Приемник и передатчик,схемы и принцип работы.
Супергетеродин.
Супергетеродин, приемник с преобразованием частоты — это наиболее распостраненная схема. Она содержит в себе маломощный генератор колебаний промежуточной частоты — гетеродин.
Частота генерации гетеродина меняется одновременно с изменением настройки входной частоты. Для этого применяется двухсекционный конденсатор переменной емкости — одна секция использована в входном колебательном контуре, вторая — в контуре гетеродина.
Причем, гетеродин настроен так, что разница между собственной его частотой и частотой радиосигнала остается примерно неизменной на протяжении всего перестраевомого диапазона. Это и есть промежуточная частота, которая выделяется в смесителе — каскаде где обе частоты встречаются. Причем, полученная таким образом промежуточная частота оказывается промодулированой полезным сигналом.
Далее, происходит усиление промежуточной частоты каскадами усилителя промежуточной частоты. Такие каскады имеют повышенный коэффициент усиления только на этой частоте, что исключает самовозбуждение усилителя. После усиления промежуточной частоты, происходит детектирование и окончательное усиление полезного сигнала. Супергетеродин обеспечивает высокую селективность и достаточную чувствительность для работы во всех радиовещательных диапазонах.
Кроме того, появляется возможность приема и детектирования частотно — модулированных сигналов на частотах УКВ, что значительно улушает качество воспроизведения звука. Самая распостраненная схема частотного детектора — балансная, содержит в себе два контура, настроенных на несущую частоту с некоторым отклонением — слегка рассогласоваными. Частота первого из них настраивается несколько выше, а второго — несколько ниже промежуточной частоты.
Модулированная промежуточная частота отклоняясь от своего среднего значения наводит колебания(может быть — звуковые) полезного сигнала выделяемые на резисторах R1 и R2.
Приемник прямого преобразования.
Существует однако, еще один вид приемников, способных вести прием сигнала во всех
диапазонах и любой модуляции — без детектора.
Речь идет о приемниках прямого преобразования — гетеродинных или синхродинов, как их
еще называют.
Схема синхродина содержит в себе смеситель, гетеродин и усилитель звуковой частоты.
Прием осуществляется следующим образом — полезный сигнал попадает из антенны на смеситель,
куда постоянно подаются высокочастотные колебания от гетеродина(его частоту можно менять).
Как только частоты полезного сигнала и гетеродина совпадают — на выходе смесителя возникают биения с частотой модуляции, — т. е. низкочастотная информативная составляющая. Полученный сигнал можно возпроизвести, после достаточного усиления. Несмотря на свою простоту и эффективность, схема прямого преобразования получила лишь ограниченное распостранение — из-за недостаточно высокого качества передачи музыки и речи.
На главную страницу
Устройство радиоприемника
В примере, рассматривается радиоприемник Альпинист, модель — 321 \фото № 1\. На лицевой панели расположены:
- переключатель диапазонов для длинных и средних волн;
- ручка включения радиоприемника с регулятором громкости
и ручка настройки.
фото №1
На задней стенке приемника расположены гнезда для подключения:
и гнездо для подключения разъема с проводом от блока питания \фото №2\. Радиоприемник относится к третьему классу, выпуск — 1982 год.
фото №2
фото №3
фото №4
Узлы и детали — приемника Альпинист
Для осмотра деталей и внутренней конструкции приемника, необходимо открутить всего лишь два болта \фото №3, фото №4\, головки болтов которых выполнены под плоскую отвертку.
фото №5
На печатной плате расположены основные узлы и детали приемника Альпинист-321 \фото №5\. Сам корпус приемника изготовлен из полистирола.
и далее.
К деталям приемника \радиодеталям\, относятся:
и так далее, то-есть элементы электроники, состоящие в схеме печатной платы. Например, блок питания для приемников, состоит из:
и деталей, смонтированых на печатной плате, необходимых для стабилизации и выпрямления тока. То-есть, в дополнение к силовому трансформатору, — обычно такая схема состоит из нескольких:
диодов;
резисторов;
транзисторов
и конденсатора.
Указание деталей — на плате приемника
и две катушки связи:
фото №6
фото №7
фото №8
фото №9
Все катушки намотаны на ферритовом стержне магнитной антенны. Магнитная антенна, для данного приемника, необходима для принятия радиоволн двух диапазонов — длинных и средних волн.
И чтобы это выглядело более понятливо, сопоставим фотоснимки \6,7,8,9\ с конструкцией магнитной антенны радиоприемника:
конструкция магнитной антенны
На фотоснимке №10 дано изображение оси ручки настройки. При помощи верньерного устройства \механики передаточного отношения\, передается сила для совершения вращения шкива КПЕ — конденсатора переменной емкости.
фото №10
Привод верньерного устройства передает свое движение указателю шкалы, где при визуальном наблюдении за шкалой мы наблюдаем установленную нами частоту принимаемого сигнала. \фото №11\.
фото №11
Переключателем диапазонов осуществляется переключение принимаемого сигнала для длинных и средних волн \фото №12\.
фото №12
Настраивание приемника на необходимую нам частоту осуществляется двухсекционным блоком КПП. Подобные блоки, по своей конструкции могут выглядеть как с воздушным так и с твердым диэлектриком. Для данного приемника диэлектрик — воздушный, емкость которого составляет от 9 до 280 пикофарад \фото №№ 13,14\.
фото №13
фото №14
В целом, данная радиодеталь называется — конденсатором переменной емкости, в конструкции которого входят — подвижная и неподвижная части пластин:
конструкции.
Указание деталей на схеме
На схеме, конденсатор переменной емкости выглядит следующим образом \фото №№ 15,16\:
фото №15
фото №16
То-есть, для данной схемы мы можем заметить, что два конденсатора соединены пунктирной линией и являются в общем — двухсекционным конденсатором.
Осью регулятора громкости при его вращении, изменяется сопротивление в цепи \фото №№ 17,18\. В общих чертах, регулятор громкости выполняет функцию реостата.
фото №17
фото №18
В радиосхемах \фото №№ 19,20\, регулятор громкости имеет графическое обозначение как переменный резистор, при помощи которого осуществляется плавное регулирование сопротивления в цепи. От переменного резистора \фото №19\ как можно заметить, — отходит пунктирная линия к замыкающему и размыкающему ключу \фото №20\. Из данного обозначения следует, что регулятором громкости осуществляется не только регулирование звука но и осуществляется включение и отключение приемника.
фото №19
фото №20
В следующем фрагменте схемы \фото №21\ указан отсек с элементами питания на 9 В. Данный отсек, как видно по схеме, — имеет разъемное контактное соединение со схемой приемника.
фото №21
На печатной плате \фото №№ 22,23\ указаны авторучкой — подстроечные конденсаторы переменной емкости. Корпус конденсатора выполнен из керамики с твердым диэлектриком. Емкость подстроечных конденсаторов небольшая и обычно составляет от 1,5 до 20 пикофарад, настройка которых осуществляется в заводских условиях. Если посмотреть внимательно, рядом с конденсаторами указаны их названия — С1,С2. Далее, смотрим по схеме.
фото №22
фото №23
Соответственно, такие подстроечные конденсаторы переменной емкости в схеме обозначены следующим образом \фото №№ 24,25\, емкость которых составляет от 5 до 20 пикофарад \как указано в схеме\. Указанные конденсаторы \С1,С2\, как видно по схеме, соединены с входными контурами магнитной антенны.
фото №24
фото №25
На двух фотоснимках печатной платы \фото №№ 26,27\ указаны подстроечные резисторы с плавной регулировкой. Регулировка таких резисторов проводится также, на заводе, — при изготовлении приемника.
фото №26
фото №27
Следующий тип резисторов в схеме печатной платы приемника показан на фотоснимке №28. Резисторы, состоящие в схеме, позволяют снизить напряжение для отдельных участков цепи, то-есть создать необходимый потенциал тока и соответственно, каждый такой резистор имеет свое сопротивление и мощность. Мощность резистора — это наибольшая его мощность, которую резистор излучает в виде тепла и при этом сохраняются его качества в работе.
фото №28
На следующих трех фотоснимках \фото №29\ указаны типы конденсаторов, применяемых в приемниках. Каждый конденсатор в схеме обладает своими данными:
и отклонением по емкости \допустим +_ 5%\.
фото №29
Катушки различных контуров в приемнике \фото №30\, характеризуются своими данными, а именно:
и индуктивностью. Катушки таких контуров — подстроечные, регулировка индуктивности в которых выполняется с помощью сердечника, расположенного внутри катушки.
фото №30
Для каждого транзистора \фото №31\ состоящего в схеме приемника, характерны свои значения напряжений на электродах:
эмиттера;
коллектора
и базы.
фото №31
И важно знать по транзисторам следующее, что независимо как они включены в схеме, управляющий переход в транзисторе — эмиттерный, а управляемая цепь транзистора эмиттер-коллектор.
В данной теме Вы ознакомились с радиодеталями приемника и с их обозначением на схеме. Следите за рубрикой и приобретайте практические навыки.
Детекторный радиоприемник
Детекторный радиоприемник
Исполнитель: учащийся 9А класса
Львов Андрей Олегович |
Словарь сокращений и обозначений
А — Ампер, единица измерения силы тока.
В — Вольт, единица измерения
напряжения.
Вт – Ватт, единица измерения мощности.
Гн – Генри, единица измерения
индуктивности.
ДРП – детекторный радиоприемник.
Др.- другие.
КПД – коэффициент полезного действия.
КПЕ – конденсатор переменной
емкости.
УГО – условное графическое обозначение.
Ф — Фарада
ЭАП — электроакустический преобразователь.
Е — напряженность электрического
поля радиостанции в месте приема.
m — коэффициент модуляции.
Q — добротность колебательного контура.
W – мощность.
Введение
В настоящее время известно множество типов радиоприемников: детекторный, прямого усиления, регенеративный, сверхрегенеративный, супергетеродинный и прямого преобразования. Из перечисленных, детекторный радиоприемник (далее по тексту — ДРП), имеет наихудшую чувствительность и селективность, но, несмотря на невысокие параметры, он представляет интерес для начинающих радиолюбителей и специалистов.
Простота конструкции, недефицитность деталей и отсутствие источников питания (именно поэтому ДРП изучается в средних учебных заведениях в наше время) способствовали его популярности в 20-40гг 20в. Дадим определение ДРП: это приемник, работающий за счет энергии радиоволн и не имеющий усилителя. Следует заметить, что приемник прямого усиления – это тот же детекторный с каскадами усиления сигнала низкой частоты.
1. Классическая схема ДРП
Рис.1. Типовая схема ДРП
Существует два основных варианта классических схем ДРП. Первый вариант изображен на рис.1. Второй вариант отличается от первого только тем, что детекторный диод подключен не к части контура, а к контуру полностью.
1.1. Функциональная схема ДРП
Рис. 2. Функциональная схема классического ДРП.
Радиотракт включает в себя входные цепи приемника: антенна, заземление, колебательный контур. Детектор — каскад детектирования на точечном диоде и сглаживающий конденсатор С2. Электроакустический преобразователь (ЭАП) служит для преобразования электрического сигнала в звуковой. В качестве ЭАП используются: наушники, электродинамические громкоговорители («динамики»).
1.2. Принцип работы ДРП
Настроив контур на частоту принимаемой радиостанции, выделяем высокочастотный АМ — сигнал. Частота его колебаний велика (более 100 кГц), и в наушниках он слышен не будет. Сигнал нужно продетектировать (преобразовать ВЧ электрические колебания, в колебания НЧ). Для этого служит диод VD 1 (рис.1). Он обладает свойством проводить ток только в одном направлении, от анода, обозначенного треугольником, к катоду. Положительные полуволны колебаний в контуре вызовут ток через диод, а отрицательные закроют его, и тока не будет. При отсутствии конденсатора C 2 через наушники будет протекать пульсирующий ток. Он содержит постоянную составляющую, которая изменяется со звуковой частотой. Такой ток уже вызовет в наушниках звук. Процесс детектирования улучшается при подсоединении блокировочного конденсатора C 2. он заряжается положительными полуволнами почти до амплитудного значения колебаний, а в промежутках между ними сравнительно медленно разряжается током через наушники.
2. Компоненты ДРП
2.1. Колебательный контур
Классическая схема ДРП изображена на рис. 1. Она повторяется во многих популярных книжках и журналах. Антенна WA 1 и заземление присоединены к колебательному контуру (катушка L 1 и КПЕ C 1). Колебательный контур служит для выделения из всей массы принимаемых сигналов лишь одного, желаемого. Если частота сигнала совпадает с частотой настройки контура, напряжение на нем максимально. Для настройки в пределах диапазона изменяют емкость (используют КПЕ), для переключения диапазонов изменяют индуктивность катушки L 1.
2.2. Диод
По применению полупроводниковые диоды разделяются на группы: выпрямительные, высокочастотные, туннельные и некоторые другие (рис.2).
Рис. 3. Диоды.
В качестве полупроводникового материала в диодах используется германий, кремний и арсенид галлия (в туннельных диодах).
Первые диоды стали известны с начала 20в (1906-1908 гг). Тогда же и появились первые ДРП. В 20-40гг 20в радиолюбители изготавливали детекторные диоды из кристаллов цинкита или пирита. В России пионерные работы по диодам проводил О.Лосев, который помимо детекторных диодов изготовил и первые светодиоды (он наблюдал свечение кристалла карборунда при подключении к нему батареи питания). В классических ДРП используются германиевые диоды Д2, 18,20, как самые дешевые и широко распространенные.
2.3. Конденсаторы
В классической схеме ДРП два конденсатора. С1 – переменный керамический или воздушный, предназначен для настройки приемника на частоту радиостанции (5-300 пФ). С2 нужен, чтобы убрать ВЧ – составляющую и повысить качество звука (2000 – 6800 пФ).
2.4. Головные телефоны
В России первым в приемнике высокоомные головные телефоны использовал П.Н.Рыбкин в 1899 г. За рубежом работами по усовершенствованию ДРП в эти же годы занимался Г.Маркони.
Последний элемент разбираемой схемы ДРП – головные телефоны. Для ДРП подходят только высокоомные телефоны (ТА-4, ТОН-2, ТОН-2М, ТАГ-1, ТГ-1), абсолютно не подходят низкоомные или наушники от плейера. Параметры некоторых из них приведены в Приложении 1.
Для телефонов ТОН-2 сопротивление на частоте 1000 Гц составляет 12000 Ом. Минимальная амплитуда сигнала 1000 Гц, слышимая человеком в наушниках ТОН-2 составляет 5 мВ. В классическом ДРП амплитуда сигнала на наушниках достигает 20 мВ (достаточно громко и разборчиво слышна речь и музыка), что соответствует электрической мощности 0,02 мкВт.
3. Недостатки классической схемы детекторного приемника
а) Для согласования сопротивлений колебательного контура и диода используется катушка связи (обычно 1/5-1/10 от числа витков катушки).
Следовательно, на диод поступает ВЧ напряжение в 5-10 раз меньшее, чем наводится в контуре, то есть, с большими потерями мощности (в 25-100 раз).
б) Используется энергия одного полупериода сигнала.
в) Головные телефоны сильно искажают сигнал и имеют низкий КПД (из-за металлической мембраны). Головные телефоны малоэффективны при работе на низких частотах, из-за жесткой мембраны не работают на высоких звуковых частотах. Рабочий диапазон частот наушников 300-3500 Гц. Получить качественный звук в этом случае просто невозможно.
4. Применение классического ДРП.
ДРП, выполненный по классической схеме, и в наше время находит применение для: настройки радиолюбительских передатчиков и настройки передатчиков систем электронного дистанционного управления. В любительской литературе описано успешное применение ДРП для поиска маломощных шпионских закладок (в просторечии именуемых «жучками»). В этих случаях нагрузкой ДРП работает микроамперметр постоянного тока на 10-100 мкА, шунтированный конденсатором.
5. Совершенствование ДРП
Если посмотреть на функциональную схему ДРП, можно прийти к следующим выводам: классическая схема свои возможности усовершенствования исчерпала. Кардинальное улучшение параметров ДРП возможно при полной переделке всех функциональных узлов ДРП, собранного по классической схеме.
5.1. Громкоговорящий ДРП
Добиться увеличения громкости и улучшения качества сигнала можно модернизацией всех узлов классического ДРП. В качестве колебательного контура выступает катушка индуктивности на ферритовом стержне. Эта катушка имеет межвитковую емкость, а настройка на радиостанцию производится перемещением катушки на сердечнике. Более оптимальное согласование детектора с контуром производится конденсатором связи С1 (сопротивление контура сотни килоом, а детектора 5-20 кОм). Замена одного диода диодным мостом позволяет увеличить громкость ЭАП, так как теперь в ДРП используется энергия обоих полупериодов ВЧ сигнала. Диодный мост выполнен на диодах типа Д310, так как у них меньше сопротивление и меньше потери, чем у диодов Д2, 18, 20.
Рис.4 Прибор для выбора детекторного диода
О качестве диода позволяет судить параметр — «прямой ток при напряжении 1 В», чем он больше, тем лучше.
Рис.5 Усовершенствованный классический ДРП
В качестве ЭАП используется динамик мощностью 1-8 Вт и сопротивлением катушки 4-8 Ом. Для согласования сопротивлений детектора и ЭАП служит понижающий трансформатор (~220 В/9-12 В). Для увеличения отдачи динамик устанавливается на отражательный экран. Модернизированный ДРП дает выигрыш по мощности относительно классической схемы ДРП в 140-400 раз.
5.2. Применение модернизированного ДРП.
Улучшенный ДРП является практически вечным источником бесплатной энергии «из воздуха». Он питает светильник на сверхъярком светодиоде (белом или желтом) и способен подзарядить аккумулятор, часовую батарейку или пальчиковую (типа АА или ААА) из будильника или пейджера. Он может найти применение в местах, где нет электричества, например, в коллективных садах (в доме и овощной яме), в горах. Если от него запитать светильник на сверхъярком красном светодиоде (2-10 кд), он заменит медицинский аппарат светотерапии «Дюна-Т». Также от него можно питать «серебряный ионатор» — прибор для серебрения воды.
Рис.6 ДРП – источник электрической энергии.
Накопительный конденсатор С2 рассчитан на рабочее напряжение 25-60 В при минимальном токе утечки. Приемник настраивается на самую мощную СВ или ДВ радиостанцию в этом регионе.
5.3. ДРП, питаемый «свободной энергией поля»
Для более полного использования энергии несущей, модернизированный ДРП дополняется каскадом усиления на германиевом транзисторе. И данный приемник работает громче. Теперь он стал приемником прямого усиления.
Рис.7 ДРП (приемник прямого усиления) с увеличенным КПД.
Транзистор в усилителе приемника низкочастотный и маломощный: МП39-42. Сигнал ЗЧ на базу подается через разделительный конденсатор С3. ЭАП приемника состоит из динамика ВА1, включенного через согласующий трансформатор Т1.
Настройка этого приемника сводится к настройке входного контура на частоту мощной радиостанции и одновременной подстройке емкости С1, а затем подбору сопротивления R 1 по максимальной громкости звучания.
6. Экспериментальная часть
6.1. Сборка и наладка модернизированного ДРП.
Для собранного по рис.5 модернизированного ДРП и настроенного перемещением катушки по стержню на радиостанцию «Радио России» (длина волны 260 кГц – диапазон ДВ) вольтметр на выходе приемника показал напряжение 0,25 В. После согласования сопротивлений контура и детектора согласующим конденсатором вольтметр показал 2,35 В. Затем был подключен ЭАП: динамик 6ГД-3. Полоса воспроизводимых частот 6ГД-3: 100-10000 Гц. Громко и с высоким качеством слышна музыка и речь. Антенна: медный провод диаметром 0,5 мм и длиной 8 метров. В качестве заземления использована батарея центрального отопления. Если вместо ЭАП включали сверхъяркий желтый светодиод, то наблюдали его яркое свечение!
Таким образом, все мои предположения подтвердились. Улучшенный ДРП может работать в качестве практически вечного источника энергии. Громкость звучания этого приемника можно дополнительно увеличить при использовании рупора, установленного на ЭАП.
При замене ДВ катушки на более высокодобротную на выходе приемника было получено напряжение 5,30 В и громкость приемника значительно возросла. Дальнейшее увеличение громкости приемника можно получить за счет применения более эффективной антенны.
6.2. Сборка и наладка ДРП с каскадом усиления на транзисторе (питаемый энергией электромагнитной волны).
Приемник собранный по рис.7 работал значительно громче, чем модернизированный ДРП. И это естественно, так как транзисторный усилитель НЧ питается постоянной составляющей сигнала, а она в 3-10 раз выше, чем НЧ составляющая, вдобавок транзистор усиливает слабый НЧ сигнал.
Приложение
Таблица 1 Электрические параметры высокоомных телефонов типа ТОН-2
Основные параметры |
Значение параметра |
Модуль полного электрического сопротивления переменному току одного телефонного капсюля на частоте 1000 Гц, не менее, Ом |
6000 |
Неравномерность частотной характеристики отдачи капсюля в диапазоне частот 300-3000 Гц, не более, дБ |
35 |
Таблица 2 Электрические параметры детекторных диодов
Тип диода
|
Назначение |
Среднее значение выпрямленного тока, мА |
Прямой ток при напряжении 1 В, мА |
Обратный ток не более, мА (при напряжении, В) |
Наибольшее допустимое обратное рабочее напряжение, В |
Наименьш. амплитуда обратного пробивного напряжения , В |
Д2А |
Выпрямление переменных напряжений |
50 |
>50 |
0,25 (7) |
10 |
15 |
Д310 |
Импульсный |
500 |
>500 |
0,02 (20) |
— |
— |
* Диоды Д2 предназначены для работы в различных схемах. Оформлены в стеклянном корпусе. Предельная рабочая частота 150 МГц при температуре окружающей среды от –60 до +70 О С. Емкость между выводами при обратном напряжении на диоде – 1 пФ.
Таблица 3 Параметры громкоговорителей
Тип громкоговорителя |
Отдача, Па |
Треб. W сигнала для громкости 60дБ, мВт |
0,025ГД-2 |
0,075 |
3,6 |
0,05ГД-1 |
0,15 |
1,8 |
1ГД-5, 1ГД-28, 1ГД-36 |
0,2 |
1,0 |
1ГД-4, 3ГД-1, 4ГД-5 |
0,3 |
0,45 |
5ГД-1, 6ГД-1, 6ГД-3 |
0,4 |
0,25 |
8ГД-1 РРЗ |
0,45 |
0,2 |
Словарь терминов
АНТЕННА (от лат. antenna — мачта, рей), в радио — устройство, предназначенное (обычно в сочетании с радиопередатчиком или радиоприемником) для излучения или (и) приема радиоволн.
ДИОД [от ди… и (электр)од ], 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью. Применяется в электро- и радиоаппаратуре для выпрямления переменного тока, детектирования, преобразования частоты, переключения электрических цепей.
ЗАЗЕМЛЕНИЕ, устройство для электрического соединения с землей аппаратов, машин, приборов и др.; предназначено для защиты от опасного действия электрического тока, а в ряде случаев для использования земли в качестве проводника тока или одного из плеч несимметрического вибратора (антенны).
КОНДЕНСАТОР электрический, система из двух или более подвижных или неподвижных электродов (обкладок), разделенных диэлектриком (бумагой, слюдой, воздухом и др.). Обладает способностью накапливать электрические заряды. Применяется в радиотехнике, электронике, электротехнике и т. д. в качестве элемента с сосредоточенной электрической емкостью.
ПИРИТ – медный минерал (в основном содержащий дисульфид меди)
СЕЛЕКТИВНОСТЬ (избирательность) радиоприемника, его способность выделять полезный радиосигнал на фоне посторонних электромагнитных колебаний (помех). Параметр, характеризующий эту способность количественно. Наиболее распространена частотная селективность.
ТРАНЗИСТОР (от англ. transfеr — переносить и резистор), полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно из кремния или германия), содержащего не менее трех областей с различной — электронной и дырочной — проводимостью.
ТРАНСФОРМАТОР (от лат. transformo — преобразую), устройство для преобразования каких-либо существенных свойств энергии (напр., электрический трансформатор, гидротрансформатор).
Именной указатель
Лосев Олег Владимирович (1903-42), российский радиофизик. Создал (1922) полупроводниковый радиоприемник (кристадин). Открыл ряд явлений в кристаллических полупроводниках («свечение Лосева», фотоэлектрический эффект и др.).
Маркони Гульельмо (1874-1937), итальянский радиотехник и предприниматель. С 1894 в Италии, а с 1896 в Великобритании проводил опыты по практическому использованию электромагнитных волн; в 1897 получил патент на изобретение способа беспроводного телеграфирования. Организовал акционерное общество (1897). Способствовал развитию радио как средства связи. Нобелевская премия (1909, совместно с К. Ф. Брауном).
Поляков Владимир Тимофеевич – известный советский и российский радиотехник, специалист по радиоприемным устройствам
Попов Александр Степанович (4 (16) марта 1859, пос. Турьинские Рудники Верхотурского уезда Пермской губернии, ныне Краснотурьинск Екатеринбургской области – 31 декабря 1905 (13 января 1906), Санкт-Петербург), российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, в том числе для радиосвязи.
Рыбкин Петр Николаевич – ассистент А. С. Попова, первый использовал в радиоприемнике высокоомные телефоны.
Радиоприёмник Википедия
Детекторный приёмник, 1914 г. Радиослушатель в 1922 г. Радиовещательный приёмник 1931 года, оформленный в «кафедральном» стиле Авиационный связной приёмник времён Второй мировой войны Морской пеленгационный приёмник времен Второй мировой войны Настольный приёмник, 1961 г. Устройство типичного карманного приёмника 1960-х гг. Карманный всеволновый радиоприёмник, 1990-е гг. Современный связной приёмник Приёмник системы радиоуправления (внизу) с аккумуляторной батареей и исполнительным механизмом — рулевой машинкой.Радиоприёмник (сокр. приёмник, разг. радио) — устройство[1], соединяемое с антенной и служащее для осуществления радиоприёма, то есть для выделения сигналов из радиоизлучения[2].
Под радиоприёмным устройством понимают радиоприёмник, снабженный антенной, а также средствами обработки принимаемой информации и воспроизведения её в требуемой форме (визуальной, звуковой, в виде печатного текста и т. п.)[3][4]. Во многих случаях антенна и средства воспроизведения конструктивно входят в состав радиоп
Устройство и принцип работы радиоприёмника Попова
на тему:
Устройство и принцип работы радиоприёмника
А. С. Попова
Выполнила: ученица 11 «б» класса
Овчинникова Ю.
Проверил: учитель физики
Гаврилькова И. Ю.
Новый Оскол 2003 г.
ПЛАН:
1. Первый радиоприёмник Попова.
2. Совершенствование радио Поповым.
3. Современные радиоприёмники.
Первый радиоприёмник Попова.
После того, как было открыто электричество, по проводам научились передавать электрические сигналы, переносившие телеграммы и живую речь. Но ведь телефонные и телеграфные провода не протянешь за судном или самолётом, за поездом или автомобилем.
И тут людям помогло радио (в переводе с латинского radio означает «излучать», оно имеет общий корень и с другими латинскими словами radius – «луч»). Для передачи сообщения без проводов нужны лишь радиопередатчик и радиоприёмник, которые связаны между собой электромагнитными волнами – радиоволнами, излучаемыми передатчиком и принимаемые приёмником.
История радио начинается с первого в мире радиоприёмника, созданного в 1895 г. русским учёным А. С. Поповым. Попов сконструировал прибор, которые, по его словам, «заменил недостающие человеку электромагнитные чувства» и реагировал на электромагнитные волны. Сначала приёмник мог «чувствовать» только атмосферные электрические разряды – молнии. А затем научился принимать и записывать на ленту телеграммы, переданные по радио. Своим изобретением Попов подвёл итог работы большого числа учёных ряда стран мира.Важный вклад в развитие радиотехники внесли разные учёные: Х. Эрнест, М. Фарадей, Дж. Максвелл и другие. Наиболее длинные электромагнитные волны впервые сумел получить и исследовать немецкий физик
Г. Герц в 1888г. А. С. Попов, опираясь на результаты Герца, создал, как уже говорилось, прибор для обнаружения и регистрирования электрических колебаний – радиоприёмник.
25 апреля (7 мая) 1895 г. на заседании физико-химического общества Попов сделал доклад «Об отношении металлических порошков к электрическим колебаниям», в котором изложил основные идеи о своём чувствительном приборе для обнаружения и регистрации электромагнитных колебаний. Этот прибор назвали грозоотметчиком. Прибор содержит все основные части радиоприёмника искровой радиотелеграфии, включая антенну и заземление.
Грозоотметчик А. С. Попова.
Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia – сцепление). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 — 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Под действием радиоволн, принятых антенной, металлические опилки в когерере сцеплялись, и он начинал пропускать электрический ток от батареи. Срабатывало реле, включая звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками в когерере ослабевало, и к ним поступал следующий сигнал.
Первый радиоприёмник А. С. Попова (1895г.)
Передатчиком служил искровой разрядник, возбуждавший электромагнитные колебания в антенне, которую Попов впервые в мире использовал для беспроводной связи. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.
Схема радиоприёмника А. С. Попова, сделанная им самим: N – контакт звонка; А, В – вызовы когерера; С – контакт реле; РQ – выводы батареи, М – контакт антенны.
Принцип действия передатчика и приёмника Попова можно продемонстрировать с помощью установки, в которой диполь с когерером замкнут на батарею через гальванометр.
В момент приёма электромагнитной волны сопротивление когерера уменьшается, а ток в цепи увеличивается настолько, что стрелка гальванометра отклоняется на всю шкалу. Для прекращения приёма сигнала опилки когерера следует встряхнуть, например, лёгким постукиванием карандаша. В приёмной станции Попова эту операцию выполнял автоматически молоточек электрического звонка.
Схема демонстрации принципа действия приёмника Попова: К – когерер, Б – батарея.
Совершенствование радио Поповым.
Много сил и времени посвятил Попов совершенствованию своего радиоприёмника. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния.
Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899г. была обнаружена возможность приема сигналов с помощью телефона.
Через 5 лет после постройки первого приёмника начала действовать регулярная линия беспроводной связи на расстояние 40 километров. Благодаря программе, переданной по этой линии зимой 1900 г., ледокол «Ермак» снял со льдины рыбаков, которых шторм унёс в море. Радио, начавшее свою практическую историю спасением людей, стало новым прогрессивным видом связи XX века.
Современные радиоприёмники.
Хотя современные радиоприемники очень мало напоминают приемник Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.
Схема простейшего радиоприёмника.
Современные радиоприёмники обнаруживают и извлекают передаваемую информацию. Достигая антенны приёмника, радиоволны пересекают её провод и возбуждают в ней очень слабые частоты. В антенне одновременно находятся высокочастотные колебания от многих радиопередатчиков. Поэтому один из важнейших элементов радиоприёмника – избирательное устройство, которое из всех принятых сигналов может отображать нужный. Таким устройством является колебательный контур. Контур воспринимает сигналы того радиопередатчика, высокочастотные колебания которого совпадают с собственной частотой колебаний контура приёмника. Назначение других элементов радиоприёмника заключается в том, чтобы усилить принятые колебания, выделить из их колебания звуковой частоты, усилить их и преобразовать в сигналы информации.
Различают 2 типа радиоприёмников: приёмники прямого усиления, в которых высокочастотные колебания до детектора только усиливаются, и супергетеродинные, в которых принятые сигналы преобразуются в колебания некоторой промежуточной частоты, усиливаются и только после этого поступают на детектор.
—
Список литературы:
1) Зубков Б. В., Чумаков С. В. «Энциклопедический словарь юного техника», Москва, «Педагогика», 1988.
2) Орехов В. П. «Колебания и волны в курсе физики средней школы, Москва, «Просвещение», 1977.
3) Мякишев Г. Я., Буховцев Б.Б. «Физика 11», Москва, «Просвещение», 1993.
Радиоприёмник прямого усиления — Википедия
Материал из Википедии — свободной энциклопедии
Радиоприёмник прямого усиления — радиоприёмник, в котором отсутствуют промежуточные преобразования частоты, а отфильтрованный от соседних каналов и усиленный сигнал принимаемой радиостанции поступает непосредственно на детектор.
Блок-схема приёмника прямого усиленияРадиоприёмник прямого усиления состоит из колебательного контура, нескольких каскадов усиления высокой частоты, квадратичного амплитудного детектора, а также нескольких каскадов усиления низкой частоты.
Колебательный контур служит для выделения сигнала требуемой радиостанции. Как правило, частоту настройки колебательного контура изменяют конденсатором переменной ёмкости. К колебательному контуру подключают антенну, иногда и заземление.
Сигнал, выделенный колебательным контуром, поступает на усилитель высокой частоты. С УВЧ сигнал подаётся на детектор, с детектора снимается сигнал звуковой частоты, который усиливается ещё несколькими каскадами усилителя низкой частоты (УНЧ), откуда поступает на громкоговоритель или наушники.
В литературе приёмники прямого усиления классифицируют по числу каскадов усилителей низкой и высокой частоты. Приёмник с n каскадами усиления высокой и m каскадами усиления низкой частоты обозначают n-V-m, где V обозначает детектор. Например, приёмник с одним каскадом УВЧ и одним каскадом УНЧ обозначается 1-V-1. Детекторный приёмник по этой системе обозначается 0-V-0. Изначально буквой V (от англ. valve — лампа) обозначался детекторный каскад на электронной лампе, для других видов детекторов применялись другие буквы (например К — кристаллический детектор)[1].
Главное преимущество приёмника прямого усиления — простота конструкции, в результате чего его может собрать даже начинающий радиолюбитель. На заре радиовещания лампы были дороги, недолговечны и потребляли много электричества, что особенно важно при питании от батарей. По мере развития электронной промышленности, схема прямого усиления вытеснялась супергетеродинами, обладающими лучшими потребительскими качествами.
Радиоприёмники прямого усиления (в отличие от супергетеродинных приёмников) отличаются отсутствием паразитных излучений в эфир, что может быть важно, если необходима полная скрытость приёмника (кроме регенеративного приёмника). Ещё одним преимуществом было отсутствие «зеркальных» и прочих побочных каналов.
Основной недостаток приёмника прямого усиления — малая селективность (избирательность), то есть малое ослабление сигналов соседних радиостанций по сравнению с сигналом станции, на которую настроен приёмник (к регенеративному приёмнику, являющемуся разновидностью приёмника прямого усиления, это не относится). Поэтому этот тип приёмников удобно использовать только для приёма мощных радиостанций, работающих в длинноволновом или средневолновом диапазоне. Из-за этого недостатка приёмники прямого усиления не производятся промышленностью и в основном используются ныне только в радиолюбительской практике. Улучшить избирательность можно при помощи двухконтурной входной цепи.
Повышение чувствительности приёмника прямого усиления путём повышения коэффициента усиления УВЧ выше определённого предела без использования АРУ бессмыссленно, так как УВЧ может, во-первых, самовозбудиться, а во-вторых, при приёме мощных станций звук будет искажён из-за перегрузки.
Трёхпрограммные приёмники проводного вещания также использовали схему прямого усиления; вещание 2-й и 3-й программ идёт на частотах в несколько десятков килогерц. По схеме прямого усиления работал и телевизор КВН. Это оказалось возможным благодаря тому, что он принимал только 3 канала в метровом диапазоне волн, телевизионные каналы достаточно разнесены для достижения хорошей селективности и при прямом усилении, а телепередатчиков в то время в СССР было мало.
- ↑ Сворень С. Шаг за шагом. От детекторного приёмника до супергетеродина.//Радио, 1959, № 9, с. 31
Супергетеродинный радиоприёмник — Википедия
Супергетеродинный радиоприёмник (супергетеродин) — один из типов радиоприёмников, основанный на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты (ПЧ) с последующим её усилением. Основное преимущество супергетеродина перед радиоприёмником прямого усиления в том, что наиболее критичные для качества приёма части приёмного тракта (узкополосный фильтр, усилитель ПЧ и демодулятор) не должны перестраиваться по частоте, что позволяет выполнить их со значительно лучшими характеристиками.
Супергетеродинный приёмник изобрели почти одновременно немец Вальтер Шоттки и американец Эдвин Армстронг в 1918 году, основываясь на идее француза Л. Леви[fr].
Упрощённая структурная схема супергетеродина с однократным преобразованием частоты показана на рисунке. Радиосигнал из антенны подаётся на вход усилителя высокой частоты (в упрощённом варианте он может и отсутствовать), а затем на вход смесителя — специального элемента с двумя входами и одним выходом, осуществляющего операцию преобразования сигнала по частоте. На второй вход смесителя подаётся сигнал с локального маломощного генератора высокой частоты — гетеродина. Колебательный контур гетеродина перестраивается одновременно с входным контуром смесителя (и контурами усилителя ВЧ) — обычно конденсатором переменной ёмкости (КПЕ), реже катушкой переменной индуктивности (вариометром, ферровариометром). Таким образом, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции. Разностный сигнал постоянной промежуточной частоты (ПЧ) выделяется с помощью полосового фильтра и усиливается в усилителе ПЧ, после чего поступает на демодулятор, восстанавливающий сигнал низкой (звуковой) частоты.
В современных приёмниках в качестве гетеродина используется цифровой синтезатор частот с кварцевой стабилизацией.
В обычных вещательных приёмниках длинных, средних и коротких волн промежуточная частота, как правило, равна 465 или 455 кГц, в бытовых ультракоротковолновых — 6,5 или 10,7 МГц. В телевизорах используется промежуточная частота 38 МГц.
В связных и высококлассных вещательных приёмниках применяют двойное (редко — тройное) преобразование частоты. О преимуществах такого решения и критериях выбора первой и второй ПЧ сказано ниже.
- Высокая чувствительность. Супергетеродин позволяет получить большее усиление по сравнению с приёмником прямого усиления. В супергетеродинах основное усиление осуществляется на промежуточной частоте, которая, как правило, ниже частоты приёма; чем ниже частота сигнала, тем проще построить для него устойчивый усилитель с большим коэффициентом усиления.
- Высокая избирательность, обусловленная фильтрацией сигнала в канале ПЧ. Фильтр ПЧ можно изготовить со значительно более высокими параметрами, так как его не нужно перестраивать по частоте. Например, широко используют кварцевые, пьезокерамические и электромеханические фильтры сосредоточенной селекции, а также фильтры на поверхностных акустических волнах. Они позволяют получить сколь угодно узкую полосу пропускания с очень большим подавлением сигналов за её пределами.
- Возможность принимать сигналы с модуляцией любого вида, в том числе с амплитудной манипуляцией (радиотелеграф) и однополосной модуляцией.
Наиболее значительным недостатком является наличие так называемого зеркального канала приёма — второй входной частоты, дающей такую же разность с частотой гетеродина, что и рабочая частота. Сигнал, передаваемый на этой частоте, может проходить через фильтры ПЧ вместе с рабочим сигналом.
Например, пусть приёмник с ПЧ 6,5 Мгц настроен на радиостанцию, передающую на частоте 70 МГц, и частота гетеродина равна 76,5 МГц. На выходе фильтра ПЧ будет выделяться сигнал с частотой 76,5 — 70 = 6,5 МГц. Однако, если на частоте 83 МГц работает другая мощная радиостанция, и её сигнал сможет просочиться на вход смесителя, то разностный сигнал с частотой 83 − 76,5 = 6,5 МГц не будет подавлен, попадёт в усилитель ПЧ и создаст помеху. Величина подавления такой помехи (избирательность по зеркальному каналу) зависит от эффективности входного фильтра и является одной из основных характеристик супергетеродина.
Помехи от зеркального канала уменьшают двумя путями. Во-первых, применяют более сложные и эффективные входные полосовые фильтры, состоящие из нескольких колебательных контуров. Это усложняет и удорожает конструкцию, так как входной фильтр нужно ещё и перестраивать по частоте, притом согласованно с перестройкой гетеродина. Во-вторых, промежуточную частоту выбирают достаточно высокой по сравнению с частотой приёма. В этом случае зеркальный канал приёма оказывается относительно далеко по частоте от основного, и входной фильтр приёмника может более эффективно его подавить. Иногда ПЧ даже делают намного выше частот приёма (так называемое «преобразование вверх»), и при этом ради упрощения приёмника вообще отказываются от входного полосового фильтра, заменяя его неперестраиваемым фильтром нижних частот. В высококачественных приёмниках часто применяют метод двойного (иногда и тройного) преобразования частоты, причём, если первую ПЧ выбирают высокой по описанным выше соображениям, то вторую делают низкой (сотни, иногда даже десятки килогерц[1]), что позволяет более эффективно подавлять помехи от близких по частоте станций, то есть повысить избирательность приёмника по соседнему каналу. Подобные приёмники, несмотря на достаточно высокую сложность построения и наладки, широко применяются в профессиональной и любительской радиосвязи (см. Р-250, Трансивер UW3DI).
Кроме того, в супергетеродине возможен паразитный приём станций, работающих на промежуточной частоте[2]. Его предотвращают экранированием отдельных узлов и приёмника в целом, а также применением на входе фильтра-пробки, настроенного на промежуточную частоту.
Второй недостаток супергетеродина — паразитное излучение, которое может создавать помехи другим приёмным устройствам или демаскировать приёмник. Этот недостаток стал одной из причин одной из крупнейших авиакатастроф в истории человечества, когда в аэропорту Лос-Родеос на ВПП столкнулись два Боинга-747. Достаточно сильное паразитное излучение гетеродинов, работающих на самолётах радиостанций связи, создавало в эфире достаточно сильные комбинационные колебания (биения), которые, в свою очередь, проявлялись как свист в наушниках у пилотов и диспетчера, что затрудняло и без того сложную коммуникацию. После катастрофы электрическая схема радиостанций Боингов-747 была доработана с целью снижения паразитного излучения гетеродинов. По причине паразитного излучения гетеродина существует риск случайного или целенаправленного обнаружения работающего приёмника (вещательного, связного), что широко используется в военном деле (радиоэлектронной разведкой), спецслужбами при поиске агентуры, полицией для выявления радар-детекторов в странах, где их применение запрещено, а также для оценки популярности телевизионной или радиопередачи по суммарной мощности паразитного излучения приёмников в интересующем районе. Задача подавления паразитного излучения сводится к снижению мощности гетеродина (в 1940—1960 годах она достигала 300 мВт, в 1970-х годах с переходом на транзисторные схемы была снижена до 20—30 мВт, с переходом на интегральные микросхемы в 1980-х годах — снижена до единиц милливатт, а в современных цифровых тюнерах не превышает десятков микроватт), сокращению размеров и надёжному экранированию смесительно-гетеродинного узла и усилителя промежуточной частоты (что решается интегральным исполнением приёмника), применению широкополосных заградительных высокоселективных фильтров на антенном входе приёмника.[источник не указан 421 день]
В целом супергетеродин требует гораздо большей тщательности в проектировании и наладке, чем приёмник прямого усиления. Приходится применять довольно сложные меры, чтобы обеспечить стабильность частоты гетеродинов, так как от неё сильно зависит качество приёма. Сигнал гетеродина не должен просачиваться в антенну, чтобы приёмник сам не становился источником помех. Если в приёмнике больше одного гетеродина, существует опасность, что биения между какими-то из их гармоник окажутся в полосе звуковых частот и дадут помеху в виде свиста на выходе приёмника. С этим явлением борются, рационально выбирая частоты гетеродинов и тщательно экранируя узлы приёмника друг от друга.
Использовать в приёмнике вспомогательный генератор колебаний впервые предложил американец Фессенден в 1901 г. Он же создал термин «гетеродин». В приёмнике Фессендена гетеродин работал на частоте, очень близкой к частоте принимаемого сигнала, и возникающие при этом биения звуковой частоты позволяли принимать телеграфный сигнал (принцип, на котором работает приёмник прямого преобразования). Гетеродинные приёмники быстро усовершенствовались с изобретением в 1913 г. лампового генератора высокой частоты (до этого применялись электромашинные генераторы).
В 1917 г. французский инженер Л. Леви (англ.) запатентовал принцип супергетеродинного приёма. В его приёмнике частота сигнала преобразовывалась не непосредственно в звуковую, а в промежуточную, которая выделялась на колебательном контуре и уже после него поступала на детектор. В 1918 г. В. Шоттки дополнил схему Леви усилителем промежуточной частоты. Схема супергетеродина была выгодна в то время ещё и тем, что лампы того времени не обеспечивали нужного усиления на частотах выше нескольких сот килогерц. Сдвинув спектр сигнала в область более низких частот, можно было повысить чувствительность приёмника.
Независимо от Шоттки к аналогичной схеме пришел Э. Армстронг (его патент получен в декабре 1918 г, патентная заявка Шоттки сделана в июне). Армстронг впервые построил и испытал супергетеродин на практике. Он же указал на возможность многократного преобразования частоты.
В декабре 1921 г. английский радиолюбитель на супергетеродин с пятикаскадным УПЧ принял сигналы станций из США. С этого момента к супергетеродинам появляется практический интерес. Первые супергетеродины были громоздки, дороги и неэкономичны из-за большого числа ламп. Приём сопровождался интерференционными свистами, проникающий в антенну сигнал гетеродина создавал помехи другим приёмникам. Некоторое время стояла дилемма — что лучше: более простой и надёжный приёмник прямого усиления, или сложный, капризный, но высокочувствительный супергетеродин, который может работать с небольшой комнатной антенной? Супергетеродин даже на некоторое время сдал позиции на рынке, когда применение тетрода заметно улучшило характеристики приёмников прямого усиления.[3] Но дальнейшее совершенствование ламп позволило сильно упростить и удешевить супергетеродинный приёмник: появились многосеточные лампы с большим усилением на высокой частоте, специализированные лампы для преобразователей частоты, служившие одновременно смесителем и гетеродином, а также комбинированные лампы, заключающие в одном баллоне два-три электронных прибора. Простой супергетеродин стало возможно построить на трёх-четырёх лампах, не считая выпрямителя [4][5]. Благодаря этому и другим усовершенствованиям с 1930-х годов супергетеродинная схема постепенно становится доминирующей для связных и радиовещательных приёмников. Кроме того, в 1930 г. истёк срок патента на принцип супергетеродинного приёма.
В России и СССР первым серийным супергетеродином был, по одним источникам, приёмник танковой радиостанции 71-ТК разработки 1932 г.[6] (завод № 203 в Москве), по другим — вещательный СГ-6 (не позже 1931 г., завод им. Козицкого в Ленинграде),[7], по третьим — радиоприёмник «Дозор», разработанный в конце 20-х годов в «Остехбюро» и переданный в серийное производство на тот же завод им. Козицкого.[8] Первым бытовым супергетеродином, выпускавшимся в больших количествах, стал СВД 1936 года. Примерно с конца 1950-х бытовые радиовещательные и телевизионные приёмники в СССР строились почти исключительно по супергетеродинной схеме (кроме некоторых сувенирных приёмников, радиоконструкторов для начинающих и отдельных специальных приёмников).
- ↑ National NC-300
- ↑ Это в большей степени относится к возможному приёму помех на промежуточной частоте. Стандартные промежуточные частоты как правило не используются для вещания и связи.
- ↑ П. Н. К. Два метода приёма.//«Радиофронт», 1936, № 1, с. 51
- ↑ Лаборатория РФ. Супер на новых лампах.//«Радиофронт», 1936, № 1, с. 27
- ↑ Куксенко П. Н. Трёхламповые суперы.//«Радиофронт», 1936, № 1, с. 59
- ↑ Радиомузей РКК. Архивные и справочные материалы
- ↑ Нелепец В. С. СГ-6, фабричный супергетеродин.//«Радиофронт», 1931, № 11-12 Архивная копия от 16 ноября 2014 на Wayback Machine, с. 651—654
- ↑ ВНИИРТ. Страницы истории. — М.:»Оружие и технологии», 2006