Site Loader

Содержание

Электрические цепи. Виды и составные части. Режимы работы

Различные элементы, соединенные проводниками электрического тока между собой, образуют электрические цепи. Перечень компонентов цепи может быть довольно большим. Существуют разные виды элементов цепи электрического тока: пассивные и активные, линейные и нелинейные и много других. Всю классификацию перечислить очень трудно.

Виды и составные части

Для работы цепи необходимо наличие соединительных проводников, потребителей, источника питания, выключателя. Контур цепи должен быть замкнут. Это является обязательным условием работы электрической цепи. Иначе ток в цепи протекать не будет. Не все контуры считаются электрическими цепями. Например, контуры зануления или заземления ими не признаются, так как в обычном режиме в них нет тока. Однако, по принципу действия они также являются электрическими цепями, так как в аварийных случаях в них протекает ток. Контур заземления и зануления замыкается с помощью грунта.

 
Внутренние и внешние электрические цепи

Для создания упорядоченного движения электронов, нужно наличие разности потенциалов между каким-либо участком цепи. Это обеспечивается при подключении напряжения в виде источника питания. Он называется внутренней электрической цепью. Остальные компоненты цепи образуют внешнюю цепь. Для задания движения зарядов в источнике питания против направления поля требуется приложить сторонние силы.

Такими силами могут выступать:

Напряжение в цепи может быть, как постоянным, так и переменным, в зависимости от свойств источника питания. По этому признаку в электротехнике электрические цепи разделяют на контуры цепей. Такое объяснение вида цепи упрощенное, так как закон изменения движения электронов намного сложнее.

Кроме упорядоченного движения, электроны задействованы в хаотичном тепловом движении. Чем выше температура материала, тем больше скорость хаотичного движения носителей заряда. Однако, такой вид движения не участвует в создании электрического тока.

От источника питания зависит и род тока, то есть свойства внешней цепи. Батарея элементов выдает постоянное напряжение, а разные обмотки генераторов или трансформаторов выдают переменное напряжение. Это зависит от внутренних процессов в источнике питания.

Внешние силы, создающие движение электронов, называются электродвижущими силами, которые характеризуются работой, выполненной источником для перемещения единицы заряда, измеряется в вольтах.

Практически в расчетах цепей применяют два класса источников питания:
  1. Источники напряжения.
  2. Источники тока.

В реальности такие идеальные источники не существуют, но практически их пытаются имитировать. В бытовой сети мы имеем напряжение 220 вольт с определенными нормированными отклонениями. Это является источником напряжения, так как норма дана именно на этот параметр. Значение тока не играет большой роли. На электростанции круглосуточно поддерживается постоянная величина напряжения, независимо от запросов.

Источник тока действует по-другому. Он поддерживает определенный закон движения электронов, а величина напряжения не имеет значения. В пример можно привести сварочный аппарат. Для нормального хода сварки необходимо поддерживать постоянное значение тока. Эту функцию выполняет инверторный электронный блок.

Сеть питания может быть, как переменной, так и постоянной. Это не играет большой роли. Важнее выдержать, например, параметр ЭДС.

Обозначения компонентов электрической цепи

Выключатель

Это устройство позволяет соединить потребитель с источником питания. При пользовании выключателем, на его контактах образуется искра. Она возникает из-за наличия емкостного сопротивления. Чтобы избежать искрения, в электрическую цепь добавляются дроссели, а в выключатель устанавливают контакты специального вида. Электрические цепи могут иметь и другие решения для предотвращения возникновения искры.

Проводники

Электрические провода чаще всего производят из алюминия или меди. Это объясняется низким удельным сопротивлением этих металлов, хотя стоимость их в последнее время повышается. На проводах при работе выделяется тепло, которое зависит от двух параметров:

  1. Электрического тока.
  2. Сопротивления участка цепи.

Электрический ток определяется необходимостью потребителя, поэтому изменять можно только удельное сопротивление, которое должно быть как можно ниже. Все металлы при уменьшении температуры уменьшают сопротивление, в результате чего снижаются потери энергии. Если взять полупроводники, то среди них есть образцы с отрицательным и с положительным температурным коэффициентом сопротивления. Если сравнивать абсолютные значения сопротивления, то у металлов оно намного меньше.

Потребители

Все остальные компоненты электрической цепи, кроме перечисленных выше, считаются потребителями. Полезной нагрузкой является простая лампа накаливания, электродвигатель, нагревательное устройство. Параметры цепи слишком зависят от потребителей. Электрические цепи имеют обмотки трансформаторов, которые обладают большим индуктивным сопротивлением. Это отрицательно влияет на передачу электричества от источника.

Направление кроме тока может изменять и мощность. При этом энергия циркулирует в одну и в другую сторону. Такая мощность называется реактивной, и не выполняет полезной работы. Однако, она нагревает проводники и изменяет форму электрического сигнала. Поэтому в промышленных условиях целесообразно к электродвигателям параллельно подключать конденсаторы, которые будут компенсировать сопротивление с индуктивностью. В результате реактивная мощность замкнется внутри двигателя, и не выделит чрезмерного тепла в проводах.

Индуктивные потребители имеют важное свойство: они расходуют электроэнергию, которая превращается в магнитное поле и передается дальше.

В электронике существует множество разнообразных потребителей, которые можно разделить на классы:
  • Активные потребители. Для своего функционирования им требуется наличие электрической энергии. От основной сети они практически не работают. К ним относятся транзисторы, микросхемы, тиристоры и много других видов, являющихся своеобразными электронными ключами. Электродвигатели имеют отличие в том, что работают непосредственно из сети питания.
  • Пассивные потребители не нуждаются во внешнем источнике питания. Они пропускают через себя электрический ток особым образом. Например, полупроводники (тиристоры) начинают пропускать ток только при достижении определенной величины напряжения. Значит, они являются пассивными потребителями, и имеют нелинейные свойства пропускания тока. К таким же видам можно причислить диоды, пропускающие ток только в одну сторону. Другими словами, они имеют свойства вентиля. Также пассивными потребителями являются различные дроссели, конденсаторы, сопротивления. При наличии этих компонентов электрические цепи обретают необычные свойства. Например, контуры резонанса, состоящие из катушек и емкостей, применяют в виде фильтров для разной частоты волн.
Режимы электрической цепи

При подключении разного числа потребителей к источнику питания изменяется мощность, напряжение и ток, вследствие чего возникают различные режимы работы в цепи, и соответственно, компонентов, включенных в нее. Практически можно представить схему цепи в виде пассивного и активного двухполюсника. Это электрические цепи, соединенные с внешней частью двумя выводами с разной полярностью.

Особенностью активного двухполюсника является наличие источника электрического тока, у пассивного двухполюсника его нет. Популярными стали схемы замещения пассивных и активных элементов во время работы. Вид режима работы определяется свойствами элементов цепи.

Холостой ход

Это режим при отключенной нагрузке от питания при помощи ключа. В этом случае ток в цепи равен нулю. Напряжение достигает уровня ЭДС. Элементы цепи не работают.

Короткое замыкание

В этом случае выключатель на схеме замкнут, сопротивление равно нулю, соответственно, напряжение также равно нулю.

При применении двух рассмотренных режимов определяются свойства активного двухполюсника. При изменении тока в некоторых границах, зависящих от элемента цепи, нижняя граница всегда равна нулю. Этот элемент цепи начинает выдавать энергию в цепь. Также нужно знать, что если напряжение ниже нуля, это значит, что резисторами активного двухполюсника расходуется энергия источника, связанного по цепи, а также резерв самого прибора.

Номинальный режим

Такой режим необходим для создания технических свойств всей цепи и отдельных компонентов. В этом режиме свойства близки к величинам, указанным на компоненте, или в инструкции. Нужно учесть, что каждый прибор имеет свои параметры. Однако, три главных показателя есть у всех устройств – это напряжение, мощность и номинальный ток. Все компоненты электрических цепей также имеют эти показатели.

Согласованный режим

Этот режим применяется для создания наибольшей передачи активной мощности, передаваемой источником питания к потребителю. Когда производится работа в этом режиме, необходимо быть осторожным, во избежание выхода из строя части цепи.

Основные элементы цепи

Они применяются в сложных устройствах для проверки работоспособности:
  • Ветвь. Это участок цепи с током одинаковой величины. Ветвь может иметь несколько последовательно соединенных элементов.
  • Узел. Это место соединения нескольких ветвей.
  • Контур. Это любой замкнутый участок цепи, имеющий несколько ветвей.
Похожие темы:

электронная цепь — это… Что такое электронная цепь?


электронная цепь

3.10.2 электронная цепь (electronic circuit): Цепь, которая оснащена не менее чем одним электронным элементом.

3.16 электронная цепь (electronic circuit): Цепь, включающая минимум одно электронное комплектующее.

3.10.2

электронная цепь (electronic circuit): Цепь, которая оснащена не менее чем одним электронным элементом.

3.20 электронная цепь: Цепь, которая включает в себя не менее чем одно электронное комплектующее.

3.9.2 электронная цепь (electronic circuit): Цепь, которая оснащена не менее чем одним электронным комплектующим.

8»3

Электронная цепь

Электрическая цепь, в элементах которой используется явление электрической проводимости в газах, в вакууме и в полупроводниках

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Электронная управляющая машина коммутационной техники связи
  • ЭЛЕКТРОННАЯ ЦИФРОВАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА

Смотреть что такое «электронная цепь» в других словарях:

  • электронная цепь — Цепь, которая оснащена не менее чем одним электронным комплектующим. [ГОСТ Р 52161.1 2004 (МЭК 60335 1:2001)] EN electronic circuit circuit incorporating at least one electronic component [IEC 60335 1, ed. 4.0 (2001 05)] FR circuit… …   Справочник технического переводчика

  • Электронная цепь — English: Electronic circuit Электрическая цепь, в элементах которой используется явление электрической проводимости в газах, в вакууме и в полупроводниках (по ГОСТ 19880 74) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • защитная электронная цепь — 3.21 защитная электронная цепь: Электронная цепь, предотвращающая опасную ситуацию при ненормальных условиях работы. Источник …   Словарь-справочник терминов нормативно-технической документации

  • цепь

    — сущ., ж., употр. часто Морфология: (нет) чего? цепи, чему? цепи, (вижу) что? цепь, чем? цепью, о чём? о цепи и на цепи; мн. что? цепи, (нет) чего? цепей, чему? цепям, (вижу) что? цепи, чем? цепями, о чём? о цепях и о цепях 1. Цепью называют ряд… …   Толковый словарь Дмитриева

  • Электронная — 8. Электронная вычислительная машина ЭВМ Electronic computer Вычислительная машина, основные функциональные устройства которой выполнены на электронных компонентах Источник: ГОСТ 15971 90: Системы обработки информации. Термины и определения ориги …   Словарь-справочник терминов нормативно-технической документации

  • Электронная пушка — в составе электронно лучевой трубки Электронная пушка  устройство, с помощью которого получают пучок электронов с заданной кинетической энергией и заданной конфигурации. Чаще всего используется в кинескопах и других электронно лучевых тру …   Википедия

  • ГОСТ Р МЭК 60065-2002: Аудио-, видео- и аналогичная электронная аппаратура. Требования безопасности — Терминология ГОСТ Р МЭК 60065 2002: Аудио , видео и аналогичная электронная аппаратура. Требования безопасности оригинал документа: 2.6 Защита от поражения электрическим током, изоля ция 2.6.1 КЛАСС I Конструкция аппарата, в которой защита от… …   Словарь-справочник терминов нормативно-технической документации

  • Рука с мечом, разрубающим цепь — ( …   Википедия

  • отказоустойчивая цепь — 3.1.54 отказоустойчивая цепь: Электрическая и/или электронная система, связанная с обеспечением безопасности, которая работает заданным образом в случае отказа оборудования. 3.1.55 выключатель безопасности: Электромеханическое устройство,… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования — Терминология ГОСТ Р 52161.1 2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа: 3.4.2 безопасное сверхнизкое напряжение (safety extra low voltage): Напряжение, не превышающее 42 В между… …   Словарь-справочник терминов нормативно-технической документации


Электрическая цепь и ее элементы

Электрическая цепь это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Элементами электрической цепи являются: источник тока, нагрузка и проводники. Простейшая электрическая цепь показана на рисунке 1.

Рисунок 1. Простейшая электрическая цепь.

В состав электрической цепи могут входить и другие элементы, таки как устройства коммутации, устройства защиты.

Как известно, для возникновения тока необходимо соединить две точки, одна из которых имеет избыток электронов в сравнении с другой. Другими словами необходимо создать разность потенциалов между этими двумя точками. Как раз для создания разности потенциалов в цепи применяется источник тока. Источником тока в электрической цепи могут быть такие устройства, как генераторы, батареи, химические элементы и т.д.

Нагрузкой в электрической цепи считается любой потребитель электрической энергии. Нагрузка оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока. Ток от источника тока к нагрузке течет по проводникам. В качестве проводников стараются использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Важно, что для протекания тока в цепи, цепь должна быть замкнута!

Типы электрических цепей

В электротехники по типу соединения элементов электрической цепи существуют следующие электрические цепи:

  • последовательная электрическая цепь;
  • параллельная электрическая цепь;
  • последовательно-параллельная электрическая цепь.

Последовательная электрическая цепь.

В последовательной электрической цепи (рисунок 2.) все элементы цепи последовательно друг с другом, то есть конец первого с началом второго, конец второго с началом первого и т.д.

Рисунок 2. Последовательная электрическая цепь.

При таком соединении элементов цепи ток имеет только один путь протекания от источника тока к нагрузке.При этом общий ток цепи Iобщ будет равен току через каждый элемент цепи:

Iобщ=I1=I2=I3

Падение напряжения вдоль всей цепи, то есть на участке А-Б (Uа-б), будет равно приложенному к этому участку напряжению E и равно сумме падений напряжений на всех участках цепи (резисторах):

E=Uа-б=U1+U2+U3

Параллельная электрическая цепь.

В параллельной электрической цепи (рисунок 3.) все элементы соединены таким образом, что их начало соединены в одну общую точку, а концы в другую.

Рисунок 3. Параллельная электрическая цепь.

В этом случае у тока имеется несколько путей протекания от источника к нагрузкам, а общий ток цепи Iобщ будет равен сумме токов параллельных ветвей:

Iобщ=I1+I2+I3

Падение напряжения на всех резисторах будет равно приложенному напряжению к участку с параллельным соединением резисторов:

E=U1=U2=U3

Последовательно-параллельная электрическая цепь.

Последовательно-параллельная электрическая цепь является комбинацией последовательной и параллельной цепи, то есть ее элементы включаются и последовательно и параллельно (рисунок 4).

Рисунок 4. Последовательно-параллельная электрическая цепь.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Электрическая цепь: состав и элементы

Электрическая цепь – набор разнородных элементов, соединенных проводниками, предназначенный для протекания тока. Ассортимент составляющих широкий. Элементы выпускают линейные, нелинейные, активные, пассивные. Классификация бессильна охватить возможные случаи.

Состав электрической цепи

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Помимо упорядоченного движения носители характеризуются хаотичным тепловым движением. Скорость (интенсивность) определена температурой, родом материала, некоторыми другими факторами. В образовании электрического тока вид движения участия фактически не принимает.

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.

Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.

Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.

Элементы цепи

Элементы цепи

Выключатель

Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра. Объясняется наличием сопротивления емкостного типа. Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа. Придуманы прочие технические решения, к примеру, катушка Тесла.

Провода

В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:

  • Сопротивление участка цепи.
  • Электрический ток.

Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости. Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления. Абсолютное значение параметра металлов на порядки ниже.

Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет. Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.

Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.

Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.

Новое явление обнаружил Хейке Камерлинг-Оннес в 1911 году, исследуя образцы ртути, охлаждаемой до весьма низких температур. На четырех градусах Кельвина сопротивление проволоки стало нулевым, до скачка снижалось, плавно следуя прямой. Стало ясно: обнаружено новое состояние материала. Позже явление сверхпроводимости продемонстрировано на образцах других металлов. Показано: эффект разрушается помещением подопытного вещества в сильное магнитное поле. Самой высокой пороговой температурой среди металлов похвастается технеций (11,3 К).

Явление сверхпроводимости при комнатных температурах

Явление сверхпроводимости при комнатных температурах

У искусственных материалов показатели намного выше. С 1986 года ученые исследуют разнообразные керамики. Последним подтвержденным фактом считаем сведения о наличии композитных материалов на основе окислов ртути с температурой перехода в новое состояние на границе 140 К. Дальнейшие работы по очевидным соображениям засекречены.

Потребители

Под потребителем электрической цепи понимается не относящееся к элементам, перечисленным выше. Полезной нагрузкой служат обыкновенная лампочка накала, спираль нагревательного прибора, электрический двигатель. Параметры цепи очень сильно зависят именно от потребителей. Например, обмотки трансформаторов наделены сильно выраженным индуктивным сопротивлением. Негативно сказывается на передаче энергии от источника.

Не только ток меняет направление. Иногда утверждение касается мощности. Энергия начинает циркулировать туда-сюда, направляясь к источнику питания, обратно во внешнюю цепь. Реактивная мощность бессильна выполнить полезную работу, разогревает проводники цепи, искажает форму полезного сигнала. Промышленникам, ведущим учет полного потребления, рекомендуется параллельно двигателям включать компенсирующие конденсаторы. Индуктивное сопротивление компенсируется емкостным, реактивная мощность замыкается внутри потребительского сегмента, избегая выходить наружу, не выделяя лишнее тепло на кабелях сети.

Нужно отметить важное свойство индуктивных потребителей: потребляют энергию. Электрический ток становится магнитным полем, передается далее. В двигателях колебания вектора напряженности, создаваемые обмоткой, позволят совершать валу полезную работу. Чтобы показать происходящие траты энергии, схемы дополняют источниками ЭДС (тока), направление действия которых противоположно имеющему место быть во внутренней электрической цепи.

Передачи мощности через емкостную связь сегодня не изобретено. Однако приближенно считаем подобным случаем излучение радиоволны в эфир. Простейший вибратор Герца часто представляют колебательным контуром, в котором обкладки конденсатора разведены в стороны. Шаг позволит образовываться электромагнитной волне, уносимой эфиром. Что касается передачи больших мощностей, соответствующие планы строил Никола Тесла, каждый видел на фото, стилистическом изображении башню Ворденклиф, напоминающую формой подберезовик с прямой ножкой. При помощи сети сооружений предполагалось снабжать энергией путем беспроводной связи промышленность, заводы, фабрики.

В курсе электроники преимущественно рассматриваются приемные устройства. Между клеммами антенны передача волны через эфир обозначается схематично источником переменного напряжения малой мощности. Уловленная ЭДС усиливается каскадами, включающими резонансные контуры. Электроника, как никакая другая область техники, включает неимоверное разнообразие потребителей. Упрощенно делится на два класса:

  1. Активные потребители требуют для корректной работы снабжения электрической энергией. Как правило, не могут питаться непосредственно основной сетью. Микросхемы, дискретные активные элементы: транзисторы, тиристоры. Иными словами, электронные ключи. Электродвигатели принципиально отличаются, снабжаясь питанием входной сети.
  2. Пассивные потребители не требуют внешнего питания. Однако пропускать ток могут причудливым образом. Некоторые тиристоры открываются при достижении напряжением определенного значения. Следовательно, считаются пассивными приборами, обладают нелинейной характеристикой. К этому семейству относятся диоды, пропускающие ток в одном направлении (демонстрируют вентильные свойства).

Пассивными потребителями являются всевозможные сопротивления, конденсаторы, дроссели (катушки индуктивности). При помощи элементов электрическая цепь приобретает необычные качества. Резонансные контуры конденсаторов, индуктивностей используют фильтрами волн различной частоты.

Электронная цепь — это… Что такое Электронная цепь?



Строительный словарь.

  • Электронная лампа
  • Электрооборудование

Смотреть что такое «Электронная цепь» в других словарях:

  • электронная цепь — Цепь, которая оснащена не менее чем одним электронным комплектующим. [ГОСТ Р 52161.1 2004 (МЭК 60335 1:2001)] EN electronic circuit circuit incorporating at least one electronic component [IEC 60335 1, ed. 4.0 (2001 05)] FR circuit… …   Справочник технического переводчика

  • электронная цепь — 3.10.2 электронная цепь (electronic circuit): Цепь, которая оснащена не менее чем одним электронным элементом. Источник: ГОСТ Р МЭК 60745 1 2005: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования …   Словарь-справочник терминов нормативно-технической документации

  • защитная электронная цепь — 3.21 защитная электронная цепь: Электронная цепь, предотвращающая опасную ситуацию при ненормальных условиях работы. Источник …   Словарь-справочник терминов нормативно-технической документации

  • цепь — сущ., ж., употр. часто Морфология: (нет) чего? цепи, чему? цепи, (вижу) что? цепь, чем? цепью, о чём? о цепи и на цепи; мн. что? цепи, (нет) чего? цепей, чему? цепям, (вижу) что? цепи, чем? цепями, о чём? о цепях и о цепях 1. Цепью называют ряд… …   Толковый словарь Дмитриева

  • Электронная — 8. Электронная вычислительная машина ЭВМ Electronic computer Вычислительная машина, основные функциональные устройства которой выполнены на электронных компонентах Источник: ГОСТ 15971 90: Системы обработки информации. Термины и определения ориги …   Словарь-справочник терминов нормативно-технической документации

  • Электронная пушка — в составе электронно лучевой трубки Электронная пушка  устройство, с помощью которого получают пучок электронов с заданной кинетической энергией и заданной конфигурации. Чаще всего используется в кинескопах и других электронно лучевых тру …   Википедия

  • ГОСТ Р МЭК 60065-2002: Аудио-, видео- и аналогичная электронная аппаратура. Требования безопасности — Терминология ГОСТ Р МЭК 60065 2002: Аудио , видео и аналогичная электронная аппаратура. Требования безопасности оригинал документа: 2.6 Защита от поражения электрическим током, изоля ция 2.6.1 КЛАСС I Конструкция аппарата, в которой защита от… …   Словарь-справочник терминов нормативно-технической документации

  • Рука с мечом, разрубающим цепь — ( …   Википедия

  • отказоустойчивая цепь — 3.1.54 отказоустойчивая цепь: Электрическая и/или электронная система, связанная с обеспечением безопасности, которая работает заданным образом в случае отказа оборудования. 3.1.55 выключатель безопасности: Электромеханическое устройство,… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования — Терминология ГОСТ Р 52161.1 2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа: 3.4.2 безопасное сверхнизкое напряжение (safety extra low voltage): Напряжение, не превышающее 42 В между… …   Словарь-справочник терминов нормативно-технической документации


Электронная цепь — Большая Энциклопедия Нефти и Газа, статья, страница 1

Электронная цепь

Cтраница 1

Электронная цепь характеризуется двумя основными показателями: набором элементов и способом их соединения. В зависимости от числа полюсов, различают двухполюсные и многополюсные элементы.  [1]

Электронная цепь — электрическая цепь, в элементах которой используется явление электрической проводимости в газах, в вакууме и в полупроводниках.  [3]

Какая силовая электронная цепь постоянного тока эквивалентна трансформатору.  [4]

Анализ электронной цепи включает в себя составление математической модели исследуемой цепи, например линейной схемы замещения, и математический анализ полученной модели. Рассмотрим анализ уже полученной модели, применив теорию графов.  [5]

Анализ электронных цепей, как активных, так и пассивных, основанный на матричном исчислении, позволяет определять передаточную функцию H ( s), связывающую две физические величины.  [6]

Для электронных цепей, использующих дискретные транзисторы в виде комплектующих элементов, при решении уравнений (1.35) — (1.38) вводят упрощения: устраняют из указанных уравнений Пространственные производные от плотности неосновных носителей.  [7]

Конструктор электронных цепей часто характеризует такие системы, как системы со смешанной отрицательной и положительной обратной связью, причем последняя относится к контуру с положительным усилением. Поскольку фазовый сдвиг, связанный с обычной передаточной функцией, зависит от частоты ( и может оказаться равным 180), то дать общее определение положительной и отрицательной обратной связи тяжело. Однако в большинстве случаев применение этих терминов ясно.  [9]

Моделирование электронных цепей состоит в определении функции цепи и отклонения функции цепи. Функция цепи зависит от параметров цепи в билинейной и биквадратной форме, на биквадратный случай распространяют метод корневого годографа. В определении отклонения функции цепи используются методы максимума и минимума, теоретико-вероятностный, Монте-Карло, методика смешанного расчета.  [10]

Синтез электронных цепей связывают с выбором таких эквивалентных схем, которые обладают оптимальными допусками. Синтез электронных цепей используют при решении проблемы точности с регулируемыми параметрами цепей.  [11]

Набор электронных цепей, которым должны снабжаться процессор или периферийные устройства с целью обеспечения совместимости их интерфейсов.  [12]

В электронных цепях для придания свойства однонаправленности и независимости при соединении данного элемента цепи с последующим используются катодные или эмиттерные повторители с коэффициентом передачи, близким к единице, и малым выходным сопротивлением. Часто условие независимости практичерки выполняется, если отдельные элементы цепи разделены усилительными каскадами. В дальнейшем для простоты, рассматривая какую-либо изолированную электрическую цепь или иное устройство, будем полагать условие независимости выполненным, не указывая, как это достигается.  [14]

В теории электронных цепей принято проектирование разделять на последовательные этапы: аппроксимацию, синтез схемы, синтез параметров элементов, синтез допусков.  [15]

Страницы:      1    2    3    4

Теория электрических цепей — Википедия

Материал из Википедии — свободной энциклопедии

Теория электрических цепей — совокупность наиболее общих закономерностей, описывающих процессы в электрических цепях. Теория электрических цепей основана на двух постулатах:

  1. Исходное предположение теории электрических цепей. Все процессы в любых электротехнических устройствах можно описать с помощью двух понятий: тока и напряжения.
  2. Исходное допущение теории электрических цепей. Сила тока в любой точке сечения любого проводника одна и та же, а напряжение между любыми двумя точками пространства изменяется по линейному закону[источник не указан 1145 дней].

Ток — количество зарядов (q, в Кулонах), перемещаемых через поперечное сечение проводника в единицу времени (t, в секундах).

i(t) = dq/dt или I = q/t , измеряется в Амперах = А

Напряжение — предел отношения количества энергии, необходимой для переноса некоторого количества электричества из одной точки пространства в другую, к этому количеству электричества, когда оно стремится к нулю. Последнее равенство написано в предположении, что энергия и заряд — величины непрерывные. Размерность напряжения:

В = Дж • Кл−1

Из основных понятий как следствие вытекают определения:

Энергия — мера способности объекта совершать работу. Её размерность:

Дж = В • А • с

Мощность — скорость изменения энергии во времени. Размерность мощности:

Вт = Дж • с−1 = В • А

Электрическая цепь[править | править код]

Электрическая цепь — совокупность элементов и источников, предназначенных для генерации, приема и преобразования токов и напряжений (электрических сигналов). Те участки цепи, куда поступают или для которых генерируются сигналы, называют входами; те участки, на которых регистрируют токи или напряжения в результате их генерации или преобразования, — выходами.

Элементы электрической цепи — идеализированные устройства с двумя или более зажимами, все электромагнитные процессы в которых с достаточной для практики точностью могут быть описаны только в основных понятиях (тока и напряжения).

Элементы бывают: линейные и нелинейные, пассивные и активные, стационарные и нестационарные, непрерывные и дискретные, с сосредоточенными и распределенными параметрами. Из дальнейшего рассмотрения исключим нестационарные элементы и элементы с распределенными параметрами. Источники электромагнитной энергии — идеализированные устройства, имеющие два или более зажимов и предназначенные для генерации или преобразования электромагнитной энергии. Источники бывают: независимые, зависимые и управляемые.

Ветвь[править | править код]

Ветвью называется участок электрической цепи с одним и тем же током. Ветвь состоит из одного активного или пассивного элемента или представляет собой последовательное соединение нескольких элементов.

Узел[править | править код]

Узлом называется место соединения трех и более ветвей. Различают понятия геометрического и потенциального узлов. Геометрические узлы, имеющие одинаковые потенциалы, могут быть объединены в один потенциальный узел.

Контур[править | править код]

Контуром называется замкнутый путь, проходящий через несколько ветвей и узлов разветвлённой электрической цепи.

Двухполюсник[править | править код]

Двухполюсником называют часть электрической цепи с двумя выделенными зажимами-полюсами.

Четырёхполюсник[править | править код]

Четырёхполюсником называют часть электрической цепи, имеющую две пары зажимов, которые называются входными и выходными.

  • Добротворский И. Н. Теория электрических цепей. Учебник. — М.: Радио и связь, 1989.
  • В. Г. Герасимов, Э. В. Кузнецов, О. В. Николаева. Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. — М.: Энергоатомиздат, 1996. — 288 с. — ISBN 5-283-05005-X.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *