Site Loader

Онлайн калькуляторы расчета антенн

Формулы расчетов для диполя и штыря

___________________________________________

Расчет диполя для КВ частот от 1 до 50МГц

___________________________________________

Расчет УКВ вертикального диполя (100-500МГц)

___________________________________________

Расчет J-Антенны

___________________________________________

Расчет антенны двойной квадрат

___________________________________________

Формулы для антенны YAGI

___________________________________________

Y-образная схема согласования антенн YAGI

Диапазон, м

Длина L трубки схемы
согласования, см
Расстояние А, см Максимальное значение емкости
переменного конденсатора C, пф
2

10

15

20

40

16,5

80

120

170

300

2

10

14

16

22

18

50

80

150

250

В таблице приведены приблизительные данные для y-образной схемы согласования. Указанные значения пригодны лишь в том случае, когда входное сопротивление антенны лежит в пределах от 15 до 30 Ом и согласование производится с коаксиальным кабелем с волновым сопротивлением 50…70 Ом.

___________________________________________

Расчет штыревой антенны ¼λ для КВ частот (1-50МГц)

___________________________________________

Расчет штыря ¼λ для УКВ частот (100-500МГц)

___________________________________________

Расчет антенны Виндом для КВ (1-50МГц)

___________________________________________

Расчет антенны Inverted V для КВ (1-50МГц)

___________________________________________

Расчет рамочной антенны для КВ (1-50МГц)

Антенна своими руками для цифрового тв

Антенна Харченко

Как рассчитать антенну? — 3G-aerial

theory00Написать эту статью нас побудили некоторые комментарии на сайте, а особенно комментарии к нашим Android приложениям. Многие анонимы считают, что им достаточно ввести любые исходные данные в калькулятор и они получат готовую антенну на выходе. А когда они на выходе получают например диаметр провода в 60 мм, то возмущению нет предела. Дело в том, что калькуляторы — это не универсальные инструменты, они имеют определенные ограничения в применении. Чтобы понять как правильно ими пользоваться нужно прежде всего понять как вообще рассчитываются антенны…

Прежде всего необходимо отметить, что традиционные методы расчета электрических цепей с простыми формулами, типа закона Ома, для расчета антенн не годятся. Поэтому гуглить по запросу «формула расчета антенны Харченко» бессмысленно. Такой формулы просто нет. При расчете необходимо учитывать, что размеры антенны соизмеримы с длиной волны, а также интенсивный процесс излучения электромагнитной энергии в пространство. Эти два обстоятельства значительно усложняют теорию и методы расчета, т.к. для того чтобы определить конфигурацию поля излучения необходимо знать характер распределения токов в антенне, на который, в свою очередь влияет само поле излучения. Вот такой заколдованный круг ребята! В результате мы имеем дело с суровым матаном:theory01

И это довольно простой пример из теории, реальность намного суровее. Дело в том, что сама теория и методы расчета постоянно усложнялись по мере развития радиотехники.

  1. На первом этапе после изобретения радио использовались сверхдлинные и длинные волны с длиной волны, измеряемой километрами. При этом размеры антенн были намного меньше длины волны и для их расчета вполне себе годилась теория электрических цепей. Добавились только несколько новых понятий, таких как сопротивление излучения, кпд антенны. Такие антенны условно можно назвать “точечными”. Их с неплохой точностью можно рассчитывать просто как набор из сосредоточенных элементов — индуктивностей, емкостей, сопротивлений.
  2. В середине 20-х годов прошлого века началось активное освоение средних и коротких волн. Началось применение антенн, состоящих из вибраторов, длины которых сравнимы с длиной волны. Такие антенны условно можно назвать “линейными”. Для этого класса антенн потребовалось развитие теории, основанной на теории длинных линий и теории излучения комбинации линейных токов.
  3. Во второй половине XX века начал активно осваиваться СВЧ диапазон с применением антенн, у которых все три пространственных измерения сравнимы с длиной волны. Такие антенны условно назовем “объемными”. При этом теория перешла к еще более суровому матану. Расчет сводится к решению векторных волновых уравнений электромагнитного поля в комплексной форме при сложных начальных и граничных условиях. Причем решение таких уравнений аналитическим путем чаще всего невозможно. Необходимо применять численные математические методы с итерацией. К счастью подоспевшая цифровая революция значительно облегчила эту задачу. Появились программы, позволяющие автоматизировать эти рутинные сложные вычисления.

Среди радиолюбителей наиболее популярны бесплатные программы, основанные на ядре NEC — MMANA-GAL и 4NEC2. Эти программы работают с антеннами, представленными как набор линейных проводов. Причем проводов бесконечно тонких. Провода программно разбиваются на сегменты, в пределах которых плотность тока считается постоянной. Реальная толщина провода учитывается отдельным алгоритмом, однако такое упрощение приводит к некоторым ограничениям в расчетах, о которых многие забывают:

  • Диаметр провода не должен превышать 0.02λ;
  • Длина сегмента должна быть меньше 0.1λ;
  • Длина сегмента должна быть меньше расстояния между ближайшими проводами;
  • Длина сегмента должна быть больше диаметра провода;

Это неполный список, но из него понятно, что на ДМВ и тем более на СВЧ выполнить все эти требования не всегда удается. Другими словами программы на ядре NEC хорошо работают с “линейными” антеннами и разработчик должен понимать что он делает и внимательно следить за правильностью модели.

Еще одну важную особенность проектирования антенн разберем на примере той же антенны Харченко. В принципе, рамки у этой антенны можно изогнуть совершенно любым способом, Как квадраты или ромбы с равными сторонами или как четырехугольники с неравными сторонами. Другими словами существует бесконечное число вариантов формы антенны, причем любой из них можно согласовать с фидером на рабочей частоте. Если считать, что рамки должны быть симметричны и одинаковы, то число степеней свободы по которым можно изогнуть рамку можно сократить до трех.theory03 А вот у Yagi-Uda таких степеней свободы на два порядка больше.

Какой же вариант выбрать для заданных характеристик антенны? Какой самый оптимальный? Это очень трудные вопросы и раньше, в до-цифровую эпоху, они решались путем кропотливых, длительных экспериментов со сложными дорогостоящими измерениями в специальной без эховой камере как на рисунке. Причем нахождение такого оптимального варианта конструкции не всегда было успешным и  считалось большой удачей. Такой антенне обычно присваивали имя автора этого варианта, также как кометам присваивают имя их первооткрывателя. Сейчас перебор вариантов и выбор оптимального можно поручить компьютеру. Пример — скрипт Н.Младенова. На поиск оптимального варианта формы антенны с помощью такого скрипта уходят сотни часов машинного времени, ребята. А вы при этом ищете какую-то «формулу для расчета».


В профессиональной среде разработчиков СВЧ антенн наиболее популярны программы CST STUDIO и ANSYS HFSS. Они уже лишены недостатков присущих ядру NEC, поскольку, говоря просто, вместо “линии” работают с “плоскостью” и модели в них более реалистичны. Кроме того, они учитывают влияние диэлектриков и других материалов, что на СВЧ уже критически важно. Они более требовательны к ресурсам компьютера, но и в них тоже нельзя работать по принципу “ нажал кнопочку — получил ответ”. Разработчик должен иметь солидную теоретическую подготовку чтобы достичь желаемого результата.

theory02Как видим все профессиональные программы требуют, чтобы пользователь был “на ты” с электродинамикой и теорией антенн. Зная теорию, он должен сам создать реалистичную модель антенны, проверить ее на отсутствие косяков и ляпов. Программа только поможет рассчитать и оптимизировать характеристики антенны. Где уж там “нажал кнопочку — получил ответ”!  Я уже уверен, что вашей голове, уважаемый аноним, созрел вопрос: “Ну если уж все так сложно, как же работают ваши калькуляторы на сайте и в андроид-приложениях, не фейковые ли они?” А специалисты вообще однозначно и не глядя скажут, что любые “калькуляторы” — это фейк. Но это не так. Большинство наших калькуляторов базируются на уже рассчитанных компьютерных моделях и основаны на принципе масштабирования размеров относительно частоты. Большинство “линейных” проволочных антенн допускают такое действие в широком диапазоне частот. При этом меняются все пространственные размеры, включая диаметр провода. В программах MMANA и 4NEC2 есть даже соответствующие опции в меню. Ограничения наступают когда вы получаете “неудобные” размеры, типа упомянутого диаметра провода 60 мм. В этом случае очевидно нужна уже другая модель, с другими размерами и просто калькулятор не годится. Конечно же пересчитывать новые модели в симуляторах под все ваши хотелки мы не в состоянии, поэтому вопросы: «А что если я возьму другой диаметр (или форму) провода?», мы оставляем без ответа. Обращаем только внимание, что замена провода, либо листового металла на фольгированный стеклотекстолит без перерасчета в симуляторе совершенно не допустима. Некоторые антенны, например Wi-Fi “пушка” имеют в своем составе немасштабируемые элементы и допускают небольшое масштабирование, не более ±30% от частоты на которой была рассчитана модель (в данном случае 2400МГц). Пересчет дальше по частоте не гарантирует успех. Отдельные калькуляторы, например калькулятор антенны Yagi-Uda DL6WU используют проверенные методы, разработанные еще в доцифровую эпоху, но также основаны на принципе масштабирования.


В любом случае вы должны понимать, что вы делаете. Принцип “нажал кнопочку — получил лайк в карму” — это не наш принцип. Пересчитывая СВЧ антенну на КВ вы действительно получите фейк. Один из анонимов под ником “Мастер-Тюмень”, подбирая “научным тыком” размеры, упорно пытался рассчитать петлевой вибратор на 50 Ом для частоты 27 МГц. Получив на выходе ахинею, долго возмущался в комментах. А петлевой вибратор Пистолькорса — это, как никак, основы теории антенн.  Мы не можем поставить защиту на наши калькуляторы от таких “мастеров”. Поэтому вникайте в матчасть, ребята. Кто не хочет, мы не виноваты…

Ссылки по теме:

 

Расчет антенны «Тройной квадрат» — 3G-aerial

Подробнее о конструкции читайте в соответствующей статье Мы не рекомендуем антенну тройной квадрат для приема цифрового телевидения. Во всяком случае для приема нескольких мультиплексов одновременно. Почему можно подробнее прочитать здесь.

Схематическое изображение антенны:

расчет антенны квадрат

two quard2Размеры берутся по осям провода (от центра до центра), между элементами (v-r, v-d) —  от плоскости до плоскости в которых размещен каждый элемент. Плоскости параллельны друг другу. Центральные точки квадратов расположены на одной оси. Шлейф можно изгибать с сторону так, чтобы он оставался перпендикулярен нижней стороне рамки вибратора. Направление приема в сторону директора. Поляризация антенны на схеме — горизонтальная. Для вертикальной необходимо повернуть конструкцию на 90° вокруг оси, шлейфом в сторону (неважно влево или вправо). Рамки между собой крепятся с помощью диэлектриков. Допускается электрическое соединение в верхних точках рамок. Можно согнуть конструкцию из одного куска провода как на схеме справа.

Калькулятор обновлен 04.01.2015, для корректных расчетов не забудьте обновить кэш браузера Ctrl+F5!

В сетях обмена данными требуется относительно широкая полоса пропускания антенны. Для достижения этого приходится применять для изготовления антенны толстый провод. Однако в других случаях, например если антенна предназначена для приема одного мультиплекса в цифровом телевидении, толщину провода можно уменьшить. Данный калькулятор доработан с учетом этого. Вы можете выбрать один из 4-х вариантов антенны: входное сопротивление антенны 50 ом с толстым и тонким проводом и входное сопротивление антенны 75 ом также с толстым и тонким проводом.

ВВЕСТИ ДАННЫЕ:

Исходный код Javascript:
© 2015 Valery Kustarev
Ограничения и особенности расчетов антенн

Расчет антенны «Тройной квадрат» добавлен в наше приложение для андроид Cantennator. Тапайте на QR-код, если вы зашли сюда с мобильного или планшета или сканируйте этот код мобильным, если вы смотрите эту страничку на мониторе десктопа чтобы перейти на Google Play для загрузки. Не забудьте оценить приложение и оставить отзыв.cantennator qr code

 

Расчет рупорной антенны — 3G-aerial

horn antenna calculatorУ анонима старшего поколения при слове горн сразу возникает ассоциация с пионерским горном, мальчишем-плохишем и злобным буржуином. К чему эта лирика? А вот к чему. Я не скажу, что наши калькуляторы идеальны. Но мы хотя бы стараемся усовершенствовать их, в том числе с вашей, уважаемый аноним, помощью в комментариях. В буржунете же, наряду с весьма серьезными материалами, сплошь и рядом встречаются откровенно топорные калькуляторы. Это же относится и к калькулятору рупорной антенны, ссылка на который приведена в конце этой статьи.

Можно отметить несколько недостатков «буржуинского» калькулятора, которые мы постарались исправить здесь:

  • Оптимальное соотношение размеров раскрыва — 3:2, в западном калькуляторе — квадратный раскрыв;
  • Стандартное соотношение сторон прямоугольного волновода 2:1, как у нас, так и на Западе. В Horn Designer выбрано соотношение 3:2;
  • Расчет коаксиально-волноводного перехода в западном калькуляторе выполнен, мягко говоря, не корректно;

 Основная статья, посвященная конструкции антенны — здесь. Схематическое изображение антенны:

horn антенна схема

 Штырь коаксиально-волнового верехода высотой h припаивается к центральному выводу разъема, который располагается точно по центру широкой стороны волновода на расстоянии l1g/4 от задней стенки волновода и на расстоянии l2 от горловины рупора.

ВВЕСТИ ДАННЫЕ:

Исходный код Javascript:
Copyright ©2015 Valery Kustarev
Ограничения и особенности расчетов антенн

Схематическое изображение раскроя волновода и антенны:

horn антенна схема

Калькулятор рассчитывает, так называемый, оптимальный рупор с соотношением сторон раскрыва 3:2. Размеры волновода подобраны так, чтобы в нем существовал одномодовый режим распространения электромагнитной волны h20.

Ссылки по теме:

 

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *