерода относится к числу атомов водорода и к числу атомов кислорода, как 1:2:1, то есть NH : NC :NO = 1:2:1.

Молекулярная формула добавляет, что

3) в молекуле уксусной кислоты – 2 атома углерода, 4 атома водорода и 2 атома кислорода.

Структурная формула добавляет, что

4, 5) в молекуле два атома углерода связаны между собой простой связью; один из них, кроме этого, связан с тремя атомами водорода, с каждым простой связью, а другой – с двумя атомами кислорода, с одним – двойной связью, а с другим – простой; последний атом кислорода связан еще простой связью с четвертым атомом водорода.

2. Вещество: хлорид натрия. Простейшая формула – NaCl.

1) В состав хлорида натрия входит натрий и хлор.

2) В этом веществе число атомов натрия равно числу атомов хлора.

3. Вещество: железо. Простейшая формула – Fe.

1) В состав этого вещества входит только железо, то есть это простое вещество.

4. Вещество: триметафосфорная кислота. Простейшая формула – HPO3, молекулярная формула – h4P3O9, структурная формула

Ковалентные неполярные и полярные связи — урок. Химия, 8–9 класс.

Общие электронные пары, образующиеся в простых веществах  h3,O2,Cl2,F2,N2, в одинаковой степени принадлежат обоим атомам. Такая ковалентная связь называется неполярной.

Ковалентная неполярная связь соединяет атомы в простых веществах-неметаллах.

Если ковалентная связь образуется между разными атомами, то общая электронная пара смещается к тому из них, который имеет более высокую электроотрицательность (ЭО). Он получает частичный отрицательный заряд. Атом, имеющий меньшую ЭО, становится заряжённым положительно. В этом случае образуется полярная ковалентная связь.

Ковалентная полярная связь образуется между атомами неметаллов в сложных веществах.

Рассмотрим образование ковалентных связей в сложных веществах.

 

1. Образование молекулы хлороводорода.

 

У атома водорода на внешнем уровне — один электрон. У хлора на внешнем уровне — семь электронов, один из которых неспаренный.

 

Образуется одна общая электронная пара, которая смещена к атому хлора. В результате

появляются частичные заряды: на атоме хлора — отрицательный, а на атоме водорода — положительный. Сдвиг электронной плотности принято обозначать греческой буквой дельта δ:

 

00.png

Структурная формула хлороводорода H−Cl

 

Подобным образом соединяются атомы в молекулах других галогеноводородов:

 

H−F,H−Br,H−I.

 

2. Образование молекулы воды.

  

На внешнем уровне атома кислорода — шесть электронов, два из которых неспаренные.

 

Атом кислорода образует две общие электронные пары с двумя атомами водорода.

 

Электронная плотность этих общих пар сдвинута к более электроотрицательному кислороду. Атом кислорода имеет отрицательный заряд, а атомы водорода — положительный.

 

0.png

 

Сходное строение имеет молекула сероводорода. Структурные формулы воды и сероводорода:

 

H−OH−S||HH

 

3. Образование молекулы аммиака.

  

У атома азота — пять внешних электронов, три из которых неспаренные.

 

Атом азота присоединяет к себе три атома водорода.

 

Азот — более электроотрицательный элемент, поэтому на его атоме будет отрицательный заряд, а на атомах водорода — положительные заряды.

 

 5.png

 

Так же образуются связи в фосфине. Структурные формулы аммиака и фосфина:

 

H−N−HH−P−H||HH

 

 

Для того чтобы определить знаки частичных зарядов на атомах в веществе, надо сравнить ЭО неметаллов.

Пример:

определим частичные заряды атомов в соединении CCl4.

 

Вспомним положение углерода и хлора в ряду ЭО:

По положению элементов в этом ряду видно, что более электроотрицательный элемент в этой паре — хлор. Его атом оттягивает к себе общие электронные пары от атома углерода. Значит, на атоме хлора будет частичный отрицательный заряд, а на атоме углерода — частичный положительный:

 

 C+δCl4−δ.

Полярную ковалентную связь часто изображают стрелкой:  H→Cl.  Стрелка показывает направление смещения общей электронной плотности.

Источники:

Габриелян О. С. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 70 с.

 

Образование ковалентной связи — урок. Химия, 8–9 класс.

Ковалентная связь образуется при взаимодействии неметаллов. Атомы неметаллов имеют высокую электроотрицательность и стремятся заполнить внешний электронный слой за счёт чужих электронов. Два таких атома могут перейти в устойчивое состояние, если объединят свои электроны.

 

Ковалентная связь — это связь между атомами неметаллов, образованная за счёт общих электронных пар.

Рассмотрим возникновение ковалентной связи в простых  веществах.

  

1. Образование молекулы водорода.

 

Каждый атом водорода имеет один электрон. Для перехода в устойчивое состояние ему необходим ещё один электрон.

 

При сближении двух атомов электронные облака перекрываются. Образуется общая электронная пара, которая связывает атомы водорода в молекулу.

 

В пространстве между двумя ядрами общие электроны бывают чаще, чем в других местах. Там формируется область с повышенной электронной плотностью и отрицательным зарядом. Положительно заряженные ядра притягиваются к ней, и образуется молекула.

 

При этом каждый атом получает завершённый двухэлектронный внешний уровень и переходит в устойчивое состояние.

 

51.png

Ковалентная связь за счёт образования одной общей электронной пары называется одинарной.

 

Общие электронные пары (ковалентные связи) образуются за счёт неспаренных электронов, расположенных на внешних энергетических уровнях взаимодействующих атомов. 

 

У водорода — один неспаренный электрон. Для других элементов их число равно  8 – № группы.

Неметаллы VIIА группы (галогены) имеют на внешнем слое один неспаренный электрон.

У неметаллов VIА группы (кислород, сера) таких электронов два.

У неметаллов VА группы (азот, фосфор) — три неспаренных электрона.

  

2. Образование молекулы фтора.

 

Атом фтора на внешнем уровне имеет семь электронов. Шесть из них образуют пары, а седьмой неспаренный.

 

При соединении атомов образуется одна общая электронная пара, то есть возникает одна ковалентная связь.  Каждый атом получает завершённый восьмиэлектронный внешний слой. Связь в молекуле фтора тоже одинарная. Такие же одинарные связи существуют в молекулах хлора, брома и иода.

 

0000000.png

Если атомы имеют несколько неспаренных электронов, то образуются две или три общие пары.

  

3. Образование молекулы кислорода.

  

У атома кислорода на внешнем уровне — два неспаренных электрона.

 

При взаимодействии двух атомов кислорода возникают две общие электронные пары. Каждый атом  заполняет свой внешний уровень до восьми электронов. Связь в молекуле кислорода двойная.

 

000000.png 

  

4. Образование молекулы азота.

 

Атом азота имеет три неспаренных электрона на внешнем уровне.

В молекуле образуются три общие электронные пары. Связь в молекуле азота тройная.

 

Образование ковалентных связей показывают структурные (графические) формулы, в которых общая электронная пара обозначается чертой. Одна черта между атомами обозначает одинарную связь, две черты — двойную, три черты — тройную:

 

H−H,F−F,Cl−Cl; 

 

O=O,N≡N.

Источники:

Габриелян О. С. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 66 с.   

 

Свойства кислорода — урок. Химия, 8–9 класс.

Простое вещество кислород состоит из двухатомных молекул. Атомы в молекуле связаны

ковалентной неполярной связью. Связь двойная, так как у каждого атома имеются два неспаренных электрона на внешнем энергетическом уровне. Структурная и электронная формулы кислорода:

 

O=O,   :O:..:O:..

Физические свойства

При комнатной температуре кислород — газ без цвета, запаха и вкуса. Он примерно в \(1,1\) раза тяжелее воздуха. 

 

При температуре \(–183\) °С кислород сжижается и превращается в голубую жидкость, а при \(–218\) \( \)°С становится твёрдым.

 

Кислород плохо растворяется в воде. При \(20\) °С в \(1\) объёме воды растворяется примерно \(3,1\) объёма кислорода. Растворимость кислорода, так же как и других газов, зависит от температуры. С повышением температуры растворимость уменьшается.

Химические свойства

Связь в молекуле кислорода прочная. При обычных условиях это малоактивный газ, который вступает в реакции только с наиболее активными веществами: щелочными и щелочноземельными металлами. При повышении температуры активность кислорода резко возрастает. Он энергично реагирует с большинством простых и многими сложными веществами, проявляя при этом окислительные свойства.

 

Почти все реакции с кислородом экзотермичны, поэтому нагревание требуется лишь для начала процесса. Большинство реакций с участием кислорода сопровождается выделением тепла и света. Такие реакции называют реакциями горения.

 

  • Взаимодействие с простыми веществами-неметаллами.

При нагревании неметаллы (кроме инертных газов и галогенов) сгорают в кислороде с образованием оксидов. Если серу зажечь и опустить в сосуд с кислородом, то она сгорает ярким синим пламенем. При этом образуется сернистый газ:

 

 

Зажжённый фосфор горит в кислороде белым пламенем. Сосуд заполняется дымом, состоящим из мелких частиц оксида фосфора(\(V\)):

 

4P+5O2=t2P2O5+Q.

 

 

Подобным образом протекают реакции с углеродом, кремнием, водородом:

 

C+O2=tCO2+Q,

 

Si+O2=tSiO2+Q,

 

2h3+O2=t2h3O+Q.

 

Реакция азота с кислородом идёт с поглощением тепла. Для её протекания требуется высокая температура:

 

N2+O2⇄3000°C2NO−Q.

 

  • Взаимодействие с простыми веществами-металлами.

 Активные металлы реагируют с кислородом при комнатной температуре:

 

4Li+O2=2Li2O,

 

2Ca+O2=2CaO+Q.

 

При нагревании реагируют менее активные металлы: 

 

2Cu+O2=t2CuO.

 

Многие металлы сгорают в кислороде. Так, раскалённое железо в чистом кислороде начинает ярко светиться и разбрасывать яркие искры:

 

3Fe+2O2=tFe3O4+Q.

 

 

 

В реакции с железом образуется смешанный оксид: Fe3O4 (FeO⋅Fe2O3).

Неактивные металлы (золото, платина, серебро) с кислородом не реагируют.

 

  • Взаимодействие со сложными веществами.

В кислороде горят многие сложные органические и неорганические вещества. При этом, как правило, образуются оксиды элементов, входящих в состав этих веществ:

 

Ch5+2O2=tCO2+2h3O+Q,

 

2h3S+3O2=t2SO2+2h3O+Q,

 

2CO+O2=t2CO2+Q.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *