Site Loader
жс-Все перечисленные параметры предельных режимов обусловлены развитием одно­го из видов пробоя: по напряжению — лавинного, по току — токового или теплового, по мощности — вызванного достижением максимальной температуры перехода.

Виды пробоев. Механизмы развития пробоев в транзисторах могут быть раз­личными,

независимо от этого все виды пробоев можно условно разделить на первичные и вторичные. Первичные пробои транзистора отличаются тем, что

Рис 7 1 Вольт-амперные характеристики биполярного транзистора (а) и полевого транзистора (б) при лавинном пробое

они являются обратимыми Если транзистор попадает в режим первичного про­боя, то его нормальная работа нарушается, однако при выходе из режима пробоя его работоспособность восстанавливается Любой вторичный пробой необратим, так как после него происходит деградация транзистора, обусловленная порчен переходов Основными видами первичных пробоев являются лавинный, тепловой и токовый

Лавинный пробой иногда называют электрическим, так как он возникает при высоком значении напряжения обратно смещенного перехода.оо, т е при более высоком напряжении на коллекторе

Это явление объясняется тем, что при отключенной базе внутри транзистора действует положительная обратная связь Заряды, образующиеся в результате ла­винного размножения, скапливаются в базе, увеличивая ее заряд. Это вызывает приток неосновных носителей из эмиттера, которые увеличивают ток коллектора Этот процесс нарастает лавинообразно и называется лавинным пробоем с эмит-терным умножением На величину этой положительной обратной связи можно влиять схемным путем Так, например, если подать на эмиттер транзистора запи­рающее напряжение, то его влияние резко уменьшается и пробивное напряжение увеличивается Такой же эффект можно получить введением в цепь эмиттера со­противления, так как ток эмиттера, проходя по этому сопротивлению, создает напряжение отрицательной обратной связи и уменьшает действие эмиттера на лавинный процесс

В большинстве применений, особенно для мощных транзисторов, рекоменду­ют между базой и эмиттером включать небольшое сопротивление rq.-и-перехода. С ростом температуры перехода возрастают токи утечки и полупроводник переходит в проводящее состояние, а р-п-переход исчеза­ет. Такое явление называют переходом кристаллов в состояние собственной про­водимости.

В реальных условиях это явление не всегда ограничивает рост температу­ры, так как уже при более низких температурах может наблюдаться резкая зависимость от температуры одного или нескольких из основных параметров, например, коэффициента передачи тока или предельного рабочего напряже­ния.

Рассеяние мощности транзистором имеет место при любом режиме работы, однако оно максимально, когда транзистор находится во включенном состоянии или выключается. При высокой частоте коммутации потери растут пропорцио­нально частоте. С увеличением потребляемой мощности растет и температура транзистора.

Для оценки теплового режима транзистора используют понятие теплового сопротивления, под которым понимают сопротивление элементов транзистора распространению теплового потока от коллекторного перехода к корпусу или в окружающую среду.

„ к,

• предельно допустимая температура перехода Тпнакс;

• предельная средняя (или импульсная) мощность потерь в транзисторе .Рлотм-чсс;

• предельно допустимая температура корпуса прибора Ткмакс-Температуру корпуса транзистора можно измерять непосредственно. Для это­го на мощных приборах может быть указана точка, в которой следует произво­дить это измерение. Непосредственно измерить температуру перехода транзистора в процессе эксплуатации практически невозможно. В связи с этим используют косвенные методы, основанные на температурной зависимости какого-либо пара­метра. Такие методы обычно не дают возможности определить температуру в наиболее горячих точках структуры, которые возникают из-за разброса электро­физических свойств кристалла или дефектов конструкции Для определения усред­ненной температуры перехода используют тепловое сопротивление. Эффективная температура перехода в установившемся режиме может быть определена по фор­мулам

С другой стороны, располагая сведениями о максимально допустимой темпе­ратуре перехода Гц „ако можно определить допустимую мощность потерь в транзи­сторе

где Гпщке^ОС^С для кремния и 150°С — для германия.см/с — ско­рость насыщения дрейфа носителей заряда

На практике это значение тока никогда не достигается и обычно значение Is. макс определяется возможностью повреждения соединений (перегоранием провод­ников) внутри транзистора. Значение максимального допустимого тока /к макс обычно указывается в справочных данных транзистора

В ряде случаев максимально допустимый ток транзистора определяется по снижению коэффициента передачи тока ниже определенного значения. Если токо-вый пробой не связан с перегоранием соединительных проводников, то он являет­ся обратимым.

Вторичный пробой транзистора возникает или после развития одного из ви­дов первичного пробоя, или непосредственно, минуя развитие первичного пробоя. Непосредственное развитие вторичного пробоя происходит обычно в областисравнительно высоких напряжений на коллекторе и связано с развитием так назы­ваемого «токового шнура». При этом коллекторный ток концентрируется в очень малой области коллектора, которая проплавляется и замыкает коллектор с базой. Вторичный пробой происходит при значениях тока и напряжения, меньших гипер­болы максимальной мощности (рис 7.3)

Если транзистор работает в усилительном режиме, то развитие вторично­го пробоя и возникновение токового шнура связано с потерей термической устойчивости, при которой увеличение тока в каком-либо месте структуры приводит к повышению ее температуры, а повышение температуры увеличи­вает ток Этот процесс нарастает лавинообразно и приводит к проплавлению структуры

Электрический и тепловой механизмы развития вторичного пробоя являются не единственными В реальных транзисторах концентрация тока и развитие вто­ричного пробоя могут быть результатом наличия дефектов в кристалле, плохого качества пайки и др Но какова бы ни была причина развития вторичного про­боя, результатом его является шнурование тока и локальный перегрев с проплав-лением кристалла

Для развития вторичного пробоя требуется определенное время, которое может составлять 1 ЮОмкс. Это время называют временем задержки развития вторичного пробоя Если время нахождения транзистора в опасном режиме мень­ше времени развития вторичного пробоя, то вторичный пробой не возникает. Поэтому при коротких длительностях импульсов тока в транзисторе вторичный пробой может и не развиться. Исследования показали, что при развитии вторич­ного пробоя (во время задержки) в цепи базы могут возникать автоколебания сравнительно высокой частоты, которые могут быть использованы для предсказа­ния опасною значения тока и защиты транзистора.

На рис 7 4 показаны вольт-амперные характеристики транзистора при разви­

тии вторичного пробоя из различ­ных областей из области усили­тельною режима (а), области пас­сивного запирания (б) и области активного запирания (при обрат­ном смещении эмиттерного пере­хода) (в) Во всех трех случаях при развитии вторичного пробоя происходит резкое увеличение тока коллектора и снижение на­пряжения на коллекторе, связан­ное с проплавлением коллектор­ного перехода

Вторичный пробой отсутству­ет в полевых транзисторах Так, например, для полевых транзисто­ров с управляющим /7-й-переходом с увеличением температуры ток

Рис 7 4 Графики развития вторично! о пробоя из области усилительного режима (а), области пассивного запирания (б), и области активного запирания (в)

Рис 7 5 Температурная зависимость тока стока полевого транзистора с р-п-переходом

стока уменьшается, как показано на рис.) Различают статическую и импульсную ОБР Статическая ОБР (рис. 7 6 я) ограничивается участками то-

кового пробоя (1), теплового пробоя (2), вторичного пробоя (3) и лавинного про­боя (4). При построении ОБР в логарифмическом масштабе все ее участки имеют вид прямых линий.

Импульсная ОБР определяется максимальным импульсным током коллектора Iv. и макс и максимальным импульсным напряжением пробоя С/кэимакс- При малых

Рис 76 Области безопасной рабогы биполярного транзистора в статистическом режиме (л) и импульсном режиме (б) при различных длительностях импульсов тока коллекюра

длительностях импульсов на ней могут отсутствовать участки, обусловленные тепловым пробоем При длительности импульса менее 1 мкс импульсная ОБР име­ет только две границы /к и макс и Гришке- При увеличении длительности импульса появляются участки, ограничивающие ОБР за счет развития вторичного пробоя (3) и теплового пробоя (2)

Границы областей безопасной работы транзистора зависят от температуры его корпуса С увеличением температуры корпуса транзистора границы ОБР, обусловленные тепловым пробоем, перемещаются влево Границы ОБР, обуслов­ленные лавинным или вторичным пробоем, практически от температуры не за­висят

Защита транзисторов от пробоя. При использовании транзистора необходимо обеспечить нахождение его рабочей точки внутри ОБР без выхода за ее пределы Даже кратковременный выход рабочей точки за пределы соответствующей ОБР влечет за собой попадание транзистора в область пробоя С целью защиты тран­зистора от возможного пробоя обычно формируют траекторию его переключения при работе в ключевом режиме Для этого к транзистору подключают дополни­тельные цепи, содержащие резисторы, емкости, диоды и стабилитроны Парамет­ры этих цепей или рассчитывают, или находят экспериментальным путем Неко­торые из таких схем приведены на рис 7 7

!     Простейшая цепь, используемая при индуктивной нагрузке транзистора, j состоит из последовательно соединенных элементов R и С, как показано на j рис 7 7 а Эта цепь работает следующим образом При запирании транзистора

(с индуктивной нагрузкой ток в индуктивности, не меняя своего значения и направ­ления, поступает в 7?С-цепь и заряжает конденсатор С При этом часть энергии запасенной в индуктивности, будет израсходована в резисторе Л. и максимально допу­стимым напряжением коллектор-эмиттер, определяемым по соответствующей ОБР

Вместо 7?С-цепи можно использовать диодно-резистивную цепь, представлен­ную на рис 7.76. В этой схеме при запирании транзистора отпирается диод D, и через него проходит ток индуктивной нагрузки. Для снижения амплитуды им­пульса тока в диоде последовательно с ним иногда включается сопротивление R Перепад напряжения на транзисторе равен прямому падению напряжения на дио­де, т. е. практически отсутствует.

Для ограничения выброса напряжения на коллекторе транзистора при его запирании можно использовать ограничитель на стабилитроне D, как показано на рис. 7.7 в. Все рассмотренные цепи ограничивают предельное напряжение на транзисторе и тем самым предохраняют транзистор от попадания в режим лавин­ного пробоя.

Для защиты транзистора от перегрева и связанного с этим теплового пробоя применяют охладители, к которым крепится корпус транзистора. Применение

7 Расцвет Афинской демократии — лекция, которая пользуется популярностью у тех, кто читал эту лекцию.

охладителей позволяет уменьшить   перегрев транзистора.

Наиболее сложной проблемой является за­щита транзисторов от вторичного пробоя. При развитии вторичного пробоя транзистор теряет управление по базе, и даже подавая на базу об­ратное смещение, запереть его нельзя. Един­ственным способом защиты транзистора в этом случае является распознавание развития вто­ричного пробоя во время задержки и шунтиро-вание выводов коллектор-эмиттер транзистора с помощью быстродействующего тиристора.

Упрощенная схема защиты транзистора от вторичного пробоя приведена на рис 7.8. Схема содержит устройство управления тиристором D защиты, который шунтирует транзистор Т при появлении в его базе колебаний, предшесгвую-ших развитию вторичного пробоя

Рис 7 8 Защита транзистора от вторичного пробоя

Раздел 2 АНАЛОГОВЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

Содержание

Режимы работы транзистора

Биполярного транзистора

Схемы включения

1) C общей базой. (α=Iк/Iэ

≤1)

2) С общим эмиттером. (β=Iк/Iб>>1)

3) С общим коллектором.

1) Активный

Iвых=kIвх, k – коэффициент передачи по току.

КП – в обратном направлении.

ЭП – в прямом направлении.

Такой режим используется в усилителях и генераторах электрических сигналов.

2) Режим отсечкиколлекторного тока.

ЭП и КП смещены в обратном направлении. В коллекторной цепи Ik=Ik0 (где Ik0 – тепловой ток коллекторного, обратно смещенного перехода).

Rкэ > 1 МОм.

Такой режим соответствует разомкнутому состоянию электрического ключа и применяется в ключевых схемах на биполярных транзисторах.

3) Режим насыщения.

КП и ЭП смещены в прямом направлении, Rкэ — мало.

Ik=Iколлектора насыщения = Eпитания/Rk,

величина тока ограничивается не транзистором, а Iк насыщения.

Такой режим соответствует замкнутому состоянию, механического ключа и используется в ключевых схемах на транзисторах.

4) Инверсныйрежим.

ЭП смещен в обратном, а КП – в прямом направлении. Здесь входной ток – ток коллектора, а выходной – Iэ.

α

I – коэффициент передачи транзистора в инверсном режиме (обычно <<1, в связи с этим в усилителях не используется).

Противоположный нормальному, в усилительных схемах такой режим не используется, а используется в цифровых, логических схемах. Инверсное включение применяют в схемах двух направленных переключателœей:

Режим работы транзистора по постоянному току

Электроника Режим работы транзистора по постоянному току

просмотров — 345

Режим работы транзистора

Стоит сказать, что для нормальной работы любого усилительного каскада крайне важно установить необходимые токи и напряжения на электродах транзистора, говорят «установить рабочий режим».

Требуемый режим задается: — заданием «сверху» — техническим заданием заказчика, — условиями работы устройства в будущем, — требованиями экономичности, надежности, — прочими требованиями.

Различают:

— Режим работы транзистора по постоянному току называемый также начальный режим, статический режим, режим покоя.

Он характеризуется постоянными токами электродов транзистора и напряжениями между ними.

Различают:

— Режим работы по переменному току.

Рассматриваются изменения токов или напряжений, вызванные входным сигналом. Он характеризуется переменными токами электродов транзистора и переменными напряжениями между этими электродами.

Такой режим задается с помощью двух схем:

— фиксированный ток базы,

— фиксированное

напряжение базы.

Рассмотрим схему фиксированный ток базы. Ток течет по элементам цепи от плюса к минусу источника!

Введем понятие «общая точка схемы» и обозначим ее символом Условимся:

— потенциал общей точки схем равен нулю, — всœе напряжения отсчитываем от нулевого потенциала, — далее символ -ЕК не показываем, — постоянные токи текут от положительного потенциала источника к отрицательному.

В данной схеме ток базы задается величинами

ᴛ.ᴇ. «зафиксирован» и не зависит от транзистора.

В усилительных каскадах чаще используется схема с ФИКСИРОВАННЫМ НАПРЯЖЕНИЕМ БАЗЫ.

Включим дополнительное сопротивление .

По сопротивлениям течет ток IД — ток делителя. Выберем такие сопротивления,

чтобы ток Iд >> IБ.

Напряжение на базе зафиксировано делителœем напряжения.

Резисторы представляют собой делитель напряжения.По сопротивлениям течет ток IД.

Обозначение элементов схем (резисторы, конденсаторы, индуктивности, диоды, транзисторы и т.д.) нормировано.

Рассмотрим коллекторную цепь транзистора. На основании закона Кирхгофа для коллекторной цепи

ЕК = IК·RK + UКЭ Это уравнение прямой (в отрезках) в координатах ток-напряжение.

ЕК = IК·RК + UКЭ Прямая строится по двум точкам:

— при IК = 0, UКЭ = ЕK,

— при UКЭ = 0, IK = ЕК/RК.

ЕК = IК·RК + UКЭ

Построенную прямую называют:

— линия нагрузки по постоянному току,

— нагрузочная прямая,

— нагрузка транзистора по постоянному току.

Нагрузочную прямую можно построить под углом , который рассчитывается согласно соотношению

α = arc tg (- 1/RК).

Выделим точку пересечения нагрузочной прямой с одной из ВАХ транзистора и назовем ее рабочая точка РТ.

Спроецируем РТ на оси тока и напряжения.

Получим ток коллектора и напряжение на нем.

Для обозначения начального режима введем символ ‘о‘.

Начальный режим транзистора характеризуется токами и напряжениями IКо, UКЭо, Iбо, Uбэо.

Взаимодействие активного элемента – транзистора и нагрузочной прямой обеспечивает усиление сигнала.

Влияние элементов схемы и внешних факторов на положение нагрузочной прямой, рабочей точки и начальный режим.

1. Увеличение (уменьшение) ЕК приводит к смещению нагрузочной прямой параллельно самой себе.

ЕК = IК·RК + UКЭ

2. Изменение величины RК приводит к изменению угла α. Предельные значения: RК = 0, α = 900, UKЭ = ЕК , RК →∞, UКЭ →0.

3. Увеличение температуры приводит к смещению РТ по нагрузочной прямой. При этом ток коллектора увеличивается, а напряжение на коллекторе уменьшается.

4. Изменение тока базы приводит к перемещению РТ по нагрузочной прямой. Предельные значения тока базы Iб = 0 транзистор закрыт. Iб = Iб.нас транзистор переходит в режим насыщения и полностью открыт.


Читайте также


  • — Режим работы транзистора по постоянному току

    Режим работы транзистора Для нормальной работы любого усилительного каскада необходимо установить необходимые токи и напряжения на электродах транзистора, говорят «установить рабочий режим». Требуемый режим задается: — заданием «сверху» — техническим заданием… [читать подробенее]


  • 1

    5.      Структура и режимы работы биполярного транзистора.

    Биполярный транзистор представляет собой полупроводниковый прибор, состоящий из трех областей полупроводника с чередующимися типами проводимости, разделенными р-п-переходами. Из-за близкого расположения  р-п-переходов между ними существует взаимодействие. Каждая область транзистора выполняет определенную функцию, поэтому концентрации легирующих примесей в них и названия областей различны.

    Средняя область транзистора, расположенная между двумя               р-п-переходами, называется базой (B). Одна из крайних областей с наивысшей концентрацией легирующей примеси называется эмиттером (E). Основным назначением эмиттера является инжекция неосновных носителей заряда в область базы. Соответствующий          р-п-переход называют эмиттерным. Инжектированные в базу носители диффундируют в сторону третьей области, называемой коллектором (C). Основным назначением коллектора является собирание инжектированных эмиттером носителей заряда. Соответствующий   р-п-переход, расположенный между базой и коллектором, называют коллекторным.

    Существуют два типа биполярных транзисторов: п-р-п и р-п-р.  Буквы обозначают тип проводимости эмиттерной, базовой и коллекторной областей соответственно. Символическое изображение транзисторов разных типов приведено на рис. 3.18. Стрелка эмиттера показывает условное направление тока.

     

    Рис. 3.18. Символическое изображение транзисторов:

    а — n-p-n-типа;  б — p-n-p-типа

     

    При анализе работы биполярного транзистора ограничим наше рассмотрение приборами п-р-п-типа, которые в настоящее время используются гораздо чаще, имеют лучшие характеристики и большее усиление, особенно в интегральных схемах. Транзисторы  р-п-р-типа по принципу действия ничем не отличаются от п-р-п-транзисторов, однако им свойственны другие полярности рабочих напряжений.

    Известны три схемы включения биполярных транзисторов в электрическую цепь, при которых возможно усиление электрической мощности: схема с общей базой (ОБ), схема с общим эмиттером (ОЭ) и схема с общим коллектором (ОК), которые приведены на рис. 3.19 для транзистора п-р-п-типа. Кроме того на рис. 3.19 показаны внешние источники напряжений и токи, протекающие через транзистор, в нормальном режиме работы.

    Любая из схем включения обладает своими достоинствами и недостатками, поэтому выбор схемы включения транзистора в каждом конкретном случае зависит от требуемых условий. На практике чаще всего используется схема включения с общим эмиттером (ОЭ), которая позволяет получать наибольшее усиление по мощности.

     

                а)                     б)                            в)

     

    Рис. 3.19. Схемы включения транзистора:

    а — схема ОБ; б — схема ОЭ; в — схема ОК

     

     

    .

     

     

    Структура дискретного биполярного п-р-п-транзистора приведена на рис. 3.20.

     

    Рис. 3.20. Структура дискретного       

    биполярного n-p-n-транзистора 

     

    Результирующее распределение примесей в областях транзистора (сплошная линия) распределения примесей при базовой и эмиттерной диффузиях (пунктирные линии) показаны на рис. 3.21.

     

    Рис. 3.21. Распределение примесей в дискретном биполярном

     n-p-n-транзисторе

     

    Здесь  и — поверхностные концентрации примесей при эмиттерной и базовой диффузиях, а  — концентрация примеси в коллекторной области, выполненной методом эпитаксии. Эмиттер представляет собой сильнолегированную область, о чем  свидетельствует знак «+» при обозначении типа проводимости эмиттернорного слоя — . У реальных транзисторов площади                    р-п-переходов существенно различаются. Эмиттерный переход имеет значительно меньшую площадь, чем коллекторный.

    Каждый из р-п-переходов транзистора имеет донную и боковые части. Рабочей или активной областью транзистора является область, расположенная под донной частью эмиттерного перехода (на рис. 3.20 эта область заштрихована). Остальные участки, наличие которых обусловлено технологическими  причинами, являются пассивными.

    Идеализированная структура биполярного п-р-п-транзистора для его активной области приведена на рис. 3.22. Взаимодействие между эмиттерным и коллекторным переходами обеспечивается малой щириной базы , которая у современных транзисторов, как правило не превышает 1 мкм.

     

    Рис. 3.22. Идеализированная структура биполярного n-p-n-транзистора

     

     

    Внешние напряжения  и  создают соответствующие смещения на переходах. В зависимости от полярности напряжений  и  различают четыре режима работы транзистора (рис. 3.23):

    Рис. 3.23. Режимы работы n-p-n-транзистора

     

     

    1) нормальный (активный) режим, когда на эмиттерном переходе действует прямое смещение, а на коллекторном — обратное;

    2) инверсный режим, когда на эмиттерном переходе действует обратное смещение, а на коллекторном — прямое;

    3) режим двойной инжекции (насыщения), когда на оба перехода поданы прямые смещения;

    4) режим отсечки (запирания), когда на оба перехода поданы обратные смещения.

    В режимах двойной инжекции и отсечки управление транзистором практически отсутствует. В нормальном режиме управление транзистором осуществляется наиболее эффективно. Только работая в нормальном режиме, транзистор может выполнять функции активного элемента электрической схемы, т. е. усиливать, генерировать, переключать электрические сигналы и  т. д.

    Основные свойства транзистора определяются процессами, происходящими в базе. Существенное влияние на работу транзистора оказывает распределение легирующей примеси в базе. Если примесь в базе распределена равномерно (однородная база), то в ней отсутствует внутреннее поле и движение носителей заряда имеет чисто диффузионный характер. При неравномерном распределении примеси   в области базы (неоднородная база) в ней возникает внутреннее электрическое поле, а значит, появляется дополнительная дрейфовая составляющая в движении носителей заряда. При этом необходимо так распределить примесь в базе, чтобы внутреннее поле способствовало движению носителей заряда от эмиттера к коллектору. Это возможно в случае уменьшения концентрации некомпенсированной примеси в базе   в направлении от эмиттера к коллектору (см. рис. 3.21.).

    Принцип работы биполярного транзистора заключается в управлении током через обратно смещенный коллекторный переход. Известно, что в обратно смещенном р-п-переходе ток очень мал и определяется только неосновными носителями заряда, которые генерируются в области объемного заряда или вблизи нее. Однако при появлении у границ такого перехода дополнительных источников неосновных носителей  ток через обратносмещенный переход увеличивается. Такими источниками, например, могут быть частицы высокой энергии, попадающие при внешнем излучении в диодные фотоприемники или датчики излучения.

    Другой способ увеличения концентрации неосновных носителей заряда около обратно смещенного p-n-перехода заключается в размещении в непосредственной близости от него другого                      p-n-перехода, смещенного в прямом направлении. Данный способ особенно удобен, так как обеспечивает электрическое управление концентрацией неосновных носителей, т. е. управление ею с помощью напряжения смещения, приложенного к этому прямо смещенному переходу.

    Такая модуляция тока в одном  p-n-переходе с помощью изменения напряжения смещения другого перехода, расположенного рядом с ним, называется механизмом работы биполярного транзистора. Эта одна из самых важных идей во всей истории развития электронных приборов.  За исследования, в результате которых эта идея была разработана и реализована, изобретатели биполярного плоскостного транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн были удостоены Нобелевской премии по физике в 1956 г.

    Установка режимов работы транзисторов — Электроник

    Для хорошей работы устройства, собранного на транзисторах, необходимо чтобы на их электроды было подано определенной величины и полярности постоянное напряжение. Примерные значения напряжений подаваемых на коллектор, базу и эмиттер для транзисторов прямой проводимости (р-n-р) приведен на рис. 8.1, а обратной (n-р-n) проводимости — на рис. 8.2.

     

    Рис. 8.1. Примерные значения напряжений, подаваемых на коллектор, базу и эмиттер для транзисторов прямой проводимости р-n-р

    Рис. 8.2. Примерные значения напряжений, подаваемых на коллектор, базу и эмиттер для транзисторов обратной проводимости n-р-n

    При этом надо также придерживаться нескольких правил:
    • Рабочие напряжения, токи и мощности рассеивания применяемых транзисторов должны быть меньше предельных значений.
    • Нельзя подавать напряжение на транзистор, если у него отключена база.
    • Базовый вывод следует подключать в схему в первую очередь и отключать в последнюю.
    В современных конструкциях радиолюбителей широко используются полевые транзисторы. Примерные значения величин напряжений смещения для полевых транзисторов с каналом типа р и с каналом типа n даны на рис. 8.3.

    Рис. 8.3. Примерные значения величин напряжений смещения для полевых транзисторов с каналом типа р и с каналом типа n

    При налаживании радиоприемников и других радиоэлектронных конструкций в первую очередь нужно замерить потребляемый ток в режиме покоя. Если его значение близко к требуемому, то тогда переходят к установлению необходимых токов коллекторов транзисторов. На схемах место установки тока показывают крестиком («х»), а резистор, которым это делают — звездочкой («*»). Опыт показывает, что для транзисторов безопаснее измерять напряжение, а не ток. В большинстве схем эти величины взаимосвязаны. Достаточно знать одну из величин, а другую можно определить расчетным путем.
    Настройку устройства производят по каскадам. В каскадах транзисторных устройств в основном используется три основных способа подачи напряжения смещения к базе транзистора.
    Рассмотрим работу транзисторного каскада с резисторной нагрузкой без стабилизации режима (рис. 8.4).

    Рис. 8.4. Принципиальная схема транзисторного каскада с резисторной нагрузкой без стабилизации режима

    При отсутствии входного сигнала начальные напряжения на электродах транзисторов следующие
    Uкэ = Uп- IкRк и Uбэ = Uп — IбRб.
    В приведенных формулах напряжения смещения Uбэ для германиевых и кремниевых транзисторов должны иметь значения в соответствии с рис. 8.1, 8.2. Из этих выражений видно, что от величины сопротивления резистора Rб зависит величина напряжения смещения Uбэ, а следовательно, и начальное положение рабочей точки на характеристике транзистора. На хорошую работу такого каскада большое влияние имеет точность, с какой для данного транзистора, имеющего коэффициент усиления по току β, подобраны сопротивления резисторов Rб и Rк. Работу каскада при этом можно проконтролировать по напряжению на резисторе Rк или по напряжению между коллектором и эмиттером транзистора. Зная Uп и β, можно вычислить величину управляющего тока коллектора транзистора по формуле
    Iк = βUп(B)/Rб (кОм), мА
    Если величина сопротивления резистора Rк = 500…600 Ом, то напряжение на нем удобнее определить, как разницу между питающим напряжением и напряжением коллектор — эмиттер. Для маломощных низкочастотных и высокочастотных транзисторов напряжение коллектор-эмиттер принимают 2…2,5 В, а ток коллектора — 0,5 мА. Транзисторы МП39…МП41 имеют максимальное усиление по току, когда ток коллектора 1…2 мА. У транзисторов П401…П403, П416 и т. п. усиление растет с ростом тока коллектора до 5…8 мА. От напряжения на коллекторе усиление по току существенно не зависит, при его повышении улучшается устойчивость высокочастотных каскадов. При замене в рассматриваемом каскаде транзистора с одним значение β на транзистор с отличным значением β, приходится снова подбирать значения Rб и Rк. На усиление транзистора с такой простой схемой смешения оказывает влияние помимо разброса параметров транзисторов еще и изменение температуры окружающей среды.
    Более стабилен в работе каскад, имеющий термостабилизацию по схеме, представленной на рис. 8.5.

    Рис. 8.5. Принципиальная схема транзисторного каскада с резисторной нагрузкой с термостабилизацией режима

    В этом случае к напряжению, измеренному между коллектором и плюсом питания, добавляется напряжение на резисторе Rэ, которое составляет приблизительно 1 В. Если считать, что напряжение между коллектором и эмиттером может быть снижено до 1,5 В, так как каскад стабилизирован, то общее напряжение между коллектором и «землей», как и первом случае, должно быть не менее 2,5 В. Указанные режимы являются ориентировочными, средними в случае работоспособных транзисторов. В каскадах, где режимы отличаются от рекомендованных на 20…30 %, подстраивание их режимов на первой стадии налаживания можно не проводить. Установку режима работы транзистора можно производить резистором Rб1, который соединен с базой транзистора. Для увеличения тока коллектора необходимо сопротивление резистора Rб1 уменьшить, а для уменьшения, наоборот, увеличить. Для удобства настройки каскада резистор Rб1 составляют из двух резисторов: одного переменного и одного постоянного с сопротивлением 10…30 кОм. Изменяя сопротивление переменного резистора, добиваются необходимого тока коллектора. Омметром измеряют получившееся сопротивление двух резисторов и затем вместо них впаивают один резистор, величина сопротивления которого равна измеренному значению двух сопротивлений.
    Ток коллектора в схеме со стабилизацией можно оценить, измерив напряжение на резисторе Rэ. Если разделить величину падения напряжения (в вольтах) на величину Rэ (в килоомах), то получим ток эмиттера в миллиамперах. Ток коллектора меньше тока эмиттера на величину базового тока, а последний не превышает 5 % Iэ. Поэтому можно считать, что Iэ = Iб. В каскадах с индуктивной нагрузкой без стабилизации режима работы напряжение на коллекторе равняется напряжению источника питания и здесь необходим контроль тока коллектора (рис. 8.6). Регулировку такого каскада также производят подбором величины сопротивления резистора Rб.

    Рис. 8.6. Принципиальная схема каскада с индуктивной нагрузкой без стабилизации режима работы

    Включение в цепи n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещением. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой только значением напряжения смещения. У кремниевых оно приблизительно на 0,45 В больше, чем у германиевых. На рис. 8.1 и 8.2 показаны условные графические обозначения биполярных транзисторов той и другой структур, произведенных на основе германия и кремния, а также типовое напряжение смешения. Электроды транзисторов, обозначенных первыми буквами слов, расшифровываются: Э — эмиттер, Б — база, К — коллектор. Напряжения смещения показаны относительно эмиттера, но на практике напряжение на электродах транзисторов показывают относительно общего провода устройства.
    В радиоэлектронных устройствах радиолюбители используют также полевые транзисторы, в которых управление током между двумя электродами, образованными направленным движением носителей заряда дырок или электронов, производится электрическим полем, образованным напряжением на электроде. Электроды, между которыми протекает регулируемый ток, носят название исток (И) и сток ©, причем исток есть тот электрод, с которого выходят носители зарядов. Третий, управляющий электрод, называют затвором (3) (см. рис. 8.3).
    Существуют полевые транзисторы с изолированным затвором. Эти транзисторы имеют очень большое входное сопротивление и работают на очень больших частотах. Транзисторы этого типа имеют очень низкую электрическую прочность изолированного затвора. Для его пробоя и выхода из строя достаточно слабого статического электричества, которое всегда присутствует на теле человека, одежде и инструменте. В связи с этим выводы полевых транзисторов с изолированным затвором при хранении нужно скручивать вместе голым проводом.
    При монтаже транзисторов руки и инструмент необходимо «заземлять». Преимущество полевых транзисторов по сравнению с биполярными состоит в том, что они имеют высокое входное сопротивление.
    Это сопротивление на низкой частоте достигает несколько мегаом, а на средних и высоких частотах — несколько десятков или сотен килоом в зависимости от серии. Для сравнения, биполярные транзисторы имеют входное сопротивление приблизительно до 1…2 кОм.

    Активный режим биполярного транзистора. Характеристики биполярных транзисторов

    Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

    Классификация

    Транзисторы разделяют на группы:

    1. По материалам: чаще всего используются арсенид галлия и кремний.
    2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
    3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
    4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

    Как работают транзисторы?

    Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

    Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

    База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей — электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

    Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

    Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками — основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

    Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.

    Параметры транзисторов

    1. Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
    2. Входное сопротивление.
    3. Частотная характеристика — работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

    Биполярный транзистор: схемы включения, режимы работы

    Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

    1. Схема с ОК

    Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

    Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

    2. Схема с ОБ

    Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

    Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

    3. Схема с ОЭ

    Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.

    Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.

    В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .

    Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения — в 10-200 раз. Соответственно, мощность также повышается.

    Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.

    Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

    Режимы работы

    На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

    1. Режим отсечки

    Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

    2. Активный режим

    Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

    3. Режим насыщения

    Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

    Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

    Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

    Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC — V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.

    Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.

    Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.

    Как ведет себя транзистор в разных режимах?

    Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

    Биполярный транзистор: схемы включения, усилитель

    Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

    Работу усилителя хорошо видно на временных диаграммах.

    Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

    Работа в режиме переключения

    Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

    Заключение

    Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

    Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

    Термин «биполярный транзистор» связан с тем, что в этих транзисторах используются носители зарядов двух типов: электроны и дырки. Для изготовления транзисторов применяют те же полупроводниковые материалы, что и для .

    В биполярных транзисторах с помощью трехслойной полупроводниковой структуры из полупроводников создаются два p–n-перехода с чередующими типами электропроводности (p–n–p или n–p–n).

    Биполярные транзисторы конструктивно могут быть беcкорпусными (рис.1,а) (для применения, например, в составе интегральных микросхем) и заключенными в типовой корпус (рис. 1,б). Три вывода биполярного транзистора называются база , коллектор и эмиттер .

    Рис. 1. Биполярный транзистор: а) p–n–p-структуры без корпуса, б) n–p–n-структуры в корпусе

    В зависимости от общего вывода можно получить три схемы подключения биполярного транзистора : с общей базой (ОБ), общим коллектором (ОК) и общим эмиттером (ОЭ). Рассмотрим работу транзистора в схеме с общей базой, (рис. 2).

    Рис. 2. Схема работы биполярного транзистора

    Эмиттер инжектирует (поставляет) в базу основные носители, в нашем примере для полупроводниковых приборов n-типа ими будут электроны. Источники выбирают так, чтобы E2 >> E1. Резистор Rэ ограничивает ток открытого p–n-перехода.

    При E1 = 0 ток через коллекторный переход мал (обусловлен неосновными носителями), его называют начальным коллекторным током Iк0. Если E1 > 0, электроны преодолевают эмиттерный p–n-переход (E1 включена в прямом направлении) и попадают в область базы.

    Базу выполняют с большим удельным сопротивлением (малой концентрацией примеси), поэтому концентрация дырок в базе низкая. Следовательно, немногие попавшие в базу электроны рекомбинируют с ее дырками, образуя базовый ток Iб. Одновременно в коллекторном p–n-переходе со стороны E2 действует много большее поле, чем в эмиттерном переходе, которое увлекает электроны в коллектор. Поэтому подавляющее большинство электронов достигают коллектора.

    Эмиттерный и коллекторный токи связаны коэффициентом передачи тока эмиттера

    при Uкб = const.

    Всегда ∆ Iк ∆ Iэ, а a = 0,9 — 0,999 для современных транзисторов.

    В рассмотренной схеме Iк = Iк0 + aIэ » Iэ. Следовательно, схема биполярного транзистора с общей базой обладает низким коэффициентом передачи тока. Из-за этого ее применяют редко, в основном в высокочастотных устройствах, где по усилению напряжения она предпочтительнее других.

    Основной схемой включения биполярного транзистора является схема с общим эмиттером, (рис. 3).

    Рис. 3. Включение биполярного транзистора по схеме с общим эмиттером

    Для нее по можно записать Iб = Iэ – Iк = (1 – a)Iэ – Iк0 .

    Учитывая, что 1 – a = 0,001 — 0,1, имеем Iб

    Найдем отношение тока коллектора к току базы:

    Это отношение называют коэффициентом передачи тока базы . При a = 0,99 получаем b = 100. Если в цепь базы включить источник сигнала, то такой же сигнал, но усиленный по току в b раз, будет протекать в цепи коллектора, образуя на резисторе Rк напряжение много большее, чем напряжение источника сигнала.

    Для оценки работы биполярного транзистора в широком диапазоне импульсных и постоянных токов, мощностей и напряжений, а также для расчета цепи смещения, стабилизации режима используются семейства входных и выходных вольтамперных характеристик (ВАХ) .

    Семейство входных ВАХ устанавливают зависимость входного тока (базы или эмиттера) от входного напряжения Uбэ при Uк = const, рис. 4,а. Входные ВАХ транзистора аналогичны ВАХ диода в прямом включении.

    Семейство выходных ВАХ устанавливает зависимость тока коллектора от напряжения на нем при определенном токе базы или эмиттера (в зависимости от схемы с общим эмиттером или общей базой), рис. 4, б.

    Рис. 4. Вольт-амперные характеристики биполярного транзистора: а – входные, б – выходные

    Кроме электрического перехода n–p, в быстродействующих цепях широко используется переход на основе контакта металл–полупроводник – барьер Шоттки (Schottky). В таких переходах не затрачивается время на накопление и рассасывание зарядов в базе, и быстродействие транзистора зависит только от скорости перезарядки барьерной емкости.

    Рис. 5. Биполярные транзисторы

    Параметры биполярных транзисторов

    Для оценки максимально допустимых режимов работы транзисторов используют основные параметры:

    1) максимально допустимое напряжение коллектор–эмиттер (для различных транзисторов Uкэ макс = 10 — 2000 В),

    2) максимально допустимая мощность рассеяния коллектора Pк макс – по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 — 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством – радиатором,

    3) максимально допустимый ток коллектора Iк макс – до 100 А и более,

    4) граничная частота передачи тока fгр (частота, на которой h31 становится равным единице), по ней биполярные транзисторы делят:

    • на низкочастотные – до 3 МГц,
    • среднечастотные – от 3 до 30 МГц,
    • высокочастотные – от 30 до 300 МГц,
    • сверхвысокочастотные – более 300 МГц.

    д.т.н., профессор Л. А. Потапов

    Необходимые пояснения даны, переходим к сути.

    Транзисторы. Определение и история

    Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

    Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

    Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

    Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

    В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

    Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

    И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

    Биполярный транзистор. Принцип работы. Основные характеристики


    Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

    Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


    Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой — слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
    Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

    Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

    Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

    Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

    Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

    Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

    Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

    Третий параметр биполярного транзистора — коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

    Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

    Также параметрами биполярного транзистора являются:

    • обратный ток коллектор-эмиттер
    • время включения
    • обратный ток колектора
    • максимально допустимый ток

    Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

    Режимы работы биполярного транзистора

    Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
    1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
    2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
    3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
    4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

    Схемы включения биполярных транзисторов

    Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

    Схема включения с общим эмиттером

    Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

    Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

    Схема включения с общей базой

    Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

    В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

    Схема включения с общим коллектором

    Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

    Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

    Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

    В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

    Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

    Два слова о каскадах

    Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

    Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
    Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

    Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

    Другие области применения биполярных транзисторов

    Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

    Маркировка

    Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

    Полезные комментарии:
    http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

    Теги: Добавить метки

    Транзистором называется полупроводниковый прибор, который может усиливать, преобразовывать и генерировать электрические сигналы. Первый работоспособный биполярный транзистор был изобретен в 1947 году. Материалом для его изготовления служил германий. А уже в 1956 году на свет появился кремниевый транзистор.

    В биполярном транзисторе используются два типа носителей заряда — электроны и дырки, отчего такие транзисторы и называются биполярными. Кроме биполярных существуют униполярные (полевые) транзисторы, у которых используется лишь один тип носителей — электроны или дырки. В этой статье будут рассмотрены .

    Большинство кремниевых транзисторов имеют структуру n-p-n, что также объясняется технологией производства, хотя существуют и кремниевые транзисторы типа p-n-p, но их несколько меньше, нежели структуры n-p-n. Такие транзисторы используются в составе комплементарных пар (транзисторы разной проводимости с одинаковыми электрическими параметрами). Например, КТ315 и КТ361, КТ815 и КТ814, а в выходных каскадах транзисторных УМЗЧ КТ819 и КТ818. В импортных усилителях очень часто применяется мощная комплементарная пара 2SA1943 и 2SC5200.

    Часто транзисторы структуры p-n-p называют транзисторами прямой проводимости, а структуры n-p-n обратной. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь. На рисунке 1 показано схематичное устройство транзисторов и их условные графические обозначения.

    Рисунок 1.

    Кроме различия по типу проводимости и материалу, биполярные транзисторы классифицируются по мощности и рабочей частоте. Если мощность рассеивания на транзисторе не превышает 0,3 Вт, такой транзистор считается маломощным. При мощности 0,3…3 Вт транзистор называют транзистором средней мощности, а при мощности свыше 3 Вт мощность считается большой. Современные транзисторы в состоянии рассеивать мощность в несколько десятков и даже сотен ватт.

    Транзисторы усиливают электрические сигналы не одинаково хорошо: с увеличением частоты усиление транзисторного каскада падает, и на определенной частоте прекращается вовсе. Поэтому для работы в широком диапазоне частот транзисторы выпускаются с разными частотными свойствами.

    По рабочей частоте транзисторы делятся на низкочастотные, — рабочая частота не свыше 3 МГц, среднечастотные — 3…30 МГц, высокочастотные — свыше 30 МГц. Если же рабочая частота превышает 300 МГц, то это уже сверхвысокочастотные транзисторы.

    Вообще, в серьезных толстых справочниках приводится свыше 100 различных параметров транзисторов, что также говорит об огромном числе моделей. А количество современных транзисторов таково, что в полном объеме их уже невозможно поместить ни в один справочник. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками.

    Существует множество транзисторных схем (достаточно вспомнить количество хотя бы бытовой аппаратуры) для усиления и преобразования электрических сигналов, но, при всем разнообразии, схемы эти состоят из отдельных каскадов, основой которых служат транзисторы. Для достижения необходимого усиления сигнала, приходится использовать несколько каскадов усиления, включенных последовательно. Чтобы понять, как работают усилительные каскады, надо более подробно познакомиться со схемами включения транзисторов.

    Сам по себе транзистор усилить ничего не сможет. Его усилительные свойства заключаются в том, что малые изменения входного сигнала (тока или напряжения) приводят к значительным изменениям напряжения или тока на выходе каскада за счет расходования энергии от внешнего источника. Именно это свойство широко используется в аналоговых схемах, — усилители, телевидение, радио, связь и т.д.

    Для упрощения изложения здесь будут рассматриваться схемы на транзисторах структуры n-p-n. Все что будет сказано об этих транзисторах, в равной степени относится и к транзисторам p-n-p. Достаточно только поменять полярность источников питания, и , если таковые имеются, чтобы получить работающую схему.

    Всего таких схем применяется три: схема с общим эмиттером (ОЭ), схема с общим коллектором (ОК) и схема с общей базой (ОБ). Все эти схемы показаны на рисунке 2.

    Рисунок 2.

    Но прежде, чем перейти к рассмотрению этих схем, следует познакомиться с тем, как работает транзистор в ключевом режиме. Это знакомство должно упростить понимание в режиме усиления. В известном смысле ключевую схему можно рассматривать как разновидность схемы с ОЭ.

    Работа транзистора в ключевом режиме

    Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме.

    Такой режим работы транзистора рассматривался уже давно. В августовском номере журнала «Радио» 1959 года была опубликована статья Г. Лаврова «Полупроводниковый триод в режиме ключа». Автор статьи предлагал изменением длительности импульсов в обмотке управления (ОУ). Теперь подобный способ регулирования называется ШИМ и применяется достаточно часто. Схема из журнала того времени показана на рисунке 3.

    Рисунок 3.

    Но ключевой режим используется не только в системах ШИМ. Часто транзистор просто что-то включает и выключает.

    В этом случае в качестве нагрузки можно использовать реле: подали входной сигнал — реле включилось, нет — сигнала реле выключилось. Вместо реле в ключевом режиме часто используются лампочки. Обычно это делается для индикации: лампочка либо светит, либо погашена. Схема такого ключевого каскада показана на рисунке 4. Ключевые каскады также применяются для работы со светодиодами или с оптронами.

    Рисунок 4.

    На рисунке каскад управляется обычным контактом, хотя вместо него может быть цифровая микросхема или . Лампочка автомобильная, такая применяется для подсветки приборной доски в «Жигулях». Следует обратить внимание на тот факт, что для управления используется напряжение 5В, а коммутируемое коллекторное напряжение 12В.

    Ничего странного в этом нет, поскольку напряжения в данной схеме никакой роли не играют, значение имеют только токи. Поэтому лампочка может быть хоть на 220В, если транзистор предназначен для работы на таких напряжениях. Напряжение коллекторного источника также должно соответствовать рабочему напряжению нагрузки. С помощью подобных каскадов выполняется подключение нагрузки к цифровым микросхемам или микроконтроллерам.

    В этой схеме ток базы управляет током коллектора, который, за счет энергии источника питания, больше в несколько десятков, а то и сотен раз (зависит от коллекторной нагрузки), чем ток базы. Нетрудно заметить, что происходит усиление по току. При работе транзистора в ключевом режиме обычно для расчета каскада пользуются величиной, называемой в справочниках «коэффициент усиления по току в режиме большого сигнала», — в справочниках обозначается буквой β. Это есть отношение тока коллектора, определяемого нагрузкой, к минимально возможному току базы. В виде математической формулы это выглядит вот так: β = Iк/Iб.

    Для большинства современных транзисторов коэффициент β достаточно велик, как правило, от 50 и выше, поэтому при расчете ключевого каскада его можно принять равным всего 10. Даже, если ток базы и получится больше расчетного, то транзистор от этого сильнее не откроется, на то он и ключевой режим.

    Чтобы зажечь лампочку, показанную на рисунке 3, Iб = Iк/β = 100мА/10 = 10мА, это как минимум. При управляющем напряжении 5В на базовом резисторе Rб за вычетом падения напряжения на участке Б-Э останется 5В — 0,6В = 4,4В. Сопротивление базового резистора получится: 4,4В / 10мА = 440 Ом. Из стандартного ряда выбирается резистор с сопротивлением 430 Ом. Напряжение 0,6В это напряжение на переходе Б-Э, и при расчетах о нем не следует забывать!

    Для того, чтобы база транзистора при размыкании управляющего контакта не осталась «висеть в воздухе», переход Б-Э обычно шунтируется резистором Rбэ, который надежно закрывает транзистор. Об этом резисторе не следует забывать, хотя в некоторых схемах его почему-то нет, что может привести к ложному срабатыванию каскада от помех. Собственно, все про этот резистор знали, но почему-то забыли, и лишний раз наступили на «грабли».

    Номинал этого резистора должен быть таким, чтобы при размыкании контакта напряжение на базе не оказалось бы меньше 0,6В, иначе каскад будет неуправляемым, как будто участок Б-Э просто замкнули накоротко. Практически резистор Rбэ ставят номиналом примерно в десять раз больше, нежели Rб. Но даже если номинал Rб составит 10Ком, схема будет работать достаточно надежно: потенциалы базы и эмиттера будут равны, что приведет к закрыванию транзистора.

    Такой ключевой каскад, если он исправен, может включить лампочку в полный накал, или выключить совсем. В этом случае транзистор может быть полностью открыт (состояние насыщения) или полностью закрыт (состояние отсечки). Тут же, сам собой, напрашивается вывод, что между этими «граничными» состояниями существует такое, когда лампочка светит вполнакала. В этом случае транзистор наполовину открыт или наполовину закрыт? Это как в задаче о наполнении стакана: оптимист видит стакан, наполовину налитый, в то время, как пессимист считает его наполовину пустым. Такой режим работы транзистора называется усилительным или линейным.

    Работа транзистора в режиме усиления сигнала

    Практически вся современная электронная аппаратура состоит из микросхем, в которых «спрятаны» транзисторы. Достаточно просто подобрать режим работы операционного усилителя, чтобы получить требуемый коэффициент усиления или полосу пропускания. Но, несмотря на это, достаточно часто применяются каскады на дискретных («рассыпных») транзисторах, и поэтому понимание работы усилительного каскада просто необходимо.

    Самым распространенным включением транзистора по сравнению с ОК и ОБ является схема с общим эмиттером (ОЭ). Причина такой распространенности, прежде всего, высокий коэффициент усиления по напряжению и по току. Наиболее высокий коэффициент усиления каскада ОЭ обеспечивается когда на коллекторной нагрузке падает половина напряжения источника питания Eпит/2. Соответственно, вторая половина падает на участке К-Э транзистора. Это достигается настройкой каскада, о чем будет рассказано чуть ниже. Такой режим усиления называется классом А.

    При включении транзистора с ОЭ выходной сигнал на коллекторе находится в противофазе с входным. Как недостатки можно отметить то, что входное сопротивление ОЭ невелико (не более нескольких сотен Ом), а выходное в пределах десятков КОм.

    Если в ключевом режиме транзистор характеризуется коэффициентом усиления по току в режиме большого сигнала β , то в режиме усиления используется «коэффициент усиления по току в режиме малого сигнала», обозначаемый, в справочниках h31э. Такое обозначение пришло из представления транзистора в виде четырехполюсника. Буква «э» говорит о том, что измерения производились при включении транзистора с общим эмиттером.

    Коэффициент h31э, как правило, несколько больше, чем β, хотя при расчетах в первом приближении можно пользоваться и им. Все равно разброс параметров β и h31э настолько велик даже для одного типа транзистора, что расчеты получаются лишь приблизительными. После таких расчетов, как правило, требуется настройка схемы.

    Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя. Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки (читай одной партии). Для маломощных транзисторов этот коэффициент колеблется в пределах 100…1000, а у мощных 5…200. Чем тоньше база, тем выше коэффициент.

    Простейшая схема включения транзистора ОЭ показана на рисунке 5. Это просто небольшой кусочек из рисунка 2, показанного во второй части статьи. Такая схема называется схемой с фиксированным током базы.

    Рисунок 5.

    Схема исключительно проста. Входной сигнал подается в базу транзистора через разделительный конденсатор C1, и, будучи усиленным, снимается с коллектора транзистора через конденсатор C2. Назначение конденсаторов, — защитить входные цепи от постоянной составляющей входного сигнала (достаточно вспомнить угольный или электретный микрофон) и обеспечить необходимую полосу пропускания каскада.

    Резистор R2 является коллекторной нагрузкой каскада, а R1 подает постоянное смещение в базу. С помощью этого резистора стараются сделать так, чтобы напряжение на коллекторе было бы Eпит/2. Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален.

    Приблизительно сопротивление резистора R1 можно определить по простой формуле R1 ≈ R2 * h31э / 1,5…1,8. Коэффициент 1,5…1,8 подставляется в зависимости от напряжения питания: при низком напряжении (не более 9В) значение коэффициента не более 1,5, а начиная с 50В, приближается к 1,8…2,0. Но, действительно, формула настолько приблизительна, что резистор R1 чаще всего приходится подбирать, иначе требуемая величина Eпит/2 на коллекторе получена не будет.

    Коллекторный резистор R2 задается как условие задачи, поскольку от его величины зависит коллекторный ток и усиление каскада в целом: чем больше сопротивление резистора R2, тем выше усиление. Но с этим резистором надо быть осторожным, коллекторный ток должен быть меньше предельно допустимого для данного типа транзистора.

    Схема очень проста, но эта простота придает ей и отрицательные свойства, и за эту простоту приходится расплачиваться. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

    Во-вторых, от температуры окружающей среды, — с повышением температуры возрастает обратный ток коллектора Iко, что приводит к увеличению тока коллектора. И где же тогда половина напряжения питания на коллекторе Eпит/2, та самая рабочая точка? В результате транзистор греется еще сильнее, после чего выходит из строя. Чтобы избавиться от этой зависимости, или, по крайней мере, свести ее к минимуму, в транзисторный каскад вводят дополнительные элементы отрицательной обратной связи — ООС.

    На рисунке 6 показана схема с фиксированным напряжением смещения.

    Рисунок 6.

    Казалось бы, что делитель напряжения Rб-к, Rб-э обеспечит требуемое начальное смещение каскада, но на самом деле такому каскаду присущи все недостатки схемы с фиксированным током. Таким образом, приведенная схема является всего лишь разновидностью схемы с фиксированным током, показанной на рисунке 5.

    Схемы с термостабилизацией

    Несколько лучше обстоит дело в случае применения схем, показанных на рисунке 7.

    Рисунок 7.

    В схеме с коллекторной стабилизацией резистор смещения R1 подключен не к источнику питания, а к коллектору транзистора. В этом случае, если при увеличении температуры происходит увеличение обратного тока, транзистор открывается сильнее, напряжение на коллекторе уменьшается. Это уменьшение приводит к уменьшению напряжения смещения, подаваемого на базу через R1. Транзистор начинает закрываться, коллекторный ток уменьшается до приемлемой величины, положение рабочей точки восстанавливается.

    Совершенно очевидно, что такая мера стабилизации приводит к некоторому снижению усиления каскада, но это не беда. Недостающее усиление, как правило, добавляют наращиванием количества усилительных каскадов. Зато подобная ООС позволяет значительно расширить диапазон рабочих температур каскада.

    Несколько сложней схемотехника каскада с эмиттерной стабилизацией. Усилительные свойства подобных каскадов остаются неизменными в еще более широком диапазоне температур, чем у схемы с коллекторной стабилизацией. И еще одно неоспоримое преимущество, — при замене транзистора не приходится заново подбирать режимы работы каскада.

    Эмиттерный резистор R4, обеспечивая температурную стабилизацию, также снижает усиление каскада. Это для постоянного тока. Для того, чтобы исключить влияние резистора R4 на усиление переменного тока, резистор R4 шунтирован конденсатором Cэ, который для переменного тока представляет незначительное сопротивление. Его величина определяется диапазоном частот усилителя. Если эти частоты лежат в звуковом диапазоне, то емкость конденсатора может быть от единиц до десятков и даже сотен микрофарад. Для радиочастот это уже сотые или тысячные доли, но в некоторых случаях схема прекрасно работает и без этого конденсатора.

    Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.

    Схема с общим коллектором (ОК) Показана на рисунке 8. Эта схема является кусочком рисунка 2, из второй части статьи, где показаны все три схемы включения транзисторов.

    Рисунок 8.

    Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Вот тут можно спросить, почему же эта схема называется ОК? Ведь, если вспомнить схему ОЭ, то там явно видно, что эмиттер соединен с общим проводом схемы, относительно которого подается входной и снимается выходной сигнал.

    В схеме же ОК коллектор просто соединен с источником питания, и на первый взгляд кажется, что к входному и выходному сигналу отношения не имеет. Но на самом деле источник ЭДС (батарея питания) имеет очень маленькое внутреннее сопротивление, для сигнала это практически одна точка, один и тот же контакт.

    Более подробно работу схемы ОК можно рассмотреть на рисунке 9.

    Рисунок 9.

    Известно, что для кремниевых транзисторов напряжение перехода б-э находится в пределах 0,5…0,7В, поэтому можно принять его в среднем 0,6В, если не задаваться целью проводить расчеты с точностью до десятых долей процента. Поэтому, как видно на рисунке 9, выходное напряжение всегда будет меньше входного на величину Uб-э, а именно на те самые 0,6В. В отличие от схемы ОЭ эта схема не инвертирует входной сигнал, она просто повторяет его, да еще и снижает на 0,6В. Такую схему еще называют эмиттерным повторителем. Зачем же такая схема нужна, в чем ее польза?

    Схема ОК усиливает сигнал по току в h31э раз, что говорит о том, что входное сопротивление схемы в h31э раз больше, чем сопротивление в цепи эмиттера. Другими словами можно не опасаясь спалить транзистор подавать непосредственно на базу (без ограничительного резистора) напряжение. Просто взять вывод базы и соединить его с шиной питания +U.

    Высокое входное сопротивление позволяет подключать источник входного сигнала с высоким импедансом (комплексное сопротивление), например, пьезоэлектрический звукосниматель. Если такой звукосниматель подключить к каскаду по схеме ОЭ, то низкое входное сопротивление этого каскада просто «посадит» сигнал звукоснимателя, — «радио играть не будет».

    Отличительной особенностью схемы ОК является то, что ее коллекторный ток Iк зависит только от сопротивления нагрузки и напряжения источника входного сигнала. При этом параметры транзистора тут вообще никакой роли не играют. Про такие схемы говорят, что они охвачены стопроцентной обратной связью по напряжению.

    Как показано на рисунке 9 ток в эмиттерной нагрузке (он же ток эмиттера) Iн = Iк + Iб. Принимая во внимание, что ток базы Iб ничтожно мал по сравнению с током коллектора Iк, можно полагать, что ток нагрузки равен току коллектора Iн = Iк. Ток в нагрузке будет (Uвх — Uбэ)/Rн. При этом будем считать, что Uбэ известен и всегда равен 0,6В.

    Отсюда следует, что ток коллектора Iк = (Uвх — Uбэ)/Rн зависит лишь от входного напряжения и сопротивления нагрузки. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Ведь если вместо Rн поставить гвоздь — сотку, то никакой транзистор не выдержит!

    Схема ОК позволяет достаточно легко измерить статический коэффициент передачи тока h31э. Как это сделать, показано на рисунке 10.

    Рисунок 10.

    Сначала следует измерить ток нагрузки, как показано на рисунке 10а. При этом базу транзистора никуда подключать не надо, как показано на рисунке. После этого измеряется ток базы в соответствии с рисунком 10б. Измерения должны в обоих случаях производиться в одних величинах: либо в амперах, либо в миллиамперах. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях. Чтобы узнать статический коэффициент передачи тока достаточно ток нагрузки разделить на ток базы: h31э ≈ Iн/Iб.

    Следует отметить, что при увеличении тока нагрузки h31э несколько уменьшается, а при увеличении напряжения питания увеличивается. Эмиттерные повторители часто строятся по двухтактной схеме с применением комплементарных пар транзисторов, что позволяет увеличить выходную мощность устройства. Такой эмиттерный повторитель показан на рисунке 11.

    Рисунок 11.

    Рисунок 12.

    Включение транзисторов по схеме с общей базой ОБ

    Такая схема дает только усиление по напряжению, но обладает лучшими частотными свойствами по сравнению со схемой ОЭ: те же транзисторы могут работать на более высоких частотах. Основное применение схемы ОБ это антенные усилители диапазонов ДМВ. Схема антенного усилителя показана на рисунке 12.

    Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

    В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

    Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

      TO-92 — компактный, для небольших нагрузок

      TO-220AB — массивный, хорошо рассеивающий тепло, для больших нагрузок

    Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

    Биполярные транзисторы

    Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

      Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять

      База (base) — через неё подаётся небольшой ток , чтобы разблокировать большой; база заземляется, чтобы заблокировать его

      Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

    Основной характеристикой биполярного транзистора является показатель h fe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

    Например, если h fe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

    Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

    NPN и PNP

    Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

    NPN более эффективны и распространены в промышленности.

    PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

    Полевые транзисторы

    Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения : ток через затвор, в отличие от биполярных транзисторов, не идёт.

    Полевые транзисторы обладают тремя контактами:

      Сток (drain) — на него подаётся высокое напряжение, которым хочется управлять

      Затвор (gate) — на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

      Исток (source) — через него проходит ток со стока, когда транзистор «открыт»

    N-Channel и P-Channel

    По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

    P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

    Подключение транзисторов для управления мощными компонентами

    Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

    Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

    Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

    Обратите внимание на токоограничивающий резистор R . Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

    здесь U d — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

    Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора h fe = 100, тогда нам будет достаточно управляющего тока в 1 мА

    Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

    Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

    это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET, позволяет управлять очень мощными компонентами.

    Читайте также…

    Определение режима работы транзистора | ЭлектроникаBeliever

    Режим работы транзистора можно легко определить с помощью математических уравнений. Не волнуйтесь; это не сложные уравнения. Существует три режима работы транзистора. Это отсечка, насыщение и линейность. В отсечке транзистор просто не проводит ток; так что не проблема отправить транзистор в этот регион. Вы можете просто сделать это, прервав базовый ток.

    Режим насыщения требует большего тока базы, чтобы транзистор перестал обеспечивать усиление тока.В режиме насыщения ток коллектора больше не будет увеличиваться независимо от тока базы. Ток коллектора ограничен только сопротивлением коллектора.

    В линейном режиме ток базы не должен быть слишком большим, чтобы сохранить свойство усиления транзистора. В принципе, любому изменению тока базы соответствует изменение тока коллектора. Это изменение пропорционально коэффициенту усиления тока транзистора или коэффициенту бета.

     

    Метод №1 для определения режима работы транзистора: допущение о насыщении

     

     

     

    Первый метод предполагает, что цепь уже находится в режиме насыщения.Когда цепь находится в состоянии насыщения, ток коллектора можно определить, используя питание коллектора и сопротивление коллектора. В худшем случае вы можете пренебречь падением VCE транзистора. В этом методе определения режима работы транзистора, когда критерий верен, вычисленные токи являются фактическими токами цепи.

    Когда ток базы уже известен, можно решить бета-схему схемы (βckt_max). Меньший ток базы и больший ток коллектора дадут наихудший случай.

    В описанном выше методе, если результат критерия верен, транзистор работает в режиме насыщения.

     

    Пример определения режима работы транзистора с использованием метода №1

     

     

     

    В приведенном выше примере учитываются допуски для получения минимального тока базы и максимального тока коллектора. Вычисленная наихудшая бета схемы намного ниже, чем минимальный коэффициент усиления по току транзистора, указанный в техническом описании, поэтому нет сомнений в том, что транзистор работает в режиме насыщения.

    В приведенном выше примере мы просто сравниваем бета-версию схемы с минимальной бета-версией транзистора согласно информации из таблицы данных. Поскольку критерий верен, вычисленный ток коллектора является фактическим током цепи. Базовый ток всегда является фактическим током, независимо от операции.

     

    Метод № 2 для определения режима работы транзистора: предположим, линейный

     

     

    В этом конкретном методе, чтобы узнать режим работы транзистора, мы собираемся предположить, что схема работает в линейной области.Если вышеуказанный критерий верен, то режим работы транзистора однозначно линейный или активный.

     

    Пример определения режима работы транзистора с использованием метода № 2

     

     

     

    В приведенном выше примере заданное VCEsat транзистора составляет 0,7 В. Чтобы транзистор работал в режиме насыщения, расчетное максимальное напряжение VCE должно быть ниже 0,7 В с большим запасом. Результирующий вычисленный VCE является отрицательным, что означает значение ниже нуля и намного меньше 0.7В, поэтому режим работы транзистора однозначно насыщение.

     

    Ограничения любого метода

    Метод 1 проще использовать, когда нет эмиттерного резистора, как в наших примерах выше. Его все еще можно использовать со схемами, имеющими эмиттерные резисторы, но это сложно.

    Мы собираемся сравнить методы 1 и 2 в приведенной ниже схеме с эмиттерным резистором.

     

     

     

    Использование метода №1
     
     

     

    Использование метода № 2

     

     

     

    Основываясь на приведенных выше решениях, совершенно очевидно, что метод № 1 трудно использовать в схемах с эмиттерным резистором.Но его очень легко использовать со схемами, в которых нет эмиттерного резистора.

    Родственные

    ECSTUFF4U для инженера-электронщика

    Биполярный переходной транзистор (BJT) представляет собой переходной транзистор. Он может работать в трех режимах. Работа транзистора в этих режимах указана ниже:

    • Симпатичный режим
    • Режим насыщения
    • Активный режим
    • В режиме отсечки эмиттер-база и коллектор-база имеют обратное смещение.
    • В условиях обратного смещения через устройство не протекает ток, поэтому ток в транзисторе отсутствует.
    • Таким образом, в этом режиме транзистор находится в выключенном состоянии.
    • В выключенном состоянии транзистора можно использовать операцию переключения для выключения приложения.

    2. Режим насыщения:

    • В режиме насыщения и коллектор-база, и эмиттер-база имеют прямое смещение.
    • В условиях прямого смещения ток протекает через устройство, поэтому электрический ток течет через транзистор.
    • Таким образом, в этом режиме свободные электроны перетекают как от эмиттера устройства к базе, так и от коллектора к базе.
    • В этом режиме огромный ток течет к базе транзистора, поэтому на этом этапе транзистор переходит в режим насыщения, и он будет находиться во включенном состоянии и действует как замкнутый переключатель.
    Итак, окончательно мы заключаем, что выше два режима работы транзистора в качестве переключателя ВКЛ/ВЫКЛ.

    3. Активный режим:
    • В активном режиме одно соединение коллектора с базовым обратным режимом и другое соединение эмиттеров с базовым прямым смещением.
    • Таким образом, в этом режиме его можно использовать для усиления тока.

    Вывод: Таким образом, мы можем заключить, что транзистор работает как переключатель ВКЛ/ВЫКЛ, когда он находится в режимах насыщения и отсечки, тогда как в активном режиме он работает как усилитель тока.

    Биполярный переходной транзистор (BJT) представляет собой переходной транзистор. Он может работать в трех режимах. Работа транзистора в этих режимах указана ниже:

    • Симпатичный режим
    • Режим насыщения
    • Активный режим
    • В режиме отсечки эмиттер-база и коллектор-база имеют обратное смещение.
    • В условиях обратного смещения через устройство не протекает ток, поэтому ток в транзисторе отсутствует.
    • Таким образом, в этом режиме транзистор находится в выключенном состоянии.
    • В выключенном состоянии транзистора можно использовать операцию переключения для выключения приложения.

    2. Режим насыщения:

    • В режиме насыщения и коллектор-база, и эмиттер-база имеют прямое смещение.
    • В условиях прямого смещения ток протекает через устройство, поэтому электрический ток течет через транзистор.
    • Таким образом, в этом режиме свободные электроны перетекают как от эмиттера устройства к базе, так и от коллектора к базе.
    • В этом режиме огромный ток течет к базе транзистора, поэтому на этом этапе транзистор переходит в режим насыщения, и он будет находиться во включенном состоянии и действует как замкнутый переключатель.
    Итак, окончательно мы заключаем, что выше два режима работы транзистора в качестве переключателя ВКЛ/ВЫКЛ.

    3. Активный режим:
    • В активном режиме одно соединение коллектора с базовым обратным режимом и другое соединение эмиттеров с базовым прямым смещением.
    • Таким образом, в этом режиме его можно использовать для усиления тока.

    Вывод: Таким образом, мы можем заключить, что транзистор работает как переключатель ВКЛ/ВЫКЛ, когда он находится в режимах насыщения и отсечки, тогда как в активном режиме он работает как усилитель тока.

    Моделирование режимов работы и электромагнитных помех GaN-транзисторных преобразователей Оникиенко Ю.О., Пилинского В.В., Поповича П.В., Лазебного В.С., Смоленской О.И., Барана В.С. :: ССРН

    Электротехника и электромеханика, (3), 37–42.https://doi.org/10.20998/2074-272X.2020.3.06

    6 страниц Опубликовано: 6 апр 2021 г.

    Посмотреть все статьи Оникиенко Ю.О. Национальный технический университет Украины «Киевский политехнический институт им. Игоря Сикорского»

    Национальный технический университет Украины «Киевский политехнический институт им. Игоря Сикорского»

    Национальный технический университет Украины «Киевский политехнический институт им. Игоря Сикорского»

    Дата написания: 23 июня 2020 г.

    Аннотация

    Гол.Провести анализ эффективности и электромагнитных помех полумостового преобразователя на GaN-транзисторах при различных частотах переключения и дать рекомендации по его применению. Методология. Для исследования была выбрана макетная плата EPC9035 от Efficient Power Conversion. Эта плата представляет собой полумостовой преобразователь, построенный на транзисторах EPC2022 eGaN® и содержащий драйвер для управления этими транзисторами. Для упрощения оценки эффективности преобразования предлагается использовать компьютерную модель макетной платы и ЛИСН, моделирующую активную нагрузку с LC-фильтром.Результаты. Результаты моделирования КПД преобразователя с номиналами элементов по инструкции EPC9035 показали значительные отклонения от расчетных значений на частотах выше 50 кГц. Это объясняется наличием пускового тока через транзисторы. Пусковой ток зависит от «мертвого времени» между интервалами открытия транзисторов и задержек, заданных в SPICE-модели драйвера LM5113. Для уменьшения амплитуды пускового тока и, соответственно, увеличения длительности интервала «мертвого времени» предлагается удвоить конденсаторы, отвечающие за формирование этого интервала.Моделирование КПД преобразователя с удвоенными значениями элементов схемы показало, что результаты практически совпадают с расчетными значениями КПД в диапазоне от 0,05 МГц до 5 МГц. Преобразователь на транзисторах EPC2022 имеет наибольший КПД на частоте 50 кГц, который снижается на 0,03-0,04 на частоте 500 кГц. Поэтому рекомендуется устанавливать рабочую частоту близкой к 500 кГц. Моделирование уровней ЭМП показало, что разница в продолжительности «мертвого времени» не оказывает существенного влияния на уровни моделируемых ЭМП.Наибольшая разница между результатами моделирования и эксперимента наблюдается на частотах около 30 МГц и составляет 3-6 дБ. Оригинальность. Впервые с помощью компьютерной модели был рассчитан КПД полумостового преобразователя на GaN-транзисторах на различных частотах. Практическая значимость. Учитывая большой выходной ток, высокое рабочее напряжение и малое время переключения, GaN-транзисторы перспективны для использования в генераторах импульсов, источниках питания с рабочими частотами более 500 кГц, а также в мощных усилителях Hi-Fi класса D с небольшими габаритами, например автомобильных. .

    Ключевые слова: GaN-транзисторы, компьютерное моделирование, электромагнитные помехи, энергоэффективность

    Рекомендуемое цитирование: Рекомендуемая ссылка

    Оникиенко, Ю.О., Пилинский В.В., Попович П.В., Лазебный В.С., Смоленская О.И., Баран В.С. Моделирование режимов работы и электромагнитных помех GaN-транзисторных преобразователей (23 июня 2020 г.). Электротехника и электромеханика, (3), 37–42. https://doi.org/10.20998/2074-272X.2020.3.06, доступно в SSRN: https://ssrn.com/abstract=3819316