Site Loader

Содержание

Второй период периодической системы — Википедия

Ко второ́му пери́оду периоди́ческой систе́мы относятся элементы второй строки (или второго периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в химических свойствах элементов при увеличении атомного числа: новая строка начинается тогда, когда химические свойства повторяются, что означает, что элементы с аналогичными свойствами попадают в один и тот же вертикальный столбец. Второй период содержит больше элементов, чем предыдущий, в него входят: литий, бериллий, бор, углерод, азот, кислород, фтор и неон. Данное положение объясняется современной теорией строения атома.

Литий[править | править код]

Литий (Li) является химическим элементом с атомным номером 3, встречающимся в двух изотопах: 6Li и 7Li. При нормальной температуре и давлении литий — это серебристо-белый, мягкий щелочной металл с высокой реакционной способностью. Его плотность составляет 0.564 г/см³. Литий является самым лёгкий из всех металлов и наименее плотным из всех твёрдых элементов.

[1] Наиболее распространённым в природе изотопом является литий-7, обозначающийся как 7Li, который составляет 92,5% всего лития. Такой изотоп состоит из трёх протонов и четырёх нейтронов.[2] Изотоп литий-6, обозначающийся 6Li, тоже стабилен, он содержит три протона и три нейтрона. Эти два изотопа составляют весь естественный литий на Земле, хотя искусственно были синтезированы и другие изотопы.[2] В ионных соединениях литий теряет электрон и становится положительно заряженным катионом Li+.

Согласно теории, Li является одним из немногих элементов, синтезированных в результате Большого Взрыва, вследствие чего его относят к списку изначальных элементов. Литий стоит на 33 месте среди самых распространённых элементов на Земле,

[3] встречаясь в концентрациях от 20 до 70 миллионных долей по весу,[4] но из-за его высокой реакционной способности в природе он встречается только в виде соединений. Наиболее богатым источником литий-содержащих соединений являются гранитные пегматиты, а также сподумен и петалит, которые являются наиболее коммерчески целесообразными источниками этого элемента.[4] Металл выделяется электролитически из смеси хлорида лития и хлорида калия.

Соли лития используются в фармакологической промышленности как лекарственное средство для стабилизации настроения.

[5][6] Они используются также при лечении биполярного расстройства, где играют определённую роль в лечении депрессии и мании, и могут уменьшить шансы суицида.[7] Наиболее распространёнными из применяемых соединений лития являются карбонат лития Li2CO3, цитрат лития Li3C6H5O7, сульфат лития Li2SO4 и оротат лития LiC5H3N2O4·H2O. Литий используется также в качестве анода в литиевых батареях, а его сплавы с алюминием, кадмием, медью и марганцем используются для высокопрочных частей самолетов и космических аппаратов, например, для внешнего топливного бака космического корабля Спейс шаттл.
[1]

Бериллий[править | править код]

Бериллий (Be) является химическим элементом с атомным номером 4, существующем в виде 9Be. При нормальной температуре и давлении бериллий является твёрдым, лёгким, хрупким, двухвалентным щёлочноземельным металлом серо-стального цвета, с плотностью 1,85 г/см³.[8] Он обладает одной из самых высоких температур плавления среди всех лёгких металлов. Наиболее распространенным изотопом бериллия является 9Be, который содержит 4 протона и 5 нейтронов. Он составляет почти 100% всего природного бериллия, и является единственным стабильным изотопом, однако искусственно были синтезированы и другие изотопы. В ионных соединенийях бериллий теряет два валентных электрона с образованием катиона Be

2+.

Небольшое количество атомов бериллия было синтезировано во время Большого Взрыва, хотя большинство из них распались или участвовали в дальнейшем в атомных реакциях при создания более крупных ядер, таких как углерод, азот и кислород. Бериллий является одним из компонентов в 100 из более 4000 известных минералов, таких как бертрандит Be4Si2O7(OH)2, берилл Al2Be3Si6O18, хризоберилл Al2BeO4 и фенакит Be2SiO4. Драгоценные формы берилла — аквамарин, берилл красный и изумруд. Наиболее распространенными источниками бериллия, используемого в коммерческих целях, являются берилл и бертрандит, и при его производстве используется реакция восстановления фторида бериллия с помощью металлического магния или электролиз расплавленного хлорида бериллия, содержащего некоторое количество хлорида натрия, поскольку хлорид бериллия является плохим проводником электричества.

[8]

Благодаря высокой жёсткости, легкому весу и стабильности размеров в широком диапазоне температур, металлический бериллий используется в качестве конструкционного материала в авиации, ракетной технике и спутниковой связи.[8] Он используется в качестве легирующей добавки в бериллиевой бронзе, которая используется в электрических компонентах ввиду её высокой электро- и теплопроводности.

[9] Листы бериллия используются в рентгеновских детекторах для фильтрации видимого света и пропуска только рентгеновских лучей.[8] Он используется в качестве замедлителя нейтронов в ядерных реакторах, поскольку лёгкие ядра более эффективны в замедлении нейтронов, чем тяжёлые.[8] Низкий вес и высокая жёсткость бериллия делают полезным его применение в высокочастотных громкоговорителях (твитерах).[10]

Бериллий и его соединения отнесены Международным агентством по изучению рака к 1 группе канцерогенов. Они обладают канцерогенными свойствами как для людей, так и для животных.

[11] Хронический бериллиоз является лёгочным, гранулематозным заболеванием большого круга кровообращения, вызванным воздействием бериллия. Приблизительно 1% — 15% людей чувствительны к бериллию, и у них могут развиться воспалительные реакции дыхательной системы и кожи, которые называются хронической бериллиевой болезнью или бериллиозом. Иммунная система организма распознаёт бериллий как инородные частицы и подготавливает против них атаку, как правило, в лёгких, через которые эти частицы вдыхаются. Эта реакция может вызвать лихорадку, усталость, слабость, ночные потовыделения и затруднение дыхания.[12]

Бор[править | править код]

Основная статья:
Бор

Бор (B) является химическим элементом с атомным номером 5, существующем в виде 10B и 11B. При нормальной температуре и давлении бор является трёхвалентным металлоидом, имеющем несколько аллотропных форм. Аморфный бор представляет собой коричневый порошок, образующийся как продукт многих химических реакций. Кристаллический бор является очень твёрдым, чёрным материалом с высокой температурой плавления, существующем во многих полиморфных модификациях. Наиболее распространёнными являются две ромбоэдрические модификации: α-бор и β-бор, содержащие 12 и 106,7 атомов в ромбоэдрической ячейке соответственно, и 50-атомный бор с тетрагональной решёткой. Бор имеет плотность 2,34 г/см³.

[13] Наиболее распространённым в природе изотопом бора является 11B (80,22% от всего бора), содержащий 5 протонов и 6 нейтронов. Другой встречающийся изотоп 10B (19,78%) содержит 5 протонов и 5 нейтронов.[14] Но это только стабильные изотопы, а искусственно были синтезированы и другие. Бор создаёт ковалентные связи с другими неметаллами и имеет степень окисления 1, 2, 3 и 4.[15][16][17] В свободном виде в природе бор не встречается, а встречается в таких соединениях, как бораты. Наиболее распространёнными источниками бора являются турмалин, бура Na2B4O5(OH)4·8H2O и кернит Na2B
4
O5(OH)4·2H2O.[13] Чистый бор получить довольно трудно. Сделать это можно путём его восстановления магнием из оксида бора B2O3. Этот оксид получают путём плавления борной кислоты B(OH)3, которая в свою очередь получается из буры. Небольшое количество чистого бора можно получить путём термического разложения трибромида бора BBr3 в газообразном водороде над горячей проволокой из вольфрама или тантала; последние действуют в качестве катализаторов.[13] Коммерчески наиболее важными источниками бора являются: пентагидрат тетрабората натрия Na2B4O7 · 5H2O, который в больших количествах используется при производстве изоляционного стекловолокна и отбеливателя из пербората натрия; карбид бора, керамический материал, используемый для изготовления бронированных изделий, особенно бронежилетов для солдат и сотрудников полиции; ортоборная кислота H
3
BO3 и борная кислота, используемые в производстве текстильного стекловолокна и плоскопанельных дисплеев; декагидрат тетрабората натрия Na2B4O7 · 10H2O и бура, используемые в производстве клеев; наконец, изотоп бор-10 используется в управлении ядерными реакторами в качестве защиты от ядерного излучения и в приборах для обнаружения нейтронов.[14]

Бор является одним из важнейших микроэлементов растений, необходимый для создания и роста прочных клеточных мембран, деления клеток, развития семян и плодов, транспортировки сахаров и развития гормонов.

[18][19] Однако концентрация его в почве более 1.0 мд может вызвать некроз листьев и плохой рост. Уровень около 0.8 мд может вызвать эти же симптомы у растений особенно чувствительных к бору. У большинства растений, даже не слишком чувствительных к наличию бора в почве, признаки отравления бором появляются при уровне выше 1.8 мд.[14] В организме животных бор является ультраразличимым элементом (англ.). В диете человека ежедневный приём составляет 2.1-4.3 мг бора в день на килограмм массы тела.[20] Он также используется как добавка для профилактики и лечения остеопороза и артрита.[21]

Углерод[править | править код]

Углерод (C) является химическим элементом с атомным номером 6, встречающемся в природе в виде 12C, 13C и 14C.[22] При нормальной температуре и давлении углерод является твёрдым веществом, существующем в различных аллотропных формах, наиболее распространенными из которых являются графит, алмаз, фуллерены и аморфный углерод.[22] Графит — мягкий, матово-чёрный полуметалл с гексагональной кристаллической решёткой, с очень хорошими проводящими и термодинамически стабильными свойствами. Алмаз имеет весьма прозрачные бесцветные кристаллы с кубической решёткой и с плохими проводящими свойствами, он является самым твёрдым из известных естественных минералов и имеет самый высокий показатель преломления среди всех драгоценных камней. В отличие от структур алмаза и графита типа кристаллической решётки, фуллерены, названные в честь Ричарда Бакминстера Фуллера, являются веществами, архитектура которых напоминает молекулы. Есть несколько различных фуллеренов, наиболее известным из которых является «бакминстерфуллерен» C60, название которого также связано с именем Ричарда Бакминстера Фуллера. Пространственная структура этого фуллерена напоминает геодезический купол, изобретённый Фуллером. О фуллеренах известно пока немного, они являются предметом интенсивных исследований.[22] Существует также аморфный углерод, который не имеет кристаллической структуры.[23] В минералогии этот термин используется для ссылки на сажу и уголь, хотя они не являются строго аморфными, поскольку содержат небольшое количество графита или алмаза.[24][25] Наиболее распространённым изотопом углерода является 12C с шестью протонами и шестью нейтронами (98,9% от общего количества).[26] Стабилен также изотоп 13C с шестью протонами и семью нейтронами (1,1%).[26] Ничтожные количества 14C также встречаются в природе, но этот изотоп является радиоактивным и распадается с периодом полураспада 5730 лет. Он используется в методе радиоуглеродного датирования.[27] Искусственно синтезированы также другие изотопы углерода. Углерод образует ковалентные связи с другими неметаллами со степенью окисления -4, -2, +2 и +4.[22]

Углерод является четвёртым по распространённости элементом во Вселенной по массе после водорода, гелия и кислорода,[28] вторым в организме человека по массе после кислорода[29] и третьим по числу атомов.[30] Существует чуть ли не бесконечное число соединений, содержащих углерод, благодаря способности углерода к образованию стабильной связи C — С.[31][32] Простейшими углеродосодержащими молекулами являются углеводороды,[31] которые включают углерод и водород, хотя иногда они содержат в функциональных группах и другие элементы. Углеводороды используются в качестве топлива, для производства пластмасс и в нефтехимии. Все органические соединения, необходимые для жизни, содержат по меньшей мере один атом углерода.[31][32] В соединении с кислородом и водородом углерод может образовывать многие группы важных биологических соединений,[32] включая сахара, лигнаны, хитины, спирты, жиры и ароматические эфиры, каротиноиды и терпены. С азотом он образует алкалоиды, а с добавлением серы формирует антибиотики, аминокислоты и резину. С добавлением фосфора к этим элементам углерод формирует ДНК и РНК, химические коды носителей жизни, и аденозинтрифосфаты (АТФ), являющиеся наиболее важными переносчиками энергии для молекул во всех живых клетках.[32]

Азот[править | править код]

Азот (N) является химическим элементом с атомным номером семь и атомной массой 14,00674. При стандартных условиях азот в природе представляет собой инертный двухатомный газ без цвета, вкуса и запаха, составляющий 78,08% от объёма атмосферы Земли. Азот был открыт как составная компонента воздуха шотландским врачом Даниэлем Резерфордом в 1772 году.[33] В природе он встречается в виде двух изотопов: азот-14 и азот-15.[34]

Многие важные для промышленности вещества, такие как аммиак, азотная кислота, органические нитраты (ракетное топливо, взрывчатые вещества) и цианиды, содержат азот. В химии элементарного азота преобладает чрезвычайно сильная химическая связь, в результате чего возникают трудности как для организмов, так и при промышленном производстве в разрушении этой связи при преобразовании молекулы N2 в полезные соединения. Но в то же время такое успешное преобразование вызывает потом высвобождение большого количества энергии, если такие соединения сжечь, взорвать или другим способом преобразовать азот обратно в газообразное двухатомное состояние.

Азот присутствет во всех живых организмах, а круговорот азота описывает движение элемента из воздуха в биосферу и органические соединения, и затем обратно в атмосферу. Искусственно произведённые нитраты являются ключевыми ингредиентами промышленных удобрений, а также основными загрязняющими веществами при возникновении эвтрофикации водных систем. Азот является составной частью аминокислот, а, следовательно, белков и нуклеиновых кислот (ДНК и РНК). Он находится в химической структуре практически всех нейротрансмиттеров и является определяющим компонентом алкалоидов и биологических молекул, производимых многими организмами.[35]

Кислород[править | править код]

Кислород (O) является химическим элементом с атомным номером 8, встречающемся в природе в виде 16O, 17O и 18O, среди которых самым распространённым изотопом является 16O.[36]

Фтор[править | править код]

Фтор (F) является химическим элементом с атомным номером 9, имеющем единственный стабильный изотоп 19F.[37] Чрезвычайно химически активный неметалл и сильнейший окислитель.

Неон[править | править код]

Неон (Ne) является химическим элементом с атомным номером 10, встречающемся в природе в виде 20Ne, 21Ne и 22Ne.[38]

  1. 1 2 Lithium at WebElements.
  2. 1 2 Isotopes of Lithium (неопр.). Berkley Lab, The Isotopes Project. Дата обращения 21 апреля 2008. Архивировано 31 июля 2012 года.
  3. Krebs, Robert E. The History and Use of Our Earth’s Chemical Elements: A Reference Guide (англ.). — Westport, Conn.: Greenwood Press, 2006. — P. 47—50. — ISBN 0-313-33438-2.
  4. 1 2 Kamienski et al. «Lithium and lithium compounds». Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. Published online 2004. DOI:10.1002/0471238961.1209200811011309.a01.pub2
  5. Cade J. F. J. Lithium salts in the treatment of psychotic excitement (англ.) // Medical Journal of Australia (англ.)русск. : journal. — 1949. — Vol. 2, no. 10. — P. 349—352. — PMID 18142718.
  6. P. B. Mitchell,D. Hadzi-Pavlovic. Lithium treatment for bipolar disorder (англ.) // Bulletin of the World Health Organization (англ.)русск.. — World Health Organization, 2000. — Vol. 78, no. 4. — P. 515—517. — PMID 10885179.
  7. Baldessarini R. J., Tondo L., Davis P., Pompili M., Goodwin F. K., Hennen J. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review (англ.) // Bipolar disorders : journal. — 2006. — October (vol. 8, no. 5 Pt 2). — P. 625—639. — DOI:10.1111/j.1399-5618.2006.00344.x. — PMID 17042835.
  8. 1 2 3 4 5 Beryllium at WebElements.
  9. ↑ Standards and properties of beryllium copper.
  10. ↑ Information about beryllium tweeters.
  11. ↑ IARC Monograph, Volume 58 (неопр.). International Agency for Research on Cancer (1993). Архивировано 31 июля 2012 года.
  12. ↑ Information Архивная копия от 31 марта 2001 на Wayback Machine about chronic beryllium disease.
  13. 1 2 3 Boron at WebElements.
  14. 1 2 3 Properties of boron.
  15. W.T.M.L. Fernando, L.C. O’Brien, P.F. Bernath. Fourier Transform Spectroscopy: B4Σ−X4Σ (неопр.) (PDF). University of Arizona, Tucson. Архивировано 31 июля 2012 года.
  16. K.Q. Zhang, B.Guo, V. Braun, M. Dulick, P.F. Bernath. Infrared Emission Spectroscopy of BF and AIF (неопр.) (PDF). University of Waterloo, Waterloo, Ontario. Архивировано 31 июля 2012 года.
  17. ↑ Compound Descriptions: B2F4 (неопр.). Landol Börnstein Substance/Property Index.
  18. ↑ Functions of Boron in Plant Nutrition (неопр.) (PDF) (недоступная ссылка). U.S. Borax Inc.. Архивировано 18 августа 2003 года.
  19. Blevins, Dale G.; Lukaszewski, Krystyna M. Functions of Boron in Plant Nutrition (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 1998. — Vol. 49. — P. 481—500. — DOI:10.1146/annurev.arplant.49.1.481. — PMID 15012243.
  20. Zook EG and Lehman J. 850-5 (неопр.) // J. Assoc. Off Agric. Chem. — 1965. — Т. 48.
  21. ↑ Boron (неопр.). PDRhealth. Дата обращения 18 сентября 2008. Архивировано 24 мая 2008 года.
  22. 1 2 3 4 Carbon at WebElements.
  23. ↑ Amorphous carbon // IUPAC Compendium of Chemical Terminology (неопр.). — 2nd. — International Union of Pure and Applied Chemistry, 1997.
  24. Vander Wal, R. Soot Precursor Material: Spatial Location via Simultaneous LIF-LII Imaging and Characterization via TEM (англ.) // NASA Contractor Report : journal. — 1996. — May (no. 198469). Архивировано 17 июля 2009 года. Архивная копия от 17 июля 2009 на Wayback Machine
  25. ↑ diamond-like carbon films // IUPAC Compendium of Chemical Terminology (неопр.). — 2nd. — International Union of Pure and Applied Chemistry, 1997.
  26. 1 2 Presentation about isotopes by Mahananda Dasgupta of the Department of Nuclear Physics at Australian National University.
  27. Plastino, W.; Kaihola, L.; Bartolomei, P.; Bella, F. Cosmic Background Reduction In The Radiocarbon Measurement By Scintillation Spectrometry At The Underground Laboratory Of Gran Sasso (англ.) // Radiocarbon : journal. — 2001. — Vol. 43, no. 2A. — P. 157—161. Архивировано 27 мая 2008 года. Архивировано 27 мая 2008 года.
  28. ↑ Ten most abundant elements in the universe, taken from The Top 10 of Everything, 2006, Russell Ash, page 10. Архивировано 10 февраля 2010 года.
  29. Chang, Raymond. Chemistry, Ninth Edition (неопр.). — McGraw-Hill Education, 2007. — С. 52. — ISBN 0-07-110595-6.
  30. Freitas Jr., Robert A. Nanomedicine, (итал.). — Landes Bioscience (англ.)русск., 1999. — С. Tables 3—1 & 3—2. — ISBN 1570596808.
  31. 1 2 3 Structure and Nomenclature of Hydrocarbons (неопр.). Purdue University. Архивировано 31 июля 2012 года.
  32. 1 2 3 4 Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Molecular Biology of the Cell (неопр.). — Garland Science (англ.)русск..
  33. Lavoisier, Antoine Laurent. Elements of chemistry, in a new systematic order: containing all the modern discoveries (англ.). — Courier Dover Publications, 1965. — P. 15. — ISBN 0486646246.
  34. ↑ Nitrogen at WebElements.
  35. Rakov, Vladimir A.; Uman, Martin A. Lightning: Physics and Effects (неопр.). — Cambridge University Press, 2007. — С. 508. — ISBN 9780521035415.
  36. ↑ Oxygen Nuclides / Isotopes (неопр.). EnvironmentalChemistry.com.
  37. National Nuclear Data Center. NuDat 2.1 database – fluorine-19 (неопр.). Brookhaven National Laboratory. Архивировано 31 июля 2012 года.
  38. ↑ Neon: Isotopes (неопр.). Softciências. Архивировано 31 июля 2012 года.

D-элементы — Википедия

D-элементы — группа атомов в периодической таблице элементов (d-блок), в электронной оболочке которых валентные электроны с наивысшей энергией занимают d-орбиталь.

Данный блок представляет собой часть периодической таблицы; в него входят элементы от 3 до 12 группы[1][2]. Элементы данного блока заполняют d-оболочку d-электронами, которая у элементов начинается s2d1 (третья группа) и заканчивается s2d10 (двенадцатая группа). Однако существуют некоторые нарушения в этой последовательности, например, у хрома s1d5 (но не s2d4) вся одиннадцатая группа имеет конфигурацию s1d10 (но не s2d9). Двенадцатая группа имеет заполненные s- и d-электроны.

Элементы d-блока также известны как переходные металлы или переходные элементы. Однако точные границы, отделяющие переходные металлы от остальных групп химических элементов, ещё не проведены. Хотя некоторые авторы считают, что элементы, входящие в d-блок, являются переходными элементами[1], в которых d-электроны являются частично заполненными либо в нейтральных атомах или ионах, где степень окисления равна нулю[2][3]. ИЮПАК в данное время принимает такие исследования как достоверные и сообщает, что это относится только к 3—12 группам химических элементов[4]. Металлы 12ой вследствие полного заполнения d-оболочки не соответствуют классическому определению d-элементов, поэтому их можно считать и постпереходными металлами. Также было пересмотрено историческое применение термина «переходные элементы» и d-блока[5].

В s-блоке и p-блоке периодической таблицы аналогичные свойства, через периоды, как правило, не наблюдаются: самые важные свойства усиливаются по вертикали у нижних элементов данных групп. Примечательно, что различия элементов входящих в d-блок по горизонтали, через периоды, становятся более выраженными.

Лютеций и лоуренсий находятся в d-блоке, и они считаются не переходными металлами, но лантаноидами и актиноидами, что примечательно, таковыми считаются с точки зрения ИЮПАК[6]. Двенадцатая группа химических элементов хоть и находится в d-блоке, однако считается, что входящие в неё элементы являются постпереходными элементами[6].

Являются в организме человека в основном микроэлементами.Наряду с ферментами,гормонами,витаминами и другими биологически активными веществами микроэлементы участвуют в процессах обмена нуклеиновых кислот, белков,жиров и углеводов.Из d-элементов важную роль в организме играют железо,кобальт,цинк и молибден.Биологические функции микроэлементов в живом организме связаны главным образом с процессом комплексообразования между аминокислотами,белками, нуклеиновыми кислотами и ионами соответствующих металлов.Соединения d-элементов используются в качестве лекарственных препаратов, в избыточных концентрациях они ядовиты(это связано с тем, что d-элементы образуют с белками нерастворимые соединения).

Цинк входит в состав большого числа ферментов и гормона инсулина.Он необходим для нормальной концентрации витамина А в плазме.Влияет на синтез нуклеинвых кислот и участвует в передаче генетической информации.Соли цинка обладают антисептическим действием.

Марганец в организме содержится в количестве 0,36 ммоль.Входит в состав ферментов,катализирующих ОВР.Соединения марганца участвуют в синтезе витамина С в организме.Перманганат калия является окислителем и обладает антисептическим действием.

Железо в организме содержится в количестве равном приблизительно 5 граммам.Входит в состав гемоглобина.Избыток железа может привести к нарушению деятельности сердечно-сосудистой системы,печени,лёгких.

Кобальт входит в состав важных белковых молекул,активирует действие ряда ферментов.Дефицит кобальта в тканях снижает способность организма защищаться от различных инфекций.

Медь содержится в организме в количестве 1,1 ммоль.Активирует синтез гемоглобина,участвует в процессах клеточного дыхания,синтезе белка,образовании костной ткани и пигмента кожных покровов.Ионы медь входят в состав медьсодержащих ферментов(оксидаз), которые катализируют ОВР. Накопление меди в организме способствует развитию хронического гепатита.Избыток меди откладывается печени,мозге,почках,глазах, вызывает тяжелые заболевания-болезнь Вильсона.Все соли меди ядовиты.Токсичное действие обуславливается тем, что медь образует с белками нерастворимые альбуминаты, образуя прочную связь с аминным азотом и группой SH-белков.

Серебро-примесный микроэлемент, в организме содержится 7,3 ммоль.В медицине препараты серебра используют наружно, как вяжущее, прижигающее, бактерицидное средство.Серебро используется для получения «серебряной воды», которую используют для лечения ран,язв.Нитрат серебра в комплексе с органическими соединениями образует альбуминаты и вследствие денатурации белков бактериальных клеток оказывают бактерицидное действие.Нитрат серебра применяют при начальном, поверхностном,среднем кариесе, гиперестезии твёрдых тканей зуба и для стерилизации канала корня зуба.

Колларгол(серебро коллоидное) содержит 70% серебра.1-2 % раствор используют как антисептическое средство для полоскания полости рта при воспалительных процессах

Протаргол содержит 8% серебра, применяется как вяжущее, антисептическое и противовоспалительное средство.Используется в виде 1-5 % раствора для смазывания слизистой оболочки и для полоскания полости рта при воспалительных процессах.[7]

  1. 1 2 R.H. Petrucci, W.S. Harwood, F.G. Herring. «General Chemistry». — 8-е изд. — Prentice-Hall, 2002. — С. 341—342.
  2. 1 2 C.E. Housecroft и A.G. Sharpe. «Inorganic Chemistry». — 2-е изд. — Pearson Prentice-Hall, 2005. — С. 20—21.
  3. F.A. Cotton и G. Wilkinson. «Advanced Inorganic Chemistry». — 5-е изд. — John Wiley, 1988. — С. 625.
  4. Международный союз теоретической и прикладной химии. Transition element (неопр.). Compendium of Chemical Terminology. — Internet edition. Дата обращения 29 сентября 2011. Архивировано 8 мая 2012 года.
  5. Jensen, William B. «The Place of Zinc, Cadmium, and Mercury in the Periodic Table» (англ.) 952—961. Journal of Chemical Education (2003). Дата обращения 29 сентября 2011. Архивировано 8 мая 2012 года.
  6. 1 2 IUPAC Provisional Recommendations for the Nomenclature of Inorganic Chemistry (англ.) (2004). — online draft of an updated version of the «Red Book» IR 3—6. Дата обращения 29 сентября 2011. Архивировано 27 октября 2006 года.
  7. Кунцевич З.С., Морозова Э.Я. Учебно-методические разработки по самоподготовке к занятиям и выполнению лабораторных работ по общей химии для студентов лечебного факультета. — Витебск: ВГМУ, 2004. — С. 23-28. — 102 с.
  • Дикерсон Р., Грей Г., Хейт Дж. Основные законы химии: В 2-х томах. Пер. с англ. — М.: Мир, 1982. 652 с., ил. — Т. 1. — С. 437–451.

Логический элемент 2И-НЕ и его характеристики

 

1.2.  Логический элемент 2И-НЕ и его характеристики

 

Широкое распространение получили логические элементы транзисторно-транзисторной логики (ТТЛ). Рассмотрим принципиальную схему логического элемента 2И-НЕ  транзисторно-транзисторной логики со сложным  инвертором на выходе. Такие логические элементы имеют хорошую нагрузочную способность.

 

 

На рисунке 1.14,а приведена принципиальная схема одного из четырех логических элементов 2И-НЕ микросхемы К134ЛБ1, а на рисунке 1.14,б – условное обозначение этой микросхемы на принципиальных схемах. 

На рисунках  1.15,а и 1.15,в приведены принципиальные схемы логических элементов 2И-НЕ соответственно для микросхем К133ЛА3 и К155ЛА3. Каждая их этих микросхем имеет по 4 логических элемента 2И-НЕ, а их условные обозначения на принципиальных схемах совпадают (рис. 1.15,б).

Первые логические элементы ТТЛ не имели на входах защитных диодов. В момент окончания прямоугольного импульса на входе элемента в монтажных цепях цифрового устройства могут возникнуть затухающие колебания. Следствием этих колебаний может быть ложное срабатывание цифрового устройства. В результате доработки  логических элементов к каждому входу многоэмиттерного

транзистора были подключены демпфирующие диоды. Первым отрицательным импульсом затухающего колебания демпфирующий диод открывается, и амплитуда затухающих колебаний резко уменьшается. Следующий положительный импульс затухающего колебания уже не может изменить состояние на выходе логического элемента.

Резисторы R4, R5 и транзистор VT5 в логическом элементе 2И-НЕ микросхемы К155ЛА3 (рис. 1.15,в) позволяют получить передаточную характеристику, более близкую к прямоугольной. Это повышает помехозащищенность в состоянии логической единицы на выходе элемента.

Рассмотрим работу логического элемента 2И-НЕ микросхемы К134ЛБ1 (рис. 1.14,а). Для логических элементов транзисторно-транзисторной логики напряжение логического нуля по техническим условиям может быть 0-0,4 В. Напряжение логической единицы — не менее 2,4 В и не более 5 В. Напряжение логического нуля можно подать, соединив вход элемента с общим проводом накоротко, либо через резистор малого сопротивления (не более 300 Ом). Напряжение логической единицы на вход элемента можно подать, соединив вход элемента с плюсовым проводом  питания через резистор сопротивлением  1 Ком, либо оставляя вход элемента свободным.

Пусть на входы Х1 и Х2  элемента 2И-НЕ (рис. 1.14,а) поданы напряжения логической единицы. Рассмотрим случай, когда  Х1 и Х2 никуда не подключены. В этом случае транзисторы VТ2, VТ4 будут открыты токами базы, протекающими по цепи: + источника, резистор R1, переход база-коллектор VТ1, база-эмиттер VТ2, база-эмиттер VТ4, минус источника. Транзистор VТ3 в этом случае закрыт, т.к. потенциал коллектора  транзистора VT2 примерно 0,9 В.

Рассмотрим делитель напряжения, верхнее плечо которого состоит из последовательно соединенных резистора R3, выводов коллектор-эмиттер транзистора VТ3, диода VД1, а нижнее плечо делителя – это выводы коллектор-эмиттер VТ4. В рассматриваемом случае сопротивление верхней части делителя велико, а сопротивление нижней части делителя — мало. Выходное напряжение соответствует логическому нулю.

Если хотя бы на одном из входов Х1, Х2 действует логический нуль, то VТ2, VТ4 закрыты, а  VТ3 открыт. Ток базы транзистора VT3 протекает по цепи: плюс источника питания, резистор R2, переход база-эмиттер транзистора VT3, полупроводниковый диод VD1, резистор нагрузки (на схеме не показан), минус источника питания. В этом случае сопротивление  между коллектором транзистора VT3 и катодом диода VD1 мало, а сопротивление между коллектором и эмиттером транзистора VT4 велико. Анализируя делитель напряжения, приходим к выводу, что выходное напряжение логического элемента будет соответствовать логической единице.

В вычислительной технике широко применяется устройство с тремя состояниями на выходе. Рассмотрим логический элемент НЕ (инвертор) с тремя состояниями  на выходе (рис. 1.16,а). Указанный инвертор легко получается из схемы базового логического элемента 2И-НЕ путем добавления в схему VД2.

 

Если на вход разрешения  V микросхемы подано напряжение логической «1», то диод VД2 оказывается отключенным от схемы, и данный элемент можно рассматривать как  логический  элемент НЕ. Если на входе Х логическая единица, то транзисторы VT2, VT4 будут открыты, транзистор VT3 закрыт и на выходе элемента будет сигнал логического нуля. Подадим на вход Х сигнал логического нуля. В этом случае транзисторы VT2, VT4 будут закрыты, транзистор VT3 открыт и на выходе элемента будет сигнал логической единицы.

Подадим на вход V напряжение логического «0» , в этом случае  окажутся  закрытыми  VТ2, VТ3, VТ4. Выход Y оказывается отключенным как от плюсового,  так и от минусового проводов источника питания. Говорят, что выход элемента находится в третьем высокоимпедансном состоянии (состояние высокого сопротивления, как от клеммы «+», так и от клеммы «-»  источника питания). Элементы с тремя состояниями позволяют организовать в компьютерных системах так называемую общую шину.

Элементы с тремя состояниями входят в состав шинных формирователей. Шинные формирователи  это устройства, которые обеспечивают передачу сигнала в двух направлениях  по одному и тому же проводу. В составе шинного формирователя на каждую линию потребуется 2 элемента с тремя состояниями на выходе.

На рисунке 1.16,б приведена схема логического элемента 2И-НЕ с открытым коллектором на выходе. Выходы нескольких таких элементов подключаются к одному резистору нагрузки, второй вывод которого подключен к плюсовому проводу источника питания.

На рисунке 1.17,а приведена схема подключения приборов для снятия зависимости выходного напряжения логического элемента от тока нагрузки в состоянии логической единицы на выходе элемента, а на рисунке 1.18,а – график этой зависимости. Логические элементы ТТЛ не выходят из строя при коротком замыкании нагрузки для случая логической единицы на выходе элемента, поэтому в цепи нагрузки нет необходимости ставить ограничительный резистор. Если на выходе элемента логический нуль, то при исследовании зависимости выходного напряжения от тока нагрузки необходимо в цепи нагрузки устанавливать ограничительный резистор. 

На рисунке 1.17,б приведена схема подключения приборов для снятия зависимости выходного напряжения логического элемента от тока нагрузки в состоянии логического нуля на выходе элемента, а на рисунке 1.18,б – график этой зависимости. Сопротивление ограничительного резистора в цепи нагрузки выбирают примерно таким же, как сопротивление резистора R3 в логическом элементе 2И-НЕ (рисунок 1.15,в), т.е. примерно 100 Ом.  

По графикам, приведенным на рисунке 1.18 можно определить коэффициент разветвления или нагрузочную способность логического элемента. По графику рисунка 1.18,а найдем ток нагрузки при выходном напряжении 2,4 В. Зная, что входной ток логической единицы 40 мкА, определим, сколько таких элементов можно подключить в состоянии логической единицы на выходе данного элемента. По рисунку 1.18,б определим ток нагрузки в состоянии логического нуля на выходе элемента при напряжении 0,4 В. Зная, что входной ток логического нуля минус 1,6 мА, определим, сколько таких элементов можно подключить в состоянии логического нуля на выходе данного элемента. Наименьшее из двух полученных значений будет являться коэффициентом разветвления логического элемента. Определение коэффициента разветвления таким способом будет справедливо только для низких частот, когда влиянием входных емкостей элементов и емкости монтажа можно пренебречь.

  

На рисунке 1.19,а приведена схема для наблюдения на экране осциллографа зависимости выходного напряжения элемента от напряжения на его входе, а на рисунке 1.19,б – график этой зависимости для логического элемента 2И-НЕ ТТЛ. Диод VD1 может быть любым кремниевым малой мощности, т.к. обратное напряжение в данной схеме не превысит 5 В, а ток через диод в прямом направлении выбирается единицы миллиампер. Амплитуда переменного напряжения  на выходе источника переменного напряжения не должна превышать 10 В. График  зависимости  выходного напряжения  элемента от напряжения

на его входе называется передаточной характеристикой логического элемента. Из графика передаточной характеристики логического элемента 2И-НЕ видно, что при входных напряжениях менее 0,4 В на выходе элемента напряжение логической единицы, а при входных напряжениях более 2,4 В на выходе элемента напряжение логического нуля. Реально в логическом элементе входное напряжение логического нуля может быть больше 0,4 В, а напряжение логической единицы меньше 2,4 В. Однако, выбирать такой режим работы элемента нецелесообразно, т.к. уменьшается помехоустойчивость логического элемента.

На рисунке 1.20 приведена входная характеристика логического элемента 2И-НЕ, снятая по одному из входов элемента. На втором входе элемента напряжение логической единицы. Точка а на графике входной характеристики соответствует входному напряжению 2,4 В, а точка б – входному напряжению 0,4 В. Входной ток логической единицы не превышает 40 мкА, а входной ток логического нуля менее –1,6 мА. Знак минус означает, что ток вытекает из микросхемы.

На рисунке 1.21,а приведена схема подключения приборов для наблюдения на экране осциллографа зависимости выходного напряжения от тока нагрузки для случая, когда на выходе элемента логическая единица. Ограничительный резистор в цепи нагрузки не предусмотрен, т.к. исследуется логический элемент 2И-НЕ в состоянии логической единицы на выходе. В качестве источника U2 используется В24, с клемм «+» и «–» которого снимается пульсирующее с частотой 100 Гц напряжение. Сопротивление резистора  Rэт выбирают как можно меньше (коэффициент отклонения по каналу Х осциллографа должен быть минимальным). Если чувствительность канала Х осциллографа недостаточна, то на вход Х можно подключить предварительный усилитель. Схема усилителя к входу Х осциллографа ОМЛ-3М приведена на рисунке 1.22.

Для питания усилителя используют переменное напряжение 12 вольт. Сопротивление резистора R1 выбирают значительно больше сопротивления эталонного резистора Rэт. Выход предварительного усилителя подключают к входу «Х» осциллографа. Переменным резистором R5 проводят балансировку микросхемы DA1 при отсутствии входного сигнала. Необходимый коэффициент отклонения луча по оси Х устанавливают переменным резистором R4. Стабилитроны VD1 и VD2 выбирают с учетом того, что необходимо обеспечить перемещение луча по оси «Х» из одного крайнего положения экрана в другое при изменении постоянного напряжения на входе усилителя от 0 до максимально возможного. Расчет сопротивлений резисторов R6, R7 параметрического стабилизатора напряжения проводился с учетом того, что для питания усилителя используется  переменное напряжение 12 вольт и выбраны стабилитроны КС156А.

На рисунке 1.21,б приведена схема подключения приборов для наблюдения на экране осциллографа зависимости выходного напряжения от тока нагрузки для случая, когда на выходе элемента логическая нуль. На транзисторах VT1 и VT2 собрано токовое зеркало. Особенностью работы токового зеркала является то, что коллекторные токи обоих транзисторов одинаковы и в определенных пределах не зависят от сопротивлений нагрузок. Значения коллекторных токов определяются напряжением на резисторе R2 и сопротивлениями резисторов R1 и R3. Сопротивления резисторов R1 и R3 обычно выбирают одинаковыми. Сопротивление эталонного резистора в данной схеме не обязательно должно быть малым. Транзисторы VT1, VT2 должны иметь примерно одинаковый и достаточно большой коэффициент усиления по току.

В цифровых устройствах на входах логических элементов обычно присутствуют прямоугольные импульсы напряжения. Пусть напряжение на обоих входах логического элемента 2И-НЕ микросхемы К155ЛА3 скачком изменилось с высокого уровня на низкий (рис. 1.15,в).   В этом случае транзистор VT3начнет открываться, а транзистор VT4 – закрываться. Транзисторы открываются быстрее, чем закрываются. Поэтому в течение некоторого промежутка времени будут открыты транзисторы VT3 и VT4. Ток, потребляемый логическим элементом от источника питания, ограничивается только резистором R3. Указанный ток короткого замыкания приводит к увеличению потребляемой мощности в динамическом режиме. График зависимости потребляемой от источника питания мощности от частоты прямоугольных импульсов на входе приведен на рисунке 1.23.

 

 

Иод — Википедия

О реке в Республике Коми см. Ёд.
Иод
← Теллур | Ксенон →
Блестящий тёмно-серый неметалл. В газообразном состоянии — фиолетовый.
Iod kristall.jpg

Образец йода

Название, символ, номер Иод / Iodum (I), 53
Атомная масса
(молярная масса)
126,90447(3)[1] а. е. м. (г/моль)
Электронная конфигурация [Kr] 4d10 5s2 5p5
Радиус атома 136 пм
Ковалентный радиус 133 пм
Радиус иона (+7e) 50 (-1e) 220 пм
Электроотрицательность 2,66 (шкала Полинга)
Электродный потенциал +0,535 В
Степени окисления +7, +5, +3, +1, 0, −1
Энергия ионизации
(первый электрон)
 1008,3 (10,45) кДж/моль (эВ)
Плотность (при н. у.) 4,93 г/см³
Температура плавления 113,5 °C
Температура кипения 184,35 °C
Уд. теплота плавления 15,52 (I—I) кДж/моль
Уд. теплота испарения 41,95 (I—I) кДж/моль
Молярная теплоёмкость 54,44[2] Дж/(K·моль)
Молярный объём 25,7 см³/моль
Структура решётки орторомбическая
Параметры решётки a=7,18 b=4,71 c=9,81[3]
Отношение c/a
Теплопроводность (300 K) (0,45) Вт/(м·К)
Номер CAS 7553-56-2

Ио́д[4] (тривиальное (общеупотребительное) название — йод[5]; от греч. ἰώδης — «фиалковый (фиолетовый)») — химический элемент с атомным номером 53[6]. Принадлежит к 17-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA), находится в пятом периоде таблицы. Атомная масса элемента 126,90447 а. е. м.[1]. Обозначается символом I (от лат. Iodum). Химически активный неметалл, относится к группе галогенов.

Простое вещество иод при нормальных условиях — кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, легко образует фиолетовые пары, обладающие резким запахом. Элементарный йод высокотоксичен в больших дозах[7]. Молекула простого вещества двухатомна (формула I2).

Название элемента предложено Гей-Люссаком и происходит от др.-греч. ἰο-ειδής (букв. «фиалкоподобный»), что связано с цветом пара, который наблюдал французский химик Бернар Куртуа, нагревая маточный рассол золы морских водорослей с концентрированной серной кислотой. В медицине и биологии данный элемент и простое вещество обычно называют йодом, например, «раствор йода», в соответствии со старым вариантом названия, существовавшим в химической номенклатуре до середины XX века.

В современной химической номенклатуре используется наименование иод. Такое же положение существует в некоторых других языках, например, в немецком: общеупотребительное Jod и терминологически корректное Iod. Одновременно с изменением названия элемента в 1950-х годах Международным союзом общей и прикладной химии символ элемента J был заменён на I[8].

Иод был открыт в 1811 г. Куртуа. При кипячении серной кислоты с рассолом золы морских водорослей он наблюдал выделение фиолетового пара, при охлаждении превращающегося в тёмные кристаллы с ярким блеском.

Элементная природа иода установлена в 1811—1813 гг. Л. Ж. Гей-Люссаком (а чуть позже и Х. Дэви). Гей-Люссак получил также многие производные (HI, HIO3, I2O5, ICl и др.). Важнейшим природным источником иода служат буровые воды нефтяных и газовых скважин.

Иод — редкий элемент. Его кларк — всего 400 мг/т. Однако он чрезвычайно сильно рассеян в природе и, будучи далеко не самым распространённым элементом, присутствует практически везде. Иод находится в виде иодидов в морской воде (20—30 мг на тонну морской воды). Присутствует в живых организмах, больше всего в водорослях (2,5 г на тонну высушенной морской капусты, ламинарии). Известен в природе также в свободной форме, в качестве минерала, но такие находки единичны, — в термальных источниках Везувия и на острове Вулькано (Италия). Запасы природных иодидов оцениваются в 15 млн тонн, 99 % запасов находятся в Чили и Японии. В настоящее время в этих странах ведётся интенсивная добыча иода, например, чилийская Atacama Minerals производит свыше 720 тонн иода в год. Наиболее известный из минералов иода — лаутарит Ca(IO3)2. Некоторые другие минералы иода — иодобромит Ag(Br, Cl, I), эмболит Ag(Cl, Br), майерсит CuI·4AgI.

Сырьём для промышленного получения иода в России служат нефтяные буровые воды[9], тогда как в зарубежных странах, не обладающих нефтяными месторождениями, используются морские водоросли, а также маточные растворы чилийской (натриевой) селитры, щёлок калийных и селитряных производств, что намного удорожает производство иода из такого сырья[10].

Iod kristall.jpg Жидкий иод на дне химического стакана

Природный иод состоит только из одного изотопа — иода-127 (см. Изотопы иода). Конфигурация внешнего электронного слоя — 5s2p5. В соединениях проявляет степени окисления −1, 0, +1, +3, +5 и +7 (валентности I, III, V и VII).

Радиус нейтрального атома иода 0,136 нм, ионные радиусы I, I5+ и I7+ равны, соответственно, 0,206; 0,058-0,109; 0,056-0,067 нм. Энергии последовательной ионизации нейтрального атома иода равны, соответственно: 10,45; 19,10; 33 эВ. Сродство к электрону −3,08 эВ. По шкале Полинга электроотрицательность иода — 2,66, иод принадлежит к числу неметаллов.

Иод при обычных условиях — твёрдое вещество, чёрно-серые или тёмно-фиолетовые кристаллы со слабым металлическим блеском и специфическим запахом.

Пары имеют характерный фиолетовый цвет, так же, как и растворы в неполярных органических растворителях, например, в бензоле — в отличие от бурого раствора в полярном этиловом спирте. Слабо растворяется в воде (0,28 г/л), лучше растворяется в водных растворах иодидов щелочных металлов с образованием трииодидов (например трииодида калия KI3).

При нагревании при атмосферном давлении иод сублимирует (возгоняется), превращаясь в пары фиолетового цвета; при охлаждении при атмосферном давлении пары иода кристаллизуются, минуя жидкое состояние. Этим пользуются на практике для очистки иода от нелетучих примесей.

Жидкий иод можно получить, нагревая его под давлением.

Изотопы[править | править код]

Известны 37 изотопов иода с массовыми числами от 108 до 144. Из них только 127I является стабильным, период полураспада остальных изотопов иода составляет от 103 мкс до 1,57⋅107 лет[11]; отдельные изотопы используются в терапевтических и диагностических целях.

Радиоактивный нуклид 131I распадается с испусканием β-частиц (наиболее вероятные максимальные энергии — 0,248, 0,334 и 0,606 МэВ), а также с излучением γ-квантов с энергиями от 0,08 до 0,723 МэВ[12].

Иод относится к группе галогенов.

Электронная формула (Электронная конфигурация) иода: 1s22s22p63s23p63d104s24p64d105s25p5.

Образует ряд кислот: иодоводородную (HI), иодноватистую (HIO), иодистую (HIO2), иодноватую (HIO3), иодную (HIO4).

Химически иод довольно активен, хотя и в меньшей степени, чем хлор и бром.

  • Довольно известной качественной реакцией на иод является его взаимодействие с крахмалом[13], при котором наблюдается синее окрашивание в результате образования соединения включения. Эту реакцию открыли в 1814 году Жан-Жак Колен (Jean-Jacques Colin) и Анри-Франсуа Готье де Клобри (Henri-François Gaultier de Claubry)[14].
  • С металлами иод при лёгком нагревании энергично взаимодействует, образуя иодиды:
Hg+I2→HgI2{\displaystyle {\mathsf {Hg+I_{2}\rightarrow HgI_{2}}}}
h3+I2{\displaystyle {\mathsf {H_{2}+I_{2}}}} ⇄ 2HI{\displaystyle {\mathsf {2HI}}}
I2+h3S→S+2HI{\displaystyle {\mathsf {I_{2}+H_{2}S\rightarrow S+2HI}}}
I2+2Na2S2O3→2NaI+Na2S4O6{\displaystyle {\mathsf {I_{2}+2Na_{2}S_{2}O_{3}\rightarrow 2NaI+Na_{2}S_{4}O_{6}}}}

Последняя реакция также используется в аналитической химии для определения иода.

  • При растворении в воде иод частично реагирует с ней (По «Началам Химии» Кузьменко: реакция не идёт даже при нагревании, текст нуждается в проверке)
I2+h3O→HI+HIO,{\displaystyle {\mathsf {I_{2}+H_{2}O\rightarrow HI+HIO}},} pKc=15,99
3I2+5Nh4→3Nh5I+Nh4⋅NI3↓{\displaystyle {\mathsf {3I_{2}+5NH_{3}\rightarrow 3NH_{4}I+NH_{3}\cdot NI_{3}\downarrow }}}

Это вещество почти не имеет практического значения и известно лишь своей способностью разлагаться со взрывом от малейшего прикосновения.

  • Иодиды щелочных металлов очень склонны в растворах присоединять (растворять) молекулы галогенов с образованием полииодидов (периодидов) — трииодид калия, дихлороиодат(I) калия:
KI+I2→KI3{\displaystyle {\mathsf {KI+I_{2}\rightarrow KI_{3}}}}

В медицине[править | править код]

\mathsf{ KI +  I_2 \rightarrow KI_3 } 5 % спиртовой раствор иода

5-процентный спиртовой раствор иода используется для дезинфекции кожи вокруг повреждения (рваной, резаной или иной раны), но не для приёма внутрь при дефиците иода в организме. Продукты присоединения иода к крахмалу (т. н. «Синий йод» — Йодинол, Йокс, Бетадин и др.) являются более мягкими антисептиками.

При большом количестве внутримышечных инъекций, на их месте пациенту делается йодная сетка — йодом рисуется сетка на площади, в которую делаются инъекции (например, на ягодицах). Это нужно для того, чтобы быстро рассасывались «шишки», образовавшиеся в местах внутримышечных инъекций.

В рентгенологических и томографических исследованиях широко применяются йодсодержащие контрастные препараты.

Иод-131, как и некоторые радиоактивные изотопы иода (125I, 132I) применяются в медицине для диагностики и лечения заболеваний щитовидной железы[2]. Изотоп широко применяется при лечении диффузно-токсического зоба (болезни Грейвса), некоторых опухолей. Согласно нормам радиационной безопасности НРБ-99/2009, принятым в России, выписка из клиники пациента, лечившегося с использованием иода-131, разрешается при снижении общей активности этого нуклида в теле пациента до уровня 0,4 ГБк[16].

В криминалистике[править | править код]

В криминалистике пары иода применяются для обнаружения отпечатков пальцев на бумажных поверхностях, например, на купюрах.

В технике: рафинирование металлов[править | править код]

Источники света[править | править код]

Иод используется в источниках света:

Производство аккумуляторов[править | править код]

Иод используется в качестве компонента положительного электрода (окислителя) в литиево-ионных аккумуляторах для автомобилей.

Лазерный термоядерный синтез[править | править код]

Некоторые иодорганические соединения применяются для производства сверхмощных газовых лазеров на возбуждённых атомах иода (исследования в области лазерного термоядерного синтеза).

Радиоэлектронная промышленность[править | править код]

В последние годы резко повысился спрос на иод со стороны производителей жидкокристаллических дисплеев.

Динамика потребления иода[править | править код]

Мировое потребление иода в 2005 году составило 25,8 тыс. тонн[источник не указан 1156 дней].

Йод (I, Iodum) относится к макронутриентам[7]. Как правило, он присутствует во всех живых организмах. Его содержание в растениях зависит от присутствия его соединений в почве и водах. Некоторые морские водоросли (морская капуста, ламинария, фукус и другие) накапливают до 1 % иода. Богаты иодом водные растения семейства рясковых. Иод входит в скелетный белок губок и скелетопротеинов морских многощетинковых червей.[источник не указан 271 день]

Йод и щитовидная железа[править | править код]

У животных и человека йод входит в состав так называемых тиреоидных гормонов, вырабатываемых щитовидной железой — тироксина и трииодтиронина, оказывающих многостороннее воздействие на рост, развитие и обмен веществ организма.

В организме человека (масса тела 70 кг) содержится 20—50 мг йода[7]. Суточная потребность человека в йоде определяется возрастом, физиологическим состоянием и массой тела. Для человека среднего возраста нормальной комплекции (нормостеник) суточная доза иода составляет 0,15 мг[17]. У женщин, суточная потребность в йоде несколько выше — > 150-250 мкг.

Отсутствие или недостаток йода в рационе (что типично для некоторых местностей) приводит к заболеваниям (эндемический зоб, кретинизм, гипотиреоз). В связи с этим к поваренной соли, поступающей в продажу в местностях с естественным геохимическим дефицитом йода, с профилактической целью добавляют иодид калия, иодид натрия или иодат калия (иодированная соль).

Недостаток йода приводит к заболеваниям щитовидной железы (например, к базедовой болезни, кретинизму). Также при небольшом недостатке йода отмечается усталость, головная боль, подавленное настроение, природная лень, нервозность и раздражительность; слабеет память и интеллект. Со временем появляется аритмия, повышается артериальное давление, падает уровень гемоглобина в крови.

Избыток йода в пище обычно легко переносится организмом, однако в отдельных случаях в людях с повышенной чувствительностью этот избыток может также привести к расстройствам щитовидной железы[18].

Токсичность[править | править код]

Skull and Crossbones.svg NFPA 704 four-colored diamond

Йод в виде свободного вещества весьма ядовит[7]. Смертельная доза (LD50) — 3 г. Вызывает поражение почек и сердечно-сосудистой системы. При вдыхании паров йода появляется головная боль, кашель, насморк, может быть отёк лёгких. При попадании на слизистую оболочку глаз появляется слезотечение, боль в глазах и покраснение. При попадании внутрь появляется общая слабость, головная боль, повышение температуры, рвота, понос, бурый налёт на языке, боли в сердце и учащение пульса. Через день появляется кровь в моче. Через 2 дня появляются почечная недостаточность и миокардит. Без лечения наступает летальный исход[19].

ПДК йода в воде 0,125 мг/дм³, в воздухе 1 мг/м³.

II класс токсичности согласно ГОСТ 12.1.007-76.

Радиоактивный йод-131 (радиойод), являющийся бета- и гамма-излучателем, особенно опасен для организма человека, так как радиоактивные изотопы биохимически не отличаются от стабильных. Поэтому почти весь радиоактивный йод, как и обычный, концентрируется в щитовидной железе, что приводит к её облучению и дисфункции. Основным источником загрязнения атмосферы радиоактивным йодом являются атомные станции и фармакологическое производство[20]. В то же время это свойство радиойода позволяет использовать его для борьбы с опухолями щитовидной железы и диагностики её заболеваний (см. выше).

  1. 1 2 Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047—1078. — DOI:10.1351/PAC-REP-13-03-02.
  2. 1 2 Ксензенко В. И., Стасиневич Д. С. Иод // Химическая энциклопедия: в 5 т. / И. Л. Кнунянц (гл. ред.). — М.: Советская энциклопедия, 1990. — Т. 2: Даффа—Меди. — С. 251—252. — 671 с. — 100 000 экз. — ISBN 5-85270-035-5.
  3. ↑ WebElements Periodic Table of the Elements | Iodine | crystal structures
  4. ↑ Такое написание термина зафиксировано в химической номенклатуре, Иод — статья из Большой советской энциклопедии.  и БРЭ.
  5. ↑ Такое написание зафиксировано в нормативных Архивная копия от 20 октября 2011 на Wayback Machine словарях русского языка — «Орфографическом словаре русского языка» Б. З. Букчиной, И. К. Сазоновой, Л. К. Чельцовой (6-е издание, 2010; ISBN 978-5-462-00736-1) и «Грамматическом словаре русского языка» А. А. Зализняка (6-е издание, 2009; ISBN 978-5-462-00766-8).
  6. ↑ Таблица Менделеева на сайте ИЮПАК.
  7. 1 2 3 4 Ошибка в сносках?: Неверный тег <ref>; для сносок xumuk.ru не указан текст
  8. Леенсон И. А. Иод или йод? // Химия и жизнь — XXI век. — 2008. — № 12. — С. 58—59. — ISSN 1727-5903.
  9. ↑ Пятьдесят третий элемент. Прилив и отлив
  10. ↑ http://chls.web-box.ru/novosti/pochemu-roshal-protiv-joda (недоступная ссылка)
  11. Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — DOI:10.1016/j.nuclphysa.2003.11.001. — Bibcode: 2003NuPhA.729….3A.
  12. ↑ WWW Table of Radioactive Isotopes (англ.). — Энергетические уровни 131I. Дата обращения 27 марта 2011. Архивировано 22 августа 2011 года.
  13. ↑ Качественная реакция на йод Архивная копия от 28 июля 2014 на Wayback Machine — видеоопыт в Единой коллекции цифровых образовательных ресурсов
  14. ↑ См. стр. 92 следующей статьи: Colin, Gaultier de Claubry. Mémoire sur les combinaisons de l’iode avec les substances végétales et animales (фр.) // Annales de chimie (англ.)русск. : magazine. — 1814. — Vol. 90. — P. 87—100.
  15. Silberrad, O. The Constitution of Nitrogen Triiodide (англ.) // Journal of the Chemical Society (англ.)русск.. — Chemical Society, 1905. — Vol. 87. — P. 55—66. — DOI:10.1039/CT9058700055.
  16. ↑ «Нормы радиационной безопасности (НРБ-99/2009). Санитарные правила и нормативы СанПин 2.6.1.2523-09» Архивная копия от 24 марта 2012 на Wayback Machine.
  17. ↑ Дефицит йода и йоддефицитные заболевания
  18. ↑ Angela M. Leung and Lewis E. Braverman. Consequences of excess iodine // Nat Rev Endocrinol. 2014 Mar; 10(3): 136–142.  (англ.)
  19. ↑ Вредные химические вещества. Неорганические соединения элементов V-VIII групп / под ред. Владимира Филова. — М.: Химия. — С. 400. — 592 с. — 33 000 экз. — ISBN 5-7245-0264-X.
  20. ↑ В воздухе над Германией обнаружен радиоактивный йод, Germania.one.

Унбинилий — Википедия

120

Унбинилий

[Og]8s2

Унбини́лий (лат. Unbinilium, Ubn) или эка-радий — временное, систематическое название гипотетического химического элемента в Периодической таблице Д. И. Менделеева с временным обозначением Ubn и атомным номером 120.

В 2006—2008 годах при попытках синтеза элемента 124 унбиквадия на Большом национальном ускорителе тяжелых ионов (GANIL) измерения прямого и запаздывающего деления составных ядер показали сильный стабилизирующий эффект протонной оболочки также и при Z = 120 — косвенное свидетельство унбинилия[1].

В марте — апреле 2007 года была предпринята попытка синтеза элемента 120 в Объединенном институте ядерных исследований в Дубне путём бомбардировки мишени из плутония-244 ионами железа-58[2]. Первоначальный анализ обнаружил, что ни один атом элемента 120 не был синтезирован при сечении реакции 0,7 пикобарн[3][4].

Pu94244+Fe2658⟶Ubn∗120302⟶осколки{\displaystyle {\ce {{^{244}_{94}Pu}+{^{58}_{26}Fe}->{^{302}_{120}Ubn^{\ast }}->{\text{осколки}}}}}

Российская команда планирует усовершенствовать оборудование перед следующей попыткой проведения реакции между титаном-50 и калифорнием-249[5]. При этом в настоящее время физики ОИЯИ не планируют повторной попытки синтеза 120-го элемента, считая целесообразным предварительно проверить изменение вероятности слияния в результате замены, ранее успешно применяемого для синтеза элементов с Z=110−118{\displaystyle Z=110-118}, налетающего ядра Ca2048{\displaystyle {\ce {^{48}_{20}Ca}}} на Ti2250{\displaystyle {\ce {^{50}_{22}Ti}}} и получения при помощи последнего больших количеств составных ядер с меньшим атомным номером, а также элемента 119.

В период с апреля по май 2007 года европейским центром GSI в немецком Дармштадте в результате приведенной ниже реакции была проведена также безуспешная попытка получить унбинилий[6]:

U92238+Ni2864⟶Ubn∗120302⟶осколки⋅{\displaystyle {\ce {{^{238}_{92}U}+{^{64}_{28}Ni}->{^{302}_{120}Ubn^{\ast }}->{\text{осколки}}.}}}

С 23 апреля по 31 мая 2011 года учёные GSI провели эксперимент по синтезу унбинилия, используя другую реакцию[7]:

Cm96248+Cr2454⟶Ubn∗120302⟶осколки⋅{\displaystyle {\ce {{^{248}_{96}Cm}+{^{54}_{24}Cr}->{^{302}_{120}Ubn^{\ast }}->{\text{осколки}}.}}}

Но первая серия опытов не дала результата[8].

Опыты по синтезу 120-го элемента планируют также японские ученые из RIKEN[9], однако в успешности избранного ими метода холодного слияния ядер кюрия и хрома ученые ОИЯИ сомневаются[10].

{\displaystyle {\ce {{^{248}_{96}Cm}+{^{54}_{24}Cr}->{^{302}_{120}Ubn^{\ast }}->{\text{осколки}}.}}}

Достоверность этого раздела статьи поставлена под сомнение.

Необходимо проверить точность фактов, изложенных в этом разделе.
На странице обсуждения могут быть пояснения.

Физические свойства унбинилия при нормальных условиях будут похожи на свойства радия. Плотность унбинилия будет немного выше, чем радия и примерно будет равна 7 г/см3 (плотность радия равна 5,5 г/см3).

Температура плавления щелочноземельных металлов, в отличие от щелочных металлов, не подчиняется какой-либо закономерности, однако всё же предполагается, что унбинилий будет более легкоплавким, чем более лёгкие аналоги и иметь температуру плавления порядка 680 °C (это приблизительно на 300 °C ниже температуры плавления радия)[11].

Предполагается, что унбинилий будет типичным щелочноземельным металлом, однако его химическая активность будет намного выше, чем у более лёгких элементов — радия или бария. Реакционноспособность унбилиния будет также очень высокой. На воздухе очень быстро (возможно, даже со взрывом, как цезий) будет окисляться до оксида UbnO и, вероятно, также и нитрида Ubn3N2, с водой давать Ubn(OH)2 — очень сильную щёлочь, вероятно, наиболее сильную среди гидроксидов щелочноземельных металлов, и возможно, превосходящую по силе гидроксиды щелочных металлов.

Довольно интересным является то, что в отличие от предыдущих периодов, где гидроксиды щелочных металлов имели более основный характер и лучше растворялись в воде, чем щелочноземельных металлов, UueOH будет, вероятно, более слабым основанием, чем Ubn(OH)2 — следующего за ним элемента. Связано это с тем, что 2 гидроксильных иона по умолчанию сильнее одного, а большие ионы сверхтяжёлых элементов сделают лёгкость отщепления аниона настолько высокой, что стабилизирующее действие 7p-подуровня не сможет сдерживать 2 аниона.

С галогенами, как и остальные щёлочноземельные металлы, будет образовывать UbnHal2[12].

Однако, несмотря на свойства типичного щёлочноземельного металла, ионный и атомный радиус унбинилия будет ниже, чем у радия и бария, и примерно соответствовать радиусу кальция или стронция[13]. Унбинилий может быть первым щёлочноземельным металлом, который имеет степень окисления +4 (что противоречит номеру группы), что связано с ожидаемой очень низкой энергией ионизации 7p3/2 электронов, что делает возможным образование химической связи с их участием. Также унбинилий может иметь и степень окисления +1.

  1. ↑ http://hal.archives-ouvertes.fr/docs/00/12/91/31/PDF/WAPHE06_EPJ_preprint1.pdf
  2. ↑ THEME03-5-1004-94/2009 Архивировано 11 мая 2008 года.
  3. ↑ Yuri Oganessian, TAN07, 23-28 September 2007, Davos, Switzerland
  4. ↑ Физики открывают «охоту» за 120-м элементом таблицы Менделеева
  5. ↑ Эксперимент по синтезу 120-го элемента прерван до осени
  6. ↑ http://www.gsi.de/documents/DOC-2007-Mar-174-1.pdf
  7. ↑ Физики начнут синтез 120-го элемента таблицы Менделеева, РИА Новости.
  8. ↑ Эксперимент по синтезу 120-го элемента «уходит на каникулы», РИА Новости.
  9. ↑ Японские ученые готовятся синтезировать 119-й и 120-й элементы таблицы Менделеева
  10. ↑ Физики сомневаются в успехе будущего синтеза 120-го элемента в Японии
  11. Haire, Richard G. Transactinides and the future elements // The Chemistry of the Actinide and Transactinide Elements (англ.) / Morss; Edelstein, Norman M.; Fuger, Jean. — 3rd. — Dordrecht, The Netherlands: Springer Science+Business Media, 2006. — ISBN 1-4020-3555-1.
  12. Emsley, John. Nature’s Building Blocks: An A-Z Guide to the Elements (англ.). — New. — New York, NY: Oxford University Press, 2011. — P. 586. — ISBN 978-0-19-960563-7.
  13. Seaborg. transuranium element (chemical element) (неопр.). Encyclopædia Britannica (2006). Дата обращения 16 марта 2010.

Группы химических элементов — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 мая 2015; проверки требуют 7 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 мая 2015; проверки требуют 7 правок.

Группа химических элементов — термин, используемый ИЮПАК для описания номенклатурной классификации химических элементов[1].

  • Щелочные металлы — металлы первой группы: Li, Na, K, Rb, Cs, Fr.
  • Щелочноземельные металлы — металлы второй группы: Be, Mg, Ca, Sr, Ba, Ra.
  • Пниктогены (пниктиды[2]) — элементы пятой группы: N, P, As, Sb, Bi.
  • Халькогены — элементы шестой группы: O, S, Se, Te, Po.
  • Галогены (галоиды[2]) — элементы седьмой группы: F, Cl, Br, I, At.
  • Инертные газы (благородные газы) — элементы восьмой группы: He, Ne, Ar, Kr, Xe, Rn.
  • Лантаноиды (лантаниды[2]) — элементы 57—71: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.
  • Актиноиды (актиниды[2]) — элементы 89—103: Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr.
  • Редкоземельные элементы — Sc, Y и лантаноиды.
  • Переходные металлы — элементы побочных подгрупп.

Многие другие названия для групп элементов не утверждены ИЮПАК, но употребляются в различных областях науки. Например:

  • Платиновая группа — Ru, Rh, Pd, Os, Ir, Pt.
  • Благородные металлы — термин, который в основном используется для описания элементов, не подвергающихся коррозии — Au, Ag и металлы платиновой группы.
  • Тяжёлые металлы — термин, использующийся для описания элементов с высокими значениями атомного веса (и/или плотности).
  • Природные металлы — металлы, находящиеся в природе; не являются искусственно полученными.
  • Постпереходные металлы — металлы, у которых наблюдается полное заполнение d-подоболочки: Zn, Ga, Cd, In, Sn, Hg, Tl, Pb, Bi.
  • Лёгкие металлы — термин, иногда использующийся для описания некоторых металлов p-блока: алюминий, галлий, индий, олово, таллий, свинец и висмут (иногда в эту группу включают также германий, сурьму и полоний).
  • Трансурановые элементы, трансураны — элементы, следующие за ураном (атомный номер больше 92).
  • Трансплутониевые элементы — элементы, следующие за плутонием (атомный номер больше 94).
  • Трансфермиевые элементы — элементы, следующие за фермием (атомный номер больше 100).
  • Трансактиноидные элементы, трансактиноиды — элементы (они же сверхтяжёлые), следующие за актиноидами (атомный номер больше 103).
  • Суперактиноиды — гипотетически возможная группа элементов, с атомными номерами 121—153 (которые входят в g-блок).
  • Тяжёлый атом — термин, используемый в компьютерной химии для описания всех элементов, кроме водорода и гелия.
  • Металлы — термин, используемый в астрофизике для описания всех элементов, кроме водорода и гелия.

Геохимические группы элементов[править | править код]

Классификация Гольдшмидта[править | править код]
  • Атмофильные элементы — склонные к накоплению в атмосфере Земли, включают в себя кислород, водород, азот и инертные газы.
  • Халькофильные элементы — элементы сульфидных руд. К ним относятся S, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, In, Sn, Sb, Te, Au, Hg, Tl, Pb, Bi, Po.
  • Литофильные элементы — обладающие сродством к силикатным минералам и расплавам. К ним относятся Al, At, B, Ba, Be, Br, Ca, Cl, Cr, Cs, F, I, Hf, K, Li, Mg, Na, Nb, O, P, Rb, Sc, Si, Sr, Ta, Th, Ti, U, V, Y, Zr, W, лантаноиды.
  • Сидерофильные элементы обладают сродством к железу. К ним относятся Au, Co, Fe, Ir, Mn, Mo, Ni, Os, Pd, Pt, Re, Rh, Ru.
Другие классификации[править | править код]
  • Петрогенные элементы — основные элементы, составляющие породы и минералы: O, Si, Ti, Al, Mg, Fe, Ca, K, Mn, P, Na, K
  • Редкие/редкоземельные и рассеянные элементы — все остальные элементы

Биохимические группы элементов[править | править код]

  • Биологически значимые элементы
    • Макроэлементы — суточное поступление в организм человека более 200 мг
    • Микроэлементы — бор, фтор, кремний, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, мышьяк, селен, молибден, иод
  • Биологически инертные элементы

S-элементы — Википедия

Материал из Википедии — свободной энциклопедии

Группа →128
↓ Период
1
2
3
4
5
37

Рубидий

[Kr]5s1
6
7
87

Франций

[Rn]7s1

s-Элементы в периодической таблице элементов — химические элементы, электронная оболочка которых включает в себя первые два s-электрона. Такие элементы объединяются в группу, называемую s-блок.

К s-элементам относятся:

S-элементы отличаются тем, что в невозбужденном состоянии высокоэнергетичный электрон атомов находится на s-орбитали. Исключая водород и гелий, эти электроны очень легко отщепляются и формируются в положительные ионы при химической реакции. Конфигурация гелия химически стабильна; за счёт этого его относят к инертным газам.

S-элементы (кроме гелия) являются сильными восстановителями и поэтому в свободном виде в природе не встречаются. Элемент в металлическом виде может быть получен только с помощью электролиза расплава соли. Гемфри Дэви, в 1807 и 1808 году, стал первым, кто выделил s-металлы из их солей, за исключением лития, бериллия, рубидия и цезия. Бериллий был впервые выделен из солей независимо двумя учёными: Ф. Вулером и А. А. Бази в 1828 году, в то время как литий был выделен Р. Бунзеном только в 1854 году, который, после изучения рубидия, выделил его спустя 9 лет. Цезий не был выделен в чистом виде вплоть до 1881 года, до того, как Карл Сеттерберг подверг электролизу цианид цезия.

Твёрдость s-элементов в компактном виде (при обычных условиях) может варьироваться от очень малой (все щелочные металлы — их можно разрезать ножом) до довольно высокой (бериллий). Исключая бериллий и магний, металлы очень реакционноспособны и могут быть использованы в сплавах со свинцом в малых количествах (<2 %). Бериллий и магний, ввиду их высокой стоимости, могут быть ценными компонентами для деталей, где требуется твёрдость и лёгкость. Эти металлы являются чрезвычайно важными, поскольку позволяют сэкономить средства при добыче титана, циркония, тория и тантала из их минеральных форм; могут находить своё применение как восстановители в органической химии.

Все элементы, имеющие s-оболочку, являются опасными веществами. Они пожаро-(взрыво-)опасны, требуют особого пожаротушения, исключая бериллий и магний. Храниться должны в инертной атмосфере аргона или углеводородов. Бурно реагируют с водой, продуктом реакции является водород, например:

2Li+2h3O⟶2LiOH+h3↑{\displaystyle {\mathsf {2Li+2H_{2}O\longrightarrow 2LiOH+H_{2}\uparrow }}},

исключая магний, который реагирует медленно, и бериллия, который реагирует только когда его оксидная плёнка снята с помощью ртути. Литий имеет схожие свойства с магнием, так как находится, относительно периодической таблицы, рядом с магнием.

  1. ↑ Standard Atomic Weights — 1919.
  • Дикерсон Р., Грей Г., Хейт Дж. Основные законы химии: В 2-х томах. Пер. с англ. — М.: Мир, 1982. 652 с., ил. — Т. 1. — С. 432—437.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *