Site Loader

Содержание

Читать онлайн «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности» автора Дригалкин В. В. — RuLit

Дригалкин В.В.

«Как освоить радиоэлектронику с нуля.

Учимся собирать конструкции любой сложности»

Дорогие читатели!

Все вы, конечно, знаете об одной из широчайших областей современной техники — электронике. Смотрите ли вы телевизор, слушаете радиоприемник или пользуетесь музыкальным центром — всюду «работает» электроника. Это она «рисует» изображение на экране телевизора и «приносит» в квартиры голос диктора, превращает запись на магнитной ленте аудиокассеты и бороздках компакт-дисков в звук.

Внимательно посмотрите вокруг, и вы увидите немало приборов, которые благодаря электронике рождаются вторично, например наручные или настольные часы.

Электронные устройства в них с большой точностью отсчитывают секунды и минуты, показывая на экране время. А возьмите телефонный аппарат: в нем появилась электронная память, способная сохранять десятки номеров. Набирать их необязательно — достаточно нажать на кнопку, которой соответствует определенный номер. В фотоаппарате электронный «глаз» следит за освещенностью объекта съемки и автоматически устанавливает нужную выдержку. Даже квартирные звонки — электронные. При нажатии на кнопку возле входной двери в квартире раздаются звуки, которые имитируют пение птиц или мелодию известной песни, а иногда женский или мужской голос, который говорит: «Откройте дверь!».

В настоящее время электроника дает возможность решать задачи, которые раньше казались неразрешимыми. Она помогает человеку изучать поверхность и окружающее пространство Луны и некоторых планет, например Венеры и Марса. С помощью электроники человек может наблюдать за развитием живой клетки; за доли секунды выполнять вычисления, на которые расходовались годы; видеть в полной темноте, как днем.

Порой электроника заменяет человека в его работе: сегодня можно встретить электронного диспетчера, секретаря, экскурсовода, закройщика, переводчика. Электронику даже научили играть в шахматы! И не просто играть, а выигрывать у гроссмейстеров!

На промышленных предприятиях электроника автоматически поддерживает заданную температуру и влажность в помещениях, руководит станками и поточными линиями, выполняет сложнейшие операции. В космонавтике без электроники невозможно точно рассчитать траекторию полета корабля, поддерживать видео и телефонную связь с космонавтами, руководить полетом искусственных спутников с Земли. Электроника пришла даже школу. Уже с 6-го класса детей учат программированию, основам веб-дизайна — всему тому, что ранее казалось фантастикой…

Какую бы профессию вы ни выбрали, с электроникой будете встречаться всюду. Чем раньше вы с ней «познакомитесь», тем плотнее будет дальнейшее «сотрудничество». Сделать первый шаг к такому знакомству поможет данная книга.

С ее помощью вы научитесь собирать очень простые и сложные электронные самоделки. Многие начинают работать сразу, но есть и такие, которые придется налаживать с помощью измерительного прибора. Практически все самоделки — прототипы электронных приборов, используемых в быту или на промышленных предприятиях.

Не спешите сразу строить понравившуюся самоделку, ведь у вас нет опыта и знаний. На простейших устройствах постарайтесь понять принцип построения электронных схем и их монтажа. Постепенно постигая азбуку практической электроники, вы станете радиолюбителем, который умеет не только «читать» радиосхемы, но и монтировать, а также налаживать разнообразнейшие конструкции.

Будет лучше, если вы начнете изучать электронику вместе с друзьями, организовав домашний радиокружок, возможно, вместе со взрослыми при ЖЭКе. В таком кружке смогут заниматься ребята из ближайших домов.

Надеюсь, что моя книга станет добрым практическим руководством в работе. В дополнение к ней постарайтесь взять в библиотеке другие пособия. Они дадут возможность лучше разобраться в физических процессах, происходящих в созданных вами электронных устройствах, а также найти ответы на любые возникающие вопросы. Не забывайте и про ближайшие внешкольные учреждения (если таковые еще остались), где вы сможете получить любую консультацию и практическую помощь. Итак, дерзайте!

Желаю успехов!

Глава 1

Уроки юного конструктора

Можно ли сесть за руль автомобиля, не зная, как запустить двигатель и для чего нужны педали и ручки управления?

Конечно, нет, скажете вы. Сначала надо ознакомиться с назначением каждой ручки, выучить строение автомобиля, а потом уже ездить на нем. Так и с нашими конструкциями. В них используются разнообразнейшие детали, каждая из которых выполняет свою заранее установленную функцию. Чтобы создать любое устройство, надо знать, для чего нужны детали, входящие в него, уметь проверять их, соединять между собой, налаживать созданную конструкцию.

Получить базовые знания об электрическом токе, радиодеталях и правилах создания изделий вам поможет этот раздел. Конечно, не все сведения, которые помещены в нем, будут понятны после первого прочтения. Не огорчайтесь — практика вам поможет! Главное — хорошо выучите правила безопасности работы и смелее беритесь за нее. А к этим материалам, имеющим в основном ознакомительный характер, обращайтесь при возникновении вопросов.

Знакомство с электричеством и другими величинами измерения

Представьте большой резервуар с водой, находящейся под давлением, которая в любой момент может вырваться наружу. От резервуара отходит труба с краном. Открыли кран, и вода полилась через трубу в бассейн. Если диаметр трубы маленький, скорость потока небольшая. С увеличением диаметра трубы вырастает и скорость потока. Происходит это потому, что труба с большим диаметром оказывает меньшее сопротивление напору воды, и она вытекает с более высокой скоростью.

Предположим, что резервуар с водой — это источник электрической энергии, который имеет определенное напряжение (давление воды), а труба — нагрузка, сопротивление (диаметр трубы), которое может изменяться. Тогда водный поток можно воспринять как электрический ток, который проходит через нагрузку.

Пока сопротивление нагрузки маленькое (диаметр трубы большой), через него идет значительный ток (большая скорость потока). Если же сопротивление возрастает (уменьшается диаметр трубы), электрический ток (скорость потока), наоборот, уменьшается. По такой аналогии вы, наверное, можете самостоятельно определить, как изменится ток при увеличении напряжения (повышении давления воды в резервуаре).

А теперь перейдем к единицам измерения напряжения, тока и сопротивления.

Напряжение измеряют в вольтах, обозначая эту единицу буквой В (в английском варианте — V). Если вы посмотрите на этикетку, например пальчиковой батарейки, то заметите на ней надпись «1,5 В». Это значит, что напряжение батареи 1,5 В. На этикетке также есть знаки «+» и «-», чаще всего просто «+», что означает полярность выводов. Она указывает, в каком направлении будет идти ток, если к батарее подключить нагрузку, скажем, лампочку карманного фонаря.

Вы все, конечно, видели такую лампочку и знаете, что внутри стеклянного баллона в ней подвешен тонкий металлический волосок. Один его конец припаян к нарезной части лампочки, а второй — к контакту внизу. Нарезная часть и контакт — это выводы лампочки. Как только их подключают к выводам батареи, через волосок лампочки начинает течь электрический ток. Направление его будет определено — от плюсового вывода батареи к минусовому. Поскольку ток идет в одном направлении непрерывно, его называют постоянным, напряжение также — постоянным (рис. 1.1).

Рис. 1.1. Подключение лампочки к батарее питания.

На рис. 1.2 показано, как данная цепь будет выглядеть на принципиальной схеме. Именно такие схемы мы научимся читать и подбирать к ним детали.

Рис. 1.2. Принципиальная схема подключения лампочки к батарейке.

Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

Полистать

Авторы

Жанры

  • Сделай сам
  • sci_radio
title: Купить бумажную версию: load_event: page_load feed_id: 9474 pattern_id: 5592 book_author: Дригалкин В. В. book_name: Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

О книге:

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно. Книга также содержит небольшой справочник по радиодеталям, который, возможно, будет интересен и профессионалам. Данный учебник написан доступным и простым языком, без лишней литературной лирики. Чтобы познакомить юных радиолюбителей с электричеством и различными величинами измерения, использован элементарный метод сравнения. Рядом с каждой принципиальной схемой — изображение с внешним видом и цоколевкой (расположение выводов) радиодеталей. Все подробно описано, иногда представлен монтаж того или иного устройства, чтобы визуально можно было увидеть, что же должно получиться.

В. Дригалкин — Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности читать онлайн

Дригалкин В.В.

«Как освоить радиоэлектронику с нуля.

Учимся собирать конструкции любой сложности»

Дорогие читатели!

Все вы, конечно, знаете об одной из широчайших областей современной техники — электронике. Смотрите ли вы телевизор, слушаете радиоприемник или пользуетесь музыкальным центром — всюду «работает» электроника. Это она «рисует» изображение на экране телевизора и «приносит» в квартиры голос диктора, превращает запись на магнитной ленте аудиокассеты и бороздках компакт-дисков в звук.

Внимательно посмотрите вокруг, и вы увидите немало приборов, которые благодаря электронике рождаются вторично, например наручные или настольные часы. Электронные устройства в них с большой точностью отсчитывают секунды и минуты, показывая на экране время. А возьмите телефонный аппарат: в нем появилась электронная память, способная сохранять десятки номеров. Набирать их необязательно — достаточно нажать на кнопку, которой соответствует определенный номер. В фотоаппарате электронный «глаз» следит за освещенностью объекта съемки и автоматически устанавливает нужную выдержку. Даже квартирные звонки — электронные. При нажатии на кнопку возле входной двери в квартире раздаются звуки, которые имитируют пение птиц или мелодию известной песни, а иногда женский или мужской голос, который говорит: «Откройте дверь!».

В настоящее время электроника дает возможность решать задачи, которые раньше казались неразрешимыми. Она помогает человеку изучать поверхность и окружающее пространство Луны и некоторых планет, например Венеры и Марса. С помощью электроники человек может наблюдать за развитием живой клетки; за доли секунды выполнять вычисления, на которые расходовались годы; видеть в полной темноте, как днем.

Порой электроника заменяет человека в его работе: сегодня можно встретить электронного диспетчера, секретаря, экскурсовода, закройщика, переводчика. Электронику даже научили играть в шахматы! И не просто играть, а выигрывать у гроссмейстеров!

На промышленных предприятиях электроника автоматически поддерживает заданную температуру и влажность в помещениях, руководит станками и поточными линиями, выполняет сложнейшие операции. В космонавтике без электроники невозможно точно рассчитать траекторию полета корабля, поддерживать видео и телефонную связь с космонавтами, руководить полетом искусственных спутников с Земли. Электроника пришла даже школу. Уже с 6-го класса детей учат программированию, основам веб-дизайна — всему тому, что ранее казалось фантастикой…

Какую бы профессию вы ни выбрали, с электроникой будете встречаться всюду. Чем раньше вы с ней «познакомитесь», тем плотнее будет дальнейшее «сотрудничество». Сделать первый шаг к такому знакомству поможет данная книга. С ее помощью вы научитесь собирать очень простые и сложные электронные самоделки. Многие начинают работать сразу, но есть и такие, которые придется налаживать с помощью измерительного прибора. Практически все самоделки — прототипы электронных приборов, используемых в быту или на промышленных предприятиях.

Не спешите сразу строить понравившуюся самоделку, ведь у вас нет опыта и знаний. На простейших устройствах постарайтесь понять принцип построения электронных схем и их монтажа. Постепенно постигая азбуку практической электроники, вы станете радиолюбителем, который умеет не только «читать» радиосхемы, но и монтировать, а также налаживать разнообразнейшие конструкции.

Будет лучше, если вы начнете изучать электронику вместе с друзьями, организовав домашний радиокружок, возможно, вместе со взрослыми при ЖЭКе. В таком кружке смогут заниматься ребята из ближайших домов.

Надеюсь, что моя книга станет добрым практическим руководством в работе. В дополнение к ней постарайтесь взять в библиотеке другие пособия. Они дадут возможность лучше разобраться в физических процессах, происходящих в созданных вами электронных устройствах, а также найти ответы на любые возникающие вопросы. Не забывайте и про ближайшие внешкольные учреждения (если таковые еще остались), где вы сможете получить любую консультацию и практическую помощь. Итак, дерзайте!

Желаю успехов!

Глава 1

Уроки юного конструктора

Можно ли сесть за руль автомобиля, не зная, как запустить двигатель и для чего нужны педали и ручки управления?

Конечно, нет, скажете вы. Сначала надо ознакомиться с назначением каждой ручки, выучить строение автомобиля, а потом уже ездить на нем. Так и с нашими конструкциями. В них используются разнообразнейшие детали, каждая из которых выполняет свою заранее установленную функцию. Чтобы создать любое устройство, надо знать, для чего нужны детали, входящие в него, уметь проверять их, соединять между собой, налаживать созданную конструкцию.

Получить базовые знания об электрическом токе, радиодеталях и правилах создания изделий вам поможет этот раздел. Конечно, не все сведения, которые помещены в нем, будут понятны после первого прочтения. Не огорчайтесь — практика вам поможет! Главное — хорошо выучите правила безопасности работы и смелее беритесь за нее. А к этим материалам, имеющим в основном ознакомительный характер, обращайтесь при возникновении вопросов.


Знакомство с электричеством и другими величинами измерения

Представьте большой резервуар с водой, находящейся под давлением, которая в любой момент может вырваться наружу. От резервуара отходит труба с краном. Открыли кран, и вода полилась через трубу в бассейн. Если диаметр трубы маленький, скорость потока небольшая. С увеличением диаметра трубы вырастает и скорость потока. Происходит это потому, что труба с большим диаметром оказывает меньшее сопротивление напору воды, и она вытекает с более высокой скоростью.

Предположим, что резервуар с водой — это источник электрической энергии, который имеет определенное напряжение (давление воды), а труба — нагрузка, сопротивление (диаметр трубы), которое может изменяться. Тогда водный поток можно воспринять как электрический ток, который проходит через нагрузку.

Пока сопротивление нагрузки маленькое (диаметр трубы большой), через него идет значительный ток (большая скорость потока). Если же сопротивление возрастает (уменьшается диаметр трубы), электрический ток (скорость потока), наоборот, уменьшается. По такой аналогии вы, наверное, можете самостоятельно определить, как изменится ток при увеличении напряжения (повышении давления воды в резервуаре).


Как освоить радиоэлектронику с нуля

Название: Как освоить радиоэлектронику с нуля.

Автор: Дригалкин В.В.

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, – воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно. Книга также содержит небольшой справочник по радиодеталям, который, возможно, будет интересен и профессионалам.
Данный учебник написан доступным и простым языком, без лишней литературной лирики. Чтобы познакомить юных радиолюбителей с электричеством и различными величинами измерения, использован элементарный метод сравнения. Рядом с каждой принципиальной схемой – изображение с внешним видом и цоколевкой (расположение выводов) радиодеталей. Все подробно описано, иногда представлен монтаж того или иного устройства, чтобы визуально можно было увидеть, что же должно получиться.

Дорогие читатели!
Все вы, конечно, знаете об одной из широчайших областей современной техники – электронике. Смотрите ли вы телевизор, слушаете радиоприемник или пользуетесь музы-кальным центром – всюду «работает» электроника. Это она «рисует» изображение на экране телевизора и «приносит» в квартиры голос диктора, превращает запись на магнитной ленте аудиокассеты и бороздках компакт-дисков в звук.
Внимательно посмотрите вокруг, и вы увидите немало приборов, которые благодаря электронике рождаются вторично, например наручные или настольные часы. Электронные устройства в них с большой точностью отсчитывают секунды и минуты, показывая на экране время. А возьмите телефонный аппарат: в нем появилась электронная память, способная сохранять десятки номеров. Набирать их необязательно – достаточно нажать на кнопку, которой соответствует определенный номер. В фотоаппарате электронный «глаз» следит за освещенностью объекта съемки и автоматически устанавливает нужную выдержку. Даже квартирные звонки – электронные. При нажатии на кнопку возле входной двери в квартире раздаются звуки, которые имитируют пение птиц или мелодию известной песни, а иногда женский или мужской голос, который говорит: «Откройте дверь!».

Содержание
От автора
Глава 1
Уроки юного конструктора
Знакомство с электричеством и другими величинами
измерения
Ознакомление с радиодеталями
Резисторы
Конденсаторы
Полупроводниковые приборы
Транзисторы
Стабилитроны
Диоды
Прочие радиодетали
Глава 2
Инструмент и устройства
Рабочее место радиолюбителя
Измерительный прибор
Пользуемся цифровым прибором
Измерение постоянного и переменного напряжения
Измерение постоянного тока
Измерение сопротивления
Прозвонка диодов
Измерение и проверка емкостей и индуктивностей
Разное
Пользуемся стрелочным прибором
Проверка резисторов
Проверка конденсаторов
Проверка катушек индуктивности
Проверка низкочастотных дросселей и трансформаторов
Проверка диодов
Проверка тиристоров
Проверка транзисторов
Секреты правильной пайки
Глава 3
Основные правила безопасности
Правила необходимо знать и соблюдать!
Действие электрического тока на человека
Что представляет собой молния?
Глава 4
Закон Ома
Основной принцип закона Ома
Немного истории
Глава 5
Мои первые самоделки
Вспышки на светодиоде
Электронная канарейка
Индикатор занятой телефонной линии
Глава 6
Знакомство с микросхемами
Микросхемы широкого применения
Глава 7
Применение специализированных микросхем
на практике
Мой первый усилитель мощности
Регулятор громкости, баланса и тембра УНЧ
Глава 8
Разработка и изготовление печатных плат
Основные правила разработки плат
Травление печатных плат
Радиолюбители советуют
Компоновка радиодеталей на плате
Глава 9
Профессиональная схемотехника
Стереофонический УНЧ с темброблоком
Стереофонический приемник FM-диапазона
Индикатор выходного сигнала
Глава 10
Электричество – друг человека
Источник питания своими руками
Блок питания для электромеханических часов
Подсветка для выключателя
Регулятор яркости светильника
Фазометр своими руками
Искатель скрытой проводки
Глава 11
Подборка принципиальных схем
Предварительный усилитель
УНЧ с необычным темброблоком
Музыкальный квартирный звонок
Новогодняя гирлянда
Автомат периодического включения
и выключения нагрузки
Универсальное зарядное устройство
Цифровые электронные часы
Глава 12
Софт радиоконструктора
Описание пакета CircuitMaker
Подводим итоги
Глава 13
Справочный листок
Учимся выбирать батарейки
Сокращенное обозначение номиналов на резисторах
и конденсаторах
Цветовая маркировка постоянных резисторов
Последовательное и параллельное соединение
резисторов и конденсаторов
Зарубежные выпрямительные диоды и мосты
Микросхемные стабилизаторы напряжения
Маркировка и характеристика тиристоров
Цоколевка транзисторов
Музыкальные синтезаторы серии УМС
Англо-русский технический словарик

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Как освоить радиоэлектронику с нуля – Дригалкин В. В. – fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Название: Как освоить радиоэлектронику с нуля.

Автор: Дригалкин В.В.

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, – воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно. Книга также содержит небольшой справочник по радиодеталям, который, возможно, будет интересен и профессионалам.
Данный учебник написан доступным и простым языком, без лишней литературной лирики. Чтобы познакомить юных радиолюбителей с электричеством и различными величинами измерения, использован элементарный метод сравнения. Рядом с каждой принципиальной схемой – изображение с внешним видом и цоколевкой (расположение выводов) радиодеталей. Все подробно описано, иногда представлен монтаж того или иного устройства, чтобы визуально можно было увидеть, что же должно получиться.

Дорогие читатели!
Все вы, конечно, знаете об одной из широчайших областей современной техники – электронике. Смотрите ли вы телевизор, слушаете радиоприемник или пользуетесь музы-кальным центром – всюду «работает» электроника. Это она «рисует» изображение на экране телевизора и «приносит» в квартиры голос диктора, превращает запись на магнитной ленте аудиокассеты и бороздках компакт-дисков в звук.
Внимательно посмотрите вокруг, и вы увидите немало приборов, которые благодаря электронике рождаются вторично, например наручные или настольные часы. Электронные устройства в них с большой точностью отсчитывают секунды и минуты, показывая на экране время. А возьмите телефонный аппарат: в нем появилась электронная память, способная сохранять десятки номеров. Набирать их необязательно – достаточно нажать на кнопку, которой соответствует определенный номер. В фотоаппарате электронный «глаз» следит за освещенностью объекта съемки и автоматически устанавливает нужную выдержку. Даже квартирные звонки – электронные. При нажатии на кнопку возле входной двери в квартире раздаются звуки, которые имитируют пение птиц или мелодию известной песни, а иногда женский или мужской голос, который говорит: «Откройте дверь!».

Содержание
От автора
Глава 1
Уроки юного конструктора
Знакомство с электричеством и другими величинами
измерения
Ознакомление с радиодеталями
Резисторы
Конденсаторы
Полупроводниковые приборы
Транзисторы
Стабилитроны
Диоды
Прочие радиодетали
Глава 2
Инструмент и устройства
Рабочее место радиолюбителя
Измерительный прибор
Пользуемся цифровым прибором
Измерение постоянного и переменного напряжения
Измерение постоянного тока
Измерение сопротивления
Прозвонка диодов
Измерение и проверка емкостей и индуктивностей
Разное
Пользуемся стрелочным прибором
Проверка резисторов
Проверка конденсаторов
Проверка катушек индуктивности
Проверка низкочастотных дросселей и трансформаторов
Проверка диодов
Проверка тиристоров
Проверка транзисторов
Секреты правильной пайки
Глава 3
Основные правила безопасности
Правила необходимо знать и соблюдать!
Действие электрического тока на человека
Что представляет собой молния?
Глава 4
Закон Ома
Основной принцип закона Ома
Немного истории
Глава 5
Мои первые самоделки
Вспышки на светодиоде
Электронная канарейка
Индикатор занятой телефонной линии
Глава 6
Знакомство с микросхемами
Микросхемы широкого применения
Глава 7
Применение специализированных микросхем
на практике
Мой первый усилитель мощности
Регулятор громкости, баланса и тембра УНЧ
Глава 8
Разработка и изготовление печатных плат
Основные правила разработки плат
Травление печатных плат
Радиолюбители советуют
Компоновка радиодеталей на плате
Глава 9
Профессиональная схемотехника
Стереофонический УНЧ с темброблоком
Стереофонический приемник FM-диапазона
Индикатор выходного сигнала
Глава 10
Электричество – друг человека
Источник питания своими руками
Блок питания для электромеханических часов
Подсветка для выключателя
Регулятор яркости светильника
Фазометр своими руками
Искатель скрытой проводки
Глава 11
Подборка принципиальных схем
Предварительный усилитель
УНЧ с необычным темброблоком
Музыкальный квартирный звонок
Новогодняя гирлянда
Автомат периодического включения
и выключения нагрузки
Универсальное зарядное устройство
Цифровые электронные часы
Глава 12
Софт радиоконструктора
Описание пакета CircuitMaker
Подводим итоги
Глава 13
Справочный листок
Учимся выбирать батарейки
Сокращенное обозначение номиналов на резисторах
и конденсаторах
Цветовая маркировка постоянных резисторов
Последовательное и параллельное соединение
резисторов и конденсаторов
Зарубежные выпрямительные диоды и мосты
Микросхемные стабилизаторы напряжения
Маркировка и характеристика тиристоров
Цоколевка транзисторов
Музыкальные синтезаторы серии УМС
Англо-русский технический словарик

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Как освоить радиоэлектронику с нуля – Дригалкин В. В. – fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Научиться можно только тому, что любишь.
Гёте И.

«Как самостоятельно изучить электронику с нуля?» — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.

Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку — будет интересно!

Творчество и результат

Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину. Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.

Как нас обычно учат

Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле.

А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.

Есть такая старая инженерная шутка гласит: «Раз ты хорош в математике, то тебе надо пойти в электронику». Типичная чушь. Электроника — это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.

Главное — это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на «метод тыка», но только если не искать ответа, а тупо повторять одно и тоже действие.

Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?

Конструирование — это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе.

Математика в электронике

В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения, владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше – люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.

Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)

И тогда япошел самым старым и простым путём: через книги. В хороших книгах тематика обсуждается наиболее полно и нет пустой болтовни. Конечно, в книгах есть и ошибки, и косноязычие. Просто надо знать какие книги читать и в каком порядке. После прочтения хорошо написанных книг и результат будет отличным.

Мой совет прост, но полезен — читайте книги и журналы. Я, к примеру, хочу не только повторять чужие схемы, а уметь конструировать свои. Создавать — это интересно и весело. Именно таким должно быть моё хобби: интересным и занимательным. Да и ваше тоже.

Какие книги помогут освить электронику

Много времени я провел выискивая подходящие книги. И понял, что надо сказать спасибо СССР. Такой массив полезных книг после него остался! СССР можно ругать, можно хвалить. Смотря за что. Так вот за книги и журналы для радиолюбителей и школьников надо благодарить. Тиражи бешеные, авторы отборные. До сих пор можно найти книги для новичков, которые дадут фору всем современным. Поэтому есть смысл пройтись по букинистам и поспрашивать (да и скачать все можно).

  1. Седов Е.А. – Мир электроники – 1990
  2. Борисов. Энциклопедия юного радиолюбителя
  3. Сворень. Электроника. Шаг за шагом
  4. Сворень. Транзисторы. Шаг за шагом. 1971
  5. Айсберг. Радио? Это очень просто!
  6. Айсберг. Транзистор? Это очень просто!
  7. Климчевский Ч. – Азбука радиолюбителя.
  8. Атанас Шишков. Первые шаги в радиоэлектронике
  9. Эймишен. Электроника? Нет ничего проще.
  10. Б.С.Иванов. Осциллограф – ваш помощник (как работать с осциллографом)
  11. В. Новопольский – Работа с осциллографом
  12. Хабловски. И. Электроника в вопросах и ответах
  13. Никулин, Повный. Энциклопедия начинающего радиолюбителя
  14. Ревич. Занимательная электроника
  15. Колдунов. Радиолюбительская азбука
  16. Шишков. Первые шаги в радиоэлектронике
  17. Радиоэлектроника. Понемногу – обо всём.
  18. Колдунов. Радиолюбительская азбука
  19. Бессонов В.В. Электроника для начинающих и не только
  20. В. Новопольский – Работа с осциллографом
  21. Тигранян. Хрестоматия радиолюбителя

Это мой список книг для самых «маленьких». Обязательно следует пролистывать и журналы Радио с 70х по 90е гг. После этого можно уже читать:

  1. Гендин. Советы по конструированию
  2. Хоровиц, Хилл. Искусство схемотехники.
  3. Кауфман, Сидман. Практическое руководство по расчетам схем в электронике
  4. Ленк. Электронные схемы. руководство
  5. Волович Г. Схемотехника аналоговых и аналого-цифровых электронных устройств
  6. Титце, Шенк. Полупроводниковая схемотехника. 12-е изд.
  7. Шустов М. А. Практическая схемотехника.
  8. Гаврилов С.А.-Полупроводниковые схемы. Секреты разработчика
  9. Барнс. Эллектронное конструирование
  10. Миловзоров. Элементы информационных систем
  11. Ревич. Практическое программирвоание МК AVR
  12. Белов. Самоучитель по Микропроцессорной технике
  13. Суэмацу. Микрокомпьютерные системы управления. Первое знакомство
  14. Ю.Сато. Обработка сигналов
  15. Д.Харрис, С. Харрис. Цифровая схемотехника и архитектура компьютера
  16. Янсен. Курс цифровой электроники

Думаю, эти книги ответят на множество вопросов. Более специальные знания можно почерпнуть из более специальных книг: по аудиоусилителям, по микроконтроллерам и т.д.

И конечно же нужно практиковаться. Без паяльника вся теория в прорубь. Это как водить машину в голове.
Кстати, более подробные обзоры некоторых книг из списка выше можешь прочитать в разделе «Читалка».

Что еще следует делать?

Учиться читать схемы устройств! Учиться анализировать схему и стараться понять как работает устройство. Этот навык приходит только с тренировкой. Начинать надо с самых простых схем, постепенно наращивая сложность. Благодаря этому ты не только изучишь обозначения радиоэлементов на схемах, но и научишься их анализировать, а также запомнишь ходовые приемы и решения.

Дорого ли заниматься электроникой

К сожалению, деньги потребуются! Радиолюбительство не самое дешевое хобби и потребуется некоторый минимум фин. вложений. Но начать можно практически без вложений: книги можно доставать буккросингах или брать в библиотеках, читать в электронном виде, приборы можно купить для начала самые простые, а более продвинутые купить тогда, когда будет не хватать возможностей простых приборов.

Сейчас купить можно всё: осциллограф, генератор, источник питания и другие измерительные приборы для домашней лаборатории — всё это следует со временем приобрести (или сделать самому то, что в домашних условиях сделать можно)

Но когда ты маленький и начинающий можно обойтись пальником и деталями из сломанный техники, которую кто-нибудь выкидывает или просто валялась дома давно без дела. Главное иметь желание! А остальное приложится.

Что делать, если не получается?

Продолжать! Редко что-то получается хорошо с первого раза. А бывает так, что результатов нет и нет — будто упёрся в невидимый барьер. Кто-то этот барьер преодолевает за полгода-год, а другие только через несколько лет.

Если сталкиваешься со сложностями, то не надо рвать волосы и думать о себе, что ты самый тупой на свете, так как Вася понимает, что такое обратный ток коллектора, а вот ты все никак не можешь понять почему он играет роль. Может быть Вася просто надувает щёки, а сам ни бум-бум =)

Качествои и скорость самообучения зависят не только от личных способностей, но и от окружения. Вот тут надо радоваться существованию форумов. На них все таки встречаются (и часто) вежливые профессионалы, готовые с радостью учить новичков. (Есть еще всякие грымзы, но считаю таких людей потерянной веткой эволюции. Мне их жаль. загибать пальцы — это понты самого низкого уровня. Лучше просто молчать)

Полезные программы

Обязательно следует ознакомиться с САПРами: рисовалками принципиальных схем и печатных плат, симуляторами, — полезные и удобные программы (Eagele, SprintLayout и т.д.). Я выделил на сайте целый раздел под них. Время от времени там будут появляться материалы по работе с программами, которые использую сам.

И самое главное — испытывайте радость творчества от радиолюбительства! На мой взгляд к любому делу следует относится как к игре. Тогда оно будет и занимательным и познавательным.

О практике

Обычно каждый радиолюбитель всегда знает какое устройство хочет сделать. Но если ты еще не определился, то я посоветую собрать источник питания, разобраться для чего нужна и как работает каждая его часть. Затем можно обратить внимание на усилители. И собрать, например, аудиоусилитель.

Можно поэксперементировать с самыми простыми электрическими цепями: делителем напряжения, диодным выпрямителем, фильтрами ВЧ/СЧ/НЧ, транзистором и однотранзисторными каскадами, простейшими цифровыми схемами, конденсаторами, индуктивностями. Всё это пригодится в дальнейшем, а знание таких основных цепей и компонентов придаст уверенность в своих силах.

Когда шаг за шагом идешь от простейшего к более сложному, тогда знания порционно накладываются друг на друга и легче освоить более сложные темы. Но иногда не ясно из каких кирпичиков и как следует сложить здание. Поэтому иногда следует действовать наоборот: поставить цель собрать какое-нибудь устройство и освоить множество вопросов при его сборке.

Как освоить радиоэлектронику с нуля

 Невозможно представить современный мир без электроники. Ноутбук или телефон, приемник или музыкальный центр, наблюдение за космосом или старт ракеты на орбиту — она везде. Именно она превращает в звук бороздки на компакт-дисках, “приносит” в дом голос телевизионного диктора или друга по скайпу. А если пристально оглядеться вокруг, то вы увидите, что и старые устройства, благодаря электронике получают новую жизнь.

 Например, раньше наручные часы показывали время с часами, минутами и секундами, реже — с датой, а теперь? В часах можно встретить и плеер, и измеритель пульса, и прогноз погоды, и анализатор нагрузок — продолжать можно бесконечно, притом, что и отсчет времени ведется в тысячи раз точнее простых механических часов. А фотоаппарат? Да в принципе современный фотоаппарат уже без электроники не работает. Даже возможности обыкновенного дверного звонка настолько продвинулись вперед, что впору хвататься за голову.

 Электроника решает задачи, которые еще лет десять назад казались неразрешимыми. Она помогает человеку во всем — изучать Марс или Луну, наблюдать развитие живой клетки, играть в шахматы и выигрывать, видеть в темноте. А возможности электронного секретаря или диспетчера?

А ведь есть еще промышленное производство, где электроника управляет сложнейшими процессами, включая работу огромных станков и сварочных аппаратов. Да и современную школу трудно представить без электроники — планшеты, интерактивные доски, компьютеры и многое другое позволяют усваивать знания гораздо эффективнее.

 Мир без электроники невозможен, а потому, если вы начнете знакомиться с ней пораньше, то и результат будет намного лучше. Для этого и написана представляемая книга. В основном она посвящена электронным самоделкам, которые можно сделать самому. Но без теории в практике не обойтись, а потому в ней представлены базовые знания, которые не просто помогут в конструировании самоделок, но и пригодятся в жизни в дальнейшем. Практическая электроника поможет вам научиться “читать” радиосхемы, делать монтаж, ремонт и наладку самого разного оборудования.

 Книга рекомендована в качестве учебника для школьников, начиная с 6-го класса. Наиболее эффективно изучение материала в коллективе, например в кружке или на факультативе.

 Скачать книгу В.В. Дригалкина «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности» можно здесь: http://flibusta.is/b/432410

Книга 2007 года издания.

Книга «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности»

Книга «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности» автора В. В. Дригалкин оценена читателями портала RateLib на 4,5 из 5 баллов на основании 2 оценок, содержит 69 страниц, которые вы можете читать онлайн бесплатно.
Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные …

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.

Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно. Книга также содержит небольшой справочник по радиодеталям, который, возможно, будет интересен и профессионалам.

Данный учебник написан доступным и простым языком, без лишней литературной лирики. Чтобы познакомить юных радиолюбителей с электричеством и различными величинами измерения, использован элементарный метод сравнения. Рядом с каждой принципиальной схемой — изображение с внешним видом и цоколевкой (расположение выводов) радиодеталей. Все подробно описано, иногда представлен монтаж того или иного устройства, чтобы визуально можно было увидеть, что же должно получиться.

Читать полностью

Читать 👀 онлайн 📲 Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

Глава 11

Подборка принципиальных схем

Вы узнали достаточно много, чтобы стать настоящим радиолюбителем. С каждым днем электроника совершенствуется, разрабатываются и воплощаются в жизнь новые идеи гениальных ученых, а нам остается только успевать следить за ними, дабы постоянно пополнять знания в области электроники. Чтобы закрепить текущие знания, предлагаю собрать несколько новых самоделок…

Предварительный усилитель

Предварительные усилители используют для «раскачки» входного сигнала, подаваемого на УНЧ. Например, у вас есть усилитель мощности, но, подключая к нему магнитофон, вы не получаете от него всей возможной мощности. Поставив между магнитофоном и УНЧ предусилитель, вы увеличите мощность звука.

Простой двухкаскадный предусилитель на комплементарной паре транзисторов (рис. 11.1) обеспечивает усиление напряжения в 32 раза (30 дБ). Оно зависит от соотношения сопротивлений резисторов R6 и R2. Варьируя величину R2, изменяют усиление в большую или в меньшую сторону. Вместо указанных на схеме транзисторов можно применить отечественные аналоги, например КТ3102, КТ3342, КТ315 (n-p-n) и КТЗ107, КТ209, КТ361 (p-n-р), а также КТ3107, КТ209, КТ361 (p-n-р) с любыми буквенными индексами, но с возможно большим значением коэффициента усиления по току.

Рис. 11.1. Принципиальная схема предварительного усилителя.

УНЧ с необычным темброблоком

Интересный усилитель низкой частоты с необычным темброблоком можно собрать по схеме, представленной на рис. 11.2.

Рис.  11.2. Принципиальная схема УНЧ с необычным темброблоком

В основе схемы — микросхема А210К. Регулятор громкости и тембра состоит всего из двух переменных резисторов: частотнокомпенсированного регулятора громкости R7 и тембра R4. Нам нужен переменный резистор R7 с отводом от середины. Сразу предупреждаю, что найти такой проблематично. В крайнем верхнем положении движка R4 подчеркиваются высшие частоты, в нижнем — низшие. В среднем положении движка частотная характеристика линейна. Мощность усилителя при напряжении питания 9 В около 0,5 Вт, а при 12 В достигает 2 Вт. Аналог микросхемы А210К — отечественный чип К174УН7. Распиновку этой микросхемы вы можете увидеть на рис. 11.3.

Рис. 11.3. Распиновка микросхемы К174УН7.

Музыкальный квартирный звонок

Сейчас уже никто не удивляется, если при нажатии на кнопку дверного звонка, вместо привычного «тр…р» или «динь-дон» раздается отрывок популярного музыкального произведения, голоса животных или трель птиц. В магазинах бытовой электроники продается много различных российских и зарубежных музыкальных звонков, которые зачастую дешевле электромеханических. Большинство отечественных звонков строятся на основе микросхем серии УМС-7 или УМС-8, собранных почти по типовой схеме. В радиолюбительской литературе неоднократно описывались недостатки типовой схемы (резкий звук, вызванный импульсным характером выходного сигнала; при кратковременном нажатии на кнопку «Пуск» первая мелодия звучит не до конца и др.) и предлагались усовершенствованные варианты схемы включения. На рис. 11.4 показана схема еще одного варианта такого звонка.

Рис. 11.4. Принципиальная схема музыкального квартирного звонка.

Ее отличие от типовой в том, что звучание более спокойное и мягкое, а при кратковременном нажатии на кнопку S3 (Bell) устройство полностью проигрывает музыкальный фрагмент.

Резкость звука звонка, включенного по типовой схеме, вызвана тем, что на динамическую головку, подсоединенную к коллекторной цепи выходного транзисторного ключа, поступают однополярные прямоугольные импульсы тока. Такой сигнал богат высокочастотными гармониками, которые, входя в резонанс с катушкой динамика и его механической системой, а также акустическим оформлением, придают музыкальному фрагменту несвойственную ему окраску. Кроме того, ток, протекающий через звуковую катушку динамика, содержит постоянную составляющую, которая смещает диффузор и уменьшает громкость звучания. В промежутках между различными участками музыкального фрагмента появляются громкие и резкие щелчки, вызванные перепадом этой постоянной составляющей. Работа транзистора в ключевом импульсном режиме на низкоомную нагрузку приводит к тому, что сопротивление транзистора в режиме насыщения оказывается намного больше, чем сопротивление звуковой катушки динамической головки. Именно поэтому значительная часть энергии тратится на нагревание транзистора, а не на раскачку диффузора.

Эти недостатки можно устранить, если динамик подключить к выходу транзисторного каскада через согласующий трансформатор (Т1), имеющий высокоомную первичную обмотку A) и низкоомную вторичную B). Кроме того, включив параллельно первичной обмотке конденсатор (С3), мы получаем колебательный контур, настроенный на среднюю частоту музыкальных фрагментов. Наличие трансформатора согласует низкоомную катушку динамика с относительно высокоомным выходом ключа, а наличие резонансного контура сглаживает прямоугольные импульсы, делая их более близкими к синусоидальным и подавляет ненужные высокочастотные гармоники.

Поскольку добротность контура невысокая, воспроизводятся все ноты, заложенные в музыкальный автомат. Наличие резонанса в контуре приводит к тому, что напряжение на первичной обмотке трансформатора получается немного выше напряжения питания микросхемы, что приводит к увеличению громкости звука.

Второй дефект типовой схемы состоит в том, что при кратковременном непродолжительном нажатии на кнопку Bell мелодия звучит не до конца. Дело в том, что время звучания в этом случае определяется не продолжительностью музыкального фрагмента, а емкостью конденсатора, блокирующего пусковую кнопку. В схеме (см. рис. 11.4) с инверсного выхода микросхемы (вывод 14) импульсы через С1 поступают на детектор на D1 и D2, поэтому на 13-м выводе микросхемы единица будет присутствовать все время, пока звучит музыкальный фрагмент.

Питается музыкальный звонок от бестрансформаторного источника питания на выпрямителе D7 и параметрическом стабилизаторе, состоящем из цепочки диодов D3-D6 и конденсатора С4, гасящего реактивное сопротивление. На диоды D3-D6 падает напряжение 2–2,5 В. Конденсатор С2 сглаживает пульсации полученного постоянного тока.

Трансформатор Т1, как уже говорилось ранее, должен иметь высокоомную первичную обмотку и низкоомную вторичную. Это можно померить тестером. Устройство не нуждается в налаживании, разве что конденсатором СЗ можно подстроить желаемый тембр звучания.

Новогодняя гирлянда

На сегодняшний день существует масса интересных елочных гирлянд, которые мигают и по-разному переливаются. Стоят они относительно недорого, но нет ничего лучше, чем собрать гирлянду самому. Пусть она будем менее функциональна, но знать, что это сделано собственными руками — это, признайтесь себе, приятно. Предлагаемое устройство (рис. 11.5) предназначено для управления гирляндой. Оно не требует налаживания и начинает работать сразу после включения питания.

Рис. 11.5. Принципиальная схема простой новогодней гирлянды.

В самоделке можно использовать следующие детали: диоды любого типа на ток не менее 300 мА и напряжение 250–300 В, например старые серии Д7, Д226, Д237 или один диодный блок КЦ402, КЦ405, КЦ410 с любым буквенным индексом; тиристор с такими же рабочими характеристиками, например КУ201К, КУ201Л, КУ202К — КУ202Н, КУ208В, КУ208Г, ТС122-8, ТС122-9.

Гирлянду лучше всего составить из 20 ламп на напряжение по 12 В или из 10 ламп на напряжение по 26 В. Остальные детали — любого типа. Частоту включения гирлянды можно изменять, увеличивая или уменьшая емкость конденсатора.

Автомат периодического включения и выключения нагрузки

В домашнем обиходе часто требуется, чтобы электробытовые приборы работали в периодическом режиме. Например, электронагреватель и вентилятор должны включаться и выключаться с определенными промежутками времени. Данное устройство (рис. 11.6) понадобится вам в такой ситуации, также оно может пригодиться, если ваш холодильник перестал отключаться.

Рис. 11.6. Принципиальная схема автомата периодического включения и выключения нагрузки.

Работает устройство так: при подаче питания на микросхему U1 начинает заряжаться конденсатор С1, в результате на выводе 3U1 появляется напряжение, близкое к напряжению питания. По окончании зарядки конденсатора С1 внутри микросхемы U1 открываться транзистор, соединяющий ее седьмой и первый выводы, вследствие чего конденсатор С1 разряжается через резистор R2. После этого цикл работы прибора повторяется. Время работы и отключения нагрузки представлены в табл. 11.1. Сверяясь с ней, легко рассчитать другое время.

Обязательно прикрепите симистор Q1 к радиатору. Размеры радиатора зависят от мощности коммутируемой нагрузки: чем больше мощность, тем больше радиатор.

Универсальное зарядное устройство

Эта самоделка (рис. 11.7) предназначена для зарядки любого количества никель-кадмиевых аккумуляторов. Достигается это изменением подачи определенного входного напряжения +VCC на устройство.

Рис. 11.7. Принципиальная схема универсального зарядного устройства.

Входное напряжение должно быть больше суммы заряжаемых аккумуляторов на 2 В, то есть, если вы заряжаете два аккумулятора, каждый естественно является носителем 1,5 В (а это в общем 3 В), подаваемое входное напряжение должно быть 5 В. Для этого устройства можно подобрать любые компоненты, главное, чтобы диоды были способны выдержать зарядный ток. Резисторы на схеме ваттностью 0,25 Вт, транзистор КТ814 можно заменить на КТ816. В процессе зарядки светодиод HL2 горит, по окончании гаснет.

Зарядное устройство собрано на плате из текстолита (рис. 11.8) размерами 76429 мм. На ней размещены детали и аккумуляторный отсек. Размеры платы рассчитаны на монтаж батарейного отсека на два аккумулятора. На рисунке слева представлен фрагмент платы, в котором исключен батарейный отсек. Далее дело за вами…

Рис. 11.8. Печатная плата универсального зарядного устройства.

Цифровые электронные часы

Цифровые электронные часы (рис. 11.9), предлагаемые вашему вниманию, собраны на хорошо известном радиолюбителям комплекте микросхем — К176ИЕ18 (двоичный счетчик для часов с генератором сигнала звонка), К176ИЕ13 (счетчик для часов с будильником) и К176ИД2 (преобразователь двоичного кода в семисегментный). Поэтому на рассказе о работе этих микросхем мы не будем останавливаться.

Рис. 11.9. Принципиальная схема электронных часов.

При включении питания в счетчик часов, минут и в регистр памяти будильника микросхемы U2 автоматически записываются нули. Для установки времени следует нажать кнопку S4 (Time Set) и, придерживая ее, нажать кнопку S3 (Hour) — для установки часов или S2 (Min) — для установки минут. При этом показания соответствующих индикаторов начнут изменяться с частотой 2 Гц от 00 до 59 и далее снова 00. В момент перехода от 59 к 00 показания счетчика часов увеличатся на единицу. Установка времени будильника происходит также, только придерживать нужно кнопку S5 (Alarm Set). После чего следует нажать кнопку S1 для включения будильника (контакты замкнуты). Кнопка S6 (Reset) служит для принудительного сброса индикаторов минут в 00 при настройке. Светодиоды D3 и D4 играют роль разделительных точек, мигающих с частотой 1 Гц. Цифровые индикаторы на схеме расположены в правильном порядке: индикаторы часов, две разделительные точки (светодиоды D3 и D4) и индикаторы минут.

В часах использовались резисторы R6-R12 и R14-R16 ваттностью 0,25 Вт остальные — 0,125 Вт. Кварцевый резонатор XTAL1 на частоту 32768 Гц — обычный часовой (лучше «совковый» в виде лодочки, импортные желательно не ставить, так как они не очень точные). Транзисторы КТ315А можно заменить на любые маломощные кремниевые соответствующей структуры, КТ815А — на транзисторы средней мощности со статическим коэффициентом передачи тока базы не менее 40, диоды — любые кремниевые маломощные. Пищалка BZ1 — динамическая, без встроенного генератора, сопротивление обмотки 45 Ом. Кнопка S1 естественно с фиксацией.

Индикаторы TOS-5163AG зеленого свечения, можно применить любые другие с общим катодом, не уменьшая при этом сопротивление резисторов R6-R12. На рис. 11.10 вы видите распиновку данного индикатора, выводы показаны условно, так как представлен вид сверху.

Рис. 11.10. Цоколевка:

 а — транзистора КТ315; б — транзистора КТ815; в — индикатора TOS-5163AG (вид сверху)

После сборки часов, возможно, понадобится подстроить частоту кварцевого генератора. Лучше всего это сделать, контролируя цифровым частотомером период колебаний 1 с на выводе 4 микросхемы U1. Настройка генератора по ходу часов потребует значительно большей затраты времени. Может быть, придется также подстроить яркость свечения светодиодов D3 и D4 подбором сопротивления резистора R5, чтобы все светилось равномерно ярко. Потребляемый часами ток не превышает 180 мА.

Часы питаются от обычного блока питания (рис. 11.11), собранного на плюсовом микросхемном стабилизаторе 7809 (рис. 11.12) с выходным напряжением +9 В и током 1,5 А.

Рис. 11.11. Принципиальная схема блока питания часов.

Рис. 11.12. Распиновка плюсового микросхемного стабилизатора 7809.

Трансформатор должен быть с выходным напряжением -9-12 В, лучше ~9 В, потому что в этом случае падение напряжения на микросхемном стабилизаторе будет минимальным, соответственно и его нагрев тоже. Это немаловажно для часов, питающихся от сети непрерывно.

Не забудьте поставить микросхемный стабилизатор на небольшой радиатор, сделанный из куска дюралюминиевой пластины. Конденсатор СЗ расположите вблизи цепи питания микросхем. Элементы часов лучше собрать в корпусе, спаянном из стеклотекстолита, и соединить его фольгу с общим проводом питания. Это устранит помехи в работе часов.

Изучите электронику с помощью этих 10 простых шагов

Вы хотите изучать электронику, чтобы создавать свои собственные гаджеты?

Существует масса ресурсов по изучению электроники — так с чего же начать?

А что вам собственно нужно?

А в каком порядке?

Если вы не знаете, что вам нужно изучить, вы легко можете потратить много времени на изучение ненужных вещей.

И если вы пропустите некоторые простые, но важные первые шаги, вам придется долго бороться даже с базовыми схемами.

Если ваша цель — создать собственные идеи с помощью электроники, то этот контрольный список для вас.

Хотите, чтобы в этом пошаговом контрольном списке в формате PDF были указаны точные шаги, которые я рекомендую для изучения электроники с нуля?
Щелкните здесь, чтобы загрузить контрольный список сейчас >>

Следуя приведенному ниже контрольному списку, вы быстро наберете скорость, даже если у вас еще не было опыта.

Хотя на выполнение некоторых из этих шагов у вас могут уйти выходные, другие можно выполнить менее чем за час — если вы найдете подходящий учебный материал.

Начните с прочтения всех шагов до конца, чтобы получить общее представление.

Затем решите, какой учебный материал вы будете использовать для выполнения каждого шага.

Тогда начни изучать электронику.

Шаг 1. Изучите замкнутый цикл

Если вы не знаете, что нужно для работы схемы, как вы можете построить схемы?

Самое первое, что нужно изучить — это замкнутый цикл.

Важно, чтобы схема работала.

После завершения этого шага вы должны знать, как заставить работать простую схему. И вы сможете исправить одну из самых распространенных ошибок в цепи — отсутствие соединения.

Это простые, но необходимые знания при изучении электроники.

Шаг 2. Получите общее представление о напряжении, токе и сопротивлении

Ток течет, сопротивление сопротивляется, напряжение подталкивает.

И все они влияют друг на друга.

Это важно знать для правильного изучения электроники.

Разберитесь, как они работают в цепи, и этот шаг вам будет гарантирован.

Но нет необходимости углубляться в закон Ома — этому шагу можно научиться с помощью простых мультфильмов.

После завершения этого шага вы сможете взглянуть на очень простую схему и понять, как протекает ток и как напряжение распределяется между компонентами.

Шаг 3. Изучите электронику, построив схемы по принципиальным схемам

Не нужно больше ждать — вы должны начать строить схемы прямо сейчас.Не только потому, что это весело, но и потому, что это то, чему вы хотите научиться, чтобы преуспеть.

Если вы хотите научиться плавать, вы должны заниматься плаванием. То же самое и с электроникой.

После завершения этого шага вы должны знать, как работают принципиальные схемы и как использовать макетную плату для построения из них схем.

Вы можете найти бесплатные принципиальные схемы практически для всего в Интернете — для радиоприемников, MP3-плееров, открывателей гаражей — и теперь вы сможете их построить!

Шаг 4. Общие сведения об этих компонентах

Наиболее распространенные компоненты, которые вы увидите вначале при изучении электроники:

Вы можете быстро получить общее представление о каждом из них, если у вас есть хорошие учебные материалы.

Но обратите внимание на последнее утверждение «если у вас есть хороший учебный материал» — потому что существует много ужасного учебного материала.

После выполнения этого шага вы должны знать, как эти компоненты работают и что они делают в цепи.

Вы должны уметь смотреть на простую принципиальную схему и думать:

«Ага, вот это схема!».

Шаг 5. Получите опыт использования транзистора в качестве переключателя

Транзистор — важнейший отдельный компонент электроники.

На предыдущем шаге вы узнали, как это работает. Пришло время использовать это.

Создайте несколько различных схем, в которых транзистор действует как переключатель. Как и схема LDR.

После выполнения этого шага вы должны знать, как управлять такими вещами, как двигатели, зуммеры или свет с помощью транзистора.

И вы должны знать, как использовать транзистор, чтобы определять такие вещи, как температура или свет.

Шаг 6: Научитесь паять

Прототипы, построенные на макете, легко и быстро построить.Но они не выглядят хорошо, и связи могут легко выпасть.

Если вы хотите создавать устройства, которые хорошо выглядят и служат долго, вам нужно паять.

Паять — это весело, и этому легко научиться.

После выполнения этого шага вы должны знать, как сделать хороший паяный шов, чтобы вы могли создавать свои собственные устройства, которые будут хорошо выглядеть и прослужат долгое время.

Шаг 7. Изучение поведения диодов и конденсаторов в цепи

На этом этапе у вас будет хороший фундамент, и вы сможете строить схемы.

Но ваши усилия по изучению электроники не должны останавливаться на достигнутом.

А теперь пора узнать, как работают более сложные схемы.

После выполнения этого шага — если вы видите принципиальную схему с резистором, конденсатором и диодом, соединенными каким-либо образом — вы сможете увидеть, что произойдет с напряжениями и токами при подключении батареи, чтобы вы могли понять что делает схема.

Примечание. Если вы также понимаете, как работает Astable Multivibrator, значит, вы прошли долгий путь.Но не беспокойтесь об этом, большинство объяснений этой схемы ужасны.

Шаг 8: Создание схем с использованием интегральных схем

До сих пор вы использовали отдельные компоненты для создания забавных и простых схем. Но вы по-прежнему ограничены самыми основными функциями.

Как вы можете добавить в свои проекты классную функциональность, такую ​​как звук, память, интеллект и многое другое?

Тогда вам нужно научиться использовать интегральные схемы (ИС).

Эти схемы могут выглядеть очень сложными и трудными, но это не так уж и сложно, если вы научитесь правильно их использовать. И это откроет для вас совершенно новый мир!

После выполнения этого шага вы должны знать, как использовать любую интегральную схему.

Шаг 9: Создайте свою собственную печатную плату

К этому моменту у вас должно было быть построено довольно много схем.

И вы можете оказаться немного ограниченными, потому что некоторые схемы, которые вы хотите построить, требуют большого количества подключений.

Для правильного изучения электроники вам обязательно нужно проделать этот шаг.

Пришло время узнать, как создать свою собственную печатную плату (PCB)!

Спроектировать печатную плату проще, чем вы думаете. А производство печатных плат стало настолько дешевым, что больше нет причин возиться с травлением.

Я создал пошаговое руководство, которое вы можете прочитать в Интернете или загрузить в формате PDF, под названием «Сделайте свою первую печатную плату».

Учебное пособие проведет вас через все этапы. Он показывает вам все, на что вам нужно нажать, чтобы перейти от незнания к созданию собственной печатной платы.

И вам не нужно разбираться в схеме, чтобы ее построить. Не стесняйтесь найти классную схему для сборки из любого места в Интернете и спроектировать для нее свою собственную печатную плату.

После выполнения этого шага вы должны знать, как спроектировать печатную плату на компьютере и как заказать дешевые прототипы печатной платы в Интернете.

Шаг 10: Научитесь использовать микроконтроллеры в своих проектах

С интегральными схемами и вашим собственным дизайном печатной платы вы можете многое.

Но все же, если вы действительно хотите иметь возможность создавать все, что хотите, вам нужно научиться использовать микроконтроллеры. Это действительно выведет ваши проекты на новый уровень.

Научитесь использовать микроконтроллер, и вы сможете создавать расширенные функциональные возможности с помощью нескольких строк кода вместо того, чтобы использовать огромную схему компонентов, чтобы делать то же самое.

После завершения этого шага вы должны знать, как использовать микроконтроллер в проекте, и вы будете знать, где найти информацию, чтобы узнать больше.

Хотите, чтобы в этом пошаговом контрольном списке в формате PDF были указаны точные шаги, которые я рекомендую для изучения электроники с нуля?
Щелкните здесь, чтобы загрузить контрольный список сейчас >>

Нужна помощь по любому из шагов?

С помощью этого контрольного списка вы можете самостоятельно изучить электронику. Вы можете найти свои собственные учебные материалы где угодно.

Вы можете найти информацию в книгах, статьях и курсах, которые помогут вам в вашем путешествии.

Я рекомендую найти кого-то, у кого стиль преподавания вам нравится, и избегать тех, кто преподает так, как вам не нравится.

Мне нравится преподавать просто и практично. Я стараюсь объяснять вещи как можно проще, чтобы это мог понять даже ребенок. Кстати, я также написал «Электронику для детей» — книгу по электронике для детей.

Если вам нравится мой стиль преподавания, вы можете изучить все эти шаги и многое другое — и стать частью сообщества, полного энтузиазма изучающих электронику, присоединившись к моему членскому сайту Ohmify.

Пусковая электроника — Электроника для начинающих и старше

Добро пожаловать в компанию Starting Electronics!

Что вы найдете здесь

Веб-сайт Starting Electronics содержит учебные пособия, проекты, обзоры и статьи по электронике, встроенным системам, микроконтроллерам, Arduino, Raspberry PI, инструментам и связанным темам. Здесь вы найдете информацию для любителей и от новичков до продвинутых пользователей.

Электроника для начинающих

Новички начинают искать в зоне для новичков.Хорошее место для начала изучения электроники — это Start Electronics Now! серия учебных пособий, которая представляет собой введение в электронные схемы / макетные платы для хобби и плату микроконтроллера Arduino.

Навигация по сайту

Веб-сайт разделен на несколько областей, как показано в верхнем горизонтальном меню. Каждая область содержит статьи и / или подобласти. По областям и подобластям можно перемещаться с помощью вертикального меню, которое будет меняться в зависимости от области. Значки в меню подскажут, ведет ли ссылка к области или статье.

Вертикальные значки меню имеют следующие значения:

  • — зона верхнего уровня.
  • — подрайон.
  • — артикул многокомпонентный.
  • — одностраничная статья или одностраничная статья, состоящая из нескольких частей.

Узнайте об электронике и о том, как начать создавать схемы

Учебное пособие «Начать электронику» знакомит новичков в области электроники с основными электронными инструментами и компонентами, необходимыми для начала изучения электроники и построения схем.

За введением в электронику следуют двадцать учебных пособий, в которых используются электронные макеты для построения различных схем. В некоторых руководствах используется очень популярная плата микроконтроллера Arduino.

Комплект мотора для хобби в сборе

Комплект электродвигателя с многоступенчатым редуктором. Распаковка и сборка.

Учебное пособие по веб-серверу Arduino — Управление Arduino с веб-страницы

Узнайте, как превратить ваш Arduino в веб-сервер, который позволяет вам управлять Arduino на веб-странице через Интернет.

Включайте и выключайте светодиоды, считывайте значения переключателей или температуры с Arduino в веб-браузере.

Создайте крошечный светодиодный фонарик USB

Создайте этот крошечный светодиодный фонарик USB и запитайте его от блока питания USB или любого хост-порта USB.

Как взорвать резистор

В этом видео показано, как взорвать резистор, подав слишком большую мощность. В статье под видео объясняется, как это работает.

ЖК-вольтметр Arduino с 4 каналами

Аналоговые каналы с A2 по A5 на Arduino Uno используются для измерения четырех различных напряжений.Измеренные напряжения отображаются на 16-символьном двухстрочном ЖК-дисплее.

Создайте плату CPLD с Xilinx CPLD

Соберите эту одностороннюю плату Xilinx CPLD дома и поэкспериментируйте с CPLD и языком описания оборудования (HDL).

Схема для начинающих

В этой области есть набор простых в сборке схем для начинающих, которые можно построить на макетной плате.

Как построить схему стрипборда

В этом видео и статье показано, как построить схему на монтажной плате.Для демонстрации на плате построена схема светодиодного мигающего индикатора с таймером 555.

Raspberry PI последовательный порт и коммутационная плата, проект

Простая односторонняя плата, которая соединяет последовательный порт RS-232 с Raspberry PI и выламывает некоторые контакты PI для экспериментов.

Как подключить Arduino к Интернету

В этом руководстве объясняется, как подключить веб-сервер Arduino к Интернету. Пример скетча Arduino считывает две температуры и отображает их на стрелочных индикаторах на веб-странице.

Любое устройство, которое может подключаться к Интернету, например телефон Android или ПК, может получить доступ к веб-серверу Arduino.

Десять вещей, которые нужно сделать после покупки малины PI

После покупки платы Raspberry PI вам нужно будет загрузить операционную систему, настроить клавиатуру, настроить экран и настроить другие параметры в соответствии с вашим оборудованием и вашими предпочтениями — в этой статье объясняется, как это сделать.

Подключение к последовательному порту Raspberry PI с ПК с Windows

Raspberry PI может работать без подключения к сети, клавиатуры, мыши и экрана путем подключения через последовательный порт и запуска эмулятора терминала на ПК.В этой статье показано, как это сделать.

STM32F100xx LQFP64 Назначение выводов

При изучении нового микроконтроллера важно хорошее понимание функций контактов. Здесь мы рассмотрим несколько видов контактов и функций микроконтроллера STM32F100xx (LQFP64).

Тестирование модуля сканера отпечатков пальцев GT-511C3

В этом базовом тесте используется Arduino Uno, чтобы проверить, работает ли связь с модулем сканера отпечатков пальцев GT-511C3.

Радиоуправляемый арбуз

Радиоуправляемый арбуз, сделанный из частей, взятых с радиоуправляемого самолета (RC-самолета) и выдолбленного арбуза.

Электроника

для начинающих — учебные пособия, проекты, статьи, инструменты, Arduino для начинающих в базовой электронике

Эта область для новичков предназначена для всех, кто только начинает заниматься электроникой. Узнайте, какие инструменты и детали вам понадобятся для запуска электроники. Прочтите статьи для начинающих о том, как паять, как пользоваться мультиметром и многое другое.

Хорошее место для начала — прочитать Start Electronics Now! статья, которая представляет собой введение в электронику с двадцатью учебными пособиями.

Узнайте об электронике и о том, как начать создавать схемы

Учебное пособие «Начать электронику» знакомит новичков в области электроники с основными электронными инструментами и компонентами, необходимыми для начала изучения электроники и построения схем.

За введением в электронику следуют двадцать учебных пособий, в которых используются электронные макеты для построения различных схем. В некоторых руководствах используется очень популярная плата микроконтроллера Arduino.

24 LED Arduino MEGA 2560 Knight Rider Display

Создайте светодиодный дисплей охотника Knight Rider с помощью Arduino Mega 2560.В этой макетной плате для отображения используются 24 светодиода.

Схема для начинающих

В этой области есть набор простых в сборке схем для начинающих, которые можно построить на макетной плате.

Первые шаги в использовании мультиметра

Мультиметр — это измерительный прибор, который на определенном этапе потребуется использовать любому, кто занимается электроникой. Мультиметр можно использовать для измерения напряжения, тока, сопротивления, целостности цепи и других параметров.

Это учебное пособие знакомит новичков с использованием мультиметра для базовых измерений.

Пайка для начинающих в электронике

Базовая пайка для новичков в электронике. В этой статье к ЖК-дисплею припаивается контактный разъем, который демонстрирует, как припаять компонент к печатной плате.

Как построить схему стрипборда

В этом видео и статье показано, как построить схему на монтажной плате.Для демонстрации на плате построена схема светодиодного мигающего индикатора с таймером 555.

Arduino, микроконтроллер AVR, микроконтроллеры ARM AT91SAM7S и STM32

Электроника, микроконтроллер, учебные пособия по Raspberry PI и Arduino.

Здесь можно найти руководства по следующим предметам:

  • Arduino — платформа Arduino с открытым исходным кодом
  • AT91SAM7S — микроконтроллеры ARM7 от Atmel
  • AVR 8-bit — 8-битные микроконтроллеры AVR от Atmel
  • STM32 — микроконтроллеры ARM Cortex от ST Microelectronics
  • Raspberry PI — плата Linux размером с кредитную карту RPI

Учебное пособие по веб-серверу Arduino Ethernet Shield

В этом руководстве, состоящем из нескольких частей, показано, как настроить Arduino с экраном Ethernet в качестве веб-сервера.В учебном пособии также рассматриваются основы:

  • HTTP
  • HTML
  • CSS
  • JavaScript
  • Аякс

Веб-сервер Arduino с двумя датчиками

Два датчика на веб-странице отображают аналоговые значения от двух потенциометров, подключенных к аналоговым входам Arduino Uno и Arduino Ethernet Shield.

Arduino действует как веб-сервер, на котором размещается веб-страница, на которой отображаются датчики.

Как подключить Arduino к Интернету

В этом руководстве объясняется, как подключить веб-сервер Arduino к Интернету.Пример скетча Arduino считывает две температуры и отображает их на стрелочных индикаторах на веб-странице.

Любое устройство, которое может подключаться к Интернету, например телефон Android или ПК, может получить доступ к веб-серверу Arduino.

Как программировать микроконтроллеры Atmel ARM с помощью SAM-BA

SAM-BA — это программа-загрузчик микроконтроллеров Atmel ARM, которая работает вместе с ПК-приложением SAM-BA для загрузки программного обеспечения в микроконтроллер через USB или последовательный порт.

В этом руководстве показано, как загрузить программное обеспечение в микроконтроллер Atmel ARM с помощью SAM-BA и платы AT91SAM7S-EK.

Использование ST-LINK / V2 для программирования микроконтроллеров STM32F100

Необходимо подключить всего четыре провода между программатором / отладчиком ST-LINK / V2 и микроконтроллером STM32F100, чтобы загрузить в него программу.

статей по электронике, Arduino, Raspberry PI, встроенным системам и микроконтроллерам

Статьи и короткие руководства по электронике, микроконтроллерам, Arduino, Raspberry PI, встроенным системам и связанным темам.

Подключение и тестирование Arduino Ethernet Shield

В этой статье показано, как подключить экран Arduino Ethernet к Arduino Uno, затем подключить его к кабелю Ethernet и, наконец, проверить, что экран Ethernet работает.

Это первое, что нужно сделать после первой покупки платы Arduino Ethernet.

Аккумулятор для питания Arduino Uno

В этой статье показано, как сделать кабель для подключения батареи 9 В к Arduino Uno.

Десять вещей, которые нужно сделать после покупки малины PI

После покупки платы Raspberry PI вам нужно будет загрузить операционную систему, настроить клавиатуру, настроить экран и настроить другие параметры в соответствии с вашим оборудованием и вашими предпочтениями — в этой статье объясняется, как это сделать.

Подключение к последовательному порту Raspberry PI с ПК с Windows

Raspberry PI может работать без подключения к сети, клавиатуры, мыши и экрана путем подключения через последовательный порт и запуска эмулятора терминала на ПК.В этой статье показано, как это сделать.

STM32F100xx LQFP64 Назначение выводов

При изучении нового микроконтроллера важно хорошее понимание функций контактов. Здесь мы рассмотрим несколько видов контактов и функций микроконтроллера STM32F100xx (LQFP64).

Тестирование модуля сканера отпечатков пальцев GT-511C3

В этом базовом тесте используется Arduino Uno, чтобы проверить, работает ли связь с модулем сканера отпечатков пальцев GT-511C3.

Радиоуправляемый арбуз

Радиоуправляемый арбуз, сделанный из частей, взятых с радиоуправляемого самолета (RC-самолета) и выдолбленного арбуза.

Комплект мотора для хобби в сборе

Комплект электродвигателя с многоступенчатым редуктором. Распаковка и сборка.

Ач 2751 Поведение защелки на эффекте Холла

В этой статье и видео объясняется, как ведет себя переключатель с защелкой на эффекте Холла Ah2751 при манипулировании магнитом.

Что такое светодиодная панель?

Эта статья и видео объясняют, что такое светодиодная панель. Эскиз Arduino предназначен для работы и тестирования светодиодной световой панели с помощью Arduino Uno.

Как сделать самодельное радио, которое действительно работает — журнал Scout Life

ПЕРВАЯ БЕЗОПАСНОСТЬ: попросите взрослого помочь с инструментами, которые вы раньше не использовали.

Радиоприемники могут показаться супер-технологичными. Но, потратив примерно 15 долларов и один день, вы можете сделать его дома.

Щелкните здесь, чтобы просмотреть PDF-версию этих инструкций.

ЧТО ВАМ НУЖНО

  • Магнитный провод: Магазины электроники часто продают комплект по цене около 10 долларов, в который входит 40 футов магнитного провода 22-го калибра, 75 футов 26-го калибра и 200 футов 30-го калибра. Вы также можете найти его на Amazon.com или Radioshack.com.
  • 1 набор проводов из кожи аллигатора с зажимами на каждом конце.
  • 1 диод: Поищите диоды IN34A, также называемые «германиевыми диодами», в магазине электроники или в Интернете.
  • 1 клей-карандаш или что-нибудь подобное по размеру — примерно 1 дюйм на 1 дюйм на 6 дюймов. Это может быть кусок дерева. Он не обязательно должен быть идеально круглым, но его легче намотать, используя что-то круглое.
  • Изолента
  • Клещи для снятия изоляции
  • Телефонная трубка со шнуром.Если у вас нет старого телефона, которым вы больше не пользуетесь, возможно, вы сможете найти его в благотворительных магазинах или на гаражных распродажах.
  • Одна плата для установки радиостанции — 2 на 2 фута подойдет. Вы можете сделать радиоприемник и без этого, но наличие рабочего места и места для крепления радиостанции облегчает переноску, пока вы ищете место для подключения заземляющего провода.

ЧЕМ ВЫ ДЕЛАТЬ

Шаг 1: Намотайте проволоку 26 калибра (зеленую магнитную проволоку) вокруг клеевого стержня так, чтобы она покрывала почти весь цилиндр.Держите проволоку плотно. Оставьте около шести дюймов проволоки на каждом конце. Когда вы закончите наматывать его, обмотайте оба конца цилиндра лентой, чтобы убедиться, что проволока держится. Затем прикрепите катушку к плате изолентой.

Шаг 2: Зачистите концы оставшегося провода с каждого конца катушки. Используйте плоскогубцы для зачистки проводов или наждачную бумагу. Проволока очень тонкая. Снять эмаль и обнажить примерно один дюйм проволоки должно быть легко.

Шаг 3: Присоедините провод с правой стороны катушки к одному концу диода.Заклейте соединение лентой.

Шаг 4: Обрежьте конец телефонного кабеля и снимите с него примерно два дюйма. Должно быть оголено два провода. Зачистите эти провода. Не торопитесь; этот провод тонкий. (Попробуйте этот совет: прежде чем подсоединять крошечные провода телефонного шнура, возьмите более толстый изолированный магнитный провод и приклейте к каждому проводу около двух дюймов. Это упростит остальную работу.) Прикрепите один конец провода к оголенному концу. диода. Закрепите эту связь.

Если у вашего телефонного кабеля четыре провода вместо двух, вам нужно выяснить, какие два подойдут.Возьмите 9-вольтовую батарею и поместите один шнур против положительного (+) полюса батареи, а другой шнур — на отрицательный (-). Когда вы найдете комбинацию, которая издает щелчок в гарнитуре, вы нашли два провода, которые нужно использовать.

Шаг 5: Подсоедините второй телефонный провод к зеленому проводу, идущему с левой стороны катушки. Перед тем, как закрепить это соединение, закрепите один из проводов аллигатора к нему. Склейте эти три провода вместе — провод из крокодиловой кожи (это ваш заземляющий провод), телефонный провод и провод, идущий с левой стороны катушки.

Шаг 6: Сделайте антенну, закрепив один из оставшихся проводов отведения типа «крокодил» к одному концу магнитного провода 22-го калибра. Оставьте эту проволоку в рулоне.

Шаг 7: Соскребите тонкую полоску эмали с проволоки, обернутой вокруг клеевого стержня. Сделать это можно любым острым предметом или наждачной бумагой.

ПОСМОТРЕТЬ, РАБОТАЕТ ЛИ

Подсоедините телефонный шнур к трубке.

Найдите хорошее заземление для провода аллигатора, который подключен к левой стороне вашей катушки.Идеальна труба, уходящая в землю.

Разверните антенный провод и с помощью взрослого повесьте его на ветку дерева.

Коснитесь зажима «крокодил», который ведет к проводу антенны, к верху катушки. Вы должны слышать радиосигнал AM.

УСТРАНЕНИЕ НЕПОЛАДОК

Если вы не можете получить сигнал, это, вероятно, провод заземления. С разрешения взрослого открутите один болт, которым лицевая панель крепится к выключателю или розетке. Отвинтите его ровно настолько, чтобы зацепить зажим из кожи аллигатора.Не снимайте пластину.

Если сигнал слабый, это ваша антенна. Если у ваших родителей старая телевизионная антенна, подсоедините провод радиоантенны к одному из разъемов на проводе телевизионной антенны, а не поднимайте провод вверх по дереву.

ФОТО ВЫПОЛНЕННЫХ ПРОЕКТОВ

Посмотрите эти фотографии завершенного проекта, присланные нам читателями Boys ’Life . Если у вас есть фотографии проекта мастерской BL , пожалуйста, используйте форму ниже, чтобы отправить их нам.

Проверьте это!

Электроника для начинающих: простое введение

Криса Вудфорда. Последнее обновление: 27 марта 2021 г.

Они хранят ваши деньги. Они следят ваше сердцебиение. Они несут звук вашего голоса в чужие дома. Они привозят самолеты на землю и безопасно направлять машины к месту назначения — они даже стреляют подушки безопасности, если у нас возникнут проблемы. Удивительно подумать, сколько вещи, которые на самом деле делают «они».«Они» — электроны: крошечные частицы внутри атомов, которые движутся по определенным путям, известным как цепи, несущие электрическую энергию. Одна из величайших вещей людей научились делать в 20-м веке, было использовать электроны для управления машины и информацию о процессах. Революция электроники, как это как известно, разгонял компьютер революции, и обе эти вещи изменили многие области нашей жизни. Но как именно наноскопически маленькие частицы, слишком маленькие? видеть, достигать таких грандиозных и драматичных вещей? Возьмем присмотритесь и узнайте!

Фото: Компактная электронная плата веб-камеры.Эта плата содержит несколько десятков отдельных электронных компонентов, в основном небольших резисторов и конденсаторов, плюс большой черный микрочип (внизу слева), который выполняет большую часть работы.

В чем разница между электричеством и электроникой?

Если вы читали нашу статью об электричестве, вы узнаете, что это своего рода энергия — очень универсальный вид энергии, который мы можем производить и использовать всевозможными способами во многих других. Электричество — это создание электромагнитной энергии обтекать цепь так, чтобы она приводила в движение что-то вроде электродвигателя или нагревательного элемента, электропитание таких устройств, как электромобили, чайники, тостеры и лампы.Как правило, электрические приборы нуждаются в большом количестве энергии, чтобы они работают, поэтому они используют довольно большие (и часто довольно опасные) электрические токи. Нагревательный элемент мощностью 2500 ватт внутри электрочайника работает на токе около 10 ампер. Напротив, электронные компоненты используют токи скорее всего, будет измеряться в долях миллиампер (что составляет тысячные доли ампера). Другими словами, типичный электрический прибор, вероятно, будет использовать токи в десятки, сотни или тысячи раз больше, чем типичный электронный.

Электроника — это гораздо более тонкий вид электричества, в котором крошечные электрические токи (и, по идее, отдельные электроны) тщательно направлен на гораздо более сложные схемы для обработки сигналов (например, те, которые носят радио и телепрограммы) или хранить и обрабатывать Информация. Подумайте о чем-то вроде микроволновки духовка и легко увидеть разницу между обычным электричество и электроника. В микроволновой печи электричество обеспечивает мощность, генерирующая высокоэнергетические волны для приготовления пищи; электроника контролирует электрическую цепь, которая выполняет приготовление пищи.

Изображение: микроволновые печи питаются от электрических кабелей (серых), которые подключаются к стене. По кабелям подается электричество, питающее сильноточные электрические цепи и слаботочные электронные цепи. Сильноточные электрические цепи питают магнетрон (синий), устройство, которое создает волны, которые готовят вашу еду, и поверните поворотный стол. Слаботочные электронные схемы (красные) управляют этими мощными цепями, и такие вещи, как цифровой дисплей.

Аналоговая и цифровая электроника

Есть два очень разных способа хранения информации, известные как аналоговый и цифровой.Это звучит как довольно абстрактная идея, но это действительно очень просто. Предположим, вы сделали старомодный снимок кто-то с пленочной камерой. Камера фиксирует поток света в через заслонку спереди в виде светового узора и темные участки на химически обработанном пластике. Сцена, в которой ты фотографирование превращается в своего рода мгновенную химическую живопись — «аналогия» того, на что вы смотрите. Вот почему мы говорим, что это аналог способ хранения информации. Но если сфотографировать именно та же сцена с цифровой камерой, камера хранит совсем другую запись.Вместо того, чтобы сохранять узнаваемый узор из светлого и темного, он преобразует светлое и темное области в числа и вместо этого сохраняет их. Хранение числового, закодированного версия чего-то известна как цифровая.

Фото: Цифровые технологии: такие большие цифровые часы, как эти, легко и быстро читают бегуны. Фото Джи Л. Скотта любезно предоставлено ВМС США.

Электронное оборудование обычно работает с информацией в любом аналоговом формате. или в цифровом формате. В старомодном транзисторном радиоприемнике широковещательные сигналы поступают в схему радиоприемника через торчащую антенну вне корпуса.Это аналоговые сигналы: это радиоволны, путешествовать по воздуху от дальнего радиопередатчика, который вибрировать вверх и вниз по шаблону, который точно соответствует словам и музыку они несут. Так громкая рок-музыка означает больше сигналов, чем тихая классическая музыка. Радиоприемник сохраняет сигналы в аналоговой форме, так как принимает их, усиливает и превращает обратно в звуки, которые вы можете слышать. Но в современном цифровом радио все происходит по-другому. Во-первых, сигналы передаются в цифровом формате формат — в виде кодированных чисел.Когда они приходят к вашему радио, числа преобразуются обратно в звуковые сигналы. Это совсем другой способ обработки информации и имеет как преимущества, так и недостатки. Как правило, большинство современных форм электронного оборудования (включая компьютеры, сотовые телефоны, цифровые фотоаппараты, цифровые радиоприемники, слуховые аппараты и телевизоры) использовать цифровая электроника.

Электронные компоненты

Если вы когда-нибудь смотрели на город из окна небоскреба, вы восхищались всеми крошечными зданиями под вами и улицы, соединяющие их воедино множеством замысловатых способов.Каждый здание имеет функцию и улицы, по которым люди могут путешествовать из одной части города в другую или посещать разные здания в повернись, заставь все здания работать вместе. Коллекция здания, их расположение и множество связей между это то, что делает динамичный город намного больше, чем сумма его отдельные части.

Цепи внутри электронного оборудования немного похожи на города тоже: они забиты компонентами (похожий на здания), которые выполняют разные работы, и компоненты связаны между собой вместе кабелями или печатными металлическими соединениями (похожий на улицы).В отличие от города, где практически каждое здание уникально. и даже два предположительно идентичных дома или офисных блока могут быть тонко разные, электронные схемы состоят из небольшого количества стандартные компоненты. Но, как и LEGO®, эти компоненты вместе в бесконечном количестве разных мест, поэтому они выполнять бесконечное количество разных работ.

Вот некоторые из наиболее важных компонентов, с которыми вы столкнетесь:

Резисторы

Это самые простые компоненты в любой схеме.Их задача — ограничить поток электронов и уменьшить ток или напряжение, протекающие путем преобразования электрической энергии в тепло. Резисторы бывают разных форм и размеров. Переменные резисторы (также известные как потенциометры) имеют дисковый регулятор, поэтому они измените количество сопротивления, когда вы их поворачиваете. Регуляторы громкости в в звуковом оборудовании используются такие переменные резисторы.

Подробнее читайте в нашей основной статье о резисторах.

Фото: Типовой резистор на печатной плате от магнитолы.

Диоды

Электронные эквиваленты улиц с односторонним движением, диоды, пропускающие электрический ток. через них только в одном направлении. Их также называют выпрямителями. Диоды могут использоваться для изменения переменного тока (обратного тока). и далее по кругу, постоянно меняя направление) на прямое токи (те, которые всегда текут в одном направлении).

Подробнее читайте в нашей основной статье о диодах.

Фото: Диоды похожи на резисторы, но работают по-другому. и делать совершенно другую работу.В отличие от резистора, который можно вставить в цепь в любом случае диод должен быть подключен в правильном направлении (соответствует стрелке на этой плате).

Конденсаторы

Эти относительно простые компоненты состоят из двух частей проводящего материала (например, металла), разделенных перемычкой. непроводящий (изолирующий) материал, называемый диэлектриком. Они есть часто используются в качестве таймеров, но они могут преобразовывать электрические токи и другими способами. На радио одна из самых важных должностей, настройка на станцию, которую вы хотите слушать, осуществляется конденсатором.

Подробнее читайте в нашей основной статье о конденсаторах.

Фото: Маленький конденсатор в транзисторной радиосхеме.

Транзисторы

Транзисторы — самые важные компоненты компьютеров. включать и выключать крошечные электрические токи или усиливать их (преобразовывать небольшие электрические токи в гораздо большие). Транзисторы, которые работают поскольку переключатели действуют как память в компьютерах, в то время как транзисторы работают поскольку усилители увеличивают громкость звуков в слуховых аппаратах.Когда транзисторы соединены вместе, они образуют устройства, называемые логическими вентилями, которые могут выполнять очень простые формы принятия решений. (Тиристоры немного похожи на транзисторы, но работать по-другому.)

Подробнее читайте в нашей основной статье о транзисторах.

Фотография: Типичный полевой транзистор (FET) на электронной плате.

Оптоэлектронные (оптико-электронные) компоненты

Существуют различные компоненты, которые могут превращать свет в электричество или наоборот. Фотоэлементы (также известные как фотоэлементы) генерируют крошечные электрические токи, когда на них падает свет, и они используются как лучи «волшебного глаза» в различных типах измерительного оборудования, включая некоторые виды дымовых извещателей. Светодиоды (LED) работают наоборот, преобразовывая небольшие электрические токи в свет. Светодиоды обычно используются на приборных панелях стереосистемы. оборудование. Жидкокристаллические дисплеи (ЖК-дисплеи), например, используемые в ЖК-телевизоры с плоским экраном и ноутбук компьютеры, являются более сложными примерами оптоэлектроники.

Фото: Светодиод, установленный в электронной схеме. Это один из Светодиоды, излучающие красный свет внутри оптической компьютерной мыши.

У электронных компонентов есть нечто очень важное. Какую бы работу они ни выполняли, они работают, управляя потоком электронов. через их структуру очень точным образом. Большинство этих компонентов сделаны из цельных частей частично проводящих, частично изолирующих материалы, называемые полупроводниками (описаны подробнее в нашем статья о транзисторах). Потому что электроника предполагает понимание точные механизмы того, как твердые тела пропускают электроны через себя, это иногда называют физикой твердого тела. Вот почему вы часто будете видеть части электронного оборудования, описанные как «твердотельные».

Электронные схемы и печатные платы

Ключ к электронному устройству — это не только его компоненты. содержит, но то, как они расположены в цепях. Простейший Возможная схема представляет собой непрерывный цикл, соединяющий два компонента, например на одно колье крепятся две бусины.Аналоговые электронные приборы как правило, имеют гораздо более простые схемы, чем цифровые. Базовый транзистор радио может состоять из нескольких десятков различных компонентов и печатной платы вероятно, не больше, чем обложка книги в мягкой обложке. Но в чем-то как компьютер, в котором используются цифровые технологии, схемы намного больше плотные и сложные и включают сотни, тысячи или даже миллионы отдельный пути. Вообще говоря, чем сложнее схема, тем больше сложные операции, которые он может выполнять.

Фото: Электронная плата внутри компьютерного принтера. Какие электронные компоненты ты видишь здесь? Я могу различить конденсаторы, диоды и интегральные схемы (большие черные детали, которые описаны ниже).

Если вы экспериментировали с простой электроникой, вы знаете, что Самый простой способ построить схему — просто соединить компоненты вместе с короткими отрезками медного кабеля. Но чем больше компонентов вам нужно подключать, тем сложнее становится.Вот почему дизайнеры электроники обычно выбирают более систематический способ размещения компонентов на том, что называется монтажная плата. Базовая схема доска просто прямоугольник из пластика с медными соединительными дорожками с одной стороны и участками просверленных отверстий. Вы можете легко соединить компоненты вместе просунув их в отверстия и используя медь, чтобы связать их вместе, удаляя при необходимости кусочки меди и добавляя дополнительные провода сделать дополнительные подключения. Печатные платы этого типа часто называется «макетной платой».

Электронное оборудование, которое вы покупаете в магазинах, развивает эту идею в дальнейшем с использованием печатных плат, которые производятся автоматически на заводах. Точная компоновка схемы нанесена химическим способом на пластиковый плате, при этом все медные дорожки создаются автоматически во время производственный процесс. Затем компоненты просто проталкиваются предварительно просверлил отверстия и закрепил на месте своего рода электрически проводящий клей, известный как припой. Схема, изготовленная таким образом известна как печатная плата (PCB).

Фото: Пайка компонентов в электронный схема. Дым, который вы видите, исходит от плавления припоя и превращения его в пар. Синий пластиковый прямоугольник, на который я припаиваю здесь, представляет собой типичную печатную плату, и вы видите, как из нее торчат различные компоненты, в том числе связка резисторов спереди и большая интегральная схема наверху.

Хотя печатные платы — большой шаг вперед по сравнению с печатными платами с ручной разводкой, их все еще довольно сложно использовать, когда вам нужно подключить сотни, тысячи или даже миллионы компонентов вместе. Причина рано компьютеры были такими большими, энергоемкими, медленными, дорогими и ненадежными. потому что их компоненты были соединены вручную в этом по старинке. Однако в конце 1950-х инженеры Джек Килби и Роберт Нойс самостоятельно разработал способ создания электронных Компоненты в миниатюрной форме на поверхности кусочков кремния. С использованием эти интегральные схемы, это быстро стало можно выжать сотни, тысячи, миллионы, а затем и сотни миллионов миниатюрные компоненты на кремниевых микросхемах размером с ноготь пальца.Так компьютеры стали меньше, дешевле и намного более надежный с 1960-х годов.

Фото: Миниатюризация. Больше вычислительной мощности в микросхеме обработки, которая лежит на моем пальце здесь, чем вы могли бы найти в комнате размером с комнату компьютер 1940-х годов!

Для чего используется электроника?

Электроника сейчас настолько распространена, что о ней почти легче думать вещи, которые не используют его, чем вещи, которые используют.

Развлечения были одной из первых областей, которые извлекли выгоду из радио (и позже телевидение) оба критически в зависимости от прибытия электронные компоненты.Хотя телефон был изобретен до того, как электроника была должным образом разработана, современные телефонные системы, сети сотовой связи, и компьютерные сети в сердце Интернета извлекает выгоду из сложная цифровая электроника.

Попробуйте придумать что-нибудь, что вы делаете, не связанное с электроникой и вы можете бороться. Ваш автомобильный двигатель вероятно, есть электронные схемы в нем — а как насчет спутника GPS навигационное устройство, которое подскажет, куда идти? Даже подушка безопасности в твоей рулевое колесо приводится в действие электронной схемой, которая определяет, когда вам нужна дополнительная защита.

Электронное оборудование спасает нашу жизнь и другими способами. Больницы упакованы всевозможными электронными гаджетами, от пульса от мониторов и ультразвуковых сканеров до сложных сканеров головного мозга и рентгеновских машины. Слуховые аппараты были одними из первых устройств, в которых разработка крошечных транзисторов в середине 20-го века, и интегральные схемы все меньшего размера позволили слуховым аппаратам стать меньше и мощнее в последующие десятилетия.

Кто бы мог подумать, что у вас есть электроны. мог бы когда-либо представить — изменит жизни людей во многих важных пути?

Краткая история электроники

Фото: сэр Дж.Дж. Томсон, который открыл, что электроны являются отрицательно заряженными частицами, в Кембриджском университете в 1897 году. Томсон получил Нобелевскую премию по физике в 1906 году за свою работу. Фото Bain News Service любезно предоставлено Библиотекой Конгресса США.

  • 1874: ирландский ученый Джордж Джонстон Стоуни (1826–1911) предполагает, что электричество должно быть «построено» из крошечных электрических обвинения. Он придумал название «электрон» примерно 20 лет спустя.
  • 1875: американский ученый Джордж Р. Кэри строит фотоэлемент, который вырабатывает электричество, когда светит Это.
  • 1879: англичанин сэр Уильям Крукс (1832–1919) разрабатывает свою электронно-лучевую трубку (похожую на старинную, «ламповое» телевидение) для изучения электроны (которые тогда были известны как «катодные лучи»).
  • 1883: плодовитый американский изобретатель Томас Эдисон (1847–1931) открыл термоэлектронную эмиссию (также известную как Эдисон эффект), где электроны испускаются нагретой нитью накала.
  • 1887: немецкий физик Генрих Герц (1857–1894) узнал больше о фотоэлектрическом эффекте, связь между светом и электричеством, которую Кэри наткнулся на предыдущее десятилетие.
  • 1897: британский физик Дж. Дж. Томсон (1856–1940) показывает, что катодные лучи представляют собой отрицательно заряженные частицы. Томсон называет их «корпускулами», но вскоре они переименованы в электроны.
  • 1904: Джон Эмброуз Флеминг (1849–1945), английский ученый, создает клапан Флеминга (позже переименовал диод). Он становится незаменимым компонентом радиоприемников.
  • 1906: американский изобретатель Ли Де Форест (1873–1961), идет на один лучше и разрабатывает улучшенный клапан, известный как триод (или аудион), значительно улучшающий конструкцию радиоприемников.Де Фореста часто называют отцом современного радио.
  • 1947: американцы Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Шокли (1910–1989) разработать транзистор в Bell Laboratories. Это революция в электронике и цифровых технологиях компьютеры во второй половине 20 века.
  • 1958: Работая независимо, американские инженеры Джек Килби (1923–2005) из Texas Instruments и Роберт Нойс (1927–1990) из Fairchild Компания Semiconductor (а позже и Intel) разрабатывает интегральные схемы.
  • 1971: Марсиан Эдвард (Тед) Хофф (1937–) и Федерико Фаггин (1941–) удается втиснуть все ключевые компоненты компьютера в один чип, на котором производится первый в мире универсальный микропроцессор Intel 4004.
  • 1987: американские ученые Теодор Фултон и Джеральд Долан из Bell Laboratories разрабатывают первый одноэлектронный транзистор.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *