Site Loader

Содержание

суть, принципы, модуляция, что такое радиоволна

Кто-то мечтает о новом айфоне, кто-то о машине, а кто-то о наборе деталей и новом динамике для своего радио. не так давно были времена, когда пределом мечтаний золотой молодежи был обычный транзисторный радиоприемник.

Радио было верным спутником человека весь 20-й век. Знаменитые объявления от советского информбюро, первые музыкальные передачи, настоящий прорыв в передаче информации, революция в СМИ – все это радио.

All we hear is radio Ga-Ga. В сегодняшней статье разберемся с тем, что такое радио и как оно работает.

Знаменитое “радио Га-га” из песни группы Queen – не что иное, как детский лепет сына барабанщика группы. Роджер Тейлор услышал, как ребенок бормочет и коверкает слова, а потом решил, что из этого может получиться неплохой припев для песни.

Когда-то радио было круче, чем интернет – факт. Еще один факт – без радио не будет никакого интернета. Пусть приемники слушают не так часто, радио-технологии активно развиваются и используются  в спутниковой связи, телевидении, мобильных телефонах, рациях, медицинских приборах… Короче, везде.

Суть радио в самом широком смысле:

Радио — способ беспроводной передачи данных, при котором в качестве носителя информации используется радиоволна.

Давайте же узнаем, как эта штука работает, и кто это придумал.

Попов, Маркони, Тесла?

Кем впервые была открыта радиосвязь? Говорить о конкретном изобретателе радио в принципе неправильно, так как слишком много людей в разное время сделали свой вклад в развитие этой технологии. Здесь и Томас Эдисон, и Никола Тесла

, и Александр Попов, и Гульельмо Маркони, и многие другие.

Гульельмо Маркони

Интересно, что во многих странах есть свой изобретатель радио. Споры о том, кто был первым, велись долго, и на то было много причин.

В России традиционно считалось, что радио изобрел Александр Попов. Да, Попов проводил успешные эксперименты в области передачи данных начиная с 1895 года , однако его изобретение было сильно усовершенствовано и доведено «до ума» иностранными коллегами. К тому же Попов не патентовал свою работу.

Безусловно, вклад Попова в развитие радио нельзя недооценивать. Однако считать его единственным изобретателем радио неверно. Мнение, что Александр Попов изобрел радио, во многом было навязано пропагандой СССР, когда все возможные и невозможные изобретения пытались приписать советскому союзу.

Также противостояние вели Тесла и Маркони. Никола Тесла утверждал, что провел эксперименты по беспроводной передаче сигнала раньше 1896 года, когда это сделал Маркони. Однако Маркони, обладавший коммерческой жилкой, успел запатентовать изобретение первым.

Заслуга этого человека в том, что именно он смог найти прежде лишь теоретическим идеям действительно широкое практическое применение.

Настоящей сенсацией в 1901 году стала передача радиосигнала на расстояние 3200 километров. Тогда многие ученые считали, что радиоволна не может распространиться на такую дальность из-за шарообразной формы Земли.

Что такое радиоволна

Волна – это колебание. Морская волна – это колебание поверхности воды.

А радиоволна – изменение электромагнитного поля, распространяющееся в пространстве.

Так же как и свет, радиоволны представляют собой электромагнитное излучение. Разница лишь в частоте и длине волны. Скорость распространения радиоволны в вакууме равна примерно 300000 километров в секунду.

Ниже приведем весь спектр электромагнитных колебаний и покажем место радиоволн в нем.

Электромагнитное излучение

Радиоволна – это сигнал. То, что передает информацию. Радиоволны делятся на диапазоны: от субмиллиметровых до сверхдлинных. Для каждого диапазона волн характерны свои особенности распространения.

Например, чем больше длина волны и чем меньше частота, тем больше волна способна огибать преграды. Длинные волны огибают всю планету.

Все маяки и спасательные станции настроены на волну длиной 6 метров и частотой 500 кГц.

Средние волны подвержены поглощению и рассеиванию сильнее. Длина их распространения – около 1500 км. Короткие волны проходят небольшие расстояния, их энергия поглощается поверхностью планеты.

Как» работают» радиоволны. Принцип распространения радиоволн

Прежде чем разбираться с самим радио, нужно уточнить еще несколько моментов. Как именно передается информация.

Как передается информация. Модуляция

Возьмем электромагнитную волну. Она представляет собой синусоиду, колебания векторов напряженности магнитного и электрического полей. «Где же здесь информация?» спросите вы, и в этом вопросе есть резон.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Сама по себе синусоида не несет никакой информации. Для передачи данных используется модуляция сигнала. Есть разные виды модуляций:

  • амплитудная;
  • фазовая;
  • частотная;
  • амплитудно-частотная.

Например, аббревиатура FM означает frequency modulation – частотная модуляция.

Модуляция – это изменение одного из параметров сигнала.

Частотная модуляция – это изменение частоты. Амплитудная – соответственно, амплитуды. Конечно, изменение не простое, а несущее в себе информацию.

У нас есть несущий сигнал (несущее колебание) и информационный сигнал (речь, звук, музыка). Модуляция несущего сигнала позволяет зашифровать в нем информацию. Причем параметр этого сигнала изменяется в соответствии с информационным сигналом.

Далее будем рассматривать частотную модуляцию, так как FM-радиостанции – самые популярные, а говорить приятнее о том, что привычно. При частотной модуляции сигнал не изменяется по амплитуде. В соответствии с изменениями уровня информационного сигнала меняется частота несущего колебания.

Вот как это выглядит:

Принцип работы частотной модуляции

Как работает радио

Простейший радиоприемник содержит приемник и передатчик. Передатчик должен отправить сигнал, а приемник – принять его.

При этом приемник не просто передает, а кодирует сигнал, применяя модуляцию. Передатчик также должен произвести обратное действие, то есть раскодировать сингал. И вот тогда мы получим тот же сигнал, что нам передали.

Например, вы едете в маршрутке, где водитель слушает радио «Шансон». Лето, жара, дачники, ехать еще несколько часов… В общем, красота, да и только. Но не будем отвлекаться! По радио звучит очень душевная песня.

Когда говорят «95.2 FM», подразумевают ультракороткую радиоволну с несущей частотой 95.2 Мегагерца.

Спектр ее сигнала имеет примерно такой вид. Это – информационный сигнал.

Спектр песни

Чтобы передать его на расстояние, эту информацию нужно зашифровать.  Передатчик на радиостанции отправляет несущую синусоидальную волну в пространство, проводя частотную модуляцию.

Приемник в кабине у водителя, наоборот, выделяет из пришедшего сигнала полезную составляющую. Далее сигнал отправляется на усилитель, с усилителя — на динамик. Как следствие – все счастливо путешествуют под музыку!

Зная принцип действия радио, можно при желании самостоятельно собрать радиоприемник из простых компонентов. Как это сделать с помощью картошки – узнаете из видео. Сразу скажем, сами не проверяли, но если вы попробуете — расскажите нам, как получилось. А если перед вами задачка посложнее и нужна помощь в ее решении обращайтесь в студенческий сервис.

кратко и понятно о вечном споре – Москва 24, 07.05.2018

Сегодня трудно представить нашу жизнь без радио: кто-то слушает его с утра до вечера на работе, кто-то включает в автомобиле по дороге домой, чтобы послушать любимую музыку, а кто-то – только чтобы узнать последние новости. Но мало кто знает, кто и что стоит за изобретением самого радиоприемника.

Фото: depositphotos/[email protected]

На заседании Русского физико-химического общества в Петербурге 7 мая 1895 года Александр Попов продемонстрировал «прибор, предназначенный для показывания быстрых колебаний в атмосферном электричестве». Другими словами – радиоприемник, и осуществил первый сеанс радиосвязи. Полувековой юбилей этого события в СССР отмечали накануне Победы, 7 мая 1945 года. Тогда же и было принято решение сделать День радио ежегодным праздником.

Изобретателем радиотелеграфии Попова считают в странах постсоветского пространства. В других странах примерно в то же время лучшие ученые также работали над созданием подобных устройств. Поэтому в США изобретателем считают Николу Теслу, в Германии – Генриха Герца, во Франции – Эдуарда Бранли, в Бразилии – Ланделя де Муру, в Англии – Оливера Джозефа Лоджа, а в Индии – Джагадиша Чандру Боше.

Со скоростью света

Мировое сообщество никак не может определиться: кем же все-таки было изобретено радио, потому что все эти великие ученые так или иначе внесли свой вклад в развитие науки. Краткая хронология открытий такова: в 1845 году английский физик и химик Майкл Фарадей открыл электромагнитное поле, и это было одним из самых важных открытий человечества в XIX веке. Спустя 20 лет после этого англичанин Джеймс Кларк Максвелл вывел теорию электромагнитного поля и рассчитал, что скорость электромагнитных волн равна скорости света. Его открытия сыграли ключевую роль в развитии физики и послужили фундаментом специальной теории относительности.

Спустя еще 20 лет Генрих Герц создал генератор и резонатор электромагнитных колебаний и продемонстрировал наличие электромагнитных волн, распространяющихся в свободном пространстве. По сути, этот прибор и был предшественником радио, но конструкция Герца передавала и принимала электромагнитные сигналы лишь на расстоянии нескольких метров. В Индии радиопередачу в миллиметровом диапазоне впервые продемонстрировали в ноябре 1894 года, за год до Александра Попова. Автором индийского изобретения стал Джагадиш Чандра Боше.

Фото: depositphotos/agcuesta1

Поэтому с технической точки зрения русский изобретатель Александр Попов и итальянский ученый Гульельмо Маркони не открыли ничего нового, а лишь создали прибор, взяв за основу открытия других своих предшественников. Однако идея радио пришла этим ученым примерно в одно и то же время.

Пальма первенства

Главными претендентами на звание изобретателя радиоприемника являются Попов, Маркони и Тесла. Все трое ученых никак не были связаны друг с другом и, проживая в разных странах, одновременно работали над одним и тем же изобретением.

Александр Попов изобрел радиопередатчик для целей военно-морского флота. В 1895 году на собрании российских физиков он прочел лекцию «Об отношении металлических порошков к электрическим колебаниям» и продемонстрировал свое устройство, способное передавать сигналы азбукой Морзе. Ученый занялся усовершенствованием работы прибора и дальности приема и передачи сигнала от 60-ти до 250 метров, добившись вскоре увеличения расстояния до 600. А в 1899 году была обнаружена возможность приема сигналов с помощью телефона, изобретения Александра Белла, запатентованного еще в середине 1870-х.

Однако Попов не стремился рассказать всему миру о своих исследованиях, не спешил публиковать статьи о своем изобретении, интересуясь в основном практической частью. Поэтому, продемонстрировав работу радио-приемника в 1895 году, документально свое изобретение он никак не оформил.

Патент № 7777

Гульельмо Маркони изобрел свой радиоприемник и подал заявку на получение патента лишь в июне 1896 года. Бумага была выдана 2 июля 1897-го, спустя два года после демонстрации Поповым своей работы. Маркони получил документ, юридически закрепляющий его авторство, именно поэтому некоторые историки встают на его сторону и отдают ему пальму первенства. В 1900 году Маркони получил патент № 7777 на систему настройки радио, а 12 декабря 1901 он провел первый сеанс трансатлантической радиосвязи между Англией и Ньюфаундлендом на расстояние 3200 километров, что до этого казалось невозможным.

Радиоприемник «Звезда-54», представленный на выставке «Советский дизайн 1950-1980-х» в ЦВЗ «Манеж». Фото: ТАСС/ Александра Мудрац

Очередь американцев

А в 1943 году в спор о том, кем изобретено радио, вмешались американцы. В суде им удалось доказать, что их соотечественник, великий ученый Никола Тесла, первым запатентовал радиопередатчик – это произошло в 1893-м, а спустя два года – в 1895-м – радиоприемник. Его прибор работал по тому же принципу, по которому работают современные устройства, преобразовывая радиосигнал в акустический звук, а изобретения Попова и Маркони могли передавать и принимать радиосигналы только с азбукой Морзе.

С тех пор, конечно, изменилось и радиовещание, и сами радиоприемники. Когда-то радио будило гимном всю страну в шесть утра, сегодня эстеты слушают джаз, а коллекционеры готовы отдать большие деньги за винтажные радиоприемники. Но никто не подвергает сомнению значимость этого изобретения: кто бы его ни создал первым, принцип, на котором основывалась работа приемника, впоследствии сделал возможным изобретение мобильной связи, беспроводного интернета и дистанционного управления электронными устройствами, без которых мы сегодня не можем представить нашу жизнь.

Как работает интернет-радио | Журнал сетевых решений/LAN

 

Интернет-радио принадлежит будущее.
Не будет ни газет, ни книг, ни кино, ни театров,
а будет одно сплошное интернет-радио.

Парафраз реплики Рудольфа Рачкова из фильма
Владимира Меньшова «Москва слезам не верит»

 

Бурное развитие интернет-радио обусловлено широкими возможностями технологии, которая позволяет широковещательным радиостанциям не только существенно расширить свою аудиторию, но и качественно улучшить предоставляемые слушателям услуги. Интернет-радио имеет следующие основные преимущества:

Глобальный охват. Зона вещания не ограничивается, как в случае с передачей по эфиру, радиусом действия ретранслятора. Доступ к транслируемой передаче может получить пользователь, подключенный к сети Интернет в любой точке земного шара.

Высокое качество звукового сигнала. Применяемые программно-технические средства позволяют надежно доставлять сигнал без потерь в качестве и замираний (замирание, фединг — изменение амплитуды и фазы сигнала из-за перемещения передатчика или приемника в системе радиосвязи и/или распространения сигнала через неоднородную среду).

Мультимедийное сопровождение. Трансляция звукового сигнала (например, музыкальной композиции) может сопровождаться передачей алфавитно-цифровой или графической информации.

Обратная связь со слушателем. Простая и удобная связь может быть организована по Интернету в виде голосового общения или обмена сообщениями в процессе вещания.

Перечисленные возможности позволяют организовать вещание с учетом предпочтений слушателей (сформировать постоянную аудиторию по интересам), усилить восприятие транслируемых звуковых программ за счет мультимедийного сопровождения, обеспечить необходимое качество трансляции независимо от места приема сигнала.

Интернет-радио облегчает предоставление самой различной информации — от детальных сведений о транслируемой музыкальной композиции до весьма разнообразных знаний в самых различных областях. Учитывая, что значительное число слушателей являются постоянными пользователями Интернета, доступ к звуковой информации, включая музыку (кстати, без нарушения прав интеллектуальной собственности), посредством интернет-радио оказывается для них наиболее удобным и естественным.

Интернет-радио позволяет не только заранее познакомить слушателей с программой трансляции, но и гибко менять ее с учетом предпочтений аудитории. Для этого имеются возможности интерактивного взаимодействия в реальном масштабе времени: посредством голосовых сообщений, живого общения в эфире и обмена цифровой информацией в виде электронной почты или коротких сообщений.

Обмен цифровыми сообщениями может вестись в рамках отдельных целевых групп и быть связанным с определенной темой, обсуждаемой в транслируемой программе. Возможность в реальном времени организовать голосование по заданной теме и объективно оценить его результаты позволяет гибко формировать содержание музыкальных программ и актуальных рубрик.

Благодаря интерактивному взаимодействию с аудиторией, а также наличию средств контроля за количеством подключений, выполненных для прослушивания интернет-радио и участия в обсуждении транслируемых программ, можно объективно определять рейтинг радиостанции и уровень интереса к ее отдельным трансляциям. Анализ этих данных поможет скоординировать усилия для дальнейшего расширения аудитории и повышения коммерческой привлекательности радиостанции для рекламодателей и различных организаций, заинтересованных в распространении той или иной информации.

ОРГАНИЗАЦИЯ РАБОТЫ СТАНЦИИ ИНТЕРНЕТ-РАДИО

Типовая система передачи потоковых аудиоданных через Интернет состоит из трех базовых элементов:

  • станции — устройства, генерирующего звуковой поток (в соответствии со списком звуковых файлов или путем прямой оцифровки аналогового потока от аудиокарты или микрофона) и направляющего его в адрес сервера;
  • сервера (повторителя) — устройства, принимающего звуковой поток от станции и перенаправляющего его копии всем подключенным к нему пользователям Интернета;
  • клиента — устройства, принимающего звуковой поток от сервера и преобразующего его в аудиосигнал, доступный слушателю интернет-радиостанции.

Упрощенная схема интернет-радио представлена на Рисунке 1.

Рисунок 1. Упрощенная схема интернет-радио. 

 

Функционирование сервера и клиента интернет-радио обеспечивается типовыми программно-техническими средствами, поэтому ниже рассматриваются только вопросы организации работы станции интернет-радио как наиболее сложного и ответственного компонента. Кроме потока звуковых данных, станция передает текстовые метаданные — например, информацию о себе самой и о текущей композиции, которая предлагается для прослушивания клиенту. В качестве станции могут выступать компьютер с установленной на нем программой-аудиоплеером и плагином-кодеком (или специализированной программой) либо профессиональное аппаратное устройство, преобразующее аналоговый звуковой поток в цифровой сигнал.

Учитывая требования к надежности работы станции, описанное ниже техническое решение предполагает использование специализированного профессионального оборудования, стоимость которого вполне сопоставима со стоимостью современной компьютерной системы. Вместе с тем компьютер может применяться в составе станции в качестве средства формирования предназначенных для трансляции материалов, а также интерактивного взаимодействия со слушателями. Данное решение обеспечивает высокое качество вещания по относительно ненадежным каналам связи и рассчитано на профессиональные студии, используемые широковещательными радиостанциями, хотя с его помощью организовать трансляцию могут и индивидуальные пользователи.

Используемое профессиональное оборудование предназначено для организации обмена звуковой информацией по сетям передачи данных с использованием протокола IP. Преобразование аудиосигнала для его передачи в адрес сервера по IP-каналу производится с помощью аудиокодека Instreamer, к которому могут подключаться различные источники сигнала, включая микрофон и аудиопроигрыватель. Аудиоданные, поступающие от сервера, преобразуются с помощью аудиокодека Exstreamer и выводятся на наушники или громкоговоритель. Параллельно они могут записываться в цифровом или аналоговом виде на соответствующее устройство.

В рассматриваемой конфигурации станция интернет-радио позволяет реализовать следующие основные функции:

  • подготовку на компьютере звуковых материалов;
  • их регистрацию и хранение в энергонезависимой памяти передающего устройства;
  • трансляцию с высоким качеством заранее подготовленных звуковых материалов в заданной последовательности с соблюдением временной сетки вещания;
  • обмен звуковыми сообщениями, включая сообщения с микрофона, с использованием протокола IP в реальном времени;
  • регистрацию и хранение цифровых сообщений, поступающих от сервера.

Статистический анализ работы интернет-радио осуществляется с использованием соответствующих программ на входящем в его состав компьютере, а стандартные возможности применяемых устройств можно расширить при помощи высокоуровневого языка программирования Audio Barix Control Language, позволяющего писать приложения для различных аудиокодеков.

Аудиокодек Instreamer представляет собой многопротокольный преобразователь высококачественных звуковых стереосигналов в поток цифровых данных, передаваемых по сетям IP. Он поддерживает форматы аудиоданных MP3, PCM, G.711 и G.722, которые транслируются в цифровых форматах TCP, UDP, Shoutcast/Icecast и Multicast RTP; обеспечивает передачу потоковых звуковых сигналов с минимальной задержкой, гарантирующей высокое качество звука; имеет функцию трансляции музыки в фоновом режиме и временной остановки музыкальной трансляции для реализации приложений IP-телефонии.

Аудиокодек Exstreamer представляет собой многопротокольный преобразователь IP-потока аудиоданных в форматах TCP, UDP и Multicast RTP в звуковой сигнал для его вывода на наушники, громкоговоритель или усилитель в форматах AACplus, MP3, Ogg Vorbis, G.711, PCM (линейное декодирование). Выпускаемые преобразователи адаптированы для работы с различными внешними устройствами в заданных конфигурациях. Они могут использоваться в качестве приемника и проигрывателя интернет-радио, иметь разъем для карты памяти стандарта MicroSD или интерфейс USB для подключения внешней флэш-памяти.

Таким образом, представленные на рынке серийно выпускаемые специализированные программно-технические средства позволяют создавать и успешно эксплуатировать профессиональные станции интернет-радио. Такие станции позволяют транслировать высококачественные звуковые сигналы в любой район земного шара, где функционирует Интернет, и обеспечивают надежную и живую обратную связь со слушателями. Интернет-радио является эффективным средством оперативного распространения информации в формате широкого вещания с возможностью статистического анализа количества подключений и интереса аудитории.

Сергей Маргарян — главный конструктор, зам. генерального директора НПП «Родник». Людмила Быкова — ведущий специалист по продукции Barix в НПП «Родник».

Поделитесь материалом с коллегами и друзьями

Что такое цифровое радио — Афиша Daily

Традиционному радио приходит конец — в этом году Норвегия перешла с аналогового вещания на цифровое. Это значит, что обычные радиоприемники скоро станут бесполезны. «Афиша Daily» объясняет, что такое цифровое вещание, чем оно отличается от FM-радио и появится ли цифровое радио в России.

Что сделала Норвегия

В начале этого года Норвегия начала переводить национальные радиостанции с FM-частот на цифровое вещание в формате DAB. Эксперимент начался в январе с региона Нурланн, а закончился 13 декабря в северных регионах Тромс и Финнмарк. Норвегия стала первой страной в мире, которая отказалась от аналогового радио на всей территории. Это не значит, что в стране больше не пользуются FM-радио: на новый формат переехали только национальные радиостанции — например, NRK. Частные и небольшие станции продолжат вещать на FM-частотах до 2022 года, после их лицензии пересмотрят.

Почему норвежское радио переезжает

Норвегия давно начала эксперименты с цифровым радио — первая такая станция запустилась в 1995 году. К 2017 году в стране работает 31 национальная цифровая станция. Для сравнения, национальных FM-станций в стране было всего пять. Цифровое вещание даст лучшее покрытие в горной местности, которая искажает FM-сигналы. Правительству оно обойдется в восемь раз дешевле аналогового и ежегодно сэкономит около 20 миллионов евро. Тем не менее большинству норвежцев — 66% — не понравилось цифровое радио: они жалуются на недостаточное покрытие в горные регионах и низкое качество звука, а рыбаки боятся, что цифровое радио не оповестит их о погоде на море. Но к декабрю 86% всех радиослушателей в Норвегии уже пользовались цифровым радио.

Чем цифровое радио отличается от аналогового

На этой фотографии и далее: красивые цифровые приемники, которые приятно поставить дома. На фотографии: Tivoli Audio

1 из 4

Tivoli Audio Music System+

3 из 4

На FM-частотах станция передает радиосигнал и модулирует его таким образом, чтобы он превратился в голос или музыку. Цифровое радио формата DAB (Digital Audio Broadcasting) тоже пользуется радиочастотами, но оно кодирует сигнал и передает его в по частям, а потом приемник расшифровывает этот сигнал. FM-радио работает в частотах от 87,5 до 108 мегагерц (в разных странах диапазон отличается), цифровое радио будет работать в других частотах — от 174 до 240 мегагерц. Например, норвежское радио NRK P1, которое в Осло работало на частоте 88,7 мегагерца переехало на частоту 227,36 мегагерца.

Какие плюсы у цифрового радио

Качество приема

На цифровых радиостанциях не должно быть хрипов и шипения. У них есть важное отличие от FM-радио: они либо звучат хорошо, либо не работают совсем. Качество приема FM-радио зависит от силы сигнала: если сигнал слабый, станцию, возможно, получится поймать, но с хрипами. А у цифрового радио есть критическая отметка: если сила сигнала ее превышает, то станция звучит хорошо, если сила сигнала упала ниже, то станцию вообще не слышно.

Новые станции

Чтобы сигналы FM-радиостанций не мешали друг другу, между их частотами оставляют немного места, например, частоты радиостанций в Москве идут с шагом 0,4 мегагерца: 100,1, 100,5, 100,9 и так далее. Цифровые радиостанции шифруют свои сигналы и не мешают друг другу, поэтому в одном диапазоне можно запустить в три раза больше станций. В Москве работают 52 станции, если радиовещание в России переведут на цифровое, то в городе будет больше 150 станций.

Новые форматы

Цифровое радио даст новые способы заработать. Например, вещатели смогут шифровать сигнал так, чтобы он был доступен только платным подписчикам. Вместе со звуком цифровые станции передают метаинформацию, например, название песни, короткие новости и анонсы передач. Такой текст отобразится на экране приемника. Если в приемнике цифрового радио есть встроенный накопитель, то он сможет записывать программы в память и отматывать передачи в начало. Таким образом, радиопередачи превратятся в подкасты, которые можно переслушивать по несколько раз.

Какие минусы у цифрового радио

Качество звука

DAB — не новый формат, его разработали в 1980-х. Он использует формат сжатия MPEG-1 Audio Layer II, поэтому качество звука в цифровом радио не очень высокое: станции вещают с битрейтом 128–192 килобит в секунду. Норвежские слушатели отметили, что звучание цифрового радио им показалось не таким качественным, как звучание FM-станций (кроме того, звук цифровых станций иногда начинает булькать). Проблему решит новый формат DAB+, который сжимает звук более совершенным способом HE-AAC и передает более качественное звучание даже с меньшим битрейтом.

Цена

Обычный приемник не ловит сигнал цифрового радио, а цифровой стоит дороже аналогового, например, в Норвегии — €100–200. Норвежцы опасаются, что пожилые люди не станут покупать приемники и окажутся без привычного источника новостей. Новые приемники понадобятся автомобилистам: сейчас в стране цифровое радио не принимает половина всех автомобилей. Но и покупка DAB-приемника не убережет от новых трат. Если Норвегия решит перевести вещание на DAB+, то слушателям снова придется обновлять технику: DAB-приемники не ловят сигнал DAB+.

Значит ли это, что FM-радио пришел конец

Скорее всего, от аналогового радио будут постепенно отказываться. В 2017 году цифровое радио работало в 38 странах. Великобритания планирует перейти с FM-радио на цифровое после того, как им будет пользоваться половина всех слушателей, а покрытие достигнет 90% страны. Возможно, это случится к 2020 году. Дания и Швейцария планируют перейти на цифровое радио в ближайшие годы. В следующем году тестирование DAB начнется в Италии. Германия хотела отказаться от FM-радио, но потом передумала.

Появится ли цифровое радио в России

Государственная комиссия по радиочастотам тестирует цифровое вещание с 2000 года. У России даже есть собственный формат цифрового радио — РАВИС, Российская аудиовизуальная информационная система реального времени. В 2010-м в России планировали начать цифровое радиовещание в формате DRM (Digital Radio Mondiale), но в 2015-м Российская телевизионная и радиовещательная сеть вернулась к идее запустить DAB+. РТРС тестировала цифровое вещание в трех районах Москвы — в Хорошево-Мневниках, Кунцево и Таганском районе. В жилых кварталах прием был стабильный, на МКАД — нестабильный, а за пределами МКАД — в Красногорском районе — сигнал принимался только в малоэтажной застройке.

Радиоволны и частоты

ЧТО ТАКОЕ РАДИОВОЛНЫ

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати, свет это тоже электромагнитные волны, обладающие схожими с радиоволнами свойствами (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны в метрах рассчитывается по формуле:

 или примерно ,
где f – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что длина волны напрямую влияет на длину антенны для радиосвязи.

Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волн встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от его поверхности и либо уходит обратно, либо рассеивается в пространстве. Кстати, на этом основано применение электромагнитных волн в радиолокации.

Еще одним полезным свойством электромагнитных волн является их способность огибать на своем пути некоторые препятствия. Но это возможно лишь в том случае, когда размеры объекта меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить. Вспомните военную технологию снижения заметности «Stealth», в рамках которой разработаны соответствующие геометрические формы, радиопоглощающие материалы и покрытия для уменьшения заметности объектов для локаторов.

Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

РАСПРЕДЕЛЕНИЕ СПЕКТРА

Радиоволны, используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.

Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.

Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Диапазон
частот

Наименование диапазона частот

Наименование
диапазона волн

Длина волны

3–30 кГц

Очень низкие частоты (ОНЧ)

Мириаметровые

100–10 км

30–300 кГц

Низкие частоты (НЧ)

Километровые

10–1 км

300–3000 кГц

Средние частоты (СЧ)

Гектометровые

1–0.1 км

3–30 МГц

Высокие частоты (ВЧ)

Декаметровые

100–10 м

30–300 МГц

Очень высокие частоты (ОВЧ)

Метровые

10–1 м

300–3000 МГц

Ультравысокие частоты (УВЧ)

Дециметровые

1–0.1 м

3–30 ГГц

Сверхвысокие частоты (СВЧ)

Сантиметровые

10–1 см

30–300 ГГц

Крайневысокие частоты (КВЧ)

Миллиметровые

10–1 мм

300–3000 ГГц

Гипервысокие частоты (ГВЧ)

Децимиллиметровые

1–0.1 мм


Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.


Распределение спектра между различными службами.

Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:

Термин

Диапазон частот

Пояснения

КВ

2–30 МГц

Из-за особенностей распространения в основном применяется для дальней связи.

«Си-Би»

25.6–30.1 МГц

Гражданский диапазон, в котором могут пользоваться связью частные лица. В разных странах на этом участке выделено от 40 до 80 фиксированных частот (каналов).

«Low Band»

33–50 МГц

Диапазон подвижной наземной связи. Непонятно почему, но в русском языке не нашлось термина, определяющего данный диапазон.

УКВ

136–174 МГц

Наиболее распространенный диапазон подвижной наземной связи.

ДЦВ

400–512 МГц

Диапазон подвижной наземной связи. Иногда не выделяют этот участок в отдельный диапазон, а говорят УКВ, подразумевая полосу частот от 136 до 512 МГц.

«800 МГц»

806–825 и
851–870 МГц

Традиционный «американский» диапазон; широко используется подвижной связью в США. У нас не получил особого распространения.


Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.

В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

КАК РАСПРОСТРАНЯЮТСЯ РАДИОВОЛНЫ

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).

Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.

Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.


Распространение длинных и коротких волн.

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.

Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.

Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.


Отражательные слои ионосферы и распространение коротких волн в зависимости от частоты и времени суток.

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.


Распространение коротких и ультракоротких волн.

Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны).

Возможность направленного излучения волн позволяет повысить эффективность системы связи. Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящимся не в створе луча.

При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.


Параболическая направленная спутниковая антенна (фото с сайта ru.wikipedia.org).

Необходимо отметить, что с уменьшением длины волны возрастает затухание и поглощение энергии в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, ограничивающей дальность связи.

Мы выяснили, что радиоволны обладают различными свойствами распространения в зависимости от длины волны и каждый участок радиоспектра применяется там, где лучше всего используются его преимущества.

Как работает радио сейчас? — 35медиа

кратко и понятно о вечном споре – Москва 24, 07.05.2018

Сегодня трудно представить нашу жизнь без радио: кто-то слушает его с утра до вечера на работе, кто-то включает в автомобиле по дороге домой, чтобы послушать любимую музыку, а кто-то – только чтобы узнать последние новости. Но мало кто знает, кто и что стоит за изобретением самого радиоприемника.

Фото: depositphotos/blacklionder@gmail.com

На заседании Русского физико-химического общества в Петербурге 7 мая 1895 года Александр Попов продемонстрировал «прибор, предназначенный для показывания быстрых колебаний в атмосферном электричестве». Другими словами – радиоприемник, и осуществил первый сеанс радиосвязи. Полувековой юбилей этого события в СССР отмечали накануне Победы, 7 мая 1945 года. Тогда же и было принято решение сделать День радио ежегодным праздником.

Изобретателем радиотелеграфии Попова считают в странах постсоветского пространства. В других странах примерно в то же время лучшие ученые также работали над созданием подобных устройств. Поэтому в США изобретателем считают Николу Теслу, в Германии – Генриха Герца, во Франции – Эдуарда Бранли, в Бразилии – Ланделя де Муру, в Англии – Оливера Джозефа Лоджа, а в Индии – Джагадиша Чандру Боше.

Со скоростью света

Мировое сообщество никак не может определиться: кем же все-таки было изобретено радио, потому что все эти великие ученые так или иначе внесли свой вклад в развитие науки. Краткая хронология открытий такова: в 1845 году английский физик и химик Майкл Фарадей открыл электромагнитное поле, и это было одним из самых важных открытий человечества в XIX веке. Спустя 20 лет после этого англичанин Джеймс Кларк Максвелл вывел теорию электромагнитного поля и рассчитал, что скорость электромагнитных волн равна скорости света. Его открытия сыграли ключевую роль в развитии физики и послужили фундаментом специальной теории относительности.

Спустя еще 20 лет Генрих Герц создал генератор и резонатор электромагнитных колебаний и продемонстрировал наличие электромагнитных волн, распространяющихся в свободном пространстве. По сути, этот прибор и был предшественником радио, но конструкция Герца передавала и принимала электромагнитные сигналы лишь на расстоянии нескольких метров. В Индии радиопередачу в миллиметровом диапазоне впервые продемонстрировали в ноябре 1894 года, за год до Александра Попова. Автором индийского изобретения стал Джагадиш Чандра Боше.

Фото: depositphotos/agcuesta1

Поэтому с технической точки зрения русский изобретатель Александр Попов и итальянский ученый Гульельмо Маркони не открыли ничего нового, а лишь создали прибор, взяв за основу открытия других своих предшественников. Однако идея радио пришла этим ученым примерно в одно и то же время.

Пальма первенства

Главными претендентами на звание изобретателя радиоприемника являются Попов, Маркони и Тесла. Все трое ученых никак не были связаны друг с другом и, проживая в разных странах, одновременно работали над одним и тем же изобретением.

Александр Попов изобрел радиопередатчик для целей военно-морского флота. В 1895 году на собрании российских физиков он прочел лекцию «Об отношении металлических порошков к электрическим колебаниям» и продемонстрировал свое устройство, способное передавать сигналы азбукой Морзе. Ученый занялся усовершенствованием работы прибора и дальности приема и передачи сигнала от 60-ти до 250 метров, добившись вскоре увеличения расстояния до 600. А в 1899 году была обнаружена возможность приема сигналов с помощью телефона, изобретения Александра Белла, запатентованного еще в середине 1870-х.

Однако Попов не стремился рассказать всему миру о своих исследованиях, не спешил публиковать статьи о своем изобретении, интересуясь в основном практической частью. Поэтому, продемонстрировав работу радио-приемника в 1895 году, документально свое изобретение он никак не оформил.

Патент № 7777

Гульельмо Маркони изобрел свой радиоприемник и подал заявку на получение патента лишь в июне 1896 года. Бумага была выдана 2 июля 1897-го, спустя два года после демонстрации Поповым своей работы. Маркони получил документ, юридически закрепляющий его авторство, именно поэтому некоторые историки встают на его сторону и отдают ему пальму первенства. В 1900 году Маркони получил патент № 7777 на систему настройки радио, а 12 декабря 1901 он провел первый сеанс трансатлантической радиосвязи между Англией и Ньюфаундлендом на расстояние 3200 километров, что до этого казалось невозможным.

Радиоприемник «Звезда-54», представленный на выставке «Советский дизайн 1950-1980-х» в ЦВЗ «Манеж». Фото: ТАСС/ Александра Мудрац

Очередь американцев

А в 1943 году в спор о том, кем изобретено радио, вмешались американцы. В суде им удалось доказать, что их соотечественник, великий ученый Никола Тесла, первым запатентовал радиопередатчик – это произошло в 1893-м, а спустя два года – в 1895-м – радиоприемник. Его прибор работал по тому же принципу, по которому работают современные устройства, преобразовывая радиосигнал в акустический звук, а изобретения Попова и Маркони могли передавать и принимать радиосигналы только с азбукой Морзе.

С тех пор, конечно, изменилось и радиовещание, и сами радиоприемники. Когда-то радио будило гимном всю страну в шесть утра, сегодня эстеты слушают джаз, а коллекционеры готовы отдать большие деньги за винтажные радиоприемники. Но никто не подвергает сомнению значимость этого изобретения: кто бы его ни создал первым, принцип, на котором основывалась работа приемника, впоследствии сделал возможным изобретение мобильной связи, беспроводного интернета и дистанционного управления электронными устройствами, без которых мы сегодня не можем представить нашу жизнь.

Как работает интернет-радио | Журнал сетевых решений/LAN

 

Интернет-радио принадлежит будущее.
Не будет ни газет, ни книг, ни кино, ни театров,
а будет одно сплошное интернет-радио.

Парафраз реплики Рудольфа Рачкова из фильма
Владимира Меньшова «Москва слезам не верит»

 

Бурное развитие интернет-радио обусловлено широкими возможностями технологии, которая позволяет широковещательным радиостанциям не только существенно расширить свою аудиторию, но и качественно улучшить предоставляемые слушателям услуги. Интернет-радио имеет следующие основные преимущества:

Глобальный охват. Зона вещания не ограничивается, как в случае с передачей по эфиру, радиусом действия ретранслятора. Доступ к транслируемой передаче может получить пользователь, подключенный к сети Интернет в любой точке земного шара.

Высокое качество звукового сигнала. Применяемые программно-технические средства позволяют надежно доставлять сигнал без потерь в качестве и замираний (замирание, фединг — изменение амплитуды и фазы сигнала из-за перемещения передатчика или приемника в системе радиосвязи и/или распространения сигнала через неоднородную среду).

Мультимедийное сопровождение. Трансляция звукового сигнала (например, музыкальной композиции) может сопровождаться передачей алфавитно-цифровой или графической информации.

Обратная связь со слушателем. Простая и удобная связь может быть организована по Интернету в виде голосового общения или обмена сообщениями в процессе вещания.

Перечисленные возможности позволяют организовать вещание с учетом предпочтений слушателей (сформировать постоянную аудиторию по интересам), усилить восприятие транслируемых звуковых программ за счет мультимедийного сопровождения, обеспечить необходимое качество трансляции независимо от места приема сигнала.

Интернет-радио облегчает предоставление самой различной информации — от детальных сведений о транслируемой музыкальной композиции до весьма разнообразных знаний в самых различных областях. Учитывая, что значительное число слушателей являются постоянными пользователями Интернета, доступ к звуковой информации, включая музыку (кстати, без нарушения прав интеллектуальной собственности), посредством интернет-радио оказывается для них наиболее удобным и естественным.

Интернет-радио позволяет не только заранее познакомить слушателей с программой трансляции, но и гибко менять ее с учетом предпочтений аудитории. Для этого имеются возможности интерактивного взаимодействия в реальном масштабе времени: посредством голосовых сообщений, живого общения в эфире и обмена цифровой информацией в виде электронной почты или коротких сообщений.

Обмен цифровыми сообщениями может вестись в рамках отдельных целевых групп и быть связанным с определенной темой, обсуждаемой в транслируемой программе. Возможность в реальном времени организовать голосование по заданной теме и объективно оценить его результаты позволяет гибко формировать содержание музыкальных программ и актуальных рубрик.

Благодаря интерактивному взаимодействию с аудиторией, а также наличию средств контроля за количеством подключений, выполненных для прослушивания интернет-радио и участия в обсуждении транслируемых программ, можно объективно определять рейтинг радиостанции и уровень интереса к ее отдельным трансляциям. Анализ этих данных поможет скоординировать усилия для дальнейшего расширения аудитории и повышения коммерческой привлекательности радиостанции для рекламодателей и различных организаций, заинтересованных в распространении той или иной информации.

ОРГАНИЗАЦИЯ РАБОТЫ СТАНЦИИ ИНТЕРНЕТ-РАДИО

Типовая система передачи потоковых аудиоданных через Интернет состоит из трех базовых элементов:

  • станции — устройства, генерирующего звуковой поток (в соответствии со списком звуковых файлов или путем прямой оцифровки аналогового потока от аудиокарты или микрофона) и направляющего его в адрес сервера;
  • сервера (повторителя) — устройства, принимающего звуковой поток от станции и перенаправляющего его копии всем подключенным к нему пользователям Интернета;
  • клиента — устройства, принимающего звуковой поток от сервера и преобразующего его в аудиосигнал, доступный слушателю интернет-радиостанции.

Упрощенная схема интернет-радио представлена на Рисунке 1.

Рисунок 1. Упрощенная схема интернет-радио. 

 

Функционирование сервера и клиента интернет-радио обеспечивается типовыми программно-техническими средствами, поэтому ниже рассматриваются только вопросы организации работы станции интернет-радио как наиболее сложного и ответственного компонента. Кроме потока звуковых данных, станция передает текстовые метаданные — например, информацию о себе самой и о текущей композиции, которая предлагается для прослушивания клиенту. В качестве станции могут выступать компьютер с установленной на нем программой-аудиоплеером и плагином-кодеком (или специализированной программой) либо профессиональное аппаратное устройство, преобразующее аналоговый звуковой поток в цифровой сигнал.

Учитывая требования к надежности работы станции, описанное ниже техническое решение предполагает использование специализированного профессионального оборудования, стоимость которого вполне сопоставима со стоимостью современной компьютерной системы. Вместе с тем компьютер может применяться в составе станции в качестве средства формирования предназначенных для трансляции материалов, а также интерактивного взаимодействия со слушателями. Данное решение обеспечивает высокое качество вещания по относительно ненадежным каналам связи и рассчитано на профессиональные студии, используемые широковещательными радиостанциями, хотя с его помощью организовать трансляцию могут и индивидуальные пользователи.

Используемое профессиональное оборудование предназначено для организации обмена звуковой информацией по сетям передачи данных с использованием протокола IP. Преобразование аудиосигнала для его передачи в адрес сервера по IP-каналу производится с помощью аудиокодека Instreamer, к которому могут подключаться различные источники сигнала, включая микрофон и аудиопроигрыватель. Аудиоданные, поступающие от сервера, преобразуются с помощью аудиокодека Exstreamer и выводятся на наушники или громкоговоритель. Параллельно они могут записываться в цифровом или аналоговом виде на соответствующее устройство.

В рассматриваемой конфигурации станция интернет-радио позволяет реализовать следующие основные функции:

  • подготовку на компьютере звуковых материалов;
  • их регистрацию и хранение в энергонезависимой памяти передающего устройства;
  • трансляцию с высоким качеством заранее подготовленных звуковых материалов в заданной последовательности с соблюдением временной сетки вещания;
  • обмен звуковыми сообщениями, включая сообщения с микрофона, с использованием протокола IP в реальном времени;
  • регистрацию и хранение цифровых сообщений, поступающих от сервера.

Статистический анализ работы интернет-радио осуществляется с использованием соответствующих программ на входящем в его состав компьютере, а стандартные возможности применяемых устройств можно расширить при помощи высокоуровневого языка программирования Audio Barix Control Language, позволяющего писать приложения для различных аудиокодеков.

Аудиокодек Instreamer представляет собой многопротокольный преобразователь высококачественных звуковых стереосигналов в поток цифровых данных, передаваемых по сетям IP. Он поддерживает форматы аудиоданных MP3, PCM, G.711 и G.722, которые транслируются в цифровых форматах TCP, UDP, Shoutcast/Icecast и Multicast RTP; обеспечивает передачу потоковых звуковых сигналов с минимальной задержкой, гарантирующей высокое качество звука; имеет функцию трансляции музыки в фоновом режиме и временной остановки музыкальной трансляции для реализации приложений IP-телефонии.

Аудиокодек Exstreamer представляет собой многопротокольный преобразователь IP-потока аудиоданных в форматах TCP, UDP и Multicast RTP в звуковой сигнал для его вывода на наушники, громкоговоритель или усилитель в форматах AACplus, MP3, Ogg Vorbis, G.711, PCM (линейное декодирование). Выпускаемые преобразователи адаптированы для работы с различными внешними устройствами в заданных конфигурациях. Они могут использоваться в качестве приемника и проигрывателя интернет-радио, иметь разъем для карты памяти стандарта MicroSD или интерфейс USB для подключения внешней флэш-памяти.

Таким образом, представленные на рынке серийно выпускаемые специализированные программно-технические средства позволяют создавать и успешно эксплуатировать профессиональные станции интернет-радио. Такие станции позволяют транслировать высококачественные звуковые сигналы в любой район земного шара, где функционирует Интернет, и обеспечивают надежную и живую обратную связь со слушателями. Интернет-радио является эффективным средством оперативного распространения информации в формате широкого вещания с возможностью статистического анализа количества подключений и интереса аудитории.

Сергей Маргарян — главный конструктор, зам. генерального директора НПП «Родник». Людмила Быкова — ведущий специалист по продукции Barix в НПП «Родник».

Поделитесь материалом с коллегами и друзьями

Что такое цифровое радио — Афиша Daily

Традиционному радио приходит конец — в этом году Норвегия перешла с аналогового вещания на цифровое. Это значит, что обычные радиоприемники скоро станут бесполезны. «Афиша Daily» объясняет, что такое цифровое вещание, чем оно отличается от FM-радио и появится ли цифровое радио в России.

Что сделала Норвегия

В начале этого года Норвегия начала переводить национальные радиостанции с FM-частот на цифровое вещание в формате DAB. Эксперимент начался в январе с региона Нурланн, а закончился 13 декабря в северных регионах Тромс и Финнмарк. Норвегия стала первой страной в мире, которая отказалась от аналогового радио на всей территории. Это не значит, что в стране больше не пользуются FM-радио: на новый формат переехали только национальные радиостанции — например, NRK. Частные и небольшие станции продолжат вещать на FM-частотах до 2022 года, после их лицензии пересмотрят.

Почему норвежское радио переезжает

Норвегия давно начала эксперименты с цифровым радио — первая такая станция запустилась в 1995 году. К 2017 году в стране работает 31 национальная цифровая станция. Для сравнения, национальных FM-станций в стране было всего пять. Цифровое вещание даст лучшее покрытие в горной местности, которая искажает FM-сигналы. Правительству оно обойдется в восемь раз дешевле аналогового и ежегодно сэкономит около 20 миллионов евро. Тем не менее большинству норвежцев — 66% — не понравилось цифровое радио: они жалуются на недостаточное покрытие в горные регионах и низкое качество звука, а рыбаки боятся, что цифровое радио не оповестит их о погоде на море. Но к декабрю 86% всех радиослушателей в Норвегии уже пользовались цифровым радио.

Чем цифровое радио отличается от аналогового

На этой фотографии и далее: красивые цифровые приемники, которые приятно поставить дома. На фотографии: Tivoli Audio

1 из 4

Tivoli Audio Music System+

3 из 4

На FM-частотах станция передает радиосигнал и модулирует его таким образом, чтобы он превратился в голос или музыку. Цифровое радио формата DAB (Digital Audio Broadcasting) тоже пользуется радиочастотами, но оно кодирует сигнал и передает его в по частям, а потом приемник расшифровывает этот сигнал. FM-радио работает в частотах от 87,5 до 108 мегагерц (в разных странах диапазон отличается), цифровое радио будет работать в других частотах — от 174 до 240 мегагерц. Например, норвежское радио NRK P1, которое в Осло работало на частоте 88,7 мегагерца переехало на частоту 227,36 мегагерца.

Какие плюсы у цифрового радио

Качество приема

На цифровых радиостанциях не должно быть хрипов и шипения. У них есть важное отличие от FM-радио: они либо звучат хорошо, либо не работают совсем. Качество приема FM-радио зависит от силы сигнала: если сигнал слабый, станцию, возможно, получится поймать, но с хрипами. А у цифрового радио есть критическая отметка: если сила сигнала ее превышает, то станция звучит хорошо, если сила сигнала упала ниже, то станцию вообще не слышно.

Новые станции

Чтобы сигналы FM-радиостанций не мешали друг другу, между их частотами оставляют немного места, например, частоты радиостанций в Москве идут с шагом 0,4 мегагерца: 100,1, 100,5, 100,9 и так далее. Цифровые радиостанции шифруют свои сигналы и не мешают друг другу, поэтому в одном диапазоне можно запустить в три раза больше станций. В Москве работают 52 станции, если радиовещание в России переведут на цифровое, то в городе будет больше 150 станций.

Новые форматы

Цифровое радио даст новые способы заработать. Например, вещатели смогут шифровать сигнал так, чтобы он был доступен только платным подписчикам. Вместе со звуком цифровые станции передают метаинформацию, например, название песни, короткие новости и анонсы передач. Такой текст отобразится на экране приемника. Если в приемнике цифрового радио есть встроенный накопитель, то он сможет записывать программы в память и отматывать передачи в начало. Таким образом, радиопередачи превратятся в подкасты, которые можно переслушивать по несколько раз.

Какие минусы у цифрового радио

Качество звука

DAB — не новый формат, его разработали в 1980-х. Он использует формат сжатия MPEG-1 Audio Layer II, поэтому качество звука в цифровом радио не очень высокое: станции вещают с битрейтом 128–192 килобит в секунду. Норвежские слушатели отметили, что звучание цифрового радио им показалось не таким качественным, как звучание FM-станций (кроме того, звук цифровых станций иногда начинает булькать). Проблему решит новый формат DAB+, который сжимает звук более совершенным способом HE-AAC и передает более качественное звучание даже с меньшим битрейтом.

Цена

Обычный приемник не ловит сигнал цифрового радио, а цифровой стоит дороже аналогового, например, в Норвегии — €100–200. Норвежцы опасаются, что пожилые люди не станут покупать приемники и окажутся без привычного источника новостей. Новые приемники понадобятся автомобилистам: сейчас в стране цифровое радио не принимает половина всех автомобилей. Но и покупка DAB-приемника не убережет от новых трат. Если Норвегия решит перевести вещание на DAB+, то слушателям снова придется обновлять технику: DAB-приемники не ловят сигнал DAB+.

Значит ли это, что FM-радио пришел конец

Скорее всего, от аналогового радио будут постепенно отказываться. В 2017 году цифровое радио работало в 38 странах. Великобритания планирует перейти с FM-радио на цифровое после того, как им будет пользоваться половина всех слушателей, а покрытие достигнет 90% страны. Возможно, это случится к 2020 году. Дания и Швейцария планируют перейти на цифровое радио в ближайшие годы. В следующем году тестирование DAB начнется в Италии. Германия хотела отказаться от FM-радио, но потом передумала.

Появится ли цифровое радио в России

Государственная комиссия по радиочастотам тестирует цифровое вещание с 2000 года. У России даже есть собственный формат цифрового радио — РАВИС, Российская аудиовизуальная информационная система реального времени. В 2010-м в России планировали начать цифровое радиовещание в формате DRM (Digital Radio Mondiale), но в 2015-м Российская телевизионная и радиовещательная сеть вернулась к идее запустить DAB+. РТРС тестировала цифровое вещание в трех районах Москвы — в Хорошево-Мневниках, Кунцево и Таганском районе. В жилых кварталах прием был стабильный, на МКАД — нестабильный, а за пределами МКАД — в Красногорском районе — сигнал принимался только в малоэтажной застройке.

Радиоволны и частоты

ЧТО ТАКОЕ РАДИОВОЛНЫ

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати, свет это тоже электромагнитные волны, обладающие схожими с радиоволнами свойствами (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны в метрах рассчитывается по формуле:

 или примерно ,
где f – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что длина волны напрямую влияет на длину антенны для радиосвязи.

Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волн встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от его поверхности и либо уходит обратно, либо рассеивается в пространстве. Кстати, на этом основано применение электромагнитных волн в радиолокации.

Еще одним полезным свойством электромагнитных волн является их способность огибать на своем пути некоторые препятствия. Но это возможно лишь в том случае, когда размеры объекта меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить. Вспомните военную технологию снижения заметности «Stealth», в рамках которой разработаны соответствующие геометрические формы, радиопоглощающие материалы и покрытия для уменьшения заметности объектов для локаторов.

Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

РАСПРЕДЕЛЕНИЕ СПЕКТРА

Радиоволны, используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.

Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.

Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Диапазон
частот

Наименование диапазона частот

Наименование
диапазона волн

Длина волны

3–30 кГц

Очень низкие частоты (ОНЧ)

Мириаметровые

100–10 км

30–300 кГц

Низкие частоты (НЧ)

Километровые

10–1 км

300–3000 кГц

Средние частоты (СЧ)

Гектометровые

1–0.1 км

3–30 МГц

Высокие частоты (ВЧ)

Декаметровые

100–10 м

30–300 МГц

Очень высокие частоты (ОВЧ)

Метровые

10–1 м

300–3000 МГц

Ультравысокие частоты (УВЧ)

Дециметровые

1–0.1 м

3–30 ГГц

Сверхвысокие частоты (СВЧ)

Сантиметровые

10–1 см

30–300 ГГц

Крайневысокие частоты (КВЧ)

Миллиметровые

10–1 мм

300–3000 ГГц

Гипервысокие частоты (ГВЧ)

Децимиллиметровые

1–0.1 мм


Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.


Распределение спектра между различными службами.

Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:

Термин

Диапазон частот

Пояснения

КВ

2–30 МГц

Из-за особенностей распространения в основном применяется для дальней связи.

«Си-Би»

25.6–30.1 МГц

Гражданский диапазон, в котором могут пользоваться связью частные лица. В разных странах на этом участке выделено от 40 до 80 фиксированных частот (каналов).

«Low Band»

33–50 МГц

Диапазон подвижной наземной связи. Непонятно почему, но в русском языке не нашлось термина, определяющего данный диапазон.

УКВ

136–174 МГц

Наиболее распространенный диапазон подвижной наземной связи.

ДЦВ

400–512 МГц

Диапазон подвижной наземной связи. Иногда не выделяют этот участок в отдельный диапазон, а говорят УКВ, подразумевая полосу частот от 136 до 512 МГц.

«800 МГц»

806–825 и
851–870 МГц

Традиционный «американский» диапазон; широко используется подвижной связью в США. У нас не получил особого распространения.


Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.

В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

КАК РАСПРОСТРАНЯЮТСЯ РАДИОВОЛНЫ

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).

Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.

Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.


Распространение длинных и коротких волн.

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.

Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.

Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.


Отражательные слои ионосферы и распространение коротких волн в зависимости от частоты и времени суток.

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.


Распространение коротких и ультракоротких волн.

Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны).

Возможность направленного излучения волн позволяет повысить эффективность системы связи. Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящимся не в створе луча.

При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.


Параболическая направленная спутниковая антенна (фото с сайта ru.wikipedia.org).

Необходимо отметить, что с уменьшением длины волны возрастает затухание и поглощение энергии в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, ограничивающей дальность связи.

Мы выяснили, что радиоволны обладают различными свойствами распространения в зависимости от длины волны и каждый участок радиоспектра применяется там, где лучше всего используются его преимущества.

Как работает радио сейчас? — 35медиа

Существует уже больше века.  День Радио отмечали накануне в России. Ровно 125 лет назад  русский физик и изобретатель Александр Попов продемонстрировал первую в мире  беспроводную радиосистему. С тех пор многое изменилось. Как работает радио сейчас?

«Добрый день, вологжане и вологжаночки. На наших часах 13.04. В студии Нового радио Вологды время личных сообщений», — раздается в радиоприемниках вологжан.

С этой фразы Игорь начинает каждый свой эфир. Вот уже несколько лет вологжанин  не может представить свою жизнь без прямых включений на радио. И даже профессиональный праздник он встречает у микрофона. Общение со слушателями неотъемлемая часть любой радиостанции.

«Здесь мы ежедневно передаем личные сообщения, поздравления в любви, мы ежедневно, в каждом эфире поднимаем какую-то тему где дарим подарки», — рассказывает Игорь Нойштарт, ведущий радиоэфира «Новое радио» в Вологде.

И так на протяжении часа с 13  до 14 00. На «Новом радио» в Вологде в программе «Личные сообщения» можно не только обсуждать и слушать, но и наблюдать за работой ведущих в прямом эфире в интернете.

Современная радиостанция, помимо вещания на FM волнах, настоящий мультимедийный комплекс. Благодаря социальным сетям жизнь радио заиграла по-новому. Новое Радио в Вологде не отстает от современных трендов. В период самоизоляции запустили конкурс «Новое поколение». Радиоведущие ждут ваших видео о том, как дети учатся дистанционно.  И это далеко не все.

«Помимо новостей из жизни нашего радио у нас запущено несколько проектов. Один из них называется Радиогеография, запущенная совместно с РГО. Мы публикуем вопрос о нашей области и принимаем ответы от наших слушателей во ВКонтакте», —  поделился Александр Алпатов,  редактор информационных программ  «Новое радио» в Вологде.

Радиостанция двадцать первого века —  это еще и концертная площадка. Живой звук в прямом эфире. Еще одно современное новшество: если раньше композиции составлялись вручную, то теперь эфиром управляет искусственный интеллект.  Новое радио задает тренды, которые обсуждают.

«То, что сейчас происходит, радио жизнь она не приостанавливается. Мы хотим и дальше вас удивлять. Старт проекта буквально неделю назад произошел. Данный проект посвящён молодым исполнителям», — рассказывает Ольга Марина, программный директор «Новое радио» в Вологде.

Шанс стать известным исполнителем и частью большого радио сообщества теперь есть у каждого . Не пропусти супер хиты и супер новинки на Новом Радио.

Изобретение радио Поповым: принципы радиосвязи

 

С тех пор как в 1988 г. Генрих Герц опубликовал свои опыты, они заинтересовали ученых-физиков различных стран мира. Ученые старались усовершенствовать приемник и излучатель электромагнитных волн.

В России этим занимался А.С. Попов. Он сначала повторил все опыты Герца, а потом стал работать над усовершенствованием их. Он использовал в своих опытах более чувствительный способ регистрации электромагнитных волн.

Использование когерера

Для регистрации волн он использовал когерер. Когерер – стеклянная трубка с двумя электродами. Внутри трубки находятся железные опилки. В обычных условиях когерер обладает очень большим сопротивлением. Когда на него поступает волна, то в нем создается электрический ток высокой частоты.

Между опилками проскакивают искры, а его сопротивление резко падет. Сила тока в катушке реле возрастает, и реле включает звонок. Молоточек от звонка бьет по когереру, приводя его в исходное положение. На следующем рисунке представлена схема приемника Попова.

Изобретение радио

Для повышения чувствительности Попов один из выводов когерера заземлил, а второй присоедини к высоко поднятому куску проволоки. Это было первой в мире антенной для беспроводной связи. 

Хотя приемники, которые мы видим сейчас совсем не похожи на этот, они устроены на основе тех же принципов, что и приемник Попова. Все приемники так же имеют антенну, в которой волна вызывает слабые электромагнитные колебания.

Энергия этих колебаний не используется непосредственно для приема. Эти сигналы лишь управляют источниками энергии, которые питают другие цепи.

7 мая 1895 г. является днем рождения радио. На заседании Русского физико-химического общества Попов продемонстрировал действие своего прибора. Это был первый в мире радиоприемник. Но Александр Степанович на этом не остановился, и продолжал совершенствовать свой прибор, а так же передатчик.

Сначала дальность радиосвязи составляла всего лишь 250 м. Уже в 1899 году дальность составляла больше 20 км. А в 1901 году дальность радиосвязи составляла уже 150 км.

Основные принципы радиосвязи

В антенне передатчика создается переменный электрический ток высокой частоты. Этот ток вызывает в окружающем пространстве быстроменяющееся электромагнитное поле. Это поле распространяется в виде электромагнитной волны.

По достижению антенны приемника, эта электромагнитная волна вызывает в ней переменный ток. Данный ток будет такой же частоты, на которой работает передатчик.

Нужна помощь в учебе?



Предыдущая тема: Плотность потока электромагнитного излучения: формулы и правила
Следующая тема:&nbsp&nbsp&nbspДетектирование и модуляция. Свойства электромагнитных волн.

Как работает радио | HowStuffWorks

Допустим, вы пытаетесь построить радиовышку для радиостанции 680 AM. Он передает синусоидальную волну с частотой 680 000 герц. В одном цикле синусоидальной волны передатчик будет перемещать электроны в антенне в одном направлении, переключать и тянуть их назад, переключать и выталкивать их, переключать и снова перемещать их обратно. Другими словами, электроны будут менять направление четыре раза в течение одного цикла синусоидальной волны. Если передатчик работает на частоте 680 000 Гц, это означает, что каждый цикл завершается за (1/680 000) 0.00000147 секунд. Четверть этого составляет 0,0000003675 секунды. Со скоростью света электроны могут пройти 0,0684 мили (0,11 км) за 0,0000003675 секунды. Это означает, что оптимальный размер антенны для передатчика на частоте 680 000 герц составляет около 361 фута (110 метров). Поэтому радиостанциям AM нужны очень высокие башни. С другой стороны, для сотового телефона, работающего на частоте

0000 (900 МГц), оптимальный размер антенны составляет около 8,3 см или 3 дюйма. Вот почему сотовые телефоны могут иметь такие короткие антенны.

Вы могли заметить, что антенна AM-радио в вашей машине не имеет длины 300 футов, а всего пару футов в длину.Если бы вы сделали антенну длиннее, она бы принимала лучше, но AM-станции настолько сильны в городах, что не имеет особого значения, если ваша антенна оптимальной длины.

Вы можете задаться вопросом, почему, когда радиопередатчик что-то передает, радиоволны хотят распространяться в пространстве вдали от антенны со скоростью света. Почему радиоволны могут преодолевать миллионы миль? Почему вокруг антенны не просто магнитное поле, рядом с антенной, как вы видите с проводом, прикрепленным к батарее? Можно подумать об этом так: когда ток попадает в антенну, он действительно создает магнитное поле вокруг антенны.Мы также видели, что магнитное поле создает электрическое поле (напряжение и ток) в другом проводе, расположенном рядом с передатчиком. Оказывается, в космосе магнитное поле, создаваемое антенной, индуцирует электрическое поле в космосе. Это электрическое поле, в свою очередь, индуцирует другое магнитное поле в пространстве, которое индуцирует другое электрическое поле, которое индуцирует другое магнитное поле, и так далее. Эти электрические и магнитные поля (электромагнитные поля) индуцируют друг друга в пространстве со скоростью света, распространяясь наружу от антенны.

Для получения дополнительной информации о радио и связанных темах ознакомьтесь со ссылками на следующей странице.

Первоначально опубликовано: 7 декабря 2000 г.

Как работает радио | HowStuffWorks

Допустим, вы пытаетесь построить радиовышку для радиостанции 680 AM. Он передает синусоидальную волну с частотой 680 000 герц. В одном цикле синусоидальной волны передатчик будет перемещать электроны в антенне в одном направлении, переключать и тянуть их назад, переключать и выталкивать их, переключать и снова перемещать их обратно.Другими словами, электроны будут менять направление четыре раза в течение одного цикла синусоидальной волны. Если передатчик работает на частоте 680 000 Гц, это означает, что каждый цикл завершается за (1/680 000) 0,00000147 секунд. Четверть этого составляет 0,0000003675 секунды. Со скоростью света электроны могут пройти 0,0684 мили (0,11 км) за 0,0000003675 секунды. Это означает, что оптимальный размер антенны для передатчика на частоте 680 000 герц составляет около 361 фута (110 метров). Поэтому радиостанциям AM нужны очень высокие башни.С другой стороны, для сотового телефона, работающего на частоте

0000 (900 МГц), оптимальный размер антенны составляет около 8,3 см или 3 дюйма. Вот почему сотовые телефоны могут иметь такие короткие антенны.

Вы могли заметить, что антенна AM-радио в вашей машине не имеет длины 300 футов, а всего пару футов в длину. Если бы вы сделали антенну длиннее, она бы принимала лучше, но AM-станции настолько сильны в городах, что не имеет особого значения, если ваша антенна оптимальной длины.

Вы можете задаться вопросом, почему, когда радиопередатчик что-то передает, радиоволны хотят распространяться в пространстве вдали от антенны со скоростью света.Почему радиоволны могут преодолевать миллионы миль? Почему вокруг антенны не просто магнитное поле, рядом с антенной, как вы видите с проводом, прикрепленным к батарее? Можно подумать об этом так: когда ток попадает в антенну, он действительно создает магнитное поле вокруг антенны. Мы также видели, что магнитное поле создает электрическое поле (напряжение и ток) в другом проводе, расположенном рядом с передатчиком. Оказывается, в космосе магнитное поле, создаваемое антенной, индуцирует электрическое поле в космосе.Это электрическое поле, в свою очередь, индуцирует другое магнитное поле в пространстве, которое индуцирует другое электрическое поле, которое индуцирует другое магнитное поле, и так далее. Эти электрические и магнитные поля (электромагнитные поля) индуцируют друг друга в пространстве со скоростью света, распространяясь наружу от антенны.

Для получения дополнительной информации о радио и связанных темах ознакомьтесь со ссылками на следующей странице.

Первоначально опубликовано: 7 декабря 2000 г.

Как работает радио | HowStuffWorks

Допустим, вы пытаетесь построить радиовышку для радиостанции 680 AM.Он передает синусоидальную волну с частотой 680 000 герц. В одном цикле синусоидальной волны передатчик будет перемещать электроны в антенне в одном направлении, переключать и тянуть их назад, переключать и выталкивать их, переключать и снова перемещать их обратно. Другими словами, электроны будут менять направление четыре раза в течение одного цикла синусоидальной волны. Если передатчик работает на частоте 680 000 Гц, это означает, что каждый цикл завершается за (1/680 000) 0,00000147 секунд. Четверть этого показателя равна 0.0000003675 секунд. Со скоростью света электроны могут пройти 0,0684 мили (0,11 км) за 0,0000003675 секунды. Это означает, что оптимальный размер антенны для передатчика на частоте 680 000 герц составляет около 361 фута (110 метров). Поэтому радиостанциям AM нужны очень высокие башни. С другой стороны, для сотового телефона, работающего на частоте

0000 (900 МГц), оптимальный размер антенны составляет около 8,3 см или 3 дюйма. Вот почему сотовые телефоны могут иметь такие короткие антенны.

Вы могли заметить, что антенна AM-радио в вашей машине не имеет длины 300 футов, а всего пару футов в длину.Если бы вы сделали антенну длиннее, она бы принимала лучше, но AM-станции настолько сильны в городах, что не имеет особого значения, если ваша антенна оптимальной длины.

Вы можете задаться вопросом, почему, когда радиопередатчик что-то передает, радиоволны хотят распространяться в пространстве вдали от антенны со скоростью света. Почему радиоволны могут преодолевать миллионы миль? Почему вокруг антенны не просто магнитное поле, рядом с антенной, как вы видите с проводом, прикрепленным к батарее? Можно подумать об этом так: когда ток попадает в антенну, он действительно создает магнитное поле вокруг антенны.Мы также видели, что магнитное поле создает электрическое поле (напряжение и ток) в другом проводе, расположенном рядом с передатчиком. Оказывается, в космосе магнитное поле, создаваемое антенной, индуцирует электрическое поле в космосе. Это электрическое поле, в свою очередь, индуцирует другое магнитное поле в пространстве, которое индуцирует другое электрическое поле, которое индуцирует другое магнитное поле, и так далее. Эти электрические и магнитные поля (электромагнитные поля) индуцируют друг друга в пространстве со скоростью света, распространяясь наружу от антенны.

Для получения дополнительной информации о радио и связанных темах ознакомьтесь со ссылками на следующей странице.

Первоначально опубликовано: 7 декабря 2000 г.

Как работает радио | HowStuffWorks

Допустим, вы пытаетесь построить радиовышку для радиостанции 680 AM. Он передает синусоидальную волну с частотой 680 000 герц. В одном цикле синусоидальной волны передатчик будет перемещать электроны в антенне в одном направлении, переключать и тянуть их назад, переключать и выталкивать их, переключать и снова перемещать их обратно.Другими словами, электроны будут менять направление четыре раза в течение одного цикла синусоидальной волны. Если передатчик работает на частоте 680 000 Гц, это означает, что каждый цикл завершается за (1/680 000) 0,00000147 секунд. Четверть этого составляет 0,0000003675 секунды. Со скоростью света электроны могут пройти 0,0684 мили (0,11 км) за 0,0000003675 секунды. Это означает, что оптимальный размер антенны для передатчика на частоте 680 000 герц составляет около 361 фута (110 метров). Поэтому радиостанциям AM нужны очень высокие башни.С другой стороны, для сотового телефона, работающего на частоте

0000 (900 МГц), оптимальный размер антенны составляет около 8,3 см или 3 дюйма. Вот почему сотовые телефоны могут иметь такие короткие антенны.

Вы могли заметить, что антенна AM-радио в вашей машине не имеет длины 300 футов, а всего пару футов в длину. Если бы вы сделали антенну длиннее, она бы принимала лучше, но AM-станции настолько сильны в городах, что не имеет особого значения, если ваша антенна оптимальной длины.

Вы можете задаться вопросом, почему, когда радиопередатчик что-то передает, радиоволны хотят распространяться в пространстве вдали от антенны со скоростью света.Почему радиоволны могут преодолевать миллионы миль? Почему вокруг антенны не просто магнитное поле, рядом с антенной, как вы видите с проводом, прикрепленным к батарее? Можно подумать об этом так: когда ток попадает в антенну, он действительно создает магнитное поле вокруг антенны. Мы также видели, что магнитное поле создает электрическое поле (напряжение и ток) в другом проводе, расположенном рядом с передатчиком. Оказывается, в космосе магнитное поле, создаваемое антенной, индуцирует электрическое поле в космосе.Это электрическое поле, в свою очередь, индуцирует другое магнитное поле в пространстве, которое индуцирует другое электрическое поле, которое индуцирует другое магнитное поле, и так далее. Эти электрические и магнитные поля (электромагнитные поля) индуцируют друг друга в пространстве со скоростью света, распространяясь наружу от антенны.

Для получения дополнительной информации о радио и связанных темах ознакомьтесь со ссылками на следующей странице.

Первоначально опубликовано: 7 декабря 2000 г.

Радио и цифровое радио | Как это работает

Криса Вудфорда.Последнее изменение: 13 декабря 2020 г.

Бесплатная музыка, новости и чат, где бы вы ни находились идти! Пока не появился Интернет, ничто не могло сравниться с охватом радио — даже телевидение. Радио — это коробка, заполненная электронными компонентами, которая улавливает радиоволны, плывущие по воздуху, немного напоминающие перчатку бейсбольного ловца, и преобразовывает их обратно в звуки, которые могут слышать ваши уши. Радио было впервые разработано в конце 19 века и дошло до пик его популярности спустя несколько десятилетий.Хотя радиовещание не так популярно, как раньше, основная идея беспроводная связь остается чрезвычайно важной: за последние несколько лет радио стало сердцем новых технологий, таких как беспроводная Интернет, сотовые телефоны (мобильные телефоны), и чипы RFID (радиочастотная идентификация). Между тем, само радио недавно обрело новую жизнь с появлением поступление более качественных цифровых магнитол комплектов.

На фото: антенна для улавливания волн, немного электроники, чтобы снова превратить их в звуки, и громкоговоритель, чтобы вы слышать их — это почти все, что есть в таком простом радиоприемнике.Что внутри кейса? Проверить фото в коробке внизу!

Что такое радио?

Вы можете подумать, что «радио» — это гаджет, который вы слушаете, но это также означает кое-что еще. Радио означает посылку энергии волнами. Другими словами, это способ передачи электрической энергии от из одного места в другое без использования какого-либо прямого проводного соединения. Вот почему его часто называют беспроводной . Оборудование, которое излучает радиоволны, известно как передатчик ; в радиоволна, посланная передатчиком, проносится по воздуху — может быть, с одной стороны мир в другой — и завершает свое путешествие, когда достигает второй единицы оборудования, называемой приемником .

Когда вы выдвигаете антенну на радиоприемнике, она улавливает часть электромагнитной энергии. проходя мимо. Настройте радио на станцию ​​и электронную схему внутри радио выбирает только ту программу, которая вам нужна, из всех тех, которые вещание.

Иллюстрация: Как радиоволны распространяются от передатчика к приемнику. 1) Электроны устремляются вверх и вниз по передатчику, испуская радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света.3) Когда радиоволны попадают в приемник, они заставляют электроны внутри него вибрировать, воссоздавая исходный сигнал. Этот процесс может происходить между одним мощным передатчиком и множеством приемников, поэтому тысячи или миллионы людей могут принимать один и тот же радиосигнал одновременно.

Как это происходит? Электромагнитная энергия, которая является смесь электричества и магнетизма проходит мимо вас в волны нравиться те, что на поверхности океана. Это называется радиоволнами.Нравиться океанские волны, радиоволны имеют определенную скорость, длину и частоту. Скорость — это просто скорость распространения волны между двумя местами. В длина волны — это расстояние между одним гребнем (пик волны) и следующий, а частота — это количество волн которые прибывают каждый второй. Частота измеряется единицей измерения герц , так что если семь волны прибывают через секунду, мы называем это семью герцами (7 Гц). Если ты когда-нибудь смотрели океанские волны, катящиеся к пляжу, вы знаете, что они путешествуют с скорость, может быть, один метр (три фута) в секунду или около того.Длина волны океана волны, как правило, составляют десятки метров или футов, а частота около одна волна каждые несколько секунд.

Когда ваше радио стоит на книжной полке, пытаясь поймать прибывающие волны в свой дом, это немного похоже на то, как если бы вы стояли на пляже и смотрели вкатываются выключатели. Радиоволны много однако быстрее, дольше и чаще, чем океанские волны. Их длина волны обычно составляет сотни метров — это расстояние между гребнем одной волны и другой. Но их частота может быть в миллионы герц — так что миллионы этих волн приходят каждая второй.Если волны длиной в сотни метров, как могут миллионы они прибывают так часто? Это просто. Радиоволны перемещаются на невероятно быстро на — при в скорость света (300 000 км или 186 000 миль в секунду).

Фото: Радиостудия — это, по сути, звуконепроницаемая коробка, преобразующая звуки в высококачественные сигналы, которые можно транслировать с помощью передатчика. Предоставлено: фотографии в журнале Кэрол М. Архив Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Аналоговое радио

Океанские волны переносят энергию, заставляя вода движется вверх и вниз.Таким же образом радиоволны переносят энергия как невидимое, восходящее и нисходящее движение электричества и магнетизм. Он передает программные сигналы от огромного передатчика. антенны, которые подключаются к радиостанции, на меньшую антенна на вашем радиоприемнике. Программа передается путем добавления ее в Радиоволна называется несущей . Этот процесс называется модуляцией . Иногда радиопрограмма добавляется на носитель таким образом, что программный сигнал вызывает колебания несущей частоты.Это называется частотной модуляцией (FM) . Другой способ посылки радиосигнала — сделать пики несущей волны больше или меньше. Поскольку размер волны называется ее амплитудой, это процесс известен как амплитудная модуляция (AM) . Частотная модуляция — это то, как транслируется FM-радио; амплитудная модуляция — это метод используется радиостанциями AM.

Почему не смешиваются все радиоволны?

Радиоволны передают любую полезную информацию по воздуху, от телепередач до спутниковой навигации GPS, так что вам может быть интересно, почему эти очень разные сигналы не смешиваются полностью? Теперь у нас есть цифровое вещание, гораздо проще отделить радиосигналы друг от друга с помощью сложных математических кодов; именно так люди могут использовать сотни мобильных телефонов одновременно на одной городской улице, не слыша звонков друг друга.Но вернемся на несколько десятилетий назад, в то время, когда существовало только аналоговое радио, и единственный разумный способ не допустить, чтобы разные типы сигналов мешали друг другу, — это разделить весь спектр радиочастот на разные полосы с небольшим перекрытием или без него. Вот несколько примеров основных диапазонов радиовещания (не принимайте их как точные; определения несколько различаются по всему миру, некоторые из диапазонов частично совпадают, и я также округлил некоторые цифры):

Лента / использовать Длина волны Частота
LW (длинная волна) 5 км – 1 км 60–300 кГц
AM / MW (амплитудная модуляция / средние волны) 600–176 м 500 кГц – 1.7 МГц
SW (коротковолновый) 188–10 м 1,6–30 МГц
VHF / FM (Очень высокая частота / частотная модуляция) 10–6 мес 100–500 МГц
FM (частотная модуляция) 3,4–2,8 м 88–125 МГц
Самолет 2,7–2,2 м 108–135 МГц
Мобильные телефоны 80–15 см 380–2000 МГц
Радар 100 см – 3 мм 0.3–100 ГГц

Если вы посетите веб-сайт Национального управления по телекоммуникациям и информации США, вы можете найти очень подробный плакат. называется «Распределение частот в Соединенных Штатах: диаграмма радиоспектра», в которой показаны все различные частоты и то, для чего они используются.

Если вы посмотрите на таблицу, вы заметите, что длина волны и частота движутся в противоположных направлениях. Чем меньше длины радиоволн (движутся вниз по таблице), тем больше их частота (выше).Но если вы умножите частоту и длину волны любой из этих волн, вы обнаружите, что всегда получаете один и тот же результат: 300 миллионов метров в секунду, более известную как скорость света.

Краткая история радио

Фото: пионер итальянского радио Гульельмо Маркони. Фото любезно предоставлено Библиотекой Конгресса США

.
  • 1888: немецкий физик Генрих Герц (1857–1894) сделал первые электромагнитные радиоволны в его лаборатории.
  • 1894: прислал британский физик сэр Оливер Лодж (1851–1940) первое сообщение с использованием радиоволн в Оксфорде, Англия.
  • 1897: Физик Никола Тесла (1856–1943) подал патенты, объясняющие как электрическая энергия может передаваться без проводов (Патент США 645 576 и Патент США 649 621) и позже (после работы Маркони) понял, что они могут быть адаптированы и для беспроводной связи (другими словами, радио). В следующем году Tesla получила патент США 613809 на радиоуправляемую лодку. (Утверждения, что он «изобрел» радио, однако, оспариваются, поскольку Томас Х. Уайт подробно обсуждает в «Никола Тесла: парень, который не изобрел радио».)
  • 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш. К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда.
  • 1902–1903: американский физик, математик и изобретатель Джон Стоун Стоун (1869–1943) использовал свои знания в области электрических телеграфов, чтобы добиться важных успехов в настройке радио. что помогло преодолеть проблему помех.
  • 1906: инженер канадского происхождения Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн.Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
  • 1906: американский инженер Ли Де Форест (1873–1961) изобрел триодный (звуковой) клапан, электронный компонент, который делает радиоприемники меньше и практичнее. Это изобретение принесло Де Форесту прозвище «отец радио».
  • 1910: первая публичная радиопередача из Метрополитен-опера в Нью-Йорке.
  • 1920-е годы: Радио начало превращаться в телевидение.
  • 1947: изобретение транзистора Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Shockley (1910–1989) из Bell Labs позволил усилить радиосигналы. с гораздо более компактными схемами.
  • 1954: Regency TR-1, выпущенный в октябре 1954 года, был первым в мире коммерчески производимым транзистором. радио. В первый год было продано около 1500 экземпляров, а к концу 1955 года объем продаж достиг 100000 штук.
  • 1973: Мартин Купер из Motorola сделал первый в истории телефонный звонок с мобильного телефона.
  • 1981: Немецкие радиоинженеры начали разработку того, что сейчас называется DAB (цифровое аудиовещание) в Institut für Rundfunktechnik в Мюнхене.
  • 1990: Радиоэксперты разработали оригинальную версию Wi-Fi (способ подключения компьютеров друг к другу и к Интернету без проводов).
  • 1998: Разработан Bluetooth® (беспроводная связь на короткие расстояния для гаджетов).

Радио и цифровое радио | Как это работает

Криса Вудфорда.Последнее изменение: 13 декабря 2020 г.

Бесплатная музыка, новости и чат, где бы вы ни находились идти! Пока не появился Интернет, ничто не могло сравниться с охватом радио — даже телевидение. Радио — это коробка, заполненная электронными компонентами, которая улавливает радиоволны, плывущие по воздуху, немного напоминающие перчатку бейсбольного ловца, и преобразовывает их обратно в звуки, которые могут слышать ваши уши. Радио было впервые разработано в конце 19 века и дошло до пик его популярности спустя несколько десятилетий.Хотя радиовещание не так популярно, как раньше, основная идея беспроводная связь остается чрезвычайно важной: за последние несколько лет радио стало сердцем новых технологий, таких как беспроводная Интернет, сотовые телефоны (мобильные телефоны), и чипы RFID (радиочастотная идентификация). Между тем, само радио недавно обрело новую жизнь с появлением поступление более качественных цифровых магнитол комплектов.

На фото: антенна для улавливания волн, немного электроники, чтобы снова превратить их в звуки, и громкоговоритель, чтобы вы слышать их — это почти все, что есть в таком простом радиоприемнике.Что внутри кейса? Проверить фото в коробке внизу!

Что такое радио?

Вы можете подумать, что «радио» — это гаджет, который вы слушаете, но это также означает кое-что еще. Радио означает посылку энергии волнами. Другими словами, это способ передачи электрической энергии от из одного места в другое без использования какого-либо прямого проводного соединения. Вот почему его часто называют беспроводной . Оборудование, которое излучает радиоволны, известно как передатчик ; в радиоволна, посланная передатчиком, проносится по воздуху — может быть, с одной стороны мир в другой — и завершает свое путешествие, когда достигает второй единицы оборудования, называемой приемником .

Когда вы выдвигаете антенну на радиоприемнике, она улавливает часть электромагнитной энергии. проходя мимо. Настройте радио на станцию ​​и электронную схему внутри радио выбирает только ту программу, которая вам нужна, из всех тех, которые вещание.

Иллюстрация: Как радиоволны распространяются от передатчика к приемнику. 1) Электроны устремляются вверх и вниз по передатчику, испуская радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света.3) Когда радиоволны попадают в приемник, они заставляют электроны внутри него вибрировать, воссоздавая исходный сигнал. Этот процесс может происходить между одним мощным передатчиком и множеством приемников, поэтому тысячи или миллионы людей могут принимать один и тот же радиосигнал одновременно.

Как это происходит? Электромагнитная энергия, которая является смесь электричества и магнетизма проходит мимо вас в волны нравиться те, что на поверхности океана. Это называется радиоволнами.Нравиться океанские волны, радиоволны имеют определенную скорость, длину и частоту. Скорость — это просто скорость распространения волны между двумя местами. В длина волны — это расстояние между одним гребнем (пик волны) и следующий, а частота — это количество волн которые прибывают каждый второй. Частота измеряется единицей измерения герц , так что если семь волны прибывают через секунду, мы называем это семью герцами (7 Гц). Если ты когда-нибудь смотрели океанские волны, катящиеся к пляжу, вы знаете, что они путешествуют с скорость, может быть, один метр (три фута) в секунду или около того.Длина волны океана волны, как правило, составляют десятки метров или футов, а частота около одна волна каждые несколько секунд.

Когда ваше радио стоит на книжной полке, пытаясь поймать прибывающие волны в свой дом, это немного похоже на то, как если бы вы стояли на пляже и смотрели вкатываются выключатели. Радиоволны много однако быстрее, дольше и чаще, чем океанские волны. Их длина волны обычно составляет сотни метров — это расстояние между гребнем одной волны и другой. Но их частота может быть в миллионы герц — так что миллионы этих волн приходят каждая второй.Если волны длиной в сотни метров, как могут миллионы они прибывают так часто? Это просто. Радиоволны перемещаются на невероятно быстро на — при в скорость света (300 000 км или 186 000 миль в секунду).

Фото: Радиостудия — это, по сути, звуконепроницаемая коробка, преобразующая звуки в высококачественные сигналы, которые можно транслировать с помощью передатчика. Предоставлено: фотографии в журнале Кэрол М. Архив Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Аналоговое радио

Океанские волны переносят энергию, заставляя вода движется вверх и вниз.Таким же образом радиоволны переносят энергия как невидимое, восходящее и нисходящее движение электричества и магнетизм. Он передает программные сигналы от огромного передатчика. антенны, которые подключаются к радиостанции, на меньшую антенна на вашем радиоприемнике. Программа передается путем добавления ее в Радиоволна называется несущей . Этот процесс называется модуляцией . Иногда радиопрограмма добавляется на носитель таким образом, что программный сигнал вызывает колебания несущей частоты.Это называется частотной модуляцией (FM) . Другой способ посылки радиосигнала — сделать пики несущей волны больше или меньше. Поскольку размер волны называется ее амплитудой, это процесс известен как амплитудная модуляция (AM) . Частотная модуляция — это то, как транслируется FM-радио; амплитудная модуляция — это метод используется радиостанциями AM.

Почему не смешиваются все радиоволны?

Радиоволны передают любую полезную информацию по воздуху, от телепередач до спутниковой навигации GPS, так что вам может быть интересно, почему эти очень разные сигналы не смешиваются полностью? Теперь у нас есть цифровое вещание, гораздо проще отделить радиосигналы друг от друга с помощью сложных математических кодов; именно так люди могут использовать сотни мобильных телефонов одновременно на одной городской улице, не слыша звонков друг друга.Но вернемся на несколько десятилетий назад, в то время, когда существовало только аналоговое радио, и единственный разумный способ не допустить, чтобы разные типы сигналов мешали друг другу, — это разделить весь спектр радиочастот на разные полосы с небольшим перекрытием или без него. Вот несколько примеров основных диапазонов радиовещания (не принимайте их как точные; определения несколько различаются по всему миру, некоторые из диапазонов частично совпадают, и я также округлил некоторые цифры):

Лента / использовать Длина волны Частота
LW (длинная волна) 5 км – 1 км 60–300 кГц
AM / MW (амплитудная модуляция / средние волны) 600–176 м 500 кГц – 1.7 МГц
SW (коротковолновый) 188–10 м 1,6–30 МГц
VHF / FM (Очень высокая частота / частотная модуляция) 10–6 мес 100–500 МГц
FM (частотная модуляция) 3,4–2,8 м 88–125 МГц
Самолет 2,7–2,2 м 108–135 МГц
Мобильные телефоны 80–15 см 380–2000 МГц
Радар 100 см – 3 мм 0.3–100 ГГц

Если вы посетите веб-сайт Национального управления по телекоммуникациям и информации США, вы можете найти очень подробный плакат. называется «Распределение частот в Соединенных Штатах: диаграмма радиоспектра», в которой показаны все различные частоты и то, для чего они используются.

Если вы посмотрите на таблицу, вы заметите, что длина волны и частота движутся в противоположных направлениях. Чем меньше длины радиоволн (движутся вниз по таблице), тем больше их частота (выше).Но если вы умножите частоту и длину волны любой из этих волн, вы обнаружите, что всегда получаете один и тот же результат: 300 миллионов метров в секунду, более известную как скорость света.

Краткая история радио

Фото: пионер итальянского радио Гульельмо Маркони. Фото любезно предоставлено Библиотекой Конгресса США

.
  • 1888: немецкий физик Генрих Герц (1857–1894) сделал первые электромагнитные радиоволны в его лаборатории.
  • 1894: прислал британский физик сэр Оливер Лодж (1851–1940) первое сообщение с использованием радиоволн в Оксфорде, Англия.
  • 1897: Физик Никола Тесла (1856–1943) подал патенты, объясняющие как электрическая энергия может передаваться без проводов (Патент США 645 576 и Патент США 649 621) и позже (после работы Маркони) понял, что они могут быть адаптированы и для беспроводной связи (другими словами, радио). В следующем году Tesla получила патент США 613809 на радиоуправляемую лодку. (Утверждения, что он «изобрел» радио, однако, оспариваются, поскольку Томас Х. Уайт подробно обсуждает в «Никола Тесла: парень, который не изобрел радио».)
  • 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш. К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда.
  • 1902–1903: американский физик, математик и изобретатель Джон Стоун Стоун (1869–1943) использовал свои знания в области электрических телеграфов, чтобы добиться важных успехов в настройке радио. что помогло преодолеть проблему помех.
  • 1906: инженер канадского происхождения Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн.Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
  • 1906: американский инженер Ли Де Форест (1873–1961) изобрел триодный (звуковой) клапан, электронный компонент, который делает радиоприемники меньше и практичнее. Это изобретение принесло Де Форесту прозвище «отец радио».
  • 1910: первая публичная радиопередача из Метрополитен-опера в Нью-Йорке.
  • 1920-е годы: Радио начало превращаться в телевидение.
  • 1947: изобретение транзистора Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Shockley (1910–1989) из Bell Labs позволил усилить радиосигналы. с гораздо более компактными схемами.
  • 1954: Regency TR-1, выпущенный в октябре 1954 года, был первым в мире коммерчески производимым транзистором. радио. В первый год было продано около 1500 экземпляров, а к концу 1955 года объем продаж достиг 100000 штук.
  • 1973: Мартин Купер из Motorola сделал первый в истории телефонный звонок с мобильного телефона.
  • 1981: Немецкие радиоинженеры начали разработку того, что сейчас называется DAB (цифровое аудиовещание) в Institut für Rundfunktechnik в Мюнхене.
  • 1990: Радиоэксперты разработали оригинальную версию Wi-Fi (способ подключения компьютеров друг к другу и к Интернету без проводов).
  • 1998: Разработан Bluetooth® (беспроводная связь на короткие расстояния для гаджетов).

Радио и цифровое радио | Как это работает

Криса Вудфорда.Последнее изменение: 13 декабря 2020 г.

Бесплатная музыка, новости и чат, где бы вы ни находились идти! Пока не появился Интернет, ничто не могло сравниться с охватом радио — даже телевидение. Радио — это коробка, заполненная электронными компонентами, которая улавливает радиоволны, плывущие по воздуху, немного напоминающие перчатку бейсбольного ловца, и преобразовывает их обратно в звуки, которые могут слышать ваши уши. Радио было впервые разработано в конце 19 века и дошло до пик его популярности спустя несколько десятилетий.Хотя радиовещание не так популярно, как раньше, основная идея беспроводная связь остается чрезвычайно важной: за последние несколько лет радио стало сердцем новых технологий, таких как беспроводная Интернет, сотовые телефоны (мобильные телефоны), и чипы RFID (радиочастотная идентификация). Между тем, само радио недавно обрело новую жизнь с появлением поступление более качественных цифровых магнитол комплектов.

На фото: антенна для улавливания волн, немного электроники, чтобы снова превратить их в звуки, и громкоговоритель, чтобы вы слышать их — это почти все, что есть в таком простом радиоприемнике.Что внутри кейса? Проверить фото в коробке внизу!

Что такое радио?

Вы можете подумать, что «радио» — это гаджет, который вы слушаете, но это также означает кое-что еще. Радио означает посылку энергии волнами. Другими словами, это способ передачи электрической энергии от из одного места в другое без использования какого-либо прямого проводного соединения. Вот почему его часто называют беспроводной . Оборудование, которое излучает радиоволны, известно как передатчик ; в радиоволна, посланная передатчиком, проносится по воздуху — может быть, с одной стороны мир в другой — и завершает свое путешествие, когда достигает второй единицы оборудования, называемой приемником .

Когда вы выдвигаете антенну на радиоприемнике, она улавливает часть электромагнитной энергии. проходя мимо. Настройте радио на станцию ​​и электронную схему внутри радио выбирает только ту программу, которая вам нужна, из всех тех, которые вещание.

Иллюстрация: Как радиоволны распространяются от передатчика к приемнику. 1) Электроны устремляются вверх и вниз по передатчику, испуская радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света.3) Когда радиоволны попадают в приемник, они заставляют электроны внутри него вибрировать, воссоздавая исходный сигнал. Этот процесс может происходить между одним мощным передатчиком и множеством приемников, поэтому тысячи или миллионы людей могут принимать один и тот же радиосигнал одновременно.

Как это происходит? Электромагнитная энергия, которая является смесь электричества и магнетизма проходит мимо вас в волны нравиться те, что на поверхности океана. Это называется радиоволнами.Нравиться океанские волны, радиоволны имеют определенную скорость, длину и частоту. Скорость — это просто скорость распространения волны между двумя местами. В длина волны — это расстояние между одним гребнем (пик волны) и следующий, а частота — это количество волн которые прибывают каждый второй. Частота измеряется единицей измерения герц , так что если семь волны прибывают через секунду, мы называем это семью герцами (7 Гц). Если ты когда-нибудь смотрели океанские волны, катящиеся к пляжу, вы знаете, что они путешествуют с скорость, может быть, один метр (три фута) в секунду или около того.Длина волны океана волны, как правило, составляют десятки метров или футов, а частота около одна волна каждые несколько секунд.

Когда ваше радио стоит на книжной полке, пытаясь поймать прибывающие волны в свой дом, это немного похоже на то, как если бы вы стояли на пляже и смотрели вкатываются выключатели. Радиоволны много однако быстрее, дольше и чаще, чем океанские волны. Их длина волны обычно составляет сотни метров — это расстояние между гребнем одной волны и другой. Но их частота может быть в миллионы герц — так что миллионы этих волн приходят каждая второй.Если волны длиной в сотни метров, как могут миллионы они прибывают так часто? Это просто. Радиоволны перемещаются на невероятно быстро на — при в скорость света (300 000 км или 186 000 миль в секунду).

Фото: Радиостудия — это, по сути, звуконепроницаемая коробка, преобразующая звуки в высококачественные сигналы, которые можно транслировать с помощью передатчика. Предоставлено: фотографии в журнале Кэрол М. Архив Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Аналоговое радио

Океанские волны переносят энергию, заставляя вода движется вверх и вниз.Таким же образом радиоволны переносят энергия как невидимое, восходящее и нисходящее движение электричества и магнетизм. Он передает программные сигналы от огромного передатчика. антенны, которые подключаются к радиостанции, на меньшую антенна на вашем радиоприемнике. Программа передается путем добавления ее в Радиоволна называется несущей . Этот процесс называется модуляцией . Иногда радиопрограмма добавляется на носитель таким образом, что программный сигнал вызывает колебания несущей частоты.Это называется частотной модуляцией (FM) . Другой способ посылки радиосигнала — сделать пики несущей волны больше или меньше. Поскольку размер волны называется ее амплитудой, это процесс известен как амплитудная модуляция (AM) . Частотная модуляция — это то, как транслируется FM-радио; амплитудная модуляция — это метод используется радиостанциями AM.

Почему не смешиваются все радиоволны?

Радиоволны передают любую полезную информацию по воздуху, от телепередач до спутниковой навигации GPS, так что вам может быть интересно, почему эти очень разные сигналы не смешиваются полностью? Теперь у нас есть цифровое вещание, гораздо проще отделить радиосигналы друг от друга с помощью сложных математических кодов; именно так люди могут использовать сотни мобильных телефонов одновременно на одной городской улице, не слыша звонков друг друга.Но вернемся на несколько десятилетий назад, в то время, когда существовало только аналоговое радио, и единственный разумный способ не допустить, чтобы разные типы сигналов мешали друг другу, — это разделить весь спектр радиочастот на разные полосы с небольшим перекрытием или без него. Вот несколько примеров основных диапазонов радиовещания (не принимайте их как точные; определения несколько различаются по всему миру, некоторые из диапазонов частично совпадают, и я также округлил некоторые цифры):

Лента / использовать Длина волны Частота
LW (длинная волна) 5 км – 1 км 60–300 кГц
AM / MW (амплитудная модуляция / средние волны) 600–176 м 500 кГц – 1.7 МГц
SW (коротковолновый) 188–10 м 1,6–30 МГц
VHF / FM (Очень высокая частота / частотная модуляция) 10–6 мес 100–500 МГц
FM (частотная модуляция) 3,4–2,8 м 88–125 МГц
Самолет 2,7–2,2 м 108–135 МГц
Мобильные телефоны 80–15 см 380–2000 МГц
Радар 100 см – 3 мм 0.3–100 ГГц

Если вы посетите веб-сайт Национального управления по телекоммуникациям и информации США, вы можете найти очень подробный плакат. называется «Распределение частот в Соединенных Штатах: диаграмма радиоспектра», в которой показаны все различные частоты и то, для чего они используются.

Если вы посмотрите на таблицу, вы заметите, что длина волны и частота движутся в противоположных направлениях. Чем меньше длины радиоволн (движутся вниз по таблице), тем больше их частота (выше).Но если вы умножите частоту и длину волны любой из этих волн, вы обнаружите, что всегда получаете один и тот же результат: 300 миллионов метров в секунду, более известную как скорость света.

Краткая история радио

Фото: пионер итальянского радио Гульельмо Маркони. Фото любезно предоставлено Библиотекой Конгресса США

.
  • 1888: немецкий физик Генрих Герц (1857–1894) сделал первые электромагнитные радиоволны в его лаборатории.
  • 1894: прислал британский физик сэр Оливер Лодж (1851–1940) первое сообщение с использованием радиоволн в Оксфорде, Англия.
  • 1897: Физик Никола Тесла (1856–1943) подал патенты, объясняющие как электрическая энергия может передаваться без проводов (Патент США 645 576 и Патент США 649 621) и позже (после работы Маркони) понял, что они могут быть адаптированы и для беспроводной связи (другими словами, радио). В следующем году Tesla получила патент США 613809 на радиоуправляемую лодку. (Утверждения, что он «изобрел» радио, однако, оспариваются, поскольку Томас Х. Уайт подробно обсуждает в «Никола Тесла: парень, который не изобрел радио».)
  • 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш. К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда.
  • 1902–1903: американский физик, математик и изобретатель Джон Стоун Стоун (1869–1943) использовал свои знания в области электрических телеграфов, чтобы добиться важных успехов в настройке радио. что помогло преодолеть проблему помех.
  • 1906: инженер канадского происхождения Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн.Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
  • 1906: американский инженер Ли Де Форест (1873–1961) изобрел триодный (звуковой) клапан, электронный компонент, который делает радиоприемники меньше и практичнее. Это изобретение принесло Де Форесту прозвище «отец радио».
  • 1910: первая публичная радиопередача из Метрополитен-опера в Нью-Йорке.
  • 1920-е годы: Радио начало превращаться в телевидение.
  • 1947: изобретение транзистора Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Shockley (1910–1989) из Bell Labs позволил усилить радиосигналы. с гораздо более компактными схемами.
  • 1954: Regency TR-1, выпущенный в октябре 1954 года, был первым в мире коммерчески производимым транзистором. радио. В первый год было продано около 1500 экземпляров, а к концу 1955 года объем продаж достиг 100000 штук.
  • 1973: Мартин Купер из Motorola сделал первый в истории телефонный звонок с мобильного телефона.
  • 1981: Немецкие радиоинженеры начали разработку того, что сейчас называется DAB (цифровое аудиовещание) в Institut für Rundfunktechnik в Мюнхене.
  • 1990: Радиоэксперты разработали оригинальную версию Wi-Fi (способ подключения компьютеров друг к другу и к Интернету без проводов).
  • 1998: Разработан Bluetooth® (беспроводная связь на короткие расстояния для гаджетов).
.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *