Идеи использования энергии радиоволн | RUQRZ.COM
Электромагнитное излучение сейчас повсюду, куда ни плюнь. Радио, телевидение, мобильная и спутниковая связи, бытовые приборы. Сейчас мы буквально «купаемся» в море электромагнитного излучения которое сами же производим, ее еще называют «электронным смогом». Используем неэффективно и бездарно разбазариваем. Платим огромные деньги за энергоносители, а использовать толком не научились. Даже бумагу, пластик и металл может повторно перерабатывать и использовать, а энергию электромагнитного излучения нет. Лишь немногие знают о том, что эту энергию можно повторно использовать. Как?
Энергия вокруг нас
В последнее время был ряд публикаций на тему получения энергии из вакуума. Тема конечно интересная и для многих еще не привычная и непонятная. Об этом говорит вал критики в комментариях к таким публикациям. Все мы привыкли, что электричество в подавляющем большинстве случаев приходит к нам по проводам от электростанций. Не для кого так же не являются экзотикой солнечные батареи и ветрогенераторы. Некоторые их даже используют, хотя до массового применения пока еще далековато, процент использования «даровой» энергии все еще сравнительно низкий.
Много разговоров в ученом мире идет о так называемой «Темной материи» и соответсвенно находящейся в ней «темной энергии». Пока что использование такой энергии остается «делом темным». Известно только что вокруг нас этой энергии полно. Но мало кто знает (а точнее не замечает) тот факт что вокруг нас полно другой, давно привычной нам энергии — электромагнитных волн.
Детекторные приемники
Еще будучи школьником посещал кружок радиоэлектроники, где мы с ребятами собирали свои первые электронные схемы. Среди них были и приемники, которые могли работать без батареек(!). «Как такое возможно?» Да очень просто — для работы такого приемника достаточно энергии радиоволн излучаемых передающей станцией (особенно если она недалеко находится). Подобных схем детекторных приемников можно найти немало.
Радио это конечно интересно, но хотелось попробовать использовать энергию радиоволн иначе, например для питания игрушечного электромоторчика. Он крутился, но энергии для него оказалось маловато. Но все-таки работало!
Действие источников постоянного тока, которые описаны ниже, основано на использовании так называемой свободнодоступной энергии, т. е. энергии радиоволн мощной местной радиостанции. Такие источники позволяют питать транзисторные приемники (на 1…3 транзисторах). Был проведен такой опыт. Вдали от города на высоте 4 м подвешивали проволочную антенну длиной около 30 м. На нагрузке 9 кОм была выделена мощность постоянного тока 0,9 мВт. При этом передатчик мощностью 1 кВт и рабочей частотой 1,6 МГц находился на расстоянии около 2,5 км. На зажимах конденсатора фильтра (при холостом ходе) были зафиксировано напряжение примерно 5 В. Такие результаты получаются только с помощью большой антенны, направленной на передатчик.
На практике находят применение другие более эффективные схемы. Известны три способа питания приемников от выпрямленного ВЧ напряжения радиостанции. Первый заключается в том, что прием радиостанции ведется на две антенны. Сигналы радиостанций, принимаемые второй антенной, преобразуются в постоянный ток, который используется для питания приемника. При другом способе используется одна антенна и часть улавливаемой ею энергии отводится в схему преобразователя. В последнем способе применяются две антенны: первая антенна — для приема радиопередач, которые слушают, а вторая принимает сигналы другой радиостанции, которые преобразуются в напряжение питания.
Простейшая схема беспроводной радиоточки изображена на рис. а—в. Она может принимать местную радиостанцию, например, ту же «Варшаву II» и одновременно использовать ее энергию для преобразования в э. д. с. постоянного тока. Для приема радио волн частотой выше 50 МГц, т. е. сигналов передатчиков УКВ (например, телевизионных), преобразователь ВЧ напряжения должен иметь специальную антенну — петлевой вибратор (диполь). Эта антенна может одновременно работать в средневолновом диапазоне, как на приемник, так и на источник питания. Если энергии одного вибратора недостаточно, то применяют несколько антенн этого типа (рис. д), соединенных последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока).
С помощью антенны, изображенной на рис. д, улавливающей энергию радиоволн 50-кВт передатчика, работающего в диапазоне 50…250 МГц, получили мощность постоянного тока около 3 мВт. Антенна находилась на расстоянии 1,5 км от передатчика. На рис. е показана схема приемника с двумя антеннами, одна из которых (УКВ) используется в источнике питания. Средневолновый приемник может работать с любой антенной, в то время как к источнику питания должны поступать энергия ВЧ колебаний от дипольной антенны. В положении 1 выключателя В1 устройство действует как сигнализатор, приводимый в действие модулированным ВЧ сигналом, в положении 2 как приемник.
Интересным примером использования энергии радиоволн для питания радиоустройств может служить схема, изображенная на рис. ж. Это радиобуй (наземный, речной или морской), который включается сигналом передатчика, установленного на автомашине, пароходе, планере или самолете. Сигналы запроса запускают передатчик на буе, ответные сигналы которого служат для определения его местоположения. Сигнальные устройства такого типа облегчают поиски людей, заблудившихся в море, горах, густых лесных массивах и т, п. Они являются частью экипировки туристов и альпинистов. Умелое использование энергии радиоволн позволит, по-видимому, существенно уменьшить размеры слуховых аппаратов, приемников, устройств дистанционного управления, игрушек и т. п. Следует, однако, сказать, что, как показали эксперименты, приемлемых результатов при питании приемников от выпрямленного ВЧ напряжения принимаемых радиоволн можно добиться, только применяя тщательно настроенные антенны и хорошее заземление. Другой недостаток состоит в том, что величина выпрямленного напряжения зависит от глубины модуляции несущей частоты во время приема.
Если есть электромагнитное излучение, значит оно обладает энергией и эту энергию можно использовать. Здесь ничего не противоречит законам физики, в отличии от так называемых «генераторов энергии из вакуума». В данном случае речь идет о реальном энергетическом излучении.
Сама по себе эта идея не нова, ей примерно столько же лет, что и самому радиовещанию. Заметки на эту тему можно найти и в отечественных журналах, издававшихся на заре нашего радиолюбительства. Понятно, что много «свободной энергии» от такого источника не получишь, да и вообще заниматься этим имеет смысл только тем, кто живет на относительно небольшом удалении от передатчиков.
Во например схема американского радиолюбителя Майкла Ли:
Для приема «свободной энергии» автор использовал антенну (WA1) и систему заземления любительской радиостанции. Антенна — луч длиной 43 метра. Это в несколько раз меньше длины волны средневолновых радиостанций, поэтому входной импеданс такой антенны имеет заметную емкостную составляющую. Соединенные параллельно конденсатор переменной емкости С1 и постоянный конденсатор С2 включены с ней последовательно, что позволяет регулировать приведенное значение емкостной составляющей в точке подключения верхнего (по схеме) вывода катушки L1 (иными словами, изменять резонансную частоту последовательного контура, образованного этой катушкой и емкостью антенны).
При резонансе контура на катушке L1 может возникать значительное ВЧ напряжение от несущей радиостанции, на которую настроен колебательный контур. В экспериментах автора при индуктивности катушки L1 39 мкГн резонанс на частоте 1370 кГц (на ней работала самая мощная местная радиостанция) наступал при суммарной емкости конденсаторов С1 и С2. равной 950 пФ (интервал перестройки ограничен частотами 1100 и 1600 кГц).
Поскольку ВЧ напряжение в данном случае надо снимать с высокоомной цепи, диод выпрямителя VD1 подключен к отводу катушки. Его место подбирают при налаживании устройства по максимальной выходной мощности. Как отмечает автор, место отвода было не критично: примерно одинаковые результаты получались, когда он находился в интервале от 1/4 до 1/6 числа витков катушки, считая от ее нижнего (по схеме) вывода.
Для того чтобы избежать перезарядки аккумулятора или выхода из строя диодов выпрямителя при отключении аккумулятора (из-за возможного их пробоя обратным напряжением), в устройство введен узел защиты на транзисторах VT1 и VT2. При напряжении на нагрузке менее 12 В ток через стабилитрон VD3 не протекает, поэтому транзисторы закрыты. При увеличении напряжения сверх этого значения они открываются и резистор R4 шунтирует выход выпрямителя.
По измерениям автора, устройство, настроенное на частоту указанной выше радиостанции, обеспечивало ток зарядки аккумуляторной батареи до 200 мА. (К сожалению, сведений о мощности передатчика в заметке нет, сказано лишь, что расстояние до него около 1,6 км). По оценкам, концентратор за год «выдал» около 1700 А-ч для зарядки батареи… Причем, в отличие, например, от солнечных батарей, его можно использовать практически круглосуточно (точнее, в течение всего времени работы радиостанции).
Для настройки контура автор применил конденсатор переменной емкости с большим зазором между пластинами ротора и статора, но если напряжение, развиваемое в системе при резонансе, не слишком велико, можно использовать и конденсатор с воздушным диэлектриком от радиовещательного приемника.
Катушка индуктивности L1 намотана на каркасе диаметром 50 мм и содержит 60 витков провода диаметром 1,6 мм, длина намотки — 250 мм (шаг — примерно 4 мм). Магнитопровод дросселя 12 — кольцевой Т-106-2 (27×14,5×11,1 мм) из карбонильного железа, обмотка состоит из 88 витков провода диаметром 0,4 мм. Диоды VD1 и VD2 рассчитаны на прямой ток до 1 А и обратное напряжение 40 В. Стабилитрон VD3 — с напряжением стабилизации 12 В.
Разумеется, при повторении устройства параметры элементов колебательного контура (индуктивность катушки L1 и емкость конденсаторов С1 и С2) должны быть скорректированы под имеющуюся антенну и частоту местной радиостанции.
Д.Р.
Что еще почитать по теме:
Смерть батарейкам, или радиоволны как альтернативный источник энергии / Habr
Используя лишь излучаемые радиоволны SmartHat предупреждает сигналом его хозяина о том, что по близости есть опасное строительное оборудование.
Исследователи из университета Дьюка придумали метод использования радиоволн в качестве питания для маленьких устройств, основанных на микропроцессорах, потребляющих очень мало энергии. Такие устройства, как датчики, контролирующие важнейшие экологические изменения могут питаться от радиоволн.
Д-р Мэтью Рейнольдс, доцент Университета Дьюка, представил устройство с низким энергопотреблением, которое устнавленно в строительную каску. Устройство, называемое SmartHat, предупреждает звуковым сигналом о том, что опасное оборудование находится поблизости строительной площадки.
Радиоволны излучают беспроводные передатчики на экскаваторах и бульдозерах, используемые для отслеживания их местонахождения. Датчик в каске владельца следит за мощностью радиоволн и предупреждает владельца когда тяжелая техника находится слишком близко.
Поскольку радиоволны быстро теряют энергию — эту технологию мало кто изучал. Радиоволны уже могут собирать достаточно энергии, чтобы заменить батареи AAA в некоторых калькуляторах, датчиках температуры и влажности, часах.
Доктор Смит из компании Intel изучает электромагнитные и создает электронного «сборщик» радиоволн. Сборщик накапливает достаточно энергии для работы термометра и сенсора влажности от телевизионной вышки, расположенной в 2,5 милях от лаборатории. Устройство собирает достаточно энергии, чтобы произвести около 50 мкВт энергии, этого достаточно для работы большинства датчиков. Для сравнения: алькулятор на солнечных батареях потребляет 5 мкВт.
Также Смит и его коллеги создали второе устройство, приводимое в действие радиоволнами, которое собирает сигналы от внешней погодной станции, и передает их на дисплей. Устройство может накопить достаточно энергии, чтобы отправлять обновление температуры каждые 5 секунд.
via NYT.
Электричество из воздуха своими руками: схемы
Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально.
Виды добычи
Альтернативное электричество может добываться из воздуха двумя способами:
- Ветрогенераторами;
- За счет полей, пронизывающих атмосферу.
Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.
Фото — грозовая батареяВетрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.
Фото — ветрякиВидео: создание электричества из воздуха
Как добыть энергию из воздуха
Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».
Фото — схемаСхема имеет свои достоинства:
- Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
- Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.
Недостатки:
- Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
- При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.
С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).
Фото — люстра ЧижевскогоНо есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.
Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:
- Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера; Фото — основание
- Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
- Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала; Фото — четыре катушки
- Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
- Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания. Фото — конечная обмотка
На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.
Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.
Фото — предположительная схема генератора КапанадзеВ основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.
Получение электроэнергии от радиоволн — миф или реальность?
Электронные устройства постепенно внедряются в повседневную жизнь, и, конечно, им всем требуется энергия в той или иной форме для работы. К счастью, энергия окружает нас во многих формах. Энергия может быть преобразована из ветра, света, движущихся объектов, даже используя оставшуюся энергию высокочастотных радиопередач. Поскольку мир становится все более электронным по своей природе, становится все более целесообразным повторно использовать энергию, когда она доступна, например, в радиочастотных / микроволновых сигналах, для установления более эффективного общего использования энергии.
Сбор энергии, вероятно, наиболее известен в приложениях, которые используют солнечный свет в качестве источника энергии. Специально для устройств, которые требуют лишь небольшого количества энергии для работы, солнечный свет может быть преобразован в достаточное для работы постоянное напряжения с помощью относительно небольших солнечных батарей.
В малонаселенных районах часто можно увидеть, что крыши некоторых домов покрыты солнечными батареями, мощности которых вполне хватает, чтобы обеспечить дом электроэнергией, в некоторых случаях и продавать ее энергокомпаниям. Точно так же в областях, где открытые равнины обеспечивают воздействие относительно сильных ветров, например на Среднем Западе Соединенных Штатов, нет ничего необычного в том, чтобы увидеть ветряные турбины, которые могут превращать ветер в «почти бесплатные» источники электрической энергии.
На сегодняшний день солнечный свет, скорее всего, является наиболее популярным источником альтернативной энергии, который можно преобразовать в постоянное напряжение. Компании, такие как Analog Devices, Silicon Laboratories и Texas Instruments, предлагают обширные линейки беспроводных приемопередатчиков, генераторов и других высокочастотных компонентов для солнечных батарей. Кроме того, EnOcean разработала серию переключателей с автономным питанием, которые питаются от солнечных источников, а также многих микросхем, которые используют беспроводную связь на частотах ISM для выполнения управляющих функций в солнечной энергетике. Самым последним «поступлением» является датчик присутствия солнечной энергии для систем управления освещением Bluetooth, использующий Bluetooth Low Energy (BLE) для упрощения автоматизации зданий.
Не столь широко распространенным, но быстро растущим по популярности, является процесс сбора энергии от радиочастотных / сверхширокополосных сигналов, таких как радио- / телевизионные радиостанции и беспроводное оборудование. Сбор энергии таким способом позволяет заменить батареи в приложениях с низким энергопотреблением, таких как датчики систем интернет вещей (IoT) и метки радиочастотной идентификации (RFID). Повторное использование энергии может сократить эксплуатационные расходы и повысить эффективность существующих электронных систем и устройств.
Сбор энергии от радиочастотных / сверхширокополосных сигналов является четким процессом. Это может быть выполнено с помощью интегральных схем (ИС), содержащих основные компоненты, такие как радиоприемники и повышающие преобразователи, которые преобразуют энергию РЧ-сигнала от антенны в переменное или постоянное напряжение, а затем передают энергию на устройство хранения энергии, такое как аккумуляторная батарея или конденсатор. Простые конструкции антенны Vivaldi продемонстрировали отличные возможности в обеспечении сверхширокополосного (UWB) частотного покрытия (например, от 100 МГц до 6 ГГц) для поддержки многих радиочастотных ИС, собирающих энергию.
Преобразование энергии радиочастот
Коммерческие радиочастотные приемники энергии, такие как P210B Powerharvester от Powercast Corp., обеспечивают возможность преобразования РЧ-сигналов в постоянное напряжение. Это приемник, предназначенный для использования в нижней части промышленной, научной и медицинской (ISM) полосы (от 902 до 928 МГц).
С помощью антенны P2110B может обрабатывать входные радиочастотные уровни от -12 до +10 дБм, преобразовывать их в напряжение постоянного тока и сохранять энергию в конденсаторе для использования по мере необходимости. Низкая чувствительность позволяет эффективно собирать энергию даже на значительных расстояниях от источника радиочастот. Компактное устройство является примером доступной в настоящее время технологии сбора энергии радиочастот, которая позволяет управлять питанием небольших электронных устройств без батареи.
P2110B использует свой внутренний конденсатор как часть собственного контролируемого процесса преобразования энергии. Регулируемые уровни напряжения от сборщика энергии могут быть установлены от +2,0 В до +5,5 В постоянного тока при максимальном токе 50 мА. Выходное напряжение микросхемы отдает запасенную энергию, когда на конденсаторе достигнут высокий порог заряда. Когда энергия, запасенная в конденсаторе, падает до порога низкого напряжения, выходное напряжение от P2110B отключается. Как предполагает производитель, микропроцессор может использоваться со сборщиком энергии для оптимизации энергопотребления и повышения производительности подключенных электронных устройств, таких как датчики.
Учитывая ожидаемый быстрый рост беспроводных датчиков IoT и потребность в удаленных беспроводных датчиках в сотовых сетях 5G, сбор энергии, несомненно, будет принимать различные формы, в том числе от фотоэлектрических и термоэлектрических источников. Одним из таких примеров является ИС для сбора энергии из фотоэлектрических источников. AEM10940 от e-peas semiconductors, разработанная для использования с солнечными батареями, может подавать два независимых регулируемых напряжения, чтобы продлить срок службы батареи или даже устранить потребность в батарее в электронной системе управления стабилизацией точки максимальной мощности.
Совсем недавно эта же фирма разработала пару полупроводниковых устройств, модели AEM30940 и AEM40940, для извлечения энергии из радиочастотных источников. Оба оснащены встроенными повышающими преобразователями, которые заряжают батареи и конденсаторы и предназначены для извлечения энергии из сигналов ISM-диапазона с низким энергопотреблением. AEM30940 может работать с низкими уровнями входного радиосигнала: –18,2 дБм с 863 до 868 МГц и с 915 до 921 МГц, –14 дБм с 2110 до 2170 МГц и –9,5 дБм с 2,4 до 2,5 ГГц. Устройство поверхностного монтажа, имеет конфигурационные контакты для упрощения реализации различных режимов работы, а также корпусные контакты низкого и высокого напряжения для подачи полного диапазона напряжений от 50 мВ до 5 В.
AEM40940 извлекает мощность переменного тока из источников радиочастотного сигнала, создавая два независимо регулируемых выходных напряжения. Он включает в себя выпрямитель с низким энергопотреблением и повышающий преобразователь в пластиковом четырехплоскостном корпусе размером всего 5 × 5 мм. Он может использоваться на частотах ISM 868 МГц, 915 МГц и 2,45 ГГц и при уровнях входной мощности от -20 до +10 дБм. Радиочастотный сборщик энергии (или харвестер) обладает относительно высокой общей эффективностью (измеряемой от входного порта до выходного сигнала повышающего преобразователя) — обычно выше 20% для уровней входной мощности от -20 до 0 дБм на частотах 868 и 915 МГц и, как правило, выше 10% для входа на уровне мощности от -10 до +5 дБм при 2,45 ГГц.
Устройства сбора энергии в настоящее время доступны для многих различных источников энергии, включая солнечный свет, ветер, движение, температуру, даже для захвата электромагнитных волн от тепла тела пользователя. Возможности варьируются для каждого подхода к сбору, при этом солнечная энергия остается самой популярной и эффективной формой сбора энергии уже в окружающей среде. Но с распространением в мире устройств беспроводной связи и увеличением энергии радиочастотного / сверхширокополосного сигнала в большинстве населенных пунктов расширяются возможности использования технологии сбора энергии РЧ в качестве питания электронных устройств с низким энергопотреблением, таких как миллиарды датчиков IoT. Ожидается, что волна сборщиков энергии радиочастот покроет планету в ближайшие годы.
Свободная энергия радиоволн и детекторный прием
В нашу информационную эру развития потребление человечеством энергии в основном только увеличивается. Но в то же время некоторые люди все же задумываются об альтернативных источниках энергии, поскольку исчерпание природных ресурсов на сегодня неоспоримо.
Одной из видов свободной энергии и той, которую наиболее эффективно возможно использовать, является энергия радиоволн.
Вспомним, как на заре развития радио наиболее распространенным средством получения информации в нашей, когда-то необъятной стране, был детекторный приемник. Такой приемник совсем не требует источника питания! Для работы приемника необходимы наушники, антенна (часто значительных размеров) а также заземление. И с такими «девайсами» в самых далеких «глубинках» наши деды-прадеды слушали не только Мокву, Киев или Беларусь, но и Польшу, Венгрию, Германию, … да что там – Вашингтон, Дели, Пекин…
Теперь в эру распространения компьютерной техники и интернета интерес к приемникам значительно поубавился. Но, тем не менее, и сейчас немало любителей «прогуляться» по волнам радиоприема, узнать, что нового в Украине, России и других государствах, прослушать интересные передачи.
А что делать, когда вечером пропал свет? И надолго – на несколько дней! Задумывались? В таких условиях современный человек часто чувствует себя практически отрезанным от мира.
Учитывая все преимущества, такие приемники могут занять значительное положение в селениях с нестабильной подачей электроэнергии или поселениях экологического направления.
Чаще всего такими приемниками увлекаются начинающие радиолюбители, но много и инженеров, которые и дальше изучают свойства катушек, вариометров, конденсаторов, антенн, условий местности…
О детекторном приемнике я мечтал с 5-го класса, когда впервые мне попалась в руки книжка Иванова Б.С. «Электронные самоделки». Первые схематические обозначения радиодеталей и их использование в разных конструкциях сильно меня впечатлило. Но убедить родителей о важности и чрезвычайной надобности установить во дворе наружную антенну значительных размеров для такого «девайса» у меня все не получалось.
О необходимости при этом сделать пару отверстий в раме окна родители были не умоляемы, мол достаточно того что я уже подолбал одно окно в зале для дополнительной антенны телевизора. Но, когда я дождался прекрасного настроения родителей и вновь упомянул о важности таких вещей, при этом в своих рассказах успел дойти до грозопереключателя, и зачем это надо… настроение испортилось у меня и я понял, что этот проект следует закопать.
Конечно было несколько приемничков в моей начинающей практике (я ими и сейчас болен), но идея о детекторном приемнике сидела в голове постоянно.
Шли года. Закончилась школа. К сожалению, направление моей дальнейшей деятельности не совпадала с хобби и времени для изучения радиотехники уделялось совсем немного. Потом диссертация … Пришлось пройти путь «батаника».
В общем, когда появился у меня личный домик – сначала установил громоотвод. И тут уже сама ситуация подсказывает – нужна антенна для детекторного! Нужна – значит нужна! Сказано – сделано. Получилась высотой метров 8 длиной 26. Подошел к окну, улыбнулся – окна старые (скоро поменяю). Безжалостно, но полностью контролируя свои действия, с лицом Дольфа Лунгрена продолбил эти …, нежно говоря, отверстия.
Катушек наделал разных – рамочные, «круглые» различного диаметра. Больше всего заинтересовали корзиночного типа. Но, все же, предпочтение отдал катушке с ферритовым сердечником. Ее я намотал самодельным «лицендратом» из 21 провода ПЕЛ диаметром 0,08 мм. Который потом аккуратно скрутил дрелью. Отводы делал через 10 – 20 витков. Мучения с детектором решил оставить на потом и использовал диод Д311. Кроме настройки емкостью обычным переменным конденсатором, решил поморочиться и из бросовых деталей «изобрел» механизм настройки индуктивностью. Это у меня как минимум вызывает улыбку.
Далее – все обычно. Наушники нашел НИР-2 по 1600 Ом – подсоединил последовательно.
… Есть! Наконец-то. Вот он! Теплый, именно теплый звук… Реально, сейчас такого нету! Что тут говорить, все равно многие не поймут и не оценят. А ведь, действительно, так сидели любители больше чем пол века тому, и прекрасно слушали и Москву, и Вашингтон…
Ну, Вашингтон я пока не услышал (там многие радиостанции на английском передают), но хорошо слышно Радио Болгарии, Голос России, рядом еще какое-то русское. Слышно Первое Белорусское, еще пару не разобрал. Но волна периодически появляется и затухает – пару минут полная тишина, потом 5 минут можно слушать. Днем – очень слабо (нужно вслушиваться), но стабильно слышен наш Проминь. Потом зимой Проминь пропал L. А белорусы работали стабильно – молодцы – и днем и ночью четко слышно.
Забрал приемник в Чернигов, сделал на балконе 7-го этажа жалкое подобие антенны. Заземлился от батареи центрального отопления – тишина… Где-то очень-очень «глубого» слышу – Китай. Ну, капец…
В скорости сделал антенну по-больше (но складающуюся) – в виде удочки. Прием в Чернигове нормальный – можно слушать много радиосанций.
В скорости думаю сделать громкоговоритель с наушника высокоомного … или два. А потом надо планировать громкоговорящий детекторный – более совершенный.
Г. Хоменко
Даёшь зарядку гаджета от радиоволн! / Хай-тек / Радиостанция «Вести FM» Прямой эфир/Слушать онлайн
Рубрика “Хай-тек” с Николаем Гринько на “Вестях ФМ”.
Найден способ превращения сигналов Wi-Fi в электрический ток. Группа американских ученых разработала устройство, названное rectenna. Его основа – полупроводник толщиной всего в несколько атомов. Команда использовала дисульфид молибдена – это один из самых тонких полупроводников. Сигналы Wi-Fi, захваченные антенной, преобразуются в постоянный ток, подходящий для электронных схем. Устройство может использоваться для бесперебойного питания элементов различных гаджетов, медицинских имплантатов и иных портативных датчиков. Материал антенны эластичен, что позволяет изготавливать приёмники большой площади. В экспериментах «ректенна» выдала около 40 микроватт энергии, принимая обычные сигналы Wi-Fi мощностью около 150 микроватт. Этой энергии хватит для работы небольших электронных чипов. Эффект получения энергии из радиоволн известен давно, но до сих пор он позволял получить электричество только в очень небольших количествах. Сейчас учёные планируют создать более сложные устройства с повышенной эффективностью.
Коллектив редакции нашей программы задается вопросом: а почему для получения энергии разработка использует только сигналы Wi-Fi? Ведь это, по сути, обычные радиоволны, которых в окружающем нас пространстве – очень много. Даже если не вспоминать о радиостанциях, любые электроприборы и даже проводка в наших домах постоянно излучают пусть и небольшую, но все-таки энергию, и вся она тратится впустую. Есть подозрение, что если найти способ ее оттуда добывать, то жить на планете станет немного легче, а уж экологи будут просто невероятно рады. Почему бы не оборудовать смартфоны подобной системой? Мы постоянно находимся в зоне действия радиоволн, и если аккумуляторы телефонов будут постоянно подпитываться от них, мы перестанем волноваться о заряде устройства: если батарея села, будет достаточно просто оставить на какое-то время телефон в комнате, чтобы он немного зарядился. В общем, мы однозначно поддерживаем разработку и желаем ей скорейшего выхода в производство. Возможно, когда-нибудь наши гаджеты будут по крупицам собирать электричество из радиоизлучения, солнечного света, звуковых волн и прочих разрозненных источников, а зарядные устройства вообще уйдут в историю. Хотя…
Бесплатное электричество из воздуха своими руками: работающие схемы и проекты
Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.
Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.
Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.
Электричество из воздуха: схемы, прошедшие проверку качества
Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.
Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.
В числе достоинств предлагаемого решения:
- Доступность реализации в домашних условиях;
- Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.
Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.
Схема получения электричества из воздуха по проекту Стивена Марка
Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.
Схема получения электричества из воздуха выглядит следующим образом:
- Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
- Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
- Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
- Устанавливается конденсатор на 10 микрофарад.
- Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.
Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.
Несколько полезных советов по технике безопасности
- Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
- Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.
Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.