Второй закон ома – Закон Ома для участка цепи и полной цепи формулы и определения
Второй закон ома определение
Второй закон ома определение
Закон ома для замкнутой цепи говорит о том что. Величина тока в замкнутой цепи, которая состоит из источника тока обладающего внутренним сопротивлением, а также внешним нагрузочным сопротивлением. Будет равна отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений.
Закон Ома 2
В сложных цепях встречаются соединения, которые нельзя отнести ни к последовательным, ни к параллельным. К таким соединениям относятся трехлучевая звезда и треугольник сопротивлений (рис.1.3). Их взаимное эквивалентное преобразование во многих случаях позволяет упростить схему и свести ее к схеме смешанного (параллельного и последовательного) соединения сопротивлений. При этом необходимо определенным образом пересчитать сопротивления элементов звезды или треугольника.
Закон Ома
Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.
Закон Ома для «чайников»: понятие, формула, объяснение
Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.
2 Закон ома определение
Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.
Закон Ома для участка цепи
Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:
Закон Ома для участка цепи
Резисторы являются пассивными элементами, которые оказывают сопротивление потоку электрического тока в цепи. Резистор, который функционирует в соответствии с законом Ома, называется омическим сопротивлением. Когда ток проходит через такой резистор, то падение напряжения на его выводах пропорционально величине сопротивления.
Закон Ома для участка цепи
Закон Ома для участка цепи — это основной закон в электротехнике. Он устанавливает связь между током, сопротивлением и напряжением. С его помощью можно изучить и рассчитать электрические цепи. Важно не просто выучить закон Ома, а понять его, как он применяется на самом деле. Так как довольно часто происходят ошибки в его применении на практике, из-за не правильного его использования.
Реферат: Закон Ома 2
В сложных цепях встречаются соединения, которые нельзя отнести ни к последовательным, ни к параллельным. К таким соединениям относятся трехлучевая звезда и треугольник сопротивлений (рис.1.3). Их взаимное эквивалентное преобразование во многих случаях позволяет упростить схему и свести ее к схеме смешанного (параллельного и последовательного) соединения сопротивлений. При этом необходимо определенным образом пересчитать сопротивления элементов звезды или треугольника.
Закон Ома
В 1826 величайший немецкий физик Георг Симон Ом публикует свою работу «Определение закона, по которому металлы проводят контактное электричество», где дает формулировку знаменитому закону. Ученые того времени встретили враждебно публикации великого физика. И лишь после того, как другой ученый – Клод Пулье, пришел к тем же выводам опытным путем, закон Ома признали во всем мире.
Закон Ома
Закон Ома для участка цепи
Закон Ома для замкнутой цепи гласит, что значение силы тока, который протекает в электрической цепи, имеет обратно пропорциональную зависимость в отношении сопротивления нагрузки и прямую в отношении приложенного напряжения. Это краткая формулировка, но она полностью отображает суть закона.
Школьная Энциклопедия
Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока, а силы — сторонними силами.
Что такое закон Ома
Простейшим образом создать такое поле может обыкновенная батарейка. Если на конце проводника недостаток электронов, то он обозначается знаком «+», если избыток, то «-». Электроны, имеющие всегда отрицательный заряд, естественно, устремятся к плюсу. Так в проводнике рождается электрический ток, т. е. направленное перемещение электрических зарядов. Чтобы его увеличить, необходимо усилить электрическое поле в проводнике. Или, как говорят, приложить к концам проводника большее напряжение.
Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию
v. Напpимеp, в электpонных лампах закон Стокса для силы сопpотивления, действующей на электpон, не выполняется и ускоpение электpонов в электрическом поле нельзя считать pавным нулю. Во-втоpых, необходимо, чтобы плотность носителей тока n не зависела от напpяженности поля. Напpимеp, в коpонном pазpяде пеpвое условие выполняется, но не выполняется втоpое. В этом pазpяде ток пеpеносится ионами, котоpые обpазуются в непосpедственной близости к остpию коpониpующего электpода и движутся затем чеpез весь пpомежуток. Их плотность в этом пpомежутке существенно зависит от напpяженности поля.
russianjurist.ru
Где и когда можно применять закон Ома?
Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).
Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.
Закон Ома — это… Что такое Закон Ома?
V — напряжение,I — сила тока,
R — сопротивление.
Зако́н О́ма — физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.
В своей оригинальной форме он был записан его автором в виде : ,
Здесь X — показания гальванометра, т.е в современных обозначениях сила тока I, a — величина, характеризующая свойства источника тока, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) , l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R и, наконец, b параметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока
В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает
Закон Ома для полной цепи:
, (2)
где:
Из закона Ома для полной цепи вытекают следствия:
- При r<<R сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения
- При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.
Часто[2] выражение:
(3)
(где есть напряжение или падение напряжения, или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».
Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:
(4)
То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.
К другой записи формулы (3), а именно:
(5)
Применима другая формулировка:
Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи. |
Выражение (5) можно переписать в виде:
(6)
где коэффициент пропорциональности G назван проводимость или электропроводность. Изначально единицей измерения проводимости был «обратный Ом» — Mо[3], впоследствии переименованный в Си́менс (обозначение: См, S).
Мнемоническая диаграмма для Закона
Схема, иллюстрирующая три составляющие закона Ома Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисленияВ соответствии с этой диаграммой формально может быть записано выражение:
(7)
Которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.
В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:
(8)
где:
- — удельное сопротивление материала, из которого сделан проводник,
- — его длина
- — площадь его поперечного сечения
Закон Ома и ЛЭП
Одним из важнейших требований к линиям электропередач (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока = при минимальных потерях мощности в линии передачи = , где , причём на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора, (последнее всё же меньше сопротивления линии передач).
В таком случае потери мощности будут определяться выражением:
= (9)
Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом желательно всемерное её увеличение, что ограничивается электрической прочностью обмотки генератора. И повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако, для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в ней возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее, практически используемое, напряжение в дальних ЛЭП не превышает миллиона вольт.
Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём, излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.
Закон Ома в дифференциальной форме
Сопротивление зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.
Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:
где:
Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).
Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.
Закон Ома для переменного тока
Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига.
Если ток является синусоидальным с циклической частотой , а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:
где:
- U = U0eiωt — напряжение или разность потенциалов,
- I — сила тока,
- Z = Re−iδ — комплексное сопротивление (импеданс),
- R = (Ra2 + Rr2)1/2 — полное сопротивление,
- Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
- Rа — активное (омическое) сопротивление, не зависящее от частоты,
- δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.
При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, подбором такой что Тогда все значения токов и напряжений в схеме надо считать как
Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.
Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.
Трактовка закона Ома
Закон Ома можно просто объяснить при помощи теории Друде:
Здесь:
См. также
Примечания
Ссылки
2. Закон Ома для участка и полной цепи
Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.
Формула закона: I=. Отсюда запишем формулыU= IR и R =.
Рис.1.Участок цепи Рис.2.Полная цепь
Закон Ома для полной цепи: сила тока I полной электрической цепи равна ЭДС (электродвижущей силе) источника тока Е, деленной на полное сопротивление цепи (R + r). Полное сопротивление цепи равно сумме сопротивлений внешней цепи R и внутреннего r источника тока. Формула закона I = . На рис. 1 и 2 приведены схемы электрических цепей.
3. Последовательное и параллельное соединение проводников
Проводники в электрических цепях могут соединяться последовательно и параллельно. Смешанное соединение сочетает оба эти соединения.
Сопротивление, при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.
Последовательное соединение
Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.
Как следует из первого правила Кирхгофа, при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).
1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I1 = I2 = I3 = I
Рис. 1. Последовательное соединение двух проводников.
2. Согласно закону Ома, напряжения U1 и U2 на проводниках равны U1 = IR1, U2 = IR2, U3 = IR3.
Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.
U = U1 + U2 + U3
По закону Ома, напряжения U1,U2на проводниках равны U1 = IR1, U2 = IR2, В соответствии вторым правилом Кирхгофа напряжение на всем участке:
U = U1 + U2 = IR1+ IR2 = I(R1+ R2)= I·R. Получаем: R = R1 + R2
Общее напряжение U на проводниках равно сумме напряжений U1, U2 ,U3 равно: U = U1 + U2 + U3 = I·(R1 + R2 + R3) = IR
где RЭКВ – эквивалентное сопротивление всей цепи. Отсюда: RЭКВ = R1 + R2 + R3
При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ= R1 + R2 + R3+…
Этот результат справедлив для любого числа последовательно соединенных проводников.
Из закона Ома следует: при равенстве сил тока при последовательном соединении:
I = ,I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.
При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U1 на их количество n:
UПОСЛЕД= n ·U1. Аналогично для сопротивлений: RПОСЛЕД = n· R1
При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.
Второй закон ома ?…… — Школьные Знания.com
Помогите пожалуйста!!!Нужно срочно
Помогите пожалуйста!!!Материальная точка движется вдоль оси Ox проекция его скорости меняется с течением времени по закону v= 12-4t где скорость задан … а метрах в секунду а время в секундах. Определите модуль перемещения материальной точки за интервал времени от 2 до 4 секунд
ПОЖАЛУЙСТА СРОЧНО ОЧЕНЬ НУЖНО!!! В закрытом герметичном сосуде находится 20 г гелия при температуре 27оС. Какое количество теплоты необходимо сообщить … газу, чтобы его давление увеличилось в 3 раза? Ответ: приблизительно _________ Кдж.
На графике схематично показана зависимость температуры некоторого тела от времени при непрерывном нагревании. Первоначально тело находилось в твердом … агрегатном состоянии.Окончанию процесса плавления соответствует на графике точкаABCDответ подробно
Идеальный газ неизменной массы переводят из состояния 1 в состояние 4 в соответствии с диаграммой, изображенной на рисунке. Объем газа минимален в сос … тоянии 1 2 3 4
1. В калориметре находится в тепловом равновесии лед и вода одинаковых масс. Выберите верное(ые) утверждение(я). А) Скорость теплового движения молеку … л воды больше, чем у молекул льда. Б) Внутренняя энергия льда меньше внутренней энергии воды. В) Потенциальная энергия взаимодействия молекул воды больше, чем молекул льда. только Б А, Б, В Б и В только А 2.Два моля кислорода изохорно охлаждаются на 100 К. Какую работу при этом совершает газ? 52 кДж работа газа равна 0 — 52 кДж однозначно на вопрос ответить нельзя, т.к. неизвестно давление газа 3.В результате изотермического расширения газ совершил работу 500 Дж. При этом внутренняя энергия газа уменьшилась на 500 Дж газ отдал в окружающую среду 500 Дж количества теплоты газ получил 500 Дж количества теплоты внутренняя энергия газа увеличилась на 500 Дж
пожалуйста!!! Концентрация молекул аргона уменьшилась в 3 раза, а его давление увеличилось вдвое. При этом абсолютная температура аргона увеличилась в … 6 раз уменьшилась в 1,5 раза увеличилась в 1,5 раза уменьшилась в 3 раза
На рисунке приведен график зависимости проекции скорости на ось 0х прямолинейно движущегося тела массой 2 кг от времени. Проекция импульса тела на эт … у ось в момент времени 6 секунд равна10 кг·м/с20 кг·м/с-20 кг·м/с-10 кг·м/с
пожалуйста!!! За какое время подъемник мощностью 2 кВт поднимет груз массой 3 т на высоту 4 м? Коэффициент полезного действия подъемника равен 80%. по … дробный ответ — ответ в с (секундах)
пожалуйста!!! Шар массой m, движущийся со скоростью 4 м/с, центрально сталкивается с неподвижным шаром массой 3m. В результате абсолютно упругого удар … а второй шар начинает двигаться со скоростью 2 м/с. С какой скоростью и в каком направлении будет двигаться шар массой m после удара? 2 м/с, в том же 2 м/с, в обратном 1 м/с, в обратном 3 м/с, в том же подробно!!!
Закон Ома — Лаборатория радиолюбителя — Каталог статей
Электроны в цепи постоянного тока падают, как парашютисты, не нарушая второго закона Ньютона. Как должно двигаться тело, на которое действует Постоянная сила?
Ответ: тело под действием постоянной силы движется равно-ускоренно. Этого требует один из основных законов механики — второй закон Ньютона. Как же должны двигаться свободные электроны в металле, если на них действует с постоянной силой электрическое поле? Не спешите с ответом. Электроны движутся с постоянной средней скоростью, причем легко убедиться, что эта скорость пропорциональна напряженности электрического поля, т. е. действующей силе. Именно этот факт выражается законом Ома, который в школьном учебнике для IX класса формулируется так: для однородной цепи сила тока прямо пропорциональна приложенному напряжению.
Вспомним, что сила тока в проводнике определяется зарядом, прошедшим через поперечное сечение проводника за единицу времени. Так, если сила тока равна 1 А, то через сечение проводника за 1 с проходит 6,2-1018 электронов. Ясно, что сила тока прямо пропорциональна средней скорости движения электронов. Приложенное напряжение, в свою очередь, пропорционально напряженности электрического поля, т.е. силе, действующей на электроны.
В чем же кажущееся противоречие между законом Ома и вторым законом Ньютона? Оно вызвано тем, что мы забыли о непрерывных столкновениях электронов с ионами кристаллической решетки. Разогнавшийся в электрическом поле электрон при столкновении с ионом теряет приобретенную кинетическую энергию и вновь разгоняется. Таким образом, столкновения с ионами создают сопротивление электрическому току.-8 см.
Не кажется ли вам странным полученный результат? Электрон «проявляет удивительную ловкость», пробегая мимо девяти притягивающих его ионов, и сталкивается в среднем только с каждым десятым (рис. 8)
Вы вправе удивляться. В самом деле, объяснить такое движение, основываясь лишь на законах классической физики, нельзя. Мы здесь впервые сталкиваемся с тем обстоятельством, что такие фундаментальные законы, как законы Ньютона, закон Кулона, закон Ома, еще недостаточны для полного описания наблюдаемых явлений. Мы должны сделать вывод о том, что эти законы классической физики характеризуют поведение электрона в металле лишь приближенно. Более точный, расчет, движения электронов в металле стал возможен лишь с развитием, на заре XX в. квантовой физики.
Однако не спешите отбрасывать как «устаревшие» законы классической физики. Многие и очень многие опытные факты они описывают с такой высокой точностью, что применять в этих случаях квантовые законы было бы совершенно неразумно.22 электронов на 1 см3) свободных электронов. Электроны являются носителями электрического заряда в металле. Движению свободных электронов в металле мешают попы кристаллической решетки и тем больше, чем выше температура металла. Поэтому электропроводимость металлов с повышением температуры уменьшается.
Такова простейшая модель, поясняющая протекание тока через металл.
Поделись с друзьями в социальных сетях
Реклама
Похожие материалы:
К сожалению, похожего ничего не нашлось!
| Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма. / / Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома. Поделиться:
| |||||||||||||
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста. | ||||||||||||||
Коды баннеров проекта DPVA.ru Начинка: KJR Publisiers Консультации и техническая | Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator |
Три закона Ома. Отрывок из книги «Тонкая физика. Масса, эфир и объединение всемирных сил»
Недавно в издательстве «Питер» вышла на русском языке книга Фрэнка Вильчека (Frank Wilczek) «Тонкая физика. Масса, эфир и объединение всемирных сил». Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки. Мы уже публиковали один отрывок из этой замечательной книги, сегодня публикуем второй — о том, почему эквивалентные равенства могут поведать нам о разных явлениях.
Из третьей главы. Второй закон Ома
Второй закон Эйнштейна, m = E/c2, поднимает вопрос о том, может ли масса быть понята более глубоко — как энергия. Можем ли мы создать, как выразился Уилер, «массу без массы»?
Когда я ещё только собирался начать преподавать в Принстоне, мой друг и наставник Сэм Трейман позвал меня в свой кабинет. Он хотел поделиться со мной своей мудростью. Сэм вытащил из ящика стола потрёпанное руководство в мягкой обложке и сказал мне: «Во время Второй мировой войны ВМС приходилось в спешке обучать новобранцев налаживанию и использованию радиосвязи. Многие из этих новобранцев прибывали прямо с ферм, так что быстро ввести их в курс дела было очень трудно. С помощью той великолепной книги командованию военно-морского флота это удалось. Это шедевр педагогики. Особенно первая глава. Взгляни».
Он вручил мне книгу, открытую на первой главе. Она называлась «Три закона Ома». Я был знаком с одним законом Ома, известным соотношением V = IR, который связывает напряжение (V), силу тока (I) и сопротивление (R) в электрической цепи.
Это оказалось первым законом Ома.
Мне было очень интересно узнать, каковы два других закона Ома. Перевернув несколько хрупких пожелтевших страниц, я обнаружил второй закон Ома: I = V/R. Я предположил, что третий закон Ома формулируется как R = I/V, и оказался прав.
Открывать новые законы легко
Тем, кто знаком с элементарной алгеброй, так очевидно, что эти три закона эквивалентны друг другу, что данная история воспринимается как шутка. Однако в ней заключён глубокий смысл. (Кроме того, в ней есть и неглубокий смысл, который, как мне кажется, Сэм хотел до меня донести. При обучении начинающих вы должны несколько раз сказать одно и то же, но по-разному. Соотношения, которые бесспорны для профессионала, могут не быть таковыми для новичка. Студенты не будут возражать против объяснения очевидного. Очень немногие люди обижаются, когда вы позволяете им почувствовать себя умными.)
Глубокий смысл содержит заявление великого физика-теоретика Поля Дирака. Когда его спросили, как он открывает новые законы природы, Дирак ответил: «Я играю с уравнениями». Суть в том, что различные способы написания одного и того же уравнения могут говорить о совершенно разных вещах, даже если они являются логически эквивалентными.
Второй закон Эйнштейна
Второй закон Эйнштейна формулируется следующим образом:
m = E/c2.
Первый закон Эйнштейна — это, разумеется, E = mc2. Здорово, что первый закон предполагает возможность получения большого количества энергии из небольшого количества массы. Он наводит на мысль о ядерных реакторах и ядерных бомбах.
Второй закон Эйнштейна предполагает нечто совершенно иное.
Он предполагает возможность объяснения того, как масса возникает из энергии.
На самом деле этот закон неправильно называть «вторым».
В оригинальной работе Эйнштейна 1905 года вы не найдёте уравнения E = mc2. Вы встретите уравнение m = E/c2. (Поэтому, возможно, нам следует назвать его нулевым законом Эйнштейна.)
На самом деле в качестве названия этой статьи используется вопрос: «Зависит ли инерция тела от содержащейся в нем энергии?»
Другими словами, может ли некоторое количество массы тела возникать из энергии содержащегося в нем вещества? С самого начала Эйнштейн размышлял о концептуальных основах физики, а не о возможности создания бомб или реакторов.
Понятие энергии играет гораздо более важную роль в современной физике, чем понятие массы. Это проявляется во многих отношениях. Сохраняется именно энергия, а не масса. Именно энергия фигурирует в таких фундаментальных уравнениях, как уравнение Больцмана для статистической механики, уравнения Шрёдингера для квантовой механики и уравнение Эйнштейна для гравитации. Масса в более техническом смысле проявляется в качестве метки для неприводимых представлений группы Пуанкаре.
(Я даже не буду пытаться объяснить, что означает предыдущее утверждение, к счастью, суть заключается в самом факте утверждения.)
Таким образом, вопрос Эйнштейна бросает вызов. Если мы сможем объяснить массу в терминах энергии, мы улучшим наше описание мира. В этом случае в нашем рецепте нам потребуется меньшее количество ингредиентов. Второй закон Эйнштейна позволяет дать хороший ответ на вопрос, который мы задали ранее. Откуда берётся масса? Может быть, из энергии. На самом деле, как мы увидим далее, в основном так и есть.
2: Закон Ома — Рабочая сила LibreTexts
2: Закон Ома — Рабочая сила LibreTexts Перейти к основному содержанию- Последнее обновление
- Сохранить как PDF
- 2.1: Закон Ома — как связаны напряжение, ток и сопротивление
- Первое и, возможно, самое важное соотношение между током, напряжением и сопротивлением называется законом Ома, открытым Георгом Симоном Омом и опубликованным в его 1827 году. статья, Математическое исследование гальванической цепи.
- 2.2: Аналогия с законом Ома
- Закон Ома также имеет интуитивный смысл, если применить его к аналогии с водой и трубой. Если у нас есть водяной насос, который оказывает давление (напряжение), чтобы протолкнуть воду по «цепи» (ток) через ограничение (сопротивление), мы можем смоделировать взаимосвязь трех переменных. Если сопротивление потоку воды остается прежним, а давление насоса увеличивается, скорость потока также должна увеличиваться.
- 2.3: Мощность в электрических цепях
- Мощность — это мера того, сколько работы можно выполнить за определенный промежуток времени. Механическая мощность обычно измеряется (в Америке) в «лошадиных силах». Электрическая мощность почти всегда измеряется в «ваттах» и может быть рассчитана по формуле P = IE. Электроэнергия — это продукт как напряжения, так и тока, а не ни того, ни другого по отдельности.
- 2.4: Расчет электрической мощности
- Мощность, измеряемая в ваттах, обозначается буквой «W».
- 2.5: Резисторы
- Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько регулярное, мы можем надежно контролировать любую переменную в цепи, просто управляя двумя другими. Возможно, самой простой переменной в любой цепи для управления является ее сопротивление. Это можно сделать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).
- 2.6: Нелинейная проводимость
- Закон Ома — это простой и мощный математический инструмент, помогающий нам анализировать электрические цепи, но он имеет ограничения, и мы должны понимать эти ограничения, чтобы правильно применять его к реальным схемам. Для большинства проводников сопротивление является довольно стабильным свойством, на которое практически не влияют ни напряжение, ни ток. По этой причине мы можем рассматривать сопротивление многих компонентов схемы как постоянное, при этом напряжение и ток напрямую связаны друг с другом.
- 2.7: Схема подключения
- 2.8: Полярность падений напряжения
- 2.9: Компьютерное моделирование электрических цепей
- Компьютеры могут быть мощным инструментом при правильном использовании, особенно в области науки и техники. Существует программное обеспечение для моделирования электрических цепей с помощью компьютера, и эти программы могут быть очень полезны, помогая разработчикам схем проверять идеи перед построением реальных схем, экономя много времени и денег.
Ома — Университетская физика, том 2
Цели обучения
К концу этого раздела вы сможете:
- Опишите закон Ома
- Распознавать, когда применяется закон Ома, а когда нет.
До сих пор в этой главе мы обсуждали три электрических свойства: ток, напряжение и сопротивление. Оказывается, многие материалы демонстрируют простую взаимосвязь между значениями этих свойств, известную как закон Ома.Многие другие материалы не демонстрируют эту взаимосвязь, поэтому, несмотря на то, что они называются законом Ома, они не считаются законом природы, как законы Ньютона или законы термодинамики. Но это очень полезно для расчетов с материалами, которые подчиняются закону Ома.
Описание закона Ома
Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В. . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению. :
Это важное соотношение лежит в основе закона Ома.Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, который означает, что это экспериментально наблюдаемое явление, подобное трению. Такая линейная зависимость возникает не всегда. Любой материал, компонент или устройство, подчиняющееся закону Ома, где ток, протекающий через устройство, пропорционален приложенному напряжению, известен как омический материал или омический компонент. Любой материал или компонент, который не подчиняется закону Ома, известен как неомический материал или неомический компонент.
Эксперимент Ома
В статье, опубликованной в 1827 году, Георг Ом описал эксперимент, в котором он измерял напряжение и ток в различных простых электрических цепях, содержащих провода различной длины. Аналогичный эксперимент показан на (Рисунок). Этот эксперимент используется для наблюдения за током через резистор, возникающим в результате приложенного напряжения. В этой простой схеме резистор включен последовательно с батареей. Напряжение измеряется вольтметром, который необходимо разместить на резисторе (параллельно резистору).Ток измеряется амперметром, который должен быть на одной линии с резистором (последовательно с резистором).
Экспериментальная установка, используемая для определения того, является ли резистор омическим или неомическим устройством. (a) Когда батарея подключена, ток течет по часовой стрелке, а вольтметр и амперметр показывают положительные значения. (b) Когда выводы батареи переключаются, ток течет против часовой стрелки, а вольтметр и амперметр показывают отрицательные показания.
В этой обновленной версии оригинального эксперимента Ома было выполнено несколько измерений тока для нескольких различных напряжений. Когда батарея была подключена, как показано на (Рисунок) (а), ток протекал по часовой стрелке, и показания вольтметра и амперметра были положительными. Изменится ли поведение тока, если ток течет в обратном направлении? Чтобы заставить ток течь в обратном направлении, выводы батареи можно переключить.При переключении выводов батареи показания вольтметра и амперметра были отрицательными, потому что ток протекал в обратном направлении, в данном случае против часовой стрелки. Результаты аналогичного эксперимента показаны на (Рисунок).
Резистор вставлен в цепь с батареей. Приложенное напряжение изменяется от -10,00 В до +10,00 В с шагом 1,00 В. На графике показаны значения напряжения в зависимости от тока, типичные для случайного экспериментатора.
В этом эксперименте напряжение, приложенное к резистору, изменяется от -10,00 до +10,00 В с шагом 1,00 В. Измеряются ток через резистор и напряжение на резисторе. Построен график зависимости напряжения от тока, и результат будет приблизительно линейным. Наклон линии — это сопротивление или напряжение, деленное на ток. Этот результат известен как закон Ома:
, где В, — напряжение, измеренное в вольтах на рассматриваемом объекте, I — ток, измеренный через объект в амперах, а R — сопротивление в единицах Ом.Как указывалось ранее, любое устройство, которое показывает линейную зависимость между напряжением и током, известно как омическое устройство. Следовательно, резистор — это омическое устройство.
Проверьте свое понимание Напряжение, подаваемое в ваш дом, изменяется как. Если к этому напряжению подключить резистор, будет ли по-прежнему действовать закон Ома?
Да, закон Ома все еще в силе. В каждый момент времени ток равен, поэтому ток также является функцией времени.
Неомические устройства не показывают линейной зависимости между напряжением и током.Одним из таких устройств является элемент полупроводниковой схемы, известный как диод. Диод — это схемное устройство, которое позволяет току течь только в одном направлении. Схема простой схемы, состоящей из батареи, диода и резистора, показана на (рисунок). Хотя мы не рассматриваем теорию диода в этом разделе, диод можно протестировать, чтобы определить, является ли он омическим или неомическим устройством.
Диод — это полупроводниковое устройство, которое пропускает ток, только если диод смещен в прямом направлении, что означает, что анод положительный, а катод отрицательный.
График зависимости тока от напряжения показан на (Рисунок). Обратите внимание, что поведение диода показано как зависимость тока от напряжения, тогда как работа резистора показана как зависимость напряжения от тока. Диод состоит из анода и катода. Когда анод находится под отрицательным потенциалом, а катод — под положительным потенциалом, как показано в части (а), говорят, что диод имеет обратное смещение. При обратном смещении диод имеет очень большое сопротивление, и через диод и резистор протекает очень небольшой ток — практически нулевой ток.По мере увеличения напряжения, приложенного к цепи, ток остается практически нулевым, пока напряжение не достигнет напряжения пробоя и диод не будет проводить ток, как показано на (Рисунок). Когда аккумулятор и потенциал на диоде меняются местами, что делает анод положительным, а катод отрицательным, диод проводит, и ток течет через диод, если напряжение больше 0,7 В. Сопротивление диода близко к нулю. (Это причина наличия резистора в цепи; если бы его не было, ток стал бы очень большим.) Из графика на (Рисунок) видно, что напряжение и ток не имеют линейной зависимости. Таким образом, диод является примером безомного устройства.
Когда напряжение на диоде отрицательное и небольшое, через диод протекает очень небольшой ток. Когда напряжение достигает напряжения пробоя, диод проводит. Когда напряжение на диоде положительное и превышает 0,7 В (фактическое значение напряжения зависит от диода), диод проводит. По мере увеличения приложенного напряжения ток через диод увеличивается, но напряжение на диоде остается приблизительно равным 0.7 В.
Закон Ома обычно формулируется как, но первоначально он был сформулирован как микроскопическое изображение с точки зрения плотности тока, проводимости и электрического поля. Этот микроскопический вид предполагает, что пропорциональность обусловлена дрейфовой скоростью свободных электронов в металле, возникающей в результате приложенного электрического поля. Как было сказано ранее, плотность тока пропорциональна приложенному электрическому полю. Переформулировка закона Ома приписывается Густаву Кирхгофу, имя которого мы снова увидим в следующей главе.
УПРАЖНЕНИЕ № 2 ЗАКОН ОМА Цель: Цель
Расшифровка текста изображения: УПРАЖНЕНИЕ №. ЗАКОН 2 ОМ Цель: Цель этого упражнения — показать, что ток и напряжение линейно пропорциональны в резистивной цепи постоянного тока и что константа пропорциональности — это сопротивление цепи. Порядок действий: 1. Подключите схему, показанную на рисунке 1, используя резистор 1 кОм в качестве сопротивления. Переносной мультиметр можно использовать как вольтметр. Цифровой мультиметр, используемый в качестве амперметра, должен быть подключен последовательно между источником питания и резистором.oc v Рис. 1 2. Начиная с 0,0 В, увеличивайте напряжение на резисторе с шагом 1,0 В до максимального значения 12,0 В. Запишите напряжение и ток в таблице в лабораторной записной книжке на каждом этапе. 3. Замените резистор 1 кОм резистором 5,1 кОм и повторите измерения напряжения и тока от нуля до двенадцати вольт. Запишите эти данные в таблицу в лабораторной записной книжке. 4. Выключите все питание схемы и снимите резисторы с печатной платы. Используя цифровой мультиметр в качестве омметра, измерьте и запишите фактическое сопротивление каждого из двух резисторов.Анализ данных: 1. Используйте свои данные для создания графиков зависимости тока от напряжения для двух резисторов. Обратите внимание, что напряжение является независимой переменной, и его необходимо отложить по горизонтальной оси. Используйте линейные шкалы и правильно пометьте их. 2. Проведите единственную «лучшую» прямую линию через точки данных для каждого резистора. НЕ СОЕДИНЯЙТЕ ТОЧКИ. Ваши прямые линии могут не обязательно касаться всех или даже любой из точек на графике. Убедитесь, что все шкалы правильно помечены, и что каждая линия помечена в соответствии с номинальным значением резистора, которое использовалось для этого. набор данных.3. Выберите две удобные точки на каждой прямой и используйте их для вычисления наклона линий. Лучше, если вы не выбираете две точки, которые находятся очень близко друг к другу. Эти наклоны представляют собой значения взаимного сопротивления или проводимости для каждой из ваших двух цепей 4. Вычислите обратные значения каждого из наклонов, определенных на шаге 3 выше. Создайте таблицу, в которой сравниваются эти значения сопротивления с номинальными и измеренными значениями сопротивления. Отчет: напишите краткое техническое описание этого эксперимента.Ваш технический бриф должен включать: • • Цели учений. Краткое описание процедур. Принципиальная электрическая схема. Таблица значений напряжения и тока. Графики зависимости тока от напряжения. Таблица значений сопротивления. Краткое обсуждение ваших выводов, включая то, как этот эксперимент подтверждает (НЕ ДОКАЗЫВАЕТ) закон Ома. 000 000 000 Memure Queen
Предыдущий вопрос Следующий вопросPhysics for Science & Engineering II
Закон 6.5 Ома от Управления академических технологий на Vimeo.
6,05 Закон Ома
Мы видели, что сопротивление определяется как разность потенциалов между двумя точками, деленная на количество тока, проходящего через эти точки. Кроме того, удельное сопротивление определялось как отношение электрического поля в интересующей области к плотности тока в этой области. Эти соотношения в физике известны как законы Ома.
Здесь мы можем выразить разность потенциалов между двумя точками как ток, умноженный на сопротивление.Если мы построим график разности потенциалов между двумя точками в зависимости от тока, проходящего через эти точки для различных типов компонентов типичной электрической цепи, мы можем получить два разных случая. Один случай состоит в том, что соотношение между разностью потенциалов и током является линейным, поэтому это отношение, другими словами, В по сравнению с и , всегда становится постоянным.
Конечно, вторая категория — это случай, когда это соотношение не является постоянным, и в результате мы получаем кривую.Например, что-то подобное, что и в случае диодов с переходом pn . Итак, вот пример поведения резистора, например, и это случай диода с переходом pn .
Говорят, что проводящее устройство подчиняется закону Ома, если его сопротивление между любыми двумя точками не зависит от величины и полярности разности потенциалов, приложенной между этими точками. Итак, если мы сделаем это заявление, проводящее устройство подчиняется закону Ома, если его сопротивление между любыми двумя точками не зависит от величины и полярности разности потенциалов, приложенной между этими точками.Другими словами, соотношение V к i или i к V остается постоянным все время, так что наклон кривой остается постоянным. Другими словами, мы получаем прямую линию, когда строим график i против V или V против i .
Итак, V равно i , умноженному на R . Верно для всех токопроводящих устройств. Мы просто разделяем эти устройства независимо от того, подчиняются они закону Ома или нет, просто глядя на сопротивление, независимо от того, остается ли оно постоянным или нет.Другими словами, отношение В к i , ток к разности потенциалов к току, остается постоянным или нет.
Если это соотношение остается постоянным, то мы говорим, что компонент подчиняется закону Ома. Если нет, то мы говорим, что этот компонент не подчиняется закону Ома. Итак, если i по сравнению с V линейно, то это соответствует случаю подчинения закону Ома. С другой стороны, если i по сравнению с V , разность потенциалов, не является линейной, то это тот случай, который мы называем не подчиняющимся закону Ома.
Конечно, локальный аналог закона Ома связан с определением удельного сопротивления, которое определялось как отношение электрического поля к плотности тока. Отсюда мы можем выразить E как ρ , умноженное на J . Конечно, это верно только для изотропных материалов. Материалы, электрические свойства которых одинаковы во всех направлениях. И здесь снова аналогичным образом, если отношение электрического поля к плотности тока остается постоянным все время, другими словами, если удельное сопротивление среды постоянно, тогда эта среда подчиняется закону Ома.С другой стороны, если это отношение электрического поля к плотности тока непостоянно или E по сравнению с J не является линейной кривой, то мы в конечном итоге говорим, что эта среда не подчиняется закону Ома.
Итак, до сих пор мы ввели два разных набора величин, в основном микроскопических величин, и это были электрические поля, плотность тока, удельное сопротивление. Эти величины важны, когда мы исследуем фундаментальное электрическое поведение материи. Итак, предположим, что они важны, когда мы ищем фундаментальные электрические свойства материи.
С другой стороны, макроскопические свойства или макроскопические величины, которые представляют собой разность потенциалов, ток и сопротивление, и эти величины важны, когда мы делаем электрические инструменты из определенных проводников. Итак, эти величины важны, когда мы делаем электрические инструменты, определенные схемы, например, на определенных проводниках.
Другими словами, всякий раз, когда мы имеем дело со схемами, мы имеем дело с макроскопическими величинами, а именно разностью потенциалов, током и сопротивлением.С другой стороны, если мы пытаемся понять фундаментальные электрические свойства конкретной среды, то мы будем иметь дело с электрическим полем, плотностью тока и удельным сопротивлением или проводимостью этой среды.
Закон 9,4 Ома — Университетская физика, том 2
Цели обучения
К концу этого раздела вы сможете:
- Опишите закон Ома
- Распознавать, когда применяется закон Ома, а когда нет.
До сих пор в этой главе мы обсуждали три электрических свойства: ток, напряжение и сопротивление.Оказывается, многие материалы демонстрируют простую взаимосвязь между значениями этих свойств, известную как закон Ома. Многие другие материалы не демонстрируют эту взаимосвязь, поэтому, несмотря на то, что они называются законом Ома, они не считаются законом природы, как законы Ньютона или законы термодинамики. Но это очень полезно для расчетов с материалами, которые подчиняются закону Ома.
Описание закона Ома
Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В. .Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :
[латекс] I \ phantom {\ rule {0.2em} {0ex}} \ text {∝} \ phantom {\ rule {0.2em} {0ex}} V. [/ Latex]
Это важное соотношение лежит в основе закона Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, который означает, что это экспериментально наблюдаемое явление, подобное трению.Такая линейная зависимость возникает не всегда. Любой материал, компонент или устройство, подчиняющееся закону Ома, где ток, проходящий через устройство, пропорционален приложенному напряжению, известен как омический материал или омический компонент . Любой материал или компонент, который не подчиняется закону Ома, известен как неомический материал или неомический компонент .
Эксперимент Ома
В статье, опубликованной в 1827 году, Георг Ом описал эксперимент, в котором он измерял напряжение и ток в различных простых электрических цепях, содержащих провода различной длины.Аналогичный эксперимент показан на рисунке 9.19. Этот эксперимент используется для наблюдения за током через резистор, возникающим в результате приложенного напряжения. В этой простой схеме резистор включен последовательно с батареей. Напряжение измеряется вольтметром, который необходимо разместить на резисторе (параллельно резистору). Ток измеряется амперметром, который должен быть на одной линии с резистором (последовательно с резистором).
Рис. 9.19 Экспериментальная установка, используемая для определения того, является ли резистор омическим или неомическим устройством.(a) Когда батарея подключена, ток течет по часовой стрелке, а вольтметр и амперметр показывают положительные значения. (b) Когда выводы батареи переключаются, ток течет против часовой стрелки, а вольтметр и амперметр показывают отрицательные показания.В этой обновленной версии оригинального эксперимента Ома было выполнено несколько измерений тока для нескольких различных напряжений. Когда батарея была подключена, как показано на рис. 9.19 (а), ток протекал по часовой стрелке, и показания вольтметра и амперметра были положительными.Изменится ли поведение тока, если ток течет в обратном направлении? Чтобы заставить ток течь в обратном направлении, выводы батареи можно переключить. При переключении выводов батареи показания вольтметра и амперметра были отрицательными, потому что ток протекал в обратном направлении, в данном случае против часовой стрелки. Результаты аналогичного эксперимента показаны на рисунке 9.20.
Рисунок 9.20 Резистор вставлен в цепь с батареей.Приложенное напряжение изменяется от -10,00 В до +10,00 В с шагом 1,00 В. На графике показаны значения напряжения в зависимости от тока, типичные для случайного экспериментатора.В этом эксперименте напряжение, приложенное к резистору, изменяется от -10,00 до +10,00 В с шагом 1,00 В. Измеряются ток через резистор и напряжение на резисторе. Построен график зависимости напряжения от тока, и результат будет приблизительно линейным. Наклон линии — это сопротивление или напряжение, деленное на ток.Этот результат известен как закон Ома:
, где В, — напряжение, измеренное в вольтах на рассматриваемом объекте, I — ток, измеренный через объект в амперах, а R — сопротивление в единицах Ом. Как указывалось ранее, любое устройство, которое показывает линейную зависимость между напряжением и током, известно как омическое устройство. Следовательно, резистор — это омическое устройство.
Пример
Измерение сопротивления
Угольный резистор при комнатной температуре [латекс] \ left (20 \ phantom {\ rule {0.2em} {0ex}} \ text {°} \ text {C} \ right) [/ latex] подключен к батарее на 9,00 В, и ток, измеренный через резистор, составляет 3,00 мА. а) Какое сопротивление резистора измеряется в Ом? (b) Если температура резистора повышается до [латекс] 60 \ phantom {\ rule {0.2em} {0ex}} \ text {°} \ text {C} [/ latex] путем нагрева резистора, что ток через резистор?
Стратегия
(a) Сопротивление можно найти с помощью закона Ома. Закон Ома гласит, что [латекс] V = IR [/ latex], поэтому сопротивление можно определить с помощью [latex] R = V \ text {/} I [/ latex].
(b) Во-первых, сопротивление зависит от температуры, поэтому новое сопротивление после нагрева резистора можно найти с помощью [latex] R = {R} _ {0} \ left (1+ \ alpha \ text {Δ} T \ справа) [/ латекс]. Ток можно найти с помощью закона Ома в форме [латекс] I = V \ text {/} R [/ латекс].
Решение
Показать ответ- Использование закона Ома и решение для сопротивления дает сопротивление при комнатной температуре:
[латекс] R = \ frac {V} {I} = \ frac {9.00 \ phantom {\ rule {0.{3} \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} \ phantom {\ rule {0.2em} {0ex}} = 3.00 \ phantom {\ rule {0.2em} {0ex}} \ текст {k} \ phantom {\ rule {0.2em} {0ex}} \ text {Ω}. [/ latex]
- Сопротивление [латекс] 60 \ phantom {\ rule {0.2em} {0ex}} \ text {°} \ text {C} [/ latex] можно найти с помощью [latex] R = {R} _ {0 } \ left (1+ \ alpha \ text {Δ} T \ right) [/ latex], где температурный коэффициент для углерода равен [латексу] \ alpha = -0,0005 [/ latex]. [латекс] R = {R} _ {0} \ left (1+ \ alpha \ text {Δ} T \ right) = 3.00 \ phantom {\ rule {0.2em} {0ex}} × \ phantom {\ rule { 0.{-3} \ text {A} = 3.06 \ phantom {\ rule {0.2em} {0ex}} \ text {mA}. [/ Latex]
Значение
Изменение температуры [латекса] 40 \ phantom {\ rule {0.2em} {0ex}} \ text {°} \ text {C} [/ latex] привело к изменению тока на 2,00%. Это может показаться не очень большим изменением, но изменение электрических характеристик может сильно повлиять на цепи. По этой причине многие электронные устройства, такие как компьютеры, содержат вентиляторы для отвода тепла, рассеиваемого компонентами электрических цепей.
Проверьте свое понимание
Напряжение, подаваемое в ваш дом, изменяется как [латекс] V \ left (t \ right) = {V} _ {\ text {max}} \ phantom {\ rule {0.2em} {0ex}} \ text {sin} \ phantom {\ rule {0.2em} {0ex}} \ left (2 \ pi ft \ right) [/ latex]. Если к этому напряжению подключить резистор, будет ли по-прежнему действовать закон Ома [латекс] V = IR [/ латекс]?
Показать решениеДа, закон Ома все еще в силе. В каждый момент времени ток равен [латексу] I \ left (t \ right) = V \ left (t \ right) \ text {/} R [/ latex], поэтому ток также является функцией времени. , [латекс] I \ left (t \ right) = \ frac {{V} _ {\ text {max}}} {R} \ phantom {\ rule {0.2em} {0ex}} \ text {sin} \ phantom {\ rule {0.2em} {0ex}} \ left (2 \ pi ft \ right) [/ latex].
Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.
Неомические устройства не показывают линейной зависимости между напряжением и током. Одним из таких устройств является элемент полупроводниковой схемы, известный как диод.Диод — это схемное устройство, которое позволяет току течь только в одном направлении. Схема простой схемы, состоящей из батареи, диода и резистора, показана на рисунке 9.21. Хотя мы не рассматриваем теорию диода в этом разделе, диод можно протестировать, чтобы определить, является ли он омическим или неомическим устройством.
Рисунок 9.21 Диод — это полупроводниковое устройство, которое пропускает ток, только если диод смещен в прямом направлении, что означает, что анод положительный, а катод отрицательный.График зависимости тока от напряжения показан на рисунке 9.22. Обратите внимание, что поведение диода показано как зависимость тока от напряжения, тогда как работа резистора показана как зависимость напряжения от тока. Диод состоит из анода и катода. Когда анод находится под отрицательным потенциалом, а катод — под положительным потенциалом, как показано в части (а), говорят, что диод имеет обратное смещение. При обратном смещении диод имеет очень большое сопротивление, и через диод и резистор протекает очень небольшой ток — практически нулевой ток.По мере увеличения напряжения, приложенного к цепи, ток остается практически нулевым, пока напряжение не достигнет напряжения пробоя и диод не будет проводить ток, как показано на рисунке 9.22. Когда аккумулятор и потенциал на диоде меняются местами, что делает анод положительным, а катод отрицательным, диод проводит, и ток течет через диод, если напряжение больше 0,7 В. Сопротивление диода близко к нулю. (Это причина наличия резистора в цепи; если бы его не было, ток стал бы очень большим.) Из графика Рисунок 9.22 видно, что напряжение и ток не имеют линейной зависимости. Таким образом, диод является примером безомного устройства.
Рисунок 9.22 Когда напряжение на диоде отрицательное и небольшое, через диод протекает очень небольшой ток. Когда напряжение достигает напряжения пробоя, диод проводит. Когда напряжение на диоде положительное и превышает 0,7 В (фактическое значение напряжения зависит от диода), диод проводит.По мере увеличения приложенного напряжения ток через диод увеличивается, но напряжение на диоде остается примерно 0,7 В.Закон Ома обычно формулируется как [латекс] V = IR [/ латекс], но первоначально он был сформулирован как микроскопический вид с точки зрения плотности тока, проводимости и электрического поля. Этот микроскопический вид предполагает, что пропорциональность [латекс] V \ propto I [/ латекс] происходит от скорости дрейфа свободных электронов в металле, которая возникает в результате приложенного электрического поля.Как было сказано ранее, плотность тока пропорциональна приложенному электрическому полю. Переформулировка закона Ома приписывается Густаву Кирхгофу, имя которого мы снова увидим в следующей главе.
ЗаконОм — PubMed
Закон Ома — это взаимосвязь между тремя физическими явлениями: током, напряжением и сопротивлением. Ток определяется как поток положительного заряда от источника к источнику отрицательного заряда. Единицами измерения тока являются Кл / с для количества заряда (Кл), который проходит за единицу времени (с).Ампер (А) — это обычная единица измерения тока, равная 1 Кл / с, а символом тока является I. Ток является внутренним свойством, так как он зависит от других аспектов, таких как размер системы. Чтобы точно сравнить величину тока для разных систем, ток нормализован по площади или массе системы. Это описывается следующим образом:
J = I / A
J = I / m
Где J — плотность тока в л / (м · м) или л / г в зависимости от того, как сравниваются системы, I — ток (A), A — площадь поперечного сечения (м · м), а m — масса (г).Обратите внимание, что часто j используется для тока вместо I, чтобы избежать путаницы с мнимыми числами. Поэтому следует обратить внимание на определения символов, так как они могут варьироваться в зависимости от случая.
Напряжение — это еще одна часть закона Ома, который устанавливает объем работы, необходимый для перемещения заряда. Единица измерения напряжения — Дж / Кл, что равно широко распространенной единице Вольт (В). Напряжение измеряет электрический потенциал объекта по отношению к заряду. Путем подачи напряжения на заряд совершается работа, которая обеспечивает движение заряда.Сумма начисления по сравнению с индивидуальным начислением, известная как точечный сбор, может быть определена следующим образом:
V = kq / (r · r)
Где V — электрический потенциал (В), k — постоянная 8,99 E 9 Н · м · м / (К · C), q — заряд точки (C), а r — расстояние от точечного заряда ( м).
Сопротивление — это противодействие движению заряда. Сопротивление аналогично эффектам трения в текущей воде или скользящем предмете.Единицы измерения сопротивления — Ом, что обозначается заглавной греческой буквой Омега. Чтобы рассчитать величину сопротивления в объекте, можно использовать следующее уравнение:
R = Rho · l / A
Где R — сопротивление (Омега), Rho — удельное сопротивление объекта (Омега · м), l — длина объекта (м), а A — площадь поперечного сечения объекта (м · м). Удельное сопротивление различно для каждого объекта и зависит от структуры материала.Расчет удельного сопротивления выходит за рамки данной статьи.
Сопротивление также можно нормализовать, чтобы обеспечить точное сравнение в каждом конкретном случае. Нормализованное сопротивление определяется как:
R ’= R · A
Где R — нормализованное сопротивление (Омега · м · м). Сопротивление, препятствующее прохождению заряда, обратно пропорционально току. Поскольку текущая нормализация относится к единицам площади, нормализация сопротивления умножается на единицы площади поперечного сечения из-за обратной зависимости.
Обратная величина сопротивления (1 / R) известна как проводимость, которая измеряет способность объекта проводить заряд, выраженный в единицах Сименс (S). Дальнейшее обсуждение поведения выходит за рамки данной статьи; Однако стоит отметить обратную зависимость проводимости от сопротивления.
Учитывая ток, напряжение и сопротивление, закон Ома определяется как:
V = I · R
Размерный анализ необходим, чтобы гарантировать единообразие единиц.
9,4 Закон Ома — Университетская физика, Том 2
9,4 Закон Ома
Цели обучения
К концу этого раздела вы сможете:
- Опишите закон Ома
- Распознавать, когда применяется закон Ома, а когда нет.
До сих пор в этой главе мы обсуждали три электрических свойства: ток, напряжение и сопротивление. Оказывается, многие материалы демонстрируют простую взаимосвязь между значениями этих свойств, известную как закон Ома.Многие другие материалы не демонстрируют эту взаимосвязь, поэтому, несмотря на то, что они называются законом Ома, они не считаются законом природы, как законы Ньютона или законы термодинамики. Но это очень полезно для расчетов с материалами, которые подчиняются закону Ома.
Описание закона Ома
Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В. . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению. :
Это важное соотношение лежит в основе закона Ома.Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, который означает, что это экспериментально наблюдаемое явление, подобное трению. Такая линейная зависимость возникает не всегда. Любой материал, компонент или устройство, подчиняющееся закону Ома, где ток, протекающий через устройство, пропорционален приложенному напряжению, известен как омический материал или омический компонент. Любой материал или компонент, который не подчиняется закону Ома, известен как неомический материал или неомический компонент.
Эксперимент Ома
В статье, опубликованной в 1827 году, Георг Ом описал эксперимент, в котором он измерял напряжение и ток в различных простых электрических цепях, содержащих провода различной длины. Аналогичный эксперимент показан на рисунке 9.19. Этот эксперимент используется для наблюдения за током через резистор, возникающим в результате приложенного напряжения. В этой простой схеме резистор включен последовательно с батареей. Напряжение измеряется вольтметром, который необходимо разместить на резисторе (параллельно резистору).Ток измеряется амперметром, который должен быть на одной линии с резистором (последовательно с резистором).
Фигура 9,19 Экспериментальная установка, используемая для определения того, является ли резистор омическим или неомическим устройством. (a) Когда батарея подключена, ток течет по часовой стрелке, а вольтметр и амперметр показывают положительные значения. (b) Когда выводы батареи переключаются, ток течет против часовой стрелки, а вольтметр и амперметр показывают отрицательные показания.
В этой обновленной версии оригинального эксперимента Ома было выполнено несколько измерений тока для нескольких различных напряжений. Когда батарея была подключена, как показано на рис. 9.19 (а), ток протекал по часовой стрелке, и показания вольтметра и амперметра были положительными. Изменится ли поведение тока, если ток течет в обратном направлении? Чтобы заставить ток течь в обратном направлении, выводы батареи можно переключить. При переключении выводов батареи показания вольтметра и амперметра были отрицательными, потому что ток протекал в обратном направлении, в данном случае против часовой стрелки.Результаты аналогичного эксперимента показаны на рисунке 9.20.
Фигура 9.20 В цепь с батареей ставится резистор. Приложенное напряжение изменяется от -10,00 В до +10,00 В с шагом 1,00 В. На графике показаны значения напряжения в зависимости от тока, типичные для случайного экспериментатора.
В этом эксперименте напряжение, приложенное к резистору, изменяется от -10,00 до +10,00 В с шагом 1,00 В. Измеряются ток через резистор и напряжение на резисторе.Построен график зависимости напряжения от тока, и результат будет приблизительно линейным. Наклон линии — это сопротивление или напряжение, деленное на ток. Этот результат известен как закон Ома:
, где В, — напряжение, измеренное в вольтах на рассматриваемом объекте, I — ток, измеренный через объект в амперах, а R — сопротивление в единицах Ом. Как указывалось ранее, любое устройство, которое показывает линейную зависимость между напряжением и током, известно как омическое устройство.Следовательно, резистор — это омическое устройство.
Пример 9,8
Измерение сопротивления
Угольный резистор при комнатной температуре (20 ° C) (20 ° C) подключен к батарее на 9,00 В, и ток, измеренный через резистор, составляет 3,00 мА. а) Какое сопротивление резистора измеряется в Ом? (b) Если температура резистора повышается до 60 ° C60 ° C путем нагрева резистора, каков ток через резистор?Стратегия
(а) Сопротивление можно найти с помощью закона Ома.Закон Ома гласит, что V = IRV = IR, поэтому сопротивление можно найти, используя R = V / IR = V / I.(b) Во-первых, сопротивление зависит от температуры, поэтому новое сопротивление после нагрева резистора можно найти, используя R = R0 (1 + αΔT) R = R0 (1 + αΔT). Ток можно найти с помощью закона Ома в виде I = V / RI = V / R.
Раствор
- Используя закон Ома и решив сопротивление, получаем сопротивление при комнатной температуре: R = VI = 9,00 В 3,00 × 10−3A = 3,00 × 103 Ом = 3,00 кОм R = VI = 9,00 В 3,00 × 10−3A = 3.00 × 103 Ом = 3,00 кОм.
- Сопротивление при 60 ° C60 ° C можно найти, используя R = R0 (1 + αΔT) R = R0 (1 + αΔT), где температурный коэффициент для углерода α = −0,0005α = −0,0005. R = R0 (1 + αΔT) = 3,00 × 103 (1−0,0005 (60 ° C − 20 ° C)) = 2,94 кОм R = R0 (1 + αΔT) = 3,00 × 103 (1−0,0005 (60 ° C − 20 ° C) ° C)) = 2,94 кОм.
Ток через нагретый резистор равен I = VR = 9,00 В 2,94 × 103 Ом = 3,06 × 10−3A = 3,06 мА I = VR = 9,00 В 2,94 × 103 Ом = 3,06 × 10−3A = 3,06 мА.
Значение
Изменение температуры на 40 ° C40 ° C привело к изменению тока на 2,00%.Это может показаться не очень большим изменением, но изменение электрических характеристик может сильно повлиять на цепи. По этой причине многие электронные устройства, такие как компьютеры, содержат вентиляторы для отвода тепла, рассеиваемого компонентами электрических цепей.Проверьте свое понимание 9,8
Проверьте свое понимание Напряжение, подаваемое в ваш дом, изменяется как V (t) = Vmaxsin (2πft) V (t) = Vmaxsin (2πft). Если к этому напряжению подключен резистор, будет ли по-прежнему действовать закон Ома V = IRV = IR?
Неомические устройства не показывают линейной зависимости между напряжением и током.Одним из таких устройств является элемент полупроводниковой схемы, известный как диод. Диод — это схемное устройство, которое позволяет току течь только в одном направлении. Схема простой схемы, состоящей из батареи, диода и резистора, показана на рисунке 9.21. Хотя мы не рассматриваем теорию диода в этом разделе, диод можно протестировать, чтобы определить, является ли он омическим или неомическим устройством.
Фигура 9.21 Диод — это полупроводниковое устройство, которое позволяет току течь только в том случае, если диод смещен в прямом направлении, что означает, что анод положительный, а катод отрицательный.
График зависимости тока от напряжения показан на рисунке 9.22. Обратите внимание, что поведение диода показано как зависимость тока от напряжения, тогда как работа резистора показана как зависимость напряжения от тока. Диод состоит из анода и катода. Когда анод находится под отрицательным потенциалом, а катод — под положительным потенциалом, как показано в части (а), говорят, что диод имеет обратное смещение. При обратном смещении диод имеет очень большое сопротивление, и через диод и резистор протекает очень небольшой ток — практически нулевой ток.По мере увеличения напряжения, приложенного к цепи, ток остается практически нулевым, пока напряжение не достигнет напряжения пробоя и диод не будет проводить ток, как показано на рисунке 9.22. Когда аккумулятор и потенциал на диоде меняются местами, что делает анод положительным, а катод отрицательным, диод проводит, и ток течет через диод, если напряжение больше 0,7 В. Сопротивление диода близко к нулю. (Это причина наличия резистора в цепи; если бы его не было, ток стал бы очень большим.Из графика на рисунке 9.22 видно, что напряжение и ток не имеют линейной зависимости. Таким образом, диод является примером безомного устройства.
Фигура 9,22 Когда напряжение на диоде отрицательное и небольшое, через диод протекает очень небольшой ток. Когда напряжение достигает напряжения пробоя, диод проводит. Когда напряжение на диоде положительное и превышает 0,7 В (фактическое значение напряжения зависит от диода), диод проводит.По мере увеличения приложенного напряжения ток через диод увеличивается, но напряжение на диоде остается примерно 0,7 В.
Закон Ома обычно формулируется как V = IRV = IR, но первоначально он был сформулирован как микроскопический вид с точки зрения плотности тока, проводимости и электрического поля. Этот микроскопический вид предполагает, что пропорциональность V∝IV∝I обусловлена дрейфовой скоростью свободных электронов в металле, возникающей в результате приложенного электрического поля. Как было сказано ранее, плотность тока пропорциональна приложенному электрическому полю.Переформулировка закона Ома приписывается Густаву Кирхгофу, имя которого мы снова увидим в следующей главе.
.