Site Loader

Содержание

описание. Старые радиоприемники. Сверхгенеративное устройство на FM-диапазоны

В.Рубцов, UN7BV
г. Астана, Казахстан

Схемы генераторов, приведенные в статье, не предназначены для работы в средневолновом участке радиовещательного диапазона. Схемы могут быть применены в аппаратуре любительского диапазона 1,9 МГц, официально разрешенного для работы в эфире зарегистрированных радиолюбителей, т.е. имеющих разрешение на право эксплуатации любительской радиостанции и позывной сигнал. Некоторые технические решения из этих схем можно использовать при конструировании любительских радиопередатчиков, а можно просто поностальгировать по прошлому — ведь «радиохулиганская юность” за плечами многих радиолюбителей и просто любителей радио.

приставка «Шарманка-1»

На рис.1 приведена схема простейшей передающей средневолновой приставки с АМ модуляцией к радиоприемнику. В приставке используется радиолампа 6ПЗС, максимальная рассеиваемая мощность на аноде которой составляет 20,5 Вт Вместо 6ПЗС можно применить лампу 6П6С (максимальная рассеиваемая мощность на аноде — 13,2 Вт) — цоколевка у них одинаковая.

Колебательный контур L1С1 включен между анодом лампы и управляющей сеткой. Он обеспечивает положительную обратную связь каскада — одно из условий, необходимых для самовозбуждения генератора. Питание на анод лампы подается через колебательный контур (через отвод в катушке И). Выключатель SА1 служит для включения каскада в режим передачи и отключения в режиме приема.
Напряжение питания поступает с анода выходной лампы УНЧ приемника, поэтому при подаче на вход УНЧ приемника сигнала от микрофона происходит амплитудная модуляция генерируемых приставкой ВЧ колебаний.
Катушка L1 выполнена на эбонитовом каркасе диаметром D-30 мм и содержит 55 витков провода ПЭЛ-0,8 (виток к витку) с отводом от 25-го витка, считая от нижнего (по схеме) вывода. Эта приставка работала хорошо, но имела один недостаток — настроечный конденсатор С1 был гальванически связан с анодом лампы (а это небезопасно!), поэтому приходилось ручку настройки изготавливать из диэлектрика.


приставка «Шарманка-2»

Несколько позже мне удалось отыскать схему “шарманки” (рис.2), лишенную этого недостатка. В ней контур включен между управляющей сеткой и катодом лампы. Причем, применено частичное включение катода в контур за счет отвода в катушке. Такая схема более безопасна, но отдает в антенну мощность, несколько меньшую чем предыдущая. Применение конденсатора переменной емкости С1. позволяет оптимально согласовать контур И-СЗ с антенной.

В этой схеме радиолампу 6ПЗС также можно заменить на 6П6С. Катушка И намотана на керамической оправке диаметром D-32мм проводом ПЭЛ-0,7. Количество витков — 50 (намотка — виток к витку с отводом от середины).


приставка «Шарманка-3»

На рис. З приведена схема еще одной “шарманки”. В ней КПЕ С2 гальванически связан с корпусом через катушку L2. При случайном замыкании выводов этого конденсатора на корпус ничего опасного не произойдет — всего лишь прекратится генерация ВЧ сигнала.
Выходная мощность этой приставки больше, чем у предыдущей (примерно такая же, как у схемы на рис.1), т.к. колебательный контур L2-СЗ подключен к цепи анода лампы. Дроссель L1 заключен в экран. Катушка L2 намотана на пластмассовой оправке диаметром D-30 мм проводом ПЭЛ-0,8 и содержит 50 витков провода, намотанного виток к витку. Отвод — от середины обмотки.

Еще одна принципиальная схема простейшей передающей приставки на радиолампе 6ПЗС (6П6С) приведена на рис.4.


приставка «Шарманка-4»

Эта схема отличается от предыдущих наличием дросселя L1 в анодной цепи лампы, что позволило подключить выходной контур к аноду. При этом статоры конденсаторов переменной емкости С2 и С5 подключены к “общему” проводу, что существенно повышает безопасность устройства и облегчает управление элементами настройки. В катодную цепь лампы включен переключатель SА1, с помощью которого можно регулировать глубину положительной обратной связи, что позволяет довольно точно выбрать требуемый режим работы каскада. Катушка L3 с регулируемой индуктивностью позволяет согласовать сопротивление выходного контура с входным сопротивлением антенны. Это важно, т.к. в качестве антенны часто используют отрезок провода произвольной длины. Катушка L2 намотана на керамической оправке диаметром D-40мм и имеет 40 витков провода ПЭЛ-0,7 (намотка — виток к витку, отводы равномерно распределены по всей длине намотки), L4 — на керамической оправке диаметром D-35мм и имеет 50 витков провода ПЭЛ-0,6. В авторском варианте катушка L1(дроссель) имеет индуктивность 1 мкГн, L2 — 8 мкГн, L3 — 250 мкГн, L4 —16 мкГн. Я предлагаю намотать L1 на керамическом каркасе диаметром D-18мм и длиной 95мм проводом ПЭЛИЮ-0,35 (130 витков). Первые 15 витков (ближайшие к аноду) следует выполнить вразрядку с шагом 1,5мм, остальная часть обмотки — виток к витку. Катушку же L3 рекомендую изготовить аналогично L4, но количество витков увеличить до 100 и сделать от нее отводы (11 отводов — по числу контактов в переключающей галете) с целью обеспечения возможности изменения индуктивности катушки. Отводы следует расположить равномерно по длине, катушки — это упростит ее конструкцию и, в то же время, позволит сохранить ее настроечные функции.

Настройку на частоту в этой схеме производят с помощью конденсатора С2, а емкость конденсатора С5 подбирают по максимуму сигнала на выходе, т.е. настраивают выходной контур L4-С5 в резонанс. Такое построение схемы позволяет настраивать выходной контур не только на основную частоту, но и на ее гармоники (чаще всего используют третью). Таким образом можно повысить стабильность частоты вырабатываемого генератором сигнала, т.к. гетеродин при этом работает на частоте в три раза ниже частоты выходного сигнала.


приставка «Шарманка-5»

На рис.5 приведена схема “шарманки”, выполненная на двух радиолампах 6ПЗС (можно использовать и лампы 6П6С, но смысла в этом нет — лучше применить одну 6ПЗС). Эта схема обеспечивает на выходе более мощный сигнал (примерно вдвое по сравнению со схемой на одной лампе). Аноды ламп включены в контур генератора частично — для снижения влияния шунтирования. В авторском варианте рекомендуется катушки L1—L3 намотать на одном керамическом каркасе диаметром D-40мм. Катушка L1содержит 32 витка провода ПЭЛ-0,3, L2 — 41 виток провода ПЭЛ-0,4, L3 — 58 витков провода ПЭЛ-0,7. Все катушки намотаны виток к витку. Я рекомендую уменьшить количество витков каждой катушки процентов на 60, иначе частота генерации из средневолнового диапазона уйдет в длинноволновый. Подстройкой сопротивления резистора R1 можно изменить режим работы радиоламп.


приставка «Шарманка-6»

На рис.6 приведена схема передатчика на двух радиолампах. Колебательный контур L1-С2 включен в цепи катодов ламп. Катушки L1 и L2 намотаны на одном керамическом каркасе D-20 мм: И содержит 60 витков провода ПЭЛ-0,3, L2 — 30 витков ПЭЛ-0,4 (намотка обеих катушек — виток к витку). Сверху катушки L2 намотано 2-3 витка монтажного провода (в изоляции), концы которого подключены к лампочке накаливания на напряжение 6,3 В и ток 0,28 мА (от карманного фонарика). Эта простейшая цепочка обеспечивает индикацию наличия ВЧ генерации. Кроме того, в качестве ВЧ индикатора можно использовать неоновую лампочку, размещенную недалеко от катушки. По интенсивности свечения лампы можно судить об изменении выходной мощности при перестройке по диапазону либо об изменении параметров антенны (например, при ее настройке). Так, если при настройке антенны частота будет приближаться к резонансной, то лампочка станет светиться слабее (по минимуму свечения можно судить о настройке антенны в резонанс с генерируемой передатчиком частотой, т.к. имеет место максимальный отбор мощности). В случае обрыва антенны лампочка будет светиться максимально ярко, а при коротком замыкании в антенне может совсем по- гаснуть (это зависит от величины связи выходного контура с антенной, которая определяется емкостью конденсатора переменной емкости С1). Выключатель питания SА1 служит одновременно и переключателем “прием/передача”.


приставка «Шарманка-7»

На рис.7 приведена схема передающей приставки на радиолампе ГУ50. Существенным отличием данной схемы от предыдущих является повышенная выходная мощность. Амплитудная модуляция осуществляется по защитной сетке лампы. С помощью конденсатора переменной емкости С5 приставка настраивается на выбранную частоту, а с помощью конденсатора С1 обеспечивается согласование выходного сопротивления передатчика с входным сопротивлением антенны. Не следует забывать, что в данной схеме одна из обкладок конденсатора переменной емкости С5 находится под напряжением 800 В, поэтому будьте очень осторожны и используйте для регулировки емкости этого конденсатора ручку управления, изготовленную из качественного диэлектрического материала.

Катушка L1 намотана на керамическом каркасе D-40 мм и содержит 50 витков провода ПЭЛ-0,7 (намотка — виток к витку) с отводом от середины.


приставка «Шарманка-8»

На рис.8 приведена еще одна схема передатчика, выполненного на радиолампе ГУ50. В ней частота генерации задается контуром L1- С2, а на выходе устройства используется так называемый П-контур С7-L2-С8, который позволяет очень хорошо согласовать выходное сопротивление каскада с входным сопротивлением антенны. С помощью конденсатора переменной емкости С7 настраивают П-контур в резонанс (согласовывают выходное сопротивление лампы с сопротивлением П-контура), а с помощью С8 подбирают величину связи с антенной. Амплитудная модуляция выходного сигнала осуществляется по защитной сетке лампы.

Цепочка С3-VD1-R2 — это элементы защиты цепей динамика от ВЧ наводок. Подбором сопротивлений резисторов (в пределах 0,5—1 МОм) и R3 можно подобрать оптимальный режим работы лампы.
Катушка L1 намотана на цилиндрическом керамическом каркасе D-40 мм проводом ПЭЛ 0,9 и содержит 60 витков, намотанных виток к витку. Катушка L2 намотана на керамическом каркасе D-50 мм и содержит 70 витков провода ПЭЛ диаметром 1,2—1,5 мм (намотка — виток к витку). Анодный дроссель L3 намотан на керамическом каркасе D-12 мм. В оригинальной рекомендации указано, что он содержит 7 секций по 120 витков провода ПЭЛ-0,4, намотанных в навал, но, скорее всего, достаточно двух секций по 120 витков.


приставка «Шарманка-9»

Статьи (рис.2), изменяя параметры только входных и гетеродинных контуров можно создавать самые разные варианты любительских приемников на НЧ диапазоны.

Двухдиапазонный приемник на 80 и 160м

Фрагмент принципиальной схемы ВЧ блока двухдиапазонного варианта приемника на 80 и 160м приведена на рис.5. Не показанная часть схемы полностью соответствует базовому варианту (см. рис.2), для облечения чтения нумерация совпадающих элементов сохранена, вновь введенные ее продолжают.

В показанном на схеме положении переключателя SA1 включен диапазон 160м. Двухконтурный ПДФ L1C1C2C3L2C4C5С6 аналогичен по структуре примененному в базовом варианте и имеет полосу пропускания не уже 1,8-2Мгц. Внешняя антенна подключаются аналогично базовому варианту. Для перехода на 80м диапазон замыкаются контакты переключателя SA1 и параллельно катушкам L1,L2 величиной 22мкГн подключаются катушки L5,L6 величиной 8,2мкГн, в результате полоса пропускания ПДФ смещается точно на частоты диапазона 80м – 3,5-3,8МГц. Контур ГПД на 160м диапазоне состоит из катушки L3, КПЕ С38 и растягивающих конденсаторов С40,С8,С9, и С10, величина последних выбрана из расчета обеспечить с достаточным запасом диапазон перестройки 2,28-2,52Мгц. При включении 80м диапазона параллельно L3 подключаются катушка L7 и конденсатор С41, в результате диапазон перестройки ГПД смещается к требуемому 3,98-4,32Мгц, с некоторым запасом. Немного расширенный диапазон перестройки ГПД позволил отказаться от операции их точной укладки.

Для улучшения повторяемости было решено полностью отказаться от самодельных катушек и выполнить ВЧ цепи на малогабаритных аксиальных дросселях стандартных номиналов (типа ЕС24 и т.п.). Благодаря дополнительно проведенной оптимизации значений контурных элементов под стандартный номинальный ряд удалось упростить не только схему, но и настройку. В результате при установке исправных деталей указанных на схеме номиналов ВЧ блок практически не требует настройки, достаточно только подстроить триммеры С39 и С42 по максимуму сигнала на середине 160м диапазона.

Разумеетмя, что при отсутствии готовых дросселей можно применить самодельные катушки, самостоятельно рассчитав требуемое кол-во витков, например по методике, приведенной в первой части статьи. При этом схему можно еще более упростить, отказавшись от триммеров, а настройку ВЧ блока провести по стандартной или упрощенной методике, приведенной ниже.

Трехдиапазонный приемник на 20,40 и 80м

Этот приемник немного сложнее, но и совершеннее предыдущих.
Его принципиальная схема приведена на рис.6. Сигнал с антенного разъема подается на

регулируемый аттенюатор, выполненный на сдвоенном потенциометре R25 и далее через катушку связи L1 поступает на двухконтурный полосовой диапазонный фильтр (ПДФ) L2C5С11, L3C17С21 с емкостной связью через конденсатор С10. Переключение диапазонов производится трехпозиционным переключателем. В положении контактов, показанном на схеме включен диапазон 14МГц. При переключении на 7МГц к контурам подключаются дополнительные контурные конденсаторы С4,С9 и С16,С20, смещающие резонансные частоты контуров на середину рабочего диапазона и дополнительный конденсатор связи С15. При переключении на диапазон 3,5МГц к контурам ПДФ подключаются соответственно конденсаторы С8,С14 и С13. Для расширения полосы на 80м диапазоне введены резисторы R1,R2. Этот трехдиапазонный ПДФ рассчитан на применение большой, полноразмерной антенны и сделан по упрощенной схеме всего на двух катушках, что оказалось возможным благодаря нескольким особенностям — верхние диапазоны, где требуется бОльшие чувствительность и селективность — узкие (меньше 3%), нижний 80м, где очень высок уровень помех и вполне достаточно чувствительности порядка 3-5мкВ — широкий (9%). Примененная схема имеет самый большой коэф.передачи по напряжению на 14Мгц с почти пропорциональным частоте снижением в сторону 3,5Мгц, причем избирательность по зеркальному каналу при ПЧ 500кГц даже на 14Мгц будет порядка 30дБ — вполне приличное значение, учитывая, что в полосе 13-13,35Мгц нет мощных вещательных станций.

Приемник работает очень чисто, даже без аттенюатора без заметных на слух перегрузок держит сигнал – уровнем как минимум до S9+40дБ. Чувствительность при с/шум=10дБ не хуже 3мкВ (80м) и 1мкв (40 и 20м). Ток потребления в покое — порядка 20мА и не более 50мА при максимальной громкости на динамик 8 Ом.
Гетеродин выполнен по схеме индуктивной трехточки (схема Хартли) на полевом транзисторе VT3. Контур гетеродина содержит катушку L5 и конденсаторы С18,С19. Конденсатором переменной емкости (КПЕ) С51 частота генерации перестраивается в пределах 13,48-13,87МГц. При переключении на 7МГц к контуру параллельно С18 и С19 подключаются дополнительные растягивающие конденсаторы С6 и С7,С12, смещающие диапазон перестройки частоты до 7,48-7,72МГц. При переключении на диапазон 3,5МГц подключаются соответственно конденсаторы С1 и С2С3, а диапазон перестройки ГПД равен 3,98-4,32МГц. Связь контура с цепью затвора VT3 осуществляется посредством конденсатора С22, на котором, благодаря выпрямляющему действию p-n перехода диода VD1, образуется отрицательное напряжение автосмещения, достаточно жестко стабилизирующее амплитуду колебаний в широком диапазоне частот. Так, например, при возрастании амплитуды колебаний запирающее выпрямленное напряжение также увеличивается и усиление транзистора падает, уменьшая коэффициент положительной обратной связи (ПОС). Собственно, ПОС получается при протекании тока транзистора по части витков катушки L5. Отвод к истоку сделан от 1/3 части общего числа витков.

Остальная часть схемы полностью соответствует базовому варианту.

Все детали приемника, кроме разъемов, переменных резисторов и КПЕ, смонтированы на плате из одностороннего фольгированного стеклотекстолита размером 67,5х95мм. Авторский чертеж платы со стороны печатных проводников приведен на рис. 7,

расположение деталей – на рис.8,

а фото собранной платы на рис.9.

Чертёж печатной платы в формате lay можно

на чертеже предусмотрено посадочное место под три наиболее распространенных конструктива ЭМФ (круглых и прямоугольных). С целью уменьшения размеров, плата рассчитана на установку в основном SMD компонентов — резисторы и дроссель L6 типоразмера 1206, а конденсаторы 0805, электролитические импортные малогабаритные. Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные. В качестве SA1,SA2 применены переключатели П2К с независимой фиксацией и четырьмя переключающими группами. Технологические перемычки J1,J2, подобные применяемым на компьютерных материнских платах и адаптерах.
В качестве VT1,VT3 можно применить практически любые современные полевые транзисторы с p-n переходом, с начальным током стока не менее 5-6мА – BF245В,С, J(U)309 -310, КП307Б, Г, КП303Г, Д, Е, КП302 А,Б. В качестве VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 100, BC847- ВС850, MMBT3904, MMBT2222 и т.п.

Катушки приемника L1-L4 выполнены на малогабаритных каркасах от малогабаритных катушек ПЧ 455 кГц размерами 8х8х11 мм, от широко распространенных недорогих импортных радиоприемников и магнитол, подстроечником которых служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку. Катушки L2-L3 содержат по 9 витков провода ПЭЛ, ПЭВ диаметром 0,13-0,23мм. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 1 виток, а катушка связи L4 наматывается поверх нижней части катушки L3 и содержит 5 витков такого же провода. Гетеродинная катушка L3 намотана на импортном малогабаритном многосекционном каркасе контура ПЧ 10,7 МГц. Она содержит 19 витков провода ПЭЛ (ПЭВ) диаметром 0,13-0,17мм, отвод от 7 витка. Намотку следует проводить с максимальным натяжением провода, равномерно размещая витки во всех секциях каркаса, после чего катушка плотно фиксируется штатной капроновой гильзой. Весь контур заключен в штатный латунный экран.

При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственно, подкорректировав чертеж печатной платы под новый конструктив.

Внешний вид приемника приведен на рис.10,

а вид на внутренний монтаж – на рис.11. Конструкция шкального механизма видна на фото.

В верхней части передней панели вырезано прямоугольное окно шкалы, сзади которого на расстоянии 1мм закреплен винтами М1,5 длиной 15мм подшкальник. На эти же винты насажены промежуточные капроновые ролики диаметром 4мм, обеспечивающие необходимый ход тросика. Шкала линейная, с отображением всех трех диапазонов. Ось, на котором закреплена ручка настройки, использована от переменного резистора типа. От этого же резистора использованы элементы крепления оси на передней панели. На оси следует сделать небольшую выточку (полукруглым надфилем, зажав в патрон электродрели ось), в которую укладывают тросик (два витка вокруг оси). Стрелка шкалы – отрезок провода ПЭВ диаметром 0,55мм. Настройка трактов НЧ и ПЧ аналогична базовому варианту. Далее, подключив высокоомный вольтметр (например, китайский цифровой мультиметр) через развязывающий резистор 51-100кОм к затвору VT3, убеждаемся, что на всех диапазонах отрицательное напряжение автосмещение не менее 1В. Затем по падению напряжения на R4 проверяем ток стока VT1 и если он более 7-8мА, увеличиваем R4 до получения требуемого, допустимо порядка 5-8мА.

Затем снимаем технологическую перемычку (джампер) J1 и вместо нее к этому разъему подключаем частотомер и приступаем к укладке диапазонов ГПД, которую начинаем с диапазона 20 м (переключатели SA1,SA2 отжаты). Подбором растягивающих конденсаторов С18,С19 добиваемся требуемой ширины перестройки (с небольшим запасом – порядка 15-20 кГц по краям), а сердечником катушки L5 совмещаем начало диапазона и больше катушку не трогаем. Далее, нажав переключатель SA2, переходим к укладке диапазона 40м, для чего сначала устанавливаем триммер С12 в среднее положение (это легко определить по изменению частоты при его регулировке), подбором растягивающих конденсаторов С6,С7 добиваемся как требуемой ширины перестройки, так и примерного совпадения начала диапазонов, после чего подстройкой С12 совмещаем их более точно. Затем переходим на диапазон 80м (отжав SA2 и нажав SA1) и аналогично, подбором растягивающих конденсаторов С6,С7, укладываем его границы и триммером С3 совмещаем начало диапазона с предыдущими.

При указанной выше конструкции катушки и использовании термостабильных конденсаторов группы МПО (а по сведениям автора к ним относятся практически все импортные SMD конденсаторы емкостью менее 910пФ) стабильность частоты получилась вполне приличной — после 15мин прогрева приемник держит SSB станции не менее получаса на 20м диапазоне и не менее часа — на нижних и это без всяких дополнительных усилий по термокомпенсации.

Настройку контуров ДПФ можно сделать по упрощенной методике и следует начинать с диапазона 80м. Подключив к выходу приемника индикатор уровня выходного сигнала (миливольтметр переменного тока, осциллограф, а то и просто мультиметр в режиме измерения напряжения постоянного тока к выводам конденсатора С42) устанавливаем частоту ГСС на середину диапазона, т.е. 3,65МГц. Расчетная АЧХ ПДФ на этом диапазоне широкая «двугорбая», с провалом в середине диапазона примерно на 1дБ.

Чтобы правильно настроить этот ПДФ без ГКЧ, воспользуемся следующим приемом. Временно зашунтируем катушку L3 резистором150-220 Ом и настроившись приемником на сигнал ГСС вращением сердечника катушки L2 добьемся максимального уровня сигнала (максимальной громкости приема). По мере роста громкости следует при помощи плавного аттенюатора R1 поддерживать уровень сигнала на выходе УНЧ примерно 0,3-0,5В. Если при вращении сердечника после достижения максимума наблюдается снижение шумов, это свидетельствует что входной контур у нас настроен правильно, возвращаем сердечник в положение максимума и можем приступать к следующему диапазону. Если вращением сердечника (в обе стороны) не получается зафиксировать четкий максимум, т.е. сигнал продолжает расти, то наш контур неправильно настроен и понадобится подбор конденсатора. Так если сигнал продолжает увеличиваться при полном выкручивании сердечника, емкость конденсатора контура С5(или С11) надо немного уменьшить, как правило (если катушка выполнена правильно) достаточно поставить следующий ближайший номинал. И опять проверяем возможность настройки входного контура в резонанс. И наоборот, если сигнал продолжает уменьшаться при полном вкручивании сердечника, емкость конденсатора контура С5(или С11) надо увеличить. После этого перенесем шунтирующий резистор на катушку L2 и вращением сердечника катушки L3 добьемся максимального уровня сигнала. Вот теперь ПДФ диапазона 80м настроен правильно. Больше катушки не трогаем и переходим на диапазон 20м и 40м. АЧХ ПДФ этих диапазонов узкие, одногорбые, поэтому они

настравиаются просто по максимуму сигнала в средней части диапазона – частоты соответственно 14,175 и 7,1МГц. С начала настраиваем ПДФ диапазона 20м регулировкой триммеров С5,С21, а затем – 40м, соответственно регулировкой триммеров С4,С20. При достаточно большой антенне настройку ПДФ по приведенной выше методике можно сделать непосредственно по шумам (сигналам) эфира, памятуя, что лучшее прохождение, а значит, более сильные сигналы, на диапазонах 80 и 40м будут в темное время суток, а на 20м – в светлое.

Схема простого КВ приемника наблюдателя на любой радиолюбительский диапазон

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Сегодня мы рассмотрим очень простую, и в тоже время обеспечивающую неплохие характеристики схему – КВ приемник наблюдателя – коротковолновика .
Схема разработана С. Андреевым. Не могу не отметить, что сколько я не встречал в радиолюбительской литературе разработок этого автора, все они были оригинальны, просты, с прекрасными характеристиками и самое главное – доступны для повторения начинающими радиолюбителями.
Первый шаг радиолюбителя в стихию обычно всегда начинается с наблюдения за работой других радиолюбителей в эфире. Мало знать теорию радиолюбительской связи. Только прослушивая любительский эфир, вникая в азы и принципы радиосвязи, радиолюбитель может получить практические навыки в проведении любительской радиосвязи. Эта схема как раз и предназначена для тех кто хочет сделать свои первые шаги в любительской связи.

Представленная схема приемника радиолюбителя – коротковолновика очень проста, выполнена на самой доступной элементной базе, несложная в настройке и в тоже время обеспечивающая хорошие характеристики. Естественно, что в силу своей простоты, эта схема не обладает “сногсшибательными” возможностями, но (к примеру чувствительность приемника около 8 микровольт) позволит начинающему радиолюбителю комфортно изучать принципы радиосвязи, особенно в 160 метровом диапазоне:

Приемник, в принципе, может работать в любом радиолюбительском диапазоне – все зависит от параметров входного и гетеродинного контуров. Автор этой схемы испытывал работу приемника только для диапазонов 160, 80 и 40 метров.
На какой диапазон лучше собрать данный приемник. Чтобы это определить, надо учесть в каком районе вы проживаете и исходить из характеристик любительских диапазонов.
()

Приемник построен по схеме прямого преобразования. Он принимает телеграфные и телефонные любительские станции – CW и SSB.

Антенна. Работает приемник на несогласованную антенну в виде отрезка монтажного провода, который можно протянуть под потолком комнаты по диагонали. Для заземления подойдет труба водопроводной или отопительной системы дома, которая подключается к клемме Х4. Снижение антенны подключается к клемме Х1.

Принцип работы. Входной сигнал выделяется контуром L1-C1, который настроен на середину принимаемого диапазона. Затем сигнал поступает на смеситель, выполненный на 2-х транзисторах VT1 и VT2, в диодном включении, включенных встречно-параллельно.
Напряжение гетеродина, выполненного на транзисторе VT5, подается на смеситель через конденсатор С2. Гетеродин работает на частоте в два раза ниже частоты входного сигнала. На выходе смесителя, в точке подключения С2, образуется продукт преобразования – сигнал разности входной частоты и удвоенной частоты гетеродина. Так как величина этого сигнала не должна быть более трех килогерц (в диапазон до 3-х килогерц укладывается “человеческий голос”), то после смесителя включен ФНЧ на дросселе L2 и конденсаторе С3, подавляющий сигнал частотой выше 3-х килогерц, благодаря чему достигается высокая избирательность приемника и возможность приема CW и SSB. При этом, сигналы АМ и FM практически не принимаются, но это и не очень важно, потому, что радиолюбители в основном используют CW и SSB.
Выделенный НЧ сигнал поступает на двухкаскадный усилитель низкой частоты на транзисторах VT3 и VT4, на выходе которого включаются высокоомные электромагнитные телефоны типа ТОН-2. Если у вас есть только низкоомные телефоны, то их можно подключать через переходной трансформатор, к примеру от радиоточки. Кроме того, если параллельно С7 включить резистор на 1-2 кОм, то сигнал с коллектора VT4 через конденсатор емкостью 0,1-10 мкФ можно подать на вход любого УНЧ.
Напряжение питания гетеродина стабилизировано стабилитроном VD1.

Детали. В приемнике можно использовать разные переменные конденсаторы: 10-495, 5-240, 7-180 пикофарад, желательно, чтобы они были с воздушным диэлектриком, но подойдут и с твердым.
Для намотки контурных катушек (L1 и L3) используются каркасы диаметром 8 мм с резьбовыми подстроечными сердечниками из карбонильного железа (каркасы от контуров ПЧ старых ламповых или лампово-полупроводниковых телевизоров). Каркасы разбираются, разматываются и от них спиливается цилиндрическая часть длиной 30 мм. Каркасы устанавливаются в отверстия платы и фиксируются эпоксидным клеем. Катушка L2 намотана на ферритовом кольце диаметром 10-20 мм и содержит 200 витков провода ПЭВ-0,12 намотанных внавал, но равномерно. Катушку L2 можно также намотать на сердечнике СБ а затем поместить внутрь броневых чашек СБ склеив их эпоксидным клеем.
Схематическое изображение крепления катушек L1, L2 и L3 на плате:

Конденсаторы С1, С8, С9, С11, С12, С13 должны быть керамическими, трубчатыми или дисковыми.
Намоточные данные катушек L1 и L3 (провод ПЭВ 0,12) номиналы конденсаторов С1, С8 и С9 для разных диапазонов и используемых переменных конденсаторах:

Печатная плата сделана из фольгированного стеклотекстолита. Расположение печатных дорожек – с одной стороны:

Налаживание. Низкочастотный усилитель приемника при исправных деталях и безошибочном монтаже в налаживании не нуждается, так-как режимы работы транзисторов VT3 и VT4 устанавливаются автоматически.
Основное налаживание приемника – налаживание гетеродина.
Сначала нужно проверить наличие генерации по наличию ВЧ напряжения на отводе катушки L3. Ток коллектора VT5 должен быть в пределах 1,5-3 мА (устанавливается резистором R4). Наличие генерации можно проверить по изменению этого тока при прикосновении руками к гетеродинному контуру.
Подстройкой гетеродинного контура надо обеспечить нужное перекрытие гетеродина по частоте, частота гетеродина должна перестраивается в пределах на диапазонах:
– 160 метров – 0,9-0,99 МГц
– 80 метров – 1,7-1,85 МГц
– 40 метров – 3,5-3,6 МГц
Проще всего это сделать, измеряя частоту на отводе катушки L3 при помощи частотомера, способного измерять частоту до 4 МГц. Но можно воспользоваться и резонансным волномером или генератором ВЧ (методом биений).
Если вы пользуетесь генератором ВЧ, то можно одновременно настроить и входной контур. Подайте на вход приемника сигнал от ГВЧ (расположите провод, подключенный к Х1 рядом с выходным кабелем генератора). Генератор ВЧ надо перестраивать в пределах частот в два раза больших, чем указано выше (например, на диапазоне 160 метров – 1,8-1,98 МГц), а контур гетеродина подстроить так, чтобы при соответствующем положении конденсатора С10 в телефонах прослушивался звук частотой 0,5-1 кГц. Затем, настройте генератор на середину диапазона, настройте на нее приемник, и подстройте контур L1-C1 по максимальной чувствительности приемника. Также по генератору можно откалибровать шкалу приемника.
При отсутствии генератора ВЧ входной контур можно настроить принимая сигнал радиолюбительской станции работающей как можно ближе к середине диапазона.
В процессе настройки контуров может потребоваться корректировка числа витков катушек L1 и L3. конденсаторов С1, С9.

Это схема работает всего от одной 1,5 В батареи. В качестве аудио устройства воспроизведения применены обычные наушник с общим сопротивлением 64 Ом. Питания от батарейки проходит через разъем наушников, поэтому достаточно вытащить наушники из разъема, чтоб отключить приемник. Чувствительности приемника достаточно, что на 2-х метровую проводную антенну применять несколько качественных станций КВ и ДВ диапазона.


Катушка L1 изготавливается на сердечнике из феррита длиной 100 мм. Обмотка состоит из 220 витков провода ПЭЛШО 0,15-0,2. Намотка осуществляется в навалочку на бумажной гильзе длиной 40 мм. Отвод нужно сделать от 50 витка от заземленного конца.

Схема приемника всего на одном полевом транзисторе

Этот вариант схемы простого однотранзисторного FM-приемника, работает по принципу сверхрегенератора.


Катушка на входе состоит из семи витков медного провода сечением 0,2 мм, намотанных на оправке 5 мм с отводом от 2-го, а вторая индуктивность содержит 30 витков провода 0,2 мм. Антенна типовая телескопическая, питание от одной батарейки типа Крона, ток потребления при этом всего 5 мА, поэтому хватит на долго. Настройка на радиостанцию осуществляется конденсатором переменной емкости. На выходе схемы звук слабенький, поэтому для усиления сигнала подойдет практически любой самодельный УНЧ.


Главное достоинство этой схемы в сравнении с другими типами приемников это отсутствие каких-либо генераторов и поэтому нет высокочастотного излучения в приемной антенне.

Сигнал радиоволны принимается антенной приемника и выделяется резонансной цепью на индуктивности L1 и емкости С2 а затем поступает на детекторный диод и усиливается.

Схема приемника ФМ диапазона на транзисторе и LM386.

Представлагаю вашему вниманию подборку простых схем FM приемников на диапазон 87.5 до 108 МГц. Данные схемы имеет достаточно простые для повторентия, даже начинающим радиолюбителям, обладают не большими габаритами и с легкостью поместиться у вас в кармане.



Схемы несмотря на, свою простоту обладают высокой селективностью и хорошим соотношение сигнал-шум и его вполне хватает для комфортного прослушивания радиостанций

Основой всех этих радиолюбительских схем радиоприемников, являются специализированные микросхемы такие как: TDA7000, TDA7001, 174XA42 и другие.


Приемник предназначен для приема телеграфных и телефонных сигналов радиолюбительских станций, работающих в 40-метровом диапазоне. Тракт построен по супергетеродинной схеме с одним преобразованием частоты. Схема приемника построена так, что используется широко доступная элементная база, в основном это транзисторы типа КТ3102 и диоды 1N4148.

Входной сигнал из антенной системы поступает на входной полосовой фильтр на двух контурах Т2-С13-С14 и ТЗ-С17-С15. Связующим менаду контурами является конденсатор С16. Этот фильтр выделяет сигнал в пределах 7 … 7,1 МГц. При желании работать в другом диапазоне можно соответствующим образом перестроить контур путем замены катушек-трансформаторов и конденсаторов.

Со вторичной обмотки ВЧ-трансформатора ТЗ, первичная обмотка которого является вторым звеном фильтра, сигнал поступает на усилительный каскад на транзисторе VT4. Преобразователь частоты выполнен на диодах VD4-VD7 по кольцевой схеме. Входной сигнал поступает на первичную обмотку трансформатора Т4, а сигнал генератора плавного диапазона на первичную обмотку трансформатора Т6. Генератор плавного диапазона (ГПД) выполнен на транзисторах VT1-VT3. Собственно генератор собран на транзисторе VT1. Частота генерации лежит в пределах 2,085-2,185 МГц, этот диапазон задается контурной системой, состоящей из индуктивности L1, и разветвленной емкостной составляющей из С8, С7, С6, С5, СЗ, VD3.

Перестройка в указанных выше пределах осуществляется переменным резистором R2, который является органом настройки. Он регулирует постоянное напряжение на варикапе VD3, входящем в состав контура. Напряжение настройки стабилизируется с помощью стабилитрона VD1 и диода VD2. В процессе налаживания перекрытие в указанном выше диапазоне частот устанавливают подстройкой конденсаторов СЗ и Сб. При желании работать в другом диапазоне или с другой промежуточной частотой требуется соответственная перестройка контура ГПД. Сделать это не сложно вооружившись цифровым частотомером.

Контур включен между базой и эмиттером (общим минусом) транзистора VT1. Необходимая для возбуждения генератора ПОС берется с емкостного трансформатора между базой и эмиттером транзистора, состоящего из конденсаторов С9 и СЮ. ВЧ выделяется на эмиттере VT1 и поступает на усилительно-буферный каскад на транзисторах VT2 и VT3.

Нагрузка — на ВЧ-трансформатор Т1. С его вторичной обмотки сигнал ГПД поступает на преобразователь частоты. Тракт промежуточной частоты выполнен на транзисторах VT5-VT7. Выходное сопротивление преобразователя низко, поэтому первый каскад УПЧ сделан на транзисторе VT5 по схеме с общей базой. С его коллектора усиленное напряжение ПЧ поступает на кварцевый фильтр, трехзвенный, на частоту 4,915 МГц. При отсутствии резонаторов на данную частоту можно использовать другие, например, на 4,43 МГЦ (от видеотехники), но это потребует изменения настроек ГПД и самого кварцевого фильтра. Кварцевый фильтр здесь необычный, он отличается тем, что его полосу пропускания можно регулировать.

Схема приемника. Регулировка осуществляется посредством изменения емкостей, включенных меэду звеньями фильтра и общим минусом. Для этого используются варикапы VD8 и VD9. Их емкости регулируются с помощью переменного резистора R19, изменяющего обратное постоянное напряжение на них. Выход фильтра — на ВЧ-трансформатор Т7, а с него на второй каскад УПЧ тоже с общей базой. Демодулятор выполнен на T9 и диодах VD10 и VD11. Сигнал опорной частоты на него поступает с генератора на VT8. В нем должен быть кварцевый резонатор такой же как в кварцевом фильтре. Низкочастотный усилитель выполнен на транзисторах VT9-VT11. Схема двухкаскадная с двухтактным выходным каскадом. Резистором R33 регулируется громкость.

Нагрузкой может быть как динамик, так и головные телефоны. Катушки и трансформаторы намотаны на ферритовых кольцах. Для Т1-Т7 используются кольца внешним диаметром 10мм (можно импортные типа Т37). Т1 — 1-2=16 вит., 3-4=8 вит., Т2 — 1-2=3 вит., 3-4=30 вит., ТЗ — 1-2=30 вит., 3-4=7 вит., Т7 -1-2=15 вит., 3-4=3 вит. Т4, Тб, T9 — втрое сложенным проводом 10 витков, концы распаять согласно номерам на схеме. Т5, Т8 — вдвое сложенным проводом 10 витков, концы распаять согласно номерам на схеме. L1, L2 — на кольцах диаметром 13 мм (можно импортные типа Т50), — 44 витка. Для всех можно использовать провод ПЭВ 0,15-0,25 L3 и L4 — готовые дроссели 39 и 4,7 мкГн, соответственно. Транзисторы КТ3102Е можно заменить другими КТ3102 или КТ315. Транзистор КТ3107 — на КТ361, но нужно чтобы VT10 и VT11 были с одинаковыми буквенными индексами. Диоды 1N4148 можно заменить на КД503. Монтаж выполнен объемным способом на куске фольгированного стеклотекстолита размерами 220×90 мм.

В этой статье приводится описание трех простейших приемников с фиксированной настройкой на одну из местных станций СВ или ДВ диапазона, это предельно упрощенные приемники с питанием от батареи «Крона», расположенные в корпусах абонентских громкоговорителей, содержащих динамик и трансформатор.

Принципиальная схема приемника показана на рисунке 1А. Его входной контур образует катушка L1, конденсатор cl и подключенная к ним антенна. Настройка контура на станцию осуществляется изменением емкости С1 или индуктивности Ll. Напряжение ВЧ сигнала с части витков катушки поступает на диод VD1, работающий в качестве детектора. С переменного резистора 81, являющегося нагрузкой детектора и регулятором громкости, напряжение низкой частоты поступает на базу VT1 для усиления. Отрицательное напряжение смещения на базе этого транзистора создается постоянной составляющей продетектированного сигнала. Транзистор VT2 второго каскада усилителя НЧ имеет непосредственную связь с первым каскадом.

Усиленный им колебания низкой частоты через выходной трансформатор Т1 поступают к громкоговорителю В1 и преобразуются им в аккустические колебания. Схема приемника второго варианта показана на рисунке. Приемник, собранный по этой схеме, отличается от первого варианта только тем, что в его усилителе НЧ используются транзисторы разных типов проводимости. На рисунке 1В приведена схема третьего варианта приемника. Отличительная его особенность — положительная обратная связь, осуществляемая с помощью катушки L2, что значительно повышает чувствительность и избирательность приемника.

Для питания любого приемника используется батарея с напряжением-9В, например «Крона» или составленная из двух батарей 3336JI или отдельных элементов, важно что бы хватило места в корпусе абонентского громкоговорителя, в котором собирается приемнмк. Пока на входе нет сигнала обе транзистора почти закрыты и токпо-требляемый приемником в режиме покоя не превышает 0,2 Ма. Максимальный ток при наибольшей громкости составляет 8-12 Ма. антенной служит любой провод длиной около пяти метров, а заземлением штырь, вбитый в землю. Выбирая схему приемника нужно учитывать местные условия.

На расстоянии около 100 км до радиостанции при использовании выше указанной антенны и заземления возможен громкоговорящий прием приемниками по двум первым вариантам, до 200 км — схема третьего варианта. При расстоянии до станции не более 30 км можно обойтись антенной в виде провода длиной 2 метра и без заземления. Приемники смонтированы объемным монтажом в корпусах абонентских громкоговорителей. Переделка громкоговорителя сводится к установке нового резистора регулировки громкости, совмещенного с выключателем питания и установке гнезд для антенны и заземления, при этом разделительный трансформатор используется в качестве Т1.

Схема приемника. Катушку входного контура наматывают на отрезке феритового стержня диаметром 6 мм и длиной 80 мм. Катушку наматывают на картонном каркасе, так что бы он мог с некоторым трением перемещаться вдоль стержня Для приема радиостанций ДВ диапазона катушка должна содержать 350, с отводом от середины, витков провода ПЭВ-2-0,12. Для работы в СВ диапазоне должно быть 120 витков с отводом от середины того же провода, катушку обратной связи для приемника третьего варианта наматывают на контурную катушку, она содержит 8-15 витков. Транзисторы нужно подобрать с коэффициентом усиления Вст не менее 50.

Транзисторы могут быть любые германиевые низкочастотные соответствующей структуры. Транзистор первого каскада должен иметь минимально возможный обратный ток коллектора. Роль детектора может выполнять любой диод серий Д18, Д20, ГД507 и другие высокочастотные. Переменный резистор регулятора громкости может быть любого типа, с выключателем, с сопротивлением от 50-ти до 200 килоом. Возможно и использование штатного резистора абонентского громкоговорителя,обычно там используются резисторы с сопротивлением от 68-и до 100 ком. В этом случае придется предусмотреть отдельный выключатель питания. В качестве контурного конденсатора использован подстроечный керамический конденсатор КПК-2.

Схема приемника. Возможно использование переменного конденсатора с твердый или воздушным диэлектриком. В этом случае можно ввести в приемник ручку настройки, и если конденсатор имеет достаточно большое перекрытие (в двухсекционном можно соединить параллельно две секции, максимальная емкость при этом удвоится) можно с одной средневолновой катушкой принимать станции в ДВ и СВ диапазоне. Перед настройкой нужно измерить ток потребления от источника питания при отключенной антенне, и если он более одного миллиампера заменить первый транзистор на транзистор с меньшим обратным током коллектора. Затем нужно подключить антенну и вращением ротора контурного конденсатора и перемещая катушку по стержню настроить приемник на одну из мощных станций.

Конвертор для приема сигналов в диапазоне 50 МГЦ Тракт ПЧ-НЧ трансивера предназначен для применения в схеме последнего, супергетеродинного, с однократным преобразованием частоты. Промежуточная частота выбрана равной 4,43 Мгц (используются кварцы от видеотехники)

Магнитные ферритовые антенны хороши своими небольшими размерами и хорошо выраженной направленностью. Стержень антенны должен располагаться горизонтально и перпендикулярно направлению на радиостанцию. Другими словами, антенна не принимает сигналов со стороны торцов стержня. Кроме того, они малочувствительны к электрическим помехам, что особенно ценно в условиях больших городов, где уровень таких помех велик.

Основными элементами магнитной антенны, обозначаемой на схемах буквами МА или WA, являются катушка индуктивности, намотанная на каркасе из изоляционного материала, и сердечник из высокочастотного ферромагнитного материала (феррита) с большой магнитной проницаемостью.

Схема приемника. Нестандартный детекторный

Схема его отличается от классической прежде всего, детектором построенным на двух диодах, и конденсаторе связи, позволяющим подобрать оптимальную нагрузку контура детектором, и тем самым, получить максимальную чувствительность. При дальнейшем уменьшении емкости С3 резонансная кривая контура становится еще острее, т. е. селективность растет, но чувствительность несколько уменьшается. Сам колебательный контур состоит из катушки и конденсатора переменной емкости. Индуктивность катушки тоже можно изменять в широких пределах, вдвигая и выдвигая ферритовый стержень.

Ниже представлена конструкция радиопередающего устройства с дальностью действия до 100метров.
Такой радиожучок построен по схеме емкостной трехточки (как и все другие известные схемы), компоненты были тщательно подобраны. Частота не плавает, как это бывает во многих схемах радиожучков. Если стоять с приемником на расстоянии в 1, 10 и 50 метров от жука, то уход частоты будет всего в 100-120кГц — что согласитесь очень мало, и не может отразится на качество прослушки.

Жук можно использовать в целях направленной прослушки помещений и даже объектов, находящихся в движении! Это стало возможным, благодаря подбору компонентов передатчика, что делает модулируемый сигнал достаточно стабильным, а схема одновременно остается простой и доступной даже для начинающего радиолюбителя.
В передатчике возможно применение ВЧ и СВЧ транзисторов малой мощности. Желательно использовать транзисторы с граничной частотой 700-1000мГц. Отлично подойдет отечественный КТ368 (который является полным аналогом указанного в схеме транзистора).
Для увеличения чувствительности радиомикрофона использовался дополнительный микрофонный усилитель, схема которого построена всего на одном транзисторе.
Транзистор буквально любой маломощный — КТ3102, КТ315, КТ368, С9014, С9018 и другие аналогичные. Такой усилитель дает возможность улавливать даже тихий шепот в комнате 4х4метров. Чувствительность жучка порядка 5 метров.
Антенна — многожильный провод в резиновой изоляции с длиной 10-25см.

Катушка состоит из 5 витков, намотана на оправе с диаметром 3-4мм. В качестве оправы можно использовать пасту от гелиевой ручки. Для контура можно использовать провод с диаметром 0,5-1,2 ,мм(в моем случае 0,8мм).
Микрофон можно брать практически любой элвктретный, чувствительность не сильно важна, поскольку жучок имеет дополнительный микрофонный усилитель.
Весь монтаж делался на макетной плате, поскольку не захотелось травить плату для жука, работоспособность которого еще не ясна. Резисторы запаяны с обратной стороны платы.

Для настройки на нужную частоту был использован переменной конденсатор, который после полной настройки был заменен на постоянный (емкость 18 пикофарад). Вращением этого конденсатора можно настроить жучок на нужную вам частоту.
Жук работает в частотах 96-99мГц, ловиться на обычный ФМ приемник. С качественным приемником жучка можно ловить на расстоянии до 150 метров.

Миниатюрные FM — приемники | HamLab


Д.Лаевский,
г.Мядель

Очень часто в продаже можно встретить миниатюрные FM-приемники китайского производства размерами немногим больше спичечного коробка. Такие приемники помимо малых габаритов отличает электронная автоматическая настройка на радиостанции с помощью двух кнопок: RESET и SCAN. Несмотря на обилие внешнего оформления и торговых названий, все эти приемники собраны на аналогах известной микросхемы TDA7088 [1, 2] фирмы Philips, которая обеспечивает автоматическую настройку, обнаружение станции и остановку сканирования. В статье рассмотрены две типовые схемы таких радиоприемников и варианты их модернизации: введение диапазона УКВ 64…74 МГц и стереодекодера. Обозначение радиоэлементов приведены в соответствии с маркировкой на печатных платах. Необходимо обратить внимание, что номиналы некоторых конденсаторов отличаются от стандартного отечественного ряда.

Электрическая принципиальная схема радиоприемника «PALITO РА-993» приведена на (рис.1).

Главный тракт приема собран на микросхеме IC1 SC1088 (аналог TDA7088), выполненной в шестнадцативыводном миниатюрном корпусе для поверхностного монтажа. Усилитель звуковой частоты собран на микросхеме IC2 TDA2822 по мостовой схеме. На корпусе приемника расположены две кнопки настройки, светодиод индикатора включения питания, малогабаритная динамическая головка, регулятор громкости, совмещенный с выключением питания и разъем для наушников. При прослушивании программ на встроенную динамическую головку ВА1 в качестве антенны применяется отрезок провода со специальным штекером, включенный в разъем для наушников ХС1. Сигнал, принятый антенной, поступает на входной широкополосной контур L1, С1 …СЗ и далее на вход УРЧ — вывод 11 микросхемы IC1. Усиленный сигнал радиочастоты и сигнал гетеродина, контуром которого является L2, С13, VD1, подключенные к выводу 5, поступают на смеситель внутри микросхемы. Сигнал ПЧ 70 кГц выделяется полосовым фильтром, пассивными элементами коррекции которого являются конденсаторы С11, С12, и поступает на вход усилителя-ограничителя — вывод 9. Конденсаторы С4, С6 являются элементами коррекции усилителя-ограничителя, с вы- хода которого сигнал поступает на ЧМ-демодулятор. Демодулированный сигнал, пройдя через фильтр НЧ-коррек-ции, внешним элементом которого является конденсатор С14, поступает на схему блокировки звука при настройке, режимом работы которой можно управлять изменением емкости конденсатора С8. В состав микросхемы входит триггер автоматической настройки на станцию. При нажатии на кнопку SB2 RESET на выводе 16 устанавливается напряжение питания, которое начинает плавно уменьшаться, соответственно изменяется напряжение на варикапе VD1 и происходит перестройка частоты вверх по диапазону. При попадании в полосу захвата частоты сигнала радиостанции перестройка прекращается. Для дальнейшей перестройки по диапазону необходимо нажать кнопку SB1 SCAN. Сигнал звуковой частоты с вывода 2 проходит через регулятор громкости «VOL» и поступает на вход усилителя звуковой частоты IC2. Конденсаторы С9, С15 ограничивают спектр де-модулированного сигнала для снижения уровня шума. Дроссели L3, L4 служат для развязывания высокочастотного и низкочастотного сигналов при прослушивании приемника на наушники.

Определенный интерес представляет радиоприемник «PALITO РА-218» (рис.2), который при таких же размерах как у предыдущей модели, содержит цифровой индикатор настройки на ЖКИ и электронные часы с будильником.

Радиоприемная часть собрана на микросхеме IC2 РА22429 (также аналог TDA7088), схема которой практически полностью идентична описанной выше. Усилитель звуковой частоты собран на транзисторах VT6, VT7. Прослушивание радиостанций возможно только на наушники, провод которых используется в качестве антенны. Дроссели L3, L4 выполняют такую же роль, как и в предыдущей схеме. Микросхема IC1 SC3610D содержит в себе все необходимые узлы для построения цифровой шкалы и электронных часов. Сигнал гетеродина с варикапа VD1 поступает на вход высокочастотного усилителя на транзисторах VT1, VT2 и далее на вывод 35 — вход цифрового индикатора частоты настройки. При низком уровне на выводе 26 микросхема работает в режиме часов, при высоком уровне — в режиме цифровой шкалы. Для управления часами используют пять кнопок:
SB1 — включение звонка;
SB2 — настройка времени звонка;
SB3 — настройка текущего времени;
SB4 — подстройка минут;
SB5 — подстройка часов.

Для настройки необходимо нажать на кнопку SB2 или SB3 и удерживая ее, кнопками SB4 или SB5 установить необходимое время. С вывода 28 сигнал будильника поступает на транзистор VT8, нагрузкой которого является дроссель L5 и пьезокерамический звукоизлучатель НА1. На транзисторах VT1…VT5 собрана схема защиты микросхемы IC1 от неправильной полярности источника питания.

Схема введения диапазона УКВ 64…74 МГц изображена на рис.3.

Для этого достаточно параллельно катушке гетеродина L2 подключить конденсатор Cдоп ориентировочной емкостью 33 пФ. В качестве SA1 можно применить малогабаритный переключатель ПД9-5 или ПД9-2. На боковой стенке в любом месте надфилем выпиливается отверстие необходимого размера и вклеивается SA1. Далее двумя короткими отрезками провода переключатель и конденсатор Cдоп соединяются в соответствии со схемой, при этом Cдоп размещается на плате со стороны печатного монтажа. Емкость конденсатора зависит от примененного переключателя, длины соединенных проводов, емкости монтажа и подбирается при настройке. Настраивают переделанный приемник, раздвигая и сдвигая витки катушки L2, контролируя границы обоих диапазонов по принимаемым радиостанциям или по цифровому индикатору.

Принципиальная схема стереодекодера приведена на рис.4.

Он выполнен на микросхеме TDA7040T [3] — стереодекодере с пилот-тоном. Микросхема изготавливается в миниатюрном корпусе для поверхностного монтажа.

Напряжение входного КСС, мВ 100
Коэффициент гармоник, %      0,2
Отношение сигнал/шум, дБ      65
Напряжение питания, В      1,8…7
Ток потребления, мА            5…7

В качестве стереоусилителя звуковой частоты применена микросхема КР174УН23, желательно использовать ее малогабаритный аналог в корпусе для поверхностного монтажа КФ174УН2301 [5]. Существенным преимуществом этой микросхемы перед TDA7050T [4] являются повышенная выходная мощность, что позволяет подключать динамическую головку, и возможность регулирования громкости по двум каналам одним переменным резистором с линейной характеристикой.

Максимальная выходная мощность, мВт, на канал   240
Коэффициент нелинейных искажений, %                0,2
Максимальная амплитуда входного сигнала, В         0,5
Напряжение питания, В                                       1…5
Ток потребления, мА                                          4…7

Комплексный стереосигнал с вывода 2 микросхемы приемника через корректирующую цепь R1, С1, определяющую тембр звучания и качество разделения каналов, поступает на вход стереодекодера — вывод 8 микросхемы DA1. Резистором R5 устанавливают режим работы опорного генератора. Замыканием переключателя SA1 стереодекодер отключается. При отсутствии КСС напряжение с вывода 7 поддерживает транзистор VT1 в открытом состоянии, который шунтирует светодиод VD1. При появлении КСС напряжение уменьшается, транзистор VT1 закрывается, светодиод VD1 начинает светиться, сигнализируя о режиме «Стерео». Декодированные сигналы с левого и правого каналов с выводов 5 и 6 микросхемы DA1 через фильтр на конденсаторах С5…С8 поступают на соответствующие входы УЗЧ — выводы 1 и 4 микросхемы DA2. Громкость звучания регулируется резистором R7, в качестве которого используется переменный резистор «VOL» радиоприемника. Усиленные сигналы левого и правого каналов с выводов 5 и 8 микросхемы DA2 через дроссели L1…L3 поступают на разъем наушников XS1 и динамическую головку ВА1 (в приемнике по схеме на рис.2 ВА1 отсутствует). Выход антенны необходимо подключить к точке соединения конденсаторов С1, С2 приемника.

Подстроечный резистор R5- СПЗ-19а; переключатель SA1 — ПД9-5; дроссели L1…L3 — малогабаритные, индуктивностью 20…100 мкГн; остальные детали любых типов, как можно меньших размеров.

Для установки стереодекодера в приемнике, изображенном на рис.1, необходимо выпаять микросхему IC2, резисторы R1, R3…R5; конденсаторы С9, С15…С19. В приемнике, изображенном на рис.2, необходимо выпаять транзисторы VT6, VT7; резисторы R2…R4; конденсаторы С12, С16,С17.

Стереодекодер размещается на печатной плате, размеры которой выбираются исходя из наличия свободного места внутри приемника. Микросхемы DA1, DA2 устанавливаются со стороны дорожек. Плату стереодекодера в соответствии с принципиальной схемой соединяют в нужных точках с платой приемника, использовав отверстия от удаленных деталей. Для переключателя SA1 «Моно-Стерео» необходимо на боковой стенке вырезать прямоугольное отверстие,.В.качестве индикатора «Стерео» в приемнике «РА-993» используется индикатор включения питания «LED», а в приемнике «РА-218» на передней панели сверлится отверстие, куда вставляется, светоди-од красного цвета диаметром 3 мм.

Настройка схемы заключается в установке резистором R5 наилучшего разделения каналов при приеме радиостанции. Режим «Стерео» будет обеспечиваться только для станций работающих в диапазоне 88… 108 МГц.

В заключение хотелось бы отметить очень низкое качество звучания комплексных наушников-вкладышей китайского производства, у которых нередко рвется тонкий соединительный провод, и они вообще перестают работать. Единственный выход из этой ситуации состоит в приобретении хороших фирменных наушников, хотя их стоимость может в несколько раз превышать стоимость подобных приемников.

Литература:

  1. Микросхема TDA7088. — Радио¬хобби, 2000, ?6.
  2. Поляков В. Однокристальные ЧМ приемники. — Радио, 1997, ?2, С.20.
  3. Микросхемы для аудио и радио¬аппаратуры. Справочник. — М.:ДОДЭ-КА, 1997.
  4. Буевский А. Стерео FM-приемник «Стиль». — Радиолюбитель, 2000, ?5, С.9.
  5. Аленин С. Низковольтный УМЗЧ КР174УН23. — Радио, 1997, ?2, С.53.

РЛ 8/01 ст.35
www.radioliga.com

Простые приемники укв fm схемы. Простой и дешевый радио передатчик своими руками. Частотные диапазоны FM

Недавно собрал известную схему FM радиоприемника на специализированной микросхеме к174ха34 с простым усилителем на микросхеме TDA2003, но в качестве УНЧ можно применить и отечественный аналог — к174ун14.

Вся конструкция самодельного приёмника помещается на печатной плате, кроме переменных резисторов, антенны, динамика и источника питания. В качестве корпуса был применена коробка из под головы автомобильного магнитофона фирмы «JRC», так как она чуть больше ее аналогов в длину — примерно на сантиметр и чуть глубже, что нам и нужно. Рисунок печатной платы в формате LAY качаем тут.

FM приемник принимает весь диапазон от 88 до 108Мгц. Мне удалось настроить его на семь радиостанций, которые переключаются при плавном вращении переменного резистора «НАСТРОЙКА», но из семи радио станций лишь пять имеют хорошее качество, что тем не менее очень неплохо для такой простой схемы, особенно если учесть, что станция находится на расстоянии более 80 километров.

Приемник очень громкий, а особенно качественный звук получается при подключении больших внешних колонок. Если вас не устраиваетя схема усилителя, то микросхему УНЧ можно заменить на любую другую или вообще убрать, если будете слушать радио через наушники. Антенной служит отрезок метрового провода, но лучше к схеме добавить маленький антенный усилитель, называется УВЧ (усилитель высокой частоты).

Сопротивление резистора «ГРОМКОСТЬ» необязательно должно быть 33ком, можно любое в пределах 10-47ком. Катушки: катушка L1 — бескаркасная, 8 витков, наматывается на оправе 3мм проводом ПЭЛ 0,55мм. Ей и настраивается FM приемник. L2 — входной контур, наматывается тем же проводом, на тот же диаметр, только имеет 13 витков.

При настойке приемника необходимо растягивать или сжимать катушку L1 до тех пор, пока не поймаете весь фм диапазон. Но не спешите растягивать ее. Вначале попробуйте поймать стации полностью сжатой катушкой, как в моем случае. Например мне не пришлось настраивать её совсем.

Питанием FM радиоприёмника может служить обыкновенный китайский блок питания стационарного телефона либо другой аналогичный, с током от 0,05А (в варианте без УНЧ) или 1А (с микросхемой TDA2003). Транзистор кт315 можно заменить любым аналогичным. При сборке схемы без ошибок, приемник начинает работать сразу.


Сегодня разберем ТОП-3 рабочие схемы ламповых приемников КВ, УКВ, ФМ диапазонов. Первым делом рассмотрим, как собрать простейший ламповый КВ приемник. Второй проект представляет собой УКВ ЧМ-приемник в ретро-стиле. По третьей схеме соберем низковольтный ламповый сверхрегенеративный ФМ-приемник без выходного трансформатора.

Ламповый КВ приемник своими руками

Первой рассмотрим интересную схему приёмника диапазона КВ. Этот радиоприемник очень чувствительный и достаточно селективный для приёма коротковолновых частот по всему миру. Одна половина лампы 6AN8 служит как усилитель РЧ, а другая — как регенеративный приемник. Приемник предназначен для работы с наушниками или как тюнер с последующим отдельным усилителем НЧ.

Схема лампового КВ приёмника

Для корпуса берите толстый алюминий. Шкалы напечатаны на листе толстой глянцевой бумаги, а затем приклеены к передней панели. Моточные данные катушек указаны на схеме, там же и диаметр каркаса. Толщина провода — 0,3–0,5 мм. Намотка виток к витку.


Для блока питания радио нужно найти стандартный трансформатор от любой маломощной ламповой радиолы, обеспечивающий примерно 180 вольт анодного напряжения при токе 50 мА и 6,3 В накала. Не обязательно делать выпрямитель со средней точкой — хватит обычного мостового. Разброс напряжений допустим в пределах +-15%.

Настройка и устранение неисправностей

Настройтесь на желаемую станцию с помощью переменного конденсатора С5 примерно. Теперь конденсатором C6 — для точной настройки на станцию. Если ваш ресивер не будет нормально принимать, то либо менять значения резисторов R5 и R7, формирующих через потенциометр R6 дополнительное напряжение на 7-м выводе лампы, или просто поменять местами подключение контактов 3 и 4 на катушке обратной связи L2. Минимальная длина антенны будет около 3-х метров. С обычной телескопической принимать будет слабовато.

Низковольтный ламповый сверхрегенеративный FM-приемник без выходного трансформатора — схема и монтаж


Рассмотрим ламповую конструкцию с низким анодным напряжением, очень простой схемой, распространенными элементами и отсутствуем потребности в выходном трансформаторе. Причём это не очередной усилитель для наушников или какой-нибудь овердрайв для гитары, а намного более интересное устройство.

Сверхрегенераторы — это очень интересная разновидность радиоприемников, которая отличается простотой схем и неплохими характеристиками, сравнимыми с простыми супергетеродинами. Сабжи были крайне популярны в середине прошлого века (особенно в портативной электронике) и предназначены они в первую очередь для приема станций с амплитудной модуляцией в УКВ диапазоне, но также могут принимать станции с частотной модуляцией (т.е. для приема тех самых обычных FM-станций).

Основным элементом данного типа приемников является сверхрегенеративный детектор, который является одновременно как частотным детектором, так и усилителем радиочастоты. Такой эффект достигается за счет применения регулируемой положительной обратной связи. Подробно описывать теорию процесса нет смысла, так как «все написано до нас» и без проблем осваивается по этой ссылке.

За основу была взята эта схема:


После ряда экспериментов была сформирована следующая схема на лампе 6н23п:


Данная конструкция работает сразу (при правильном монтаже и живой лампе), причем выдает неплохие результаты даже на обычные наушники-вкладыши.

Теперь подробнее пройдемся по элементам схемы и начнем с лампы 6н23п (двойной триод):


Чтобы понять правильное расположение ног лампы (информация для тех, кто раньше с лампами дел не имел), нужно повернуть ее ножками к себе и ключом вниз (сектор без ножек), тогда представший перед вами прекрасный вид будет соответствовать картинке с распиновкой лампы (работает и для большинства других ламп). Как видно по рисунку, в лампе целых два триода, но нам нужен всего один. Вы можете использовать любой, никакой разницы нет.

Теперь пойдем по схеме слева на право. Катушки индуктивности L1 и L2 лучше всего мотать на общем круглом основании (оправке), идеально для этого подходит медицинский шприц диаметром 15мм, причем L1 желательно мотать поверх картонной трубки, которая с небольшим усилием движется по корпусу шприца, чем обеспечивает регулировки связи между катушками. В качестве антенны к крайнему выводу L1 можно припаять кусок провода или же припаять антенное гнездо и использовать что-то более серьезное.

L1 и L2 желательно мотать толстым проводом для повышения добротности, например, проводом 1мм и больше с шагом 2мм (особая точность тут не нужна, так что можете особо не заморачиваться с каждым витком). Для L1 нужно намотать 2 витка, а для L2 — 4–5 витков.

Далее идут конденсаторы C1 и C2, которые представляют собой двухсекционный конденсатор переменной емкости (КПЕ) с воздушным диэлектриком, он является идеальный решением для подобных схем, КПЕ с твердым диэлектриком использоваться нежелательно. Наверное, КПЕ является самым редким элементом данной схемы, но его довольно легко найти в любой старой радиоаппаратуре или на барахолках, хотя его можно заметить и двумя обычным конденсаторами (обязательно керамическими), но тогда придется обеспечивать подстройку с помощью импровизированного вариометра (прибора для плавного изменения индуктивности). Пример КПЕ:


Нам нужно всего две секции КПЕ, они обязательно должны быть симметричны, т.е. иметь одинаковую емкость в любом положении регулировки. Их общей точной будет служить контакт подвижной части КПЕ.

Затем следуется цепочка гашения, выполненная на резисторе R1 (2.2МОм) и конденсаторе C3 (10 пФ). Их значения можно менять в небольших пределах.

Катушка L3 выполняет роль анодного дросселя, т.е. не позволяется высокой частоте пройти дальше. Подойдет любой дроссель (только не на железном магнитопроводе) с индуктивностью 100–200 мкГн, но проще намотать на корпус сточенного мощного резистора 100–200 витков тонкого медного эмалированного провода.

Конденсатор C4 служит для отделения постоянной составляющей на выходе приемника. Наушники или усилитель можно подключать непосредственно к нему. Емкость его может варьироваться в довольно больших пределах. Желательно, чтобы C4 был пленочный или бумажный, но с керамическим тоже будет работать.

Резистор R3 представляет собой обычный потенциометр на 33 кОм, который служит для регулирования анодного напряжения, чем позволяет менять режим лампы. Это необходимо для более точной подстройки режима под конкретную радиостанцию. Можно заменить на постоянный резистор, но это нежелательно.

На этом элементы закончились. Как видите схема очень простая.

И теперь немного по поводу питания и монтажа приемника.

Анодное питание можно смело использовать от 10В до 30В (можно и больше, но там уже немного опасно подключать низкоомную аппаратуру). Ток там совсем небольшой и для питания подойдет БП любой мощности с необходимым напряжением, но желательно, чтоб он был стабилизирован и имел минимум шумов.

И еще обязательным условием является питание накала лампы (на картинке с распиновкой он обозначен как нагреватели), так как без него она работать не будет. Тут уже токи нужны поболее (300–400 мА), но напряжение всего 6.3В. Подойдет как переменное 50 Гц, так и постоянное напряжение, причем оно может быть от 5 и до 7В, но лучше использовать каноничное 6.3В. Лично я не пробовал использовать 5В на накале, но скорее всего все будет нормально работать. Накал подается на ножки 4 и 5.

Теперь про монтаж. Идеальным является расположение всех элементов схемы в металлическом корпусе с подключенной к нему в одной точке землей, но будет работать и вообще без корпуса. Так как схема работает в УКВ диапазоне, все соединения в высокочастотной части схемы должны быть максимального короткими для обеспечения большей стабильности и качества работы устройства. Вот пример первого прототипа:


При таком монтаже все работало. Но с металлическим корпусом-шасси немного стабильнее:


Для таких схем идеальным является навесной монтаж, так как он дает хорошие электрические характеристики и позволяет без особых затруднений вносить поправки в схемы, что с платой уже не так просто и аккуратно получается. Хотя и мой монтаж аккуратным назвать нельзя.

Теперь по поводу наладки.

После того как вы на 100 % убедились в правильности монтажа, подали напряжение и ничего не взорвалась и не загорелось — это значит, что скорее всего схема работает, если использованы правильные номиналы элементов. И вы скорее всего услышите в наушниках шумы. Если во всех положениях КПЕ вы не слышите станции, и вы точно уверены, что у вас принимаются вещательные станции на других устройствах, то попробуйте изменить количество витков катушки L2, этим вы перестроите частоту резонанса контура и возможно попадете на нужный диапазон. И пробуйте крутить ручку переменного резистора — это тоже может помочь. Если совсем ничего не помогает, то можно поэкспериментировать с антенной. На этом наладка завершается.

Видео о сборке лампового приемника:

Чисто ламповый вариант (на макетном уровне):

Вариант с добавлением УНЧ на ИМС (уже с шасси):

Диапазонов уже не актуальны, распространённая и всем известная микросхема для FM диапазона 174ХА34 тоже устарела, поэтому рассмотрим самостоятельное создание качественного УКВ приёмника с применением современной элементарной базы — специализированных недорогих микросхем TEA5711 и TDA7050. Микросхема TEA5711T в данном случае в планарном корпусе.


Преимущества микросхемы . Очень широкое напряжение питания — от 2 до 12В. В нашем случае берём 2 батарейки АА — 3 вольта в сумме. Ток потребления 20мА, а чувствительность в диапазоне FM — всего 2 мкВ. Здесь использованы трёхконтактные пьезокерамические фильтры, что очень эффективно устраняет городские помехи FM диапазону.


Высокочастотная часть FM приемника собрана на микросхеме фирмы Philips TEA5711. Для улучшения избирательности применены два последовательно включенных полосовых фильтра. Для увеличения выходного уровня НЧ сигнала применен усилитель на планарной двухканальной микросхеме TDA7050. Она позволяет снизить напряжение питания вплоть до 1,6 вольт — оптимально 3В. При этом выходная мощность около 0,2Вт. Намоточные данные катушек можно взять из

Что такое FM-приемник? Радиоприемник — это электронное устройство, которое принимает радиоволны и преобразует информацию, переносимую ими, в полезную для восприятия человеком. Приемник использует электронные фильтры, чтобы отделить нужный сигнал радиочастоты от всех других сигналов, улавливаемых антенной, электронный усилитель для увеличения мощности сигнала для дальнейшей обработки, и, наконец, восстанавливает нужной информации посредством демодуляции.

Из радиоволн, FM является наиболее популярным. Частотная модуляция широко используется для FM-радиовещания. Преимущество частотной модуляции заключается в том, что она имеет большее отношение сигнал/шум и, следовательно, излучает радиочастотные помехи лучше, чем сигнал амплитудной модуляции равной мощности (AM). Звук из радиоприёмника мы слышим чище и насыщенней.

Частотные диапазоны FM

УКВ (УльтраКороткоВолновый) диапазон с ЧМ (Частотная Модуляция) по английски FM (Frequency Modulation) имеет длину от 10 м до 0,1 мм — это соответствует частотам от 30 МГц до 3000 ГГц.

Для приема вещательных радиостанций актуален сравнительно небольшой участок:
УКВ 64 — 75 МГц. Это наш советский диапазон. На нем много УКВ станций, но только в нашей стране.

Японский диапазон от 76 до 90МГц. В этом диапазоне ведется вещание в стране восходящего солнца.

FM — 88 — 108МГц. — это западный вариант. Большинство ныне продаваемых приемников обязательно работает именно в этом диапазоне. Часто сейчас приёмники принимают и наш совковый диапазон, и западный.

УКВ радиопередатчик имеет широкий канал — 200 кГц. Максимальная звуковая частота, передаваемая в FM, составляет 15 кГц по сравнению с 4,5 кГц в AM. Это позволяет передавать намного более широкий диапазон частот. Таким образом качество передачи FM значительно выше, чем АМ.

Теперь о приёмнике. Ниже представлена схема электроники для приемника FM вместе с его описанием работы.

Список компонентов

  • Микросхема: LM386
  • Транзисторы: T1 BF494, T2 BF495
  • Катушка L содержит 4 витка, Ф=0,7мм на оправке 4 мм.
  • Конденсаторы: C1 220nF
  • C2 2,2 нф
  • C 100 нф х 2 шт
  • C4,5 10 мкф (25 V)
  • C7 47 нФ
  • C8 220 мкф (25 В)
  • C9 100 мкф (25 V) х 2 шт
  • Сопротивления:
  • R 10 кОм х 2 шт
  • R3 1 кОм
  • R4 10 Ом
  • Переменное сопротивление 22кОм
  • Переменная емкость 22пф
  • Динамик 8 Ом
  • Выключатель
  • Антенна
  • Батарея 6-9В

Описание схемы FM приемника

Ниже, представлена схема простого FM-приемника. Минимум компонентов для приема местной FM станции.

Транзисторы (Т1,2), вместе с резистором 10к (R1), катушкой L, переменным конденсатором (VC)22pF составляют ВЧ генератор (Colpitts oscillator).

Резонансная частота этого генератора устанавливается триммером VC на частоту передающей станции, которую мы хотим принять. То есть, он должен быть настроен между 88 и 108 МГц FM диапазона.

Информационный сигнал, снимаемый с коллектора Т2 поступает на усилитель НЧ на LM386 через разделительный конденсатор (С1) 220nF и регулятор громкости VR на 22 кОма.

FM приемник принципиальная электрическая схема

Принципиальная электрическая схема FM приемника

Перестройка на другую станцию осуществляется изменением ёмкости переменного конденсатора 22 пФ. Если Вы используете какой-либо другой конденсатор, который имеет большую ёмкость, то попробуйте уменьшить количество витков катушки L чтобы настроиться на диапазон FM (88-108 МГц).

Катушка L имеет четыре витка эмалированного медного провода, диаметром 0,7 мм. Катушка наматывается на оправке диаметром 4 мм. Её можно намотать на любом цилиндрическом предмете (карандаш или ручка с диаметром 4 мм).

Если Вы хотите принимать сигнал станций УКВ диапазона (64-75 МГц), то нужно намотать 6 витков катушки или увеличить ёмкость переменного конденсатора.

Приемник УКВ работает в диапазоне 64 — 108 МГц и имеет чувствительность не хуже 5 мкВ/м. Номинальное напряжение — 3 В. Весь высокочастотный тракт, включая ЧМ детектор, УВЧ и гетеродин, собран на одной специализированной DA1 типа К174ХА34. Эта микросхема представляет собой УВЧ, смеситель, гетеродин, УПЧ, усилитель-ограничитель, ЧМ детектор, системы шумопонижения и сжатия девиации частоты, которая позволяет использовать низкую промежуточную частоту — 60-80 кГц. Принципиальная приемника приведена на рисунке ниже:

Сигнал с антенны поступает на УВЧ через конденсатор С1. Частоту настройки гетеродина определяют элементы L1, С4, С5, VD1. Настройка на станции осуществляется резистором R1, изменяющим напряжение на варикапе VD1 типа KB109.

В качестве ФПЧ используются активные RC — фильтры на операционных усилителях, внешними элементами которых являются конденсаторы С6, С8, С9, С11, С12 и С13. Сигнал звуковой частоты через конденсатор С16 поступает на громкости — резистор R3. У3Ч приемника может быть любым, в том числе и на К174ХА10. Постоянные резисторы типа МЛТ-0,125. Катушка L1 бескаркасная с внутренним диаметром 3 мм. Она имеет 7 витков провода ПЭВ 0,31.

Настройка заключается в укладке диапазона подстройкой конденсатора С4.

В приемнике применены две специализированные микросхемы серии К174. К174ПС1 представляет собой смеситель и гетеродин, а К174ХА10 включает в себя тракт ПЧ, детектор, УЗЧ.

Приемник работает на фиксированной частоте в диапазоне 27 — 29 МГц. Чувствительность приемника при отношении сигнал/шум 12 дБ — около 1 мкВ/м. Селективность по соседнему каналу — 32 дБ и зависит от параметров используемого пьезокерамического фильтра. Селективность по зеркальному каналу — 26 дБ. Мощность звуковой частоты — 100 мВт на нагрузке сопротивлением 8 Ом. Приемник работает при питающем напряжении от 4 до 9 В. Принципиальная радиоприемника приведена на рисунке ниже:

Сигнал с антенны поступает на базу транзистора VT1, который выполняет роль симметрирующего устройства. Контур L1, СЗ определяет селективность приемника по зеркальному каналу. Усиленный сигнал поступает на вход преобразователя частоты, выполненный на К174ПС1, частота которого стабилизирована кварцем ZQ1. С нагрузки преобразователя, сигнал промежуточной частоты поступает на пьезокерамический фильтр ZQ2, который из набора частот выделяет промежуточную частоту 465 кГц. Сигнал ПЧ поступает на вход 2 микросхемы DA1. Выходной каскад УПЧ включен по нестандартной схеме, роль нагрузки УПЧ выполняет резистор R8. Это несколько ухудшает качество детектирования, но позволяет отказаться от использования контуров ПЧ и их настройки. С выхода детектора напряжение звуковой частоты поступает на громкости R10 и с него на вход мощности данной микросхемы. С выхода УЗЧ сигнал через конденсатор С13 поступает в нагрузку — громкоговоритель или головные телефоны.

Все сопротивления в схеме — типа МЛТ-0,125, резистор R10 — типа СП1. Катушка L1 намотана на ферритовом стержне диаметром 2,8 мм и длиной 14 мм и содержит 16 витков провода ПЭВ 0,23 мм.

Резистор R8 подбирают по минимуму искажений звукового при минимальном уровне шумов на выходе УЗЧ. Контур L1, СЗ настраивается на частоту высокочастотного сигнала.

Описание микросхемы К174ПС1 можно

Схема простого радиоприемника на интегральной микросхеме К174ХА10 представлена на рисунке ниже:

В составе многофункциональной микросхемы К174ХА10 имеется высокой частоты, и низкой частоты. прямого усиления, представленный на схеме, оснащен системой автоматической регулировки АРУ и регулятором громкости.

Печатная плата с размещением на ней элементов показана на рисунке ниже:

Радиоприемник УКВ (ФМ) диапазона, собранный на специализированной микросхеме КХА 058, представлен на рисунке ниже:

Принципиальные схемы миниатюрных радиоприемников fm диапазона. Детекторные и прямого усиления приёмники УКВ (FM) диапазона


Речь пойдет о том, как сделать самый простой и дешевый радио передатчик, который сможет собрать любой, кто даже ничего не понимает в электронике .

Прием такого радиопередатчика происходит, на обычный радио приемник (на стационарный или в мобильном телефоне), на частоте 90-100 MHz. В нашем случае он будет работать, как радио удлинитель для наушников от телевизора. Радио передатчик через аудио штекер подключается к телевизору через разъем для наушников.

Его можно использовать в разных целях, например:
1) беспроводной удлинитель для наушников
2) Радио няня
3) Жучок для подслушивания и так далее.

Для его изготовления нам потребуются:
1) Паяльник
2) Провода
3) Аудио штекер 3.5 мм
4) Батарейки
5) Медный лакированный провод
6) Клей (Момент или эпоксидный) но он может и не понадобится
7) Старые платы от радио или телевизора(если есть)
8) Кусок простого текстолита или толстого картона

Вот его схема, питается она от 3-9 вольт


Перечень радио деталей для схемы на фото, они очень распространенные и найти их не составит особого труда. Деталь AMS1117 не нужна (просто не обращайте на нее внимание)


Катушку следует мотать по таким параметрам (7-8 витков проводом диаметром 0.6-1 мм, на оправке 5мм, я мотал на сверле 5мм)

Концы катушки обязательно зачистить от лака.


В качестве корпуса для передатчика был взят корпус из под батареек


Внутри было все убрано. Для удобства монтажа


Далее берем текстолит, обрезаем его и сверлим много отверстий (отверстий лучше просверлить побольше, так будет легче собирать)


Теперь спаиваем все компоненты согласно схеме


Берем аудио штекер


И припаиваем к нему провода, которые на схеме показаны как (вход)


Далее располагаем плату в корпусе (надежнее всего будет приклеить ее) и подключаем батарейку


Теперь подключаем наш передатчик к телевизору. На FM приемнике находим свободную частоту (ту на которой нет никакой радио станции) и настраиваем наш передатчик на эту волну. Делается это подстроенным конденсатором. Потихоньку крутим его пока не услышим на FM приемнике звук с телевизора.


Все наш передатчик готов к работе. Что бы было удобно настраивать передатчик, я сделал в корпусе отверстие

Данный двухдиапазонный УКВ радиоприемник рассчитан на прием радиостанций в диапазоне 64…74 мГц и 88…108 мГц.

Достоинства данной схемы.

  • Простота в изготовлении за счет использования малого количества деталей, а следовательно малые размеры;
  • Питание приемника от 3 до 6 В, при токе потребления 20 мА;
  • Микросхема на которой построен приемник имеет в себе усилитель высокой частоты, гетеродин, смеситель, усилитель промежуточной частоты, частотный демодулятор, предварительный усилитель низкой частоты;
  • Чувствительность приемника не хуже 1 мкВ;

Изготовление приемника

Транзисторы VT2, VT3, VT4 выполняют роль параметрического стабилизатора, через него подается напряжение на варикап VD1. Переключение между диапазонами осуществляется с помощью переключателя SA1.

Все катушки наматываются проводом ПЭЛ диаметром от 0,25 до 0,51 мм на оправке диаметром 3 мм и содержат L1-четыре витка, L2- семь витков, L3- пять витков.

Регулировочный резистор следует использовать многооборотистый СП3-36, для более простой плавной регулировки диапазона. Конденсаторы следует использовать типа К10 или аналогичные, полярные К50-16б резисторы типа МЛТ. Варикап КВ122А можно заменить на КВ106А. Транзисторы VT2…VT4 с любым буквенным индексом. Микросхему К174ХА34 можно заменить на TDA7021. переключатель типа ПД-9-2 или ПД-9-1. Детали монтируются на одностороннем стеклотекстолите размерами 60х40.

Настройка двухдиапазонного УКВ радиоприемника

Настройка по диапазону осуществляется путем сжатия или разжатия катушек L2(регулирует диапазон 64…74 мГц), L3 (регулируется диапазон 88…108 мГц). Необходимо добиться перекрытия диапазоны. После этого необходимо зафиксировать их термоклеем, воском, парафином или любым другим диэлектрическим материалом. Более точная настройка диапазона осуществляется с помощью подбора резисторов R3 и R7. Начинать регулировку лучше всего с диапазона 88…108 мГц.

Усилитель Звуковой частоты для радиоприемника

Схема двухдиапазонного УКВ радиоприемника нуждается в оконечном усилителе, ниже представлена схема простого усилителя НЧ на микросхеме К174УН31.

Характеристики оконечного усилителя для двухдиапазонного УКВ приемника
Диапазон воспроизводимых частот 20…30000 Гц
Напряжение питания 1,8…6,6 В
Ток потребления 7 мА
Сопротивление нагрузки не менее 8 Ом
Выходная мощность 1,2 Вт

Данное устройство собирается на одностороннем стеклотекстолите размерами 35х35 мм. При безошибочной сборке усилитель сразу начинает работать, необходимо только при помощи резистора R3 установить нужный нам коэффициент усиления. Сделать это можно на слух, нужно добиться отсутствия искажений при максимальном уровне звука.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Список используемой литературы: Шелестов И.П. «Радиолюбителям полезные схемы»

Простейшие радиоприемники непригодны ловить FM диапазон, модуляция частотная. Обыватели утверждают: отсюда повелось название. С английского литеры FM трактуем: частотная модуляция. Четко выраженный смысл, читателям важно понять: простейший радиоприемник, своими руками собранный из хлама, FM не примет. Возникает вопрос необходимости: сотовый телефон ловит вещание. В электронную аппаратуру встроена подобная возможность. Вдали от цивилизации люди по-прежнему хотят ловить вещание старым добрым способом — чуть было не сказали зубными коронками — конструировать дельные приборы прослушивания любимых передач. На халяву…

Детекторный простейший радиоприемник: основы

Зубных пломб рассказ коснулся неспроста. Сталь (металл) способна преобразовывать эфирные волны в ток, копируя простейший радиоприемник, челюсть начинает вибрировать, кости уха детектируют сигнал, зашифрованный на несущей. При амплитудной модуляции высокая частота повторяет размахом голос диктора, музыку, звук. Полезный сигнал содержит некоторый спектр, сложно пониманию непрофессионала, важно, что при сложении составляющих получается некоторый закон времени, следуя которому, динамик простейшего радиоприемника воспроизводит вещание. На провалах челюстная кость замирает, воцаряется тишина, пики ухо слышит. Простейший радиоприемник, не дай Бог, конечно, заиметь.

Обратный пьезоэлектрический эффект изменяет согласно закону электромагнитной волны геометрические размеры костей. Перспективное направление: человек-радиоприемник.

Советский Союз славился запуском космической ракеты, впереди планеты всей, научными изысканиями. Времена Союза поощряли степени. Светила принесли немало пользы здесь, – конструирование радиоприемников, – зарабатывают приличные деньги за бугром. Фильмы пропагандировали умных, не зажиточных, неудивительно, что журналы полны различными наработками. Серия современных уроков создания простейших радиоприемников, доступная на Ютубе, основывается на журналах 1970 года издания. Поостережемся отходить от традиций, опишем собственное видение ситуации сферы радиолюбительства.

Концепция персональной электронно-вычислительной машины разработана советскими инженерами. Руководством партии идея признана неперспективной. Силы отданы построению гигантских вычислительных центров. Излишне трудящемуся осваивать дома персональный компьютер. Смешно? Сегодня ситуации позабавнее встретите. Потом жалуются – Америка окутана славой, печатает доллары. AMD, Intel – слышали? Made in USA.

Простейший радиоприемник своими руками сделает каждый. Антенна не нужна, существуй хороший устойчивый сигнал вещания. Диод припаивается к выводам высокоомных наушников (компьютерные отбросьте), остается заземлить один конец. Справедливости ради скажем, фокус пройдет со старыми добрыми Д2 советского выпуска, отводы настолько массивные, что послужат антенной. Землю получим в простейшем радиоприемнике, прислонив одну ножку радиоэлемента к батарее отопления, зачищенной от краски. В противном случае декоративный слой, являясь диэлектриком конденсатора, образованного ножкой и металлом батареи, изменит характер работы. Пробуйте.

Авторы ролика заметили: сигнал вроде есть, представлен невообразимой мешаниной шорохов, осмысленных звуков. Простейший радиоприемник лишен избирательности. Любой может понять, осознать термин. Когда настраиваем приемник, ловим нужную волну. Помните, обсуждали спектр. Эфире содержит ватагу волн одновременно, поймаете нужную, сузив диапазон поиска. Существует в простейшем радиоприемнике избирательность. На практике реализуется колебательным контуром. Известен из уроков физики, сформирован двумя элементами:

  • Конденсатор (емкость).
  • Катушка индуктивности.

Повременим изучать подробности, элементы снабжены реактивным сопротивлением. Благодаря чему волны различной частоты имеют неодинаковое затухание, проходя мимо. Однако существует некий резонанс. У конденсатора реактивное сопротивление на диаграмме направлено в одну сторону, у индуктивности – в другую, причем выведена зависимость частотная. Оба импеданса вычитаются. На некоторой частоте составляющие уравниваются, реактивное сопротивление цепочки падает до нуля. Наступает резонанс. Проходят избранная частота, примыкающие гармоники.

Курс физики показывает процесс выбора ширину полосы пропускания резонансного контура. Определяется уровнем затухания (3 дБ ниже максимума). Приведем выкладки теории, руководствуясь которыми человек может собрать простейший радиоприемник своими руками. Параллельно первому диоду добавляется второй, включенный навстречу. Впаивается последовательно наушникам. Антенна отделяется от конструкции конденсатором емкостью 100 пФ. Здесь заметим: диоды наделены емкостью p-n-перехода, умы, видимо, просчитали условия приема, какой конденсатор входит в простейший радиоприемник, наделенный избирательностью.

Полагаем, несильно отклонимся от истины, сказав: диапазон затронет области КВ или СВ. Будет приниматься несколько каналов. Простейший радиоприемник является чисто пассивной конструкцией, лишенной источника энергии, больших свершений ждать не следует.

Пара слов, почему обсуждали удаленные закутки, где радиолюбители жаждут экспериментов. В природе замечены физиками явления рефракции, дифракции, оба позволяют радиоволнам отклоняться от прямого курса. Первое назовем огибанием препятствий, горизонт отодвигается, уступая вещанию, второе – преломлением атмосферой.

ДВ, СВ и КВ ловятся на значительном удалении, сигнал будет слабым. Следовательно, простейший радиоприемник, рассмотренный выше, является пробным камнем.

Простейший радиоприемник с усилением

В рассмотренной конструкции простейшего радиоприемника нельзя применять низкоомные наушники, сопротивление нагрузки напрямую определяет уровень передаваемой мощности. Давайте сначала улучшим характеристики, пользуясь помощью резонансного контура, затем дополним простейший радиоприемник батарейкой, создав усилитель низкой частоты:

  • Избирательный контур состоит из конденсатора, индуктивности. Журнал рекомендует в простейший радиоприемник включить переменный конденсатор диапазона подстройки 25 – 150 пФ, индуктивность необходимо изготовить, руководствуясь инструкцией. Ферромагнитный стержень диаметром 8 мм обматывается равномерно 120 витками, захватывающими 5 см сердечника. Подойдет медный провод, покрытый лаковой изоляцией, диаметром 0,25 – 0,3 мм. Приводили читателям адрес ресурса, где посчитаете индуктивность, вводя цифры. Аудитории доступно самостоятельно найти, пользуясь Яндексом, вычислить, количество мГн индуктивности. Формулы подсчета резонансной частоты также общеизвестны, следовательно, можно, оставаясь у экрана, представить канал настройки простейшего радиоприемника. Обучающее видео предлагает изготовить переменную катушку. Необходимо внутри каркаса с намотанными витками проволоки выдвигать, вдвигать сердечник. Положения феррита определяет индуктивность. Диапазон посчитайте, воспользовавшись помощью программы, умельцы Ютуба предлагают, наматывая катушку, каждые 50 витков делать выводы. Поскольку отводов порядка 8-ми, делаем вывод: суммарное число оборотов превышает 400. Индуктивность меняете скачкообразно, точную подстройку ведете сердечником. Добавим к этому: антенна для радиоприемника развязывается с остальной схемой конденсатором емкостью 51 пФ.
  • Второй момент, который нужно знать, это то, что в биполярном транзисторе также имеются p-n-переходы, и даже два. Вот коллекторный как раз и уместно использовать вместо диода. Что касается эмиттерного перехода, то заземляется. Затем на коллектор прямо через наушники подается питание постоянным током. Рабочая точка не выбирается, поэтому результат несколько неожиданный, понадобится терпение, пока устройство радиоприемника будет доведено до совершенства. Батарейка тоже в немалой степени влияет на выбор. Сопротивление наушников считаем коллекторным, которое задает крутизну наклона выходной характеристики транзистора. Но это тонкости, например, резонансный контур тоже придется перестроить. Даже при простой замене диода, не то что внедрении транзистора. Вот почему рекомендуется вести опыты постепенно. А простейший радиоприемник без усиления у многих вовсе не будет работать.

А как сделать радиоприемник, который бы допускал использование простых наушников. Подключите через трансформатор, наподобие того, что стоит в абонентской точке. Ламповый радиоприемник отличается от полупроводникового тем, что в любом случае требует питания для работы (накал нитей).

Вакуумные приборы долго выходят на режим. Полупроводники готовы сразу же принимать. Не забывайте: германий не терпит температур выше 80 градусов Цельсия. При необходимости предусмотрите охлаждение конструкции. На первых порах это нужно, пока не подберете размер радиаторов. Используйте вентиляторы из персонального компьютера, процессорные кулеры.


Сегодня разберем ТОП-3 рабочие схемы ламповых приемников КВ, УКВ, ФМ диапазонов. Первым делом рассмотрим, как собрать простейший ламповый КВ приемник. Второй проект представляет собой УКВ ЧМ-приемник в ретро-стиле. По третьей схеме соберем низковольтный ламповый сверхрегенеративный ФМ-приемник без выходного трансформатора.

Ламповый КВ приемник своими руками

Первой рассмотрим интересную схему приёмника диапазона КВ. Этот радиоприемник очень чувствительный и достаточно селективный для приёма коротковолновых частот по всему миру. Одна половина лампы 6AN8 служит как усилитель РЧ, а другая — как регенеративный приемник. Приемник предназначен для работы с наушниками или как тюнер с последующим отдельным усилителем НЧ.

Схема лампового КВ приёмника

Для корпуса берите толстый алюминий. Шкалы напечатаны на листе толстой глянцевой бумаги, а затем приклеены к передней панели. Моточные данные катушек указаны на схеме, там же и диаметр каркаса. Толщина провода — 0,3–0,5 мм. Намотка виток к витку.


Для блока питания радио нужно найти стандартный трансформатор от любой маломощной ламповой радиолы, обеспечивающий примерно 180 вольт анодного напряжения при токе 50 мА и 6,3 В накала. Не обязательно делать выпрямитель со средней точкой — хватит обычного мостового. Разброс напряжений допустим в пределах +-15%.

Настройка и устранение неисправностей

Настройтесь на желаемую станцию с помощью переменного конденсатора С5 примерно. Теперь конденсатором C6 — для точной настройки на станцию. Если ваш ресивер не будет нормально принимать, то либо менять значения резисторов R5 и R7, формирующих через потенциометр R6 дополнительное напряжение на 7-м выводе лампы, или просто поменять местами подключение контактов 3 и 4 на катушке обратной связи L2. Минимальная длина антенны будет около 3-х метров. С обычной телескопической принимать будет слабовато.

Низковольтный ламповый сверхрегенеративный FM-приемник без выходного трансформатора — схема и монтаж


Рассмотрим ламповую конструкцию с низким анодным напряжением, очень простой схемой, распространенными элементами и отсутствуем потребности в выходном трансформаторе. Причём это не очередной усилитель для наушников или какой-нибудь овердрайв для гитары, а намного более интересное устройство.

Сверхрегенераторы — это очень интересная разновидность радиоприемников, которая отличается простотой схем и неплохими характеристиками, сравнимыми с простыми супергетеродинами. Сабжи были крайне популярны в середине прошлого века (особенно в портативной электронике) и предназначены они в первую очередь для приема станций с амплитудной модуляцией в УКВ диапазоне, но также могут принимать станции с частотной модуляцией (т.е. для приема тех самых обычных FM-станций).

Основным элементом данного типа приемников является сверхрегенеративный детектор, который является одновременно как частотным детектором, так и усилителем радиочастоты. Такой эффект достигается за счет применения регулируемой положительной обратной связи. Подробно описывать теорию процесса нет смысла, так как «все написано до нас» и без проблем осваивается по этой ссылке.

За основу была взята эта схема:


После ряда экспериментов была сформирована следующая схема на лампе 6н23п:


Данная конструкция работает сразу (при правильном монтаже и живой лампе), причем выдает неплохие результаты даже на обычные наушники-вкладыши.

Теперь подробнее пройдемся по элементам схемы и начнем с лампы 6н23п (двойной триод):


Чтобы понять правильное расположение ног лампы (информация для тех, кто раньше с лампами дел не имел), нужно повернуть ее ножками к себе и ключом вниз (сектор без ножек), тогда представший перед вами прекрасный вид будет соответствовать картинке с распиновкой лампы (работает и для большинства других ламп). Как видно по рисунку, в лампе целых два триода, но нам нужен всего один. Вы можете использовать любой, никакой разницы нет.

Теперь пойдем по схеме слева на право. Катушки индуктивности L1 и L2 лучше всего мотать на общем круглом основании (оправке), идеально для этого подходит медицинский шприц диаметром 15мм, причем L1 желательно мотать поверх картонной трубки, которая с небольшим усилием движется по корпусу шприца, чем обеспечивает регулировки связи между катушками. В качестве антенны к крайнему выводу L1 можно припаять кусок провода или же припаять антенное гнездо и использовать что-то более серьезное.

L1 и L2 желательно мотать толстым проводом для повышения добротности, например, проводом 1мм и больше с шагом 2мм (особая точность тут не нужна, так что можете особо не заморачиваться с каждым витком). Для L1 нужно намотать 2 витка, а для L2 — 4–5 витков.

Далее идут конденсаторы C1 и C2, которые представляют собой двухсекционный конденсатор переменной емкости (КПЕ) с воздушным диэлектриком, он является идеальный решением для подобных схем, КПЕ с твердым диэлектриком использоваться нежелательно. Наверное, КПЕ является самым редким элементом данной схемы, но его довольно легко найти в любой старой радиоаппаратуре или на барахолках, хотя его можно заметить и двумя обычным конденсаторами (обязательно керамическими), но тогда придется обеспечивать подстройку с помощью импровизированного вариометра (прибора для плавного изменения индуктивности). Пример КПЕ:


Нам нужно всего две секции КПЕ, они обязательно должны быть симметричны, т.е. иметь одинаковую емкость в любом положении регулировки. Их общей точной будет служить контакт подвижной части КПЕ.

Затем следуется цепочка гашения, выполненная на резисторе R1 (2.2МОм) и конденсаторе C3 (10 пФ). Их значения можно менять в небольших пределах.

Катушка L3 выполняет роль анодного дросселя, т.е. не позволяется высокой частоте пройти дальше. Подойдет любой дроссель (только не на железном магнитопроводе) с индуктивностью 100–200 мкГн, но проще намотать на корпус сточенного мощного резистора 100–200 витков тонкого медного эмалированного провода.

Конденсатор C4 служит для отделения постоянной составляющей на выходе приемника. Наушники или усилитель можно подключать непосредственно к нему. Емкость его может варьироваться в довольно больших пределах. Желательно, чтобы C4 был пленочный или бумажный, но с керамическим тоже будет работать.

Резистор R3 представляет собой обычный потенциометр на 33 кОм, который служит для регулирования анодного напряжения, чем позволяет менять режим лампы. Это необходимо для более точной подстройки режима под конкретную радиостанцию. Можно заменить на постоянный резистор, но это нежелательно.

На этом элементы закончились. Как видите схема очень простая.

И теперь немного по поводу питания и монтажа приемника.

Анодное питание можно смело использовать от 10В до 30В (можно и больше, но там уже немного опасно подключать низкоомную аппаратуру). Ток там совсем небольшой и для питания подойдет БП любой мощности с необходимым напряжением, но желательно, чтоб он был стабилизирован и имел минимум шумов.

И еще обязательным условием является питание накала лампы (на картинке с распиновкой он обозначен как нагреватели), так как без него она работать не будет. Тут уже токи нужны поболее (300–400 мА), но напряжение всего 6.3В. Подойдет как переменное 50 Гц, так и постоянное напряжение, причем оно может быть от 5 и до 7В, но лучше использовать каноничное 6.3В. Лично я не пробовал использовать 5В на накале, но скорее всего все будет нормально работать. Накал подается на ножки 4 и 5.

Теперь про монтаж. Идеальным является расположение всех элементов схемы в металлическом корпусе с подключенной к нему в одной точке землей, но будет работать и вообще без корпуса. Так как схема работает в УКВ диапазоне, все соединения в высокочастотной части схемы должны быть максимального короткими для обеспечения большей стабильности и качества работы устройства. Вот пример первого прототипа:


При таком монтаже все работало. Но с металлическим корпусом-шасси немного стабильнее:


Для таких схем идеальным является навесной монтаж, так как он дает хорошие электрические характеристики и позволяет без особых затруднений вносить поправки в схемы, что с платой уже не так просто и аккуратно получается. Хотя и мой монтаж аккуратным назвать нельзя.

Теперь по поводу наладки.

После того как вы на 100 % убедились в правильности монтажа, подали напряжение и ничего не взорвалась и не загорелось — это значит, что скорее всего схема работает, если использованы правильные номиналы элементов. И вы скорее всего услышите в наушниках шумы. Если во всех положениях КПЕ вы не слышите станции, и вы точно уверены, что у вас принимаются вещательные станции на других устройствах, то попробуйте изменить количество витков катушки L2, этим вы перестроите частоту резонанса контура и возможно попадете на нужный диапазон. И пробуйте крутить ручку переменного резистора — это тоже может помочь. Если совсем ничего не помогает, то можно поэкспериментировать с антенной. На этом наладка завершается.

Видео о сборке лампового приемника:

Чисто ламповый вариант (на макетном уровне):

Вариант с добавлением УНЧ на ИМС (уже с шасси):

Приветствую! В этом обзоре хочу рассказать про миниатюрный модуль приемника, работающий в диапазоне УКВ (FM) на частоте от 64 до 108 МГц. На одном из профильных ресурсов интернета попалась картинка этого модуля, мне стало любопытно изучить его и протестировать.

К радиоприемникам испытываю особый трепет, люблю собирать их еще со школы. Были схемы из журнала «Радио», были и просто конструкторы. Всякий раз хотелось собрать приемник лучше и меньше размерами. Последнее, что собирал, — конструкция на микросхеме К174ХА34. Тогда это казалось очень «крутым», когда в середине 90-х впервые увидел работающую схему в радиомагазине, был под впечатлением)) Однако прогресс идет вперед, и сегодня можно купить героя нашего обзора за «три копейки». Давайте его рассмотрим поближе.

Вид сверху.

Вид снизу.

Для масштаба рядом с монетой.

Сам модуль построен на микросхеме AR1310. Точного даташита на неё найти не смог, по всей видимости произведена в Китае и её точное функциональное устройство не известно. В интернете попадаются лишь схемы включения. Поиск через гугл выдает информацию: » Это высокоинтегрированный, однокристальный, стерео FM радиоприемник. AR1310 поддерживает частотный диапазон FM 64-108 МГц, чип включает в себя все функции FM радио: малошумящий усилитель, смеситель, генератор и стабилизатор с низким падением. Требует минимум внешних компонентов. Имеет хорошее качество аудиосигнала и отличное качество приема. AR1310 не требует управляющих микроконтроллеров и никакого дополнительного программного обеспечения, кроме 5 кнопок. Рабочее напряжение 2.2 В до 3.6 В. потребление 15 мА, в спящем режиме 16 uA «.

Описание и технические характеристики AR1310
— Прием частот FM диапазон 64 -108 МГц
— Низкое энергопотребление 15 мА, в спящем режиме 16 uA
— Поддержка четырех диапазонов настройки
— Использование недорогого кварцевого резонатора 32.768KHz.
— Встроенная двусторонняя функция автоматического поиска
— Поддержка электронного регулятора громкости
— Поддержка стерео или моно режима (при замыкании 4 и 5 контакта отключается стерео режим)
— Встроенный усилитель для наушников 32 Ом класса AB
— Не требует управляющих микроконтроллеров
— Рабочее напряжение 2.2 В до 3.6 В
— В корпусе SOP16

Распиновка и габаритные размеры модуля.

Распиновка микросхемы AR1310.

Схема включения, взятая из интернета.

Так я составил схему подключения модуля.

Как видно, принцип проще некуда. Вам понадобится: 5 тактовых кнопок, разъем для наушников и два резистора по 100К. Конденсатор С1 можно поставить 100 нФ, можно 10 мкФ, а можно вообще не ставить. Емкости C2 и С3 от 10 до 470 мкФ. В качестве антенны — кусок провода (я взял МГТФ длиной 10 см, т.к. передающая вышка у меня в соседнем дворе). В идеальном случае можно рассчитать длину провода, например на 100 МГц, взяв четверть волны или одну восьмую. Для одной восьмой это будет 37 см.
По схеме хочу сделать замечание. AR1310 может работать в разных диапазонах (видимо, для более быстрого поиска станций). Выбирается это комбинацией 14 и 15 ножки микросхемы, подключая их к земле или питанию. В нашем случае обе ножки сидят на VCC.

Приступим к сборке. Первое, с чем столкнулся, — нестандартный межвыводной шаг модуля. Он составляет 2 мм, и засунуть его в стандартную макетку не получится. Но не беда, взяв кусочки провода, просто напаял их в виде ножек.


Выглядит неплохо)) Вместо макетной платы решил использовать кусок текстолита, собрав обычную «летучку». В итоге получилась вот такая плата. Габариты можно существенно уменьшить, применив тот же ЛУТ и компоненты меньшего размера. Но других деталей у меня не нашлось, тем более что это тестовый стенд, для обкатки.

Подав питание, нажимаем кнопку включения. Радиоприемник сразу заработал, без какой-либо отладки. Понравилось то, что поиск станций работает почти мгновенно (особенно если их много в диапазоне). Переход с одной станции на другую около 1 с. Уровень громкости очень высокий, на максимуме слушать неприятно. После выключения кнопкой (спящий режим), запоминает последнюю станцию (если полностью не отключать питание).
Тестирование качества звука (на слух) проводил наушниками Creative (32 Ом) типа «капли» и наушниками «вакуумного» типа Philips (17,5 Ом). И в тех, и в других качество звука мне понравилось. Нет писклявости, достаточное количество низких частот. Меломан из меня никудышный, но звук усилителя этой микросхемы приятно порадовал. В Филипсах максимальную громкость так и не смог выкрутить, уровень звукового давления до боли.
Так же измерил ток потребления в спящем режиме 16 мкА и в рабочем 16,9 мА (без подключения наушников).

При подключении нагрузки в 32 Ома, ток составил 65,2 мА, при нагрузке в 17,5 Ома — 97,3 мА.

В заключение скажу, что данный модуль радиоприемника вполне годен для бытового применения. Собрать готовое радио сможет даже школьник. Из «минусов» (скорей даже не минусы, а особенности) отмечу нестандартный межвыводной шаг платы и отсутствие дисплея для отображения информации.

Измерил ток потребления (при напряжении 3,3 В), как видим, результат очевиден. При нагрузке 32 Ом — 17,6 мА, при 17,5 Ом — 18,6 мА. Вот это совсем другое дело!!! Ток немного менялся в зависимости от уровня громкости (в пределах 2 — 3 мА). Схему в обзоре подправил.


Планирую купить +113 Добавить в избранное Обзор понравился +93 +177

Что такое схема FM-приемника? – JanetPanic.com

Что такое схема FM-приемника?

Радиоприемник или FM-приемник — это электронное устройство, которое принимает радиоволны и преобразует передаваемую ими информацию в пригодную для использования форму. Антенна используется для улавливания волн нужной частоты. Из радиоволн наиболее популярен FM. Частотная модуляция широко используется для FM-радиовещания.

Какие основные компоненты блока FM-приемников?

Пояснение к блок-схеме FM-приемника

  • ВЧ-усилитель.ВЧ-усилитель принимает полезный сигнал от антенны и обеспечивает настройку для удаления сигнала изображения вместе со всеми нежелательными сигналами на других частотах.
  • Смеситель.
  • Усилитель ПЧ и фильтр.
  • Демодулятор.
  • Аудиоусилитель.

Как работает схема FM-передатчика?

FM-передатчик представляет собой схему, которая потребляет очень мало энергии для работы и использует (частотную модуляцию) FM-волны для передачи звука. С помощью таких FM-передатчиков мы можем легко передавать звуковые сигналы через несущие волны с различными частотами.

Как исправить плохой прием FM-радио?

Как исправить плохой прием FM-радио

  1. Удалите все препятствия, какие сможете.
  2. Проверьте и замените соединения антенны.
  3. Запустите сканирование частоты.
  4. Переключение со стерео на моно.
  5. Переместите антенну. Если у вас есть комнатная антенна, разместите ее как можно выше у окна, чтобы избежать помех от материалов, используемых при строительстве стен.

Как работают приемники и передатчики?

Как передатчик посылает радиоволны приемнику.

  1. Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны.
  2. Радиоволны распространяются по воздуху со скоростью света.
  3. Когда волны достигают антенны приемника, они заставляют электроны внутри нее колебаться.

Для чего нужна схема ограничителя в FM-приемнике?

Схема ограничителя используется в FM-приемнике для устранения шума, присутствующего в пиках принимаемого сигнала, и для устранения любых изменений амплитуды принятого сигнала; выход ограничителя имеет постоянную амплитуду.

Как сделать схему радиочастотного передатчика и приемника?

Шаг 1: Список деталей

  1. Радиочастотный передатчик и радиочастотный приемник 433 МГц.
  2. 3 кнопки.
  3. Микросхема HT12D.
  4. Микросхема HT12E.
  5. Слушатели (мужчины или женщины, неважно)
  6. 3 резистора номиналом от (100 до 330) Ом.
  7. 3 светодиода любого цвета диаметром 3 мм (миниатюрные)
  8. 1 МОм резистор для ИС передатчика (ВАЖНО)

Как работает FM-схема?

FM-передатчик представляет собой схему с одним транзистором.В телекоммуникациях частотная модуляция (ЧМ) передает информацию путем изменения частоты несущей волны в соответствии с сигналом сообщения. Этот передатчик достигает самого превосходного диапазона с меньшей мощностью.

FM-радио — Hackster.io

Эта простая схема FM-радиоприемника состоит из регенеративного высокочастотного каскада TR1, за которым следуют два или трехкаскадный аудиоусилитель TR2-TR4. В некоторых областях 3 каскада усиления звука могут не понадобиться, и в этом случае TR3 и связанные с ним компоненты можно исключить, а свободный конец конденсатора C5 подключить к коллектору TR2.

Важнейшей частью FM-радиоприемника является первая ступень TR1/VC1, где провода должны быть как можно короче. Катушка L1 образована путем намотки 8 витков эмалированного медного провода диаметром 1 мм (20 swg) на каркас диаметром 6 мм, который затем удаляют. После этого L1 нужно аккуратно и равномерно растянуть на длину около 13 мм.

Список транзисторов TR1 = BF199TR2 = TR3 = TR4 = BC547

Подстроечный конденсатор VC1 является одной из двух FM секций миниатюрного FM транзисторного радиоприемника со встроенными подстроечными резисторами (VC2).«Заземленный» конец (движущиеся лопатки и шпиндель) подключен к конденсатору С1 емкостью 22 пФ. Значение ВЧ-дросселя L2 не критично, подойдет любое значение от 1 мкГн до 10 мкГн.

Выход подходит для обычных наушников, соединенных последовательно, чтобы обеспечить импеданс 64 Ом.

Настройка fm-радиоприемника

Для работы радиоприемника потенциометр VR1 необходимо сначала медленно перемещать (к концу дорожки, подключенной к положительному выводу аккумулятора), пока примерно на половине пути не произойдет внезапное незначительное увеличение будет слышен фоновый шум, указывающий на начало колебаний.Затем его следует отпустить назад, очень медленно, пока колебание не прекратится; тогда должна быть возможность настроиться на некоторые станции.

Правильный диапазон частот от 87 МГц до 108 МГц можно получить, настроив VC2 на высокую частоту (108 МГц) и слегка растянув или сжав витки катушки L1 на конце (87 МГц).

Важнейшей частью FM-радиоприемника является первая ступень TR1/VC1, где провода должны быть как можно короче. Катушка L1 образована путем намотки 8 витков эмалированного медного провода диаметром 1 мм (20 swg) на каркас диаметром 6 мм, который затем удаляют.После этого L1 нужно аккуратно и равномерно растянуть на длину около 13 мм.

Список транзисторов TR1 = BF199TR2 = TR3 = TR4 = BC547

Подстроечный конденсатор VC1 является одной из двух FM секций миниатюрного FM транзисторного радиоприемника со встроенными подстроечными резисторами (VC2). «Заземленный» конец (движущиеся лопатки и шпиндель) подключен к конденсатору С1 емкостью 22 пФ. Значение ВЧ-дросселя L2 не критично, подойдет любое значение от 1 мкГн до 10 мкГн.

Выход подходит для обычных наушников, соединенных последовательно, чтобы обеспечить импеданс 64 Ом.

Настройка fm-радиоприемника

Для работы радиоприемника потенциометр VR1 необходимо сначала медленно перемещать (к концу дорожки, подключенной к положительному выводу аккумулятора), пока примерно на половине пути не произойдет внезапное незначительное увеличение будет слышен фоновый шум, указывающий на начало колебаний. Затем его следует отпустить назад, очень медленно, пока колебание не прекратится; тогда должна быть возможность настроиться на некоторые станции.

Правильный диапазон частот от 87 МГц до 108 МГц можно получить, настроив VC2 на высокую частоту (108 МГц) и слегка растянув или сжав витки катушки L1 на конце (87 МГц).

Проект: CD2003GP+SC3610D FM-приемник с ЖК-будильником (74–108 МГц)

Моя маленькая «миссия» по сборке случайных китайских радиокомплектов с eBay продолжается с этим довольно странным и сложным комплектом. В отличие от других комплектов, это первый набор с ЖК-дисплеем, но он странно рекламируется как FM Radio Kit Electronic DIY Hobbies Learning Suite Диапазон частот: 72–108,6 МГц . Комплект стоил 13,59 австралийских долларов, включая почтовые расходы, поэтому я решил попробовать. Это более сложно, но и потенциально более полезно.

Распаковка

Что касается комплектов, то этот, как и все остальные, начинает свою жизнь внутри своего рода пластикового пакета. У этого есть все его компоненты, заключенные в пластиковую оболочку, с оболочкой, склеенной вместе. На корпусе сзади карандашом написано Т2.

Внутри компоненты болтались и дребезжали, и я опасался, что ЖК-дисплей мог сломаться при транспортировке. К счастью, он оказался целым. Для подключения ЖК-дисплея есть несколько разъемов с карбоновой липкой лентой — кажется, их штук пять или шесть, что хорошо, потому что их может быть довольно сложно подключить.Корпус литой, и, несмотря на то, что он относительно простой, он по-прежнему является привлекательным корпусом для набора «сделай сам». Здесь видна печатная плата передней панели и ЖК-дисплея, а также динамик, сумка с компонентами, телескопическая антенна, латунный стержень с резьбой и ручка настройки.

В комплект поставки входит один двусторонний лист формата А4, в основном на китайском языке. Большая часть одной стороны занята шаблоном трассировки и направляющей компонентов шелкографии, а другая часть этой стороны страницы занята схемой.

Устройство основано на CD2003GP, который представляет собой интегральную микросхему радиоприемника AM/FM. В этой конструкции не используются все его возможности AM, что немного обидно. Он также использует SC3610D в качестве драйвера ЖК-дисплея с отображением частоты AM/FM, функциями часов и будильника. В качестве аудиоусилителя используется TDA2822, что характерно для многих китайских комплектов. Довольно интересно, что в этом комплекте используются два компонента керамического фильтра , что подразумевает использование ПЧ 10,7 МГц.Это может быть привлекательной особенностью, если вы хотите использовать микросхему в качестве своего рода понижающего преобразователя, и это должно означать лучшую избирательность ЧМ, чем конструкции, основанные на фильтрах с пассивными компонентами. Выход детектора находится на контакте 11, который должен иметь полную полосу частот FM. Мультиплексного (стерео) декодирования не предлагается, что немного разочаровывает.

Сам дисплей представляет собой частотомер, который измеряет частоту и показывает, когда радио работает. Если радио не работает (Vfm низкий), то оно отображает часы и позволяет установить будильник.При срабатывании сигнализации включается транзистор 8550 для включения магнитолы (т.е. подключение аккумуляторов к CD2003). Это довольно простой дизайн, а дисплей вообще не обязателен для работы радио.

Вторая (основная) плата изображена выше. Он имеет подложку из стекловолокна с шелкографией сверху. Значения компонентов наносятся методом шелкографии, что упрощает их построение.

Однако, в отличие от другой доски, нижняя сторона не покрыта лужением, а просто покрыта лаком.У него есть паяльная маска, хотя регулярность и размер маски не всегда соответствуют предполагаемой форме медной площадки. Это по-прежнему выглядит как плата хорошего качества для пайки, даже несмотря на то, что возле одного монтажного отверстия можно увидеть несколько потертостей. Интересно. точка подключения антенны, кажется, показывает дорожку в верхней части платы, используемую в качестве противовеса (земли) для антенны, что должно улучшить качество приема.

Опыт строительства

В то время, когда я решил построить блок, я был немного болен гриппом, поэтому мне немного не хватало энергии и я был полон разочарования.В результате я не стал делать много фотографий процесса строительства, но я прокомментирую некоторые вещи, которые я обнаружил по пути.

Во-первых, в наборе абсолютно отсутствует инструкция по его сборке. Конструктор должен решить, что делать из шелкографии. Это не так сложно сделать, но для новичка это может быть более сложной задачей.

Поскольку ЖК-дисплей был проблемой, я решил начать со сборки ЖК-платы. Сначала я решил смонтировать ЖК-дисплей, что было большой ошибкой, так как модуль микросхемы на плате было труднее припаять.В результате я немного напортачил с пайкой, и мне пришлось вернуться и переделать ее из-за одной-двух паяных перемычек.

Я бы рекомендовал начать с припайки микросхемы к плате. К сожалению, плата паялась не так легко, как я надеялся — рекомендуется использовать тонкое железо и тонкую проволоку для припоя, но даже в этом случае припой часто отказывался течь свободно, возможно, из-за окисления платы или плохих переходных отверстий на стороны. В любом случае, если вы не сможете припаять каждый контакт к плате (начиная с углов), у вас не будет ЖК-дисплея и функций сигнализации! Это довольно сложно даже для меня, поэтому я не думаю, что это хороший проект для абсолютного новичка.

После этого на задней стороне платы необходимо установить несколько керамических конденсаторов и кварцевый генератор. Также можно присоединить пуповину, учитывая выбор цветов для различных соединений.

Для сборки ЖК-дисплея требуется направленный свет (чтобы увидеть металлизацию на стекле), устойчивые руки, несколько ногтей и сборка «штамповочного инструмента». Инструмент можно собрать, взяв латунную головку, вставив силиконовую вставку и вкрутив стержень в заднюю часть.Затем аккуратным ногтем отделите одну из карбонизированных самоклеящихся этикеток от ее подложки. Позаботьтесь о том, чтобы выровнять его с металлизацией на стекле — вы должны получить его с точностью около 0,3 мм или около того. Затем нажмите на обратную сторону самоклеящейся этикетки в том месте, где она находится на стекле, с помощью инструмента для штамповки, чтобы убедиться, что этикетка хорошо приклеена.

Затем удалите подложку с самоклеящихся вспененных этикеток на печатной плате и совместите ЖК-дисплей с печатной платой. Опустите его на самоклеящуюся пленку, затем надавите на карбонизированную ленту и приклейте ее к дорожкам на печатной плате, снова используя инструмент для штамповки, чтобы обеспечить хороший плотный контакт.Если вы не сгибали ленту, не мяли ее и не ломали, то, вероятно, все в порядке, если выравнивание правильное. Если это не так, вы можете очистить его и попробовать со свежим кусочком. Хорошо, что есть несколько штук, так что можно дать несколько ходов.

Кнопки на передней панели имеют защелкивающиеся кнопки. Защелки прилагаются, и я пытался припаять края на место, но они из металла, который не держит припой. Вместо этого вам, вероятно, следует приклеить их клейкой лентой, как это часто делают другие производители.Кнопка питания не программируемая кнопка , вместо этого она опирается на аппаратный выключатель питания, который проходит через отверстие в печатной плате. В результате кнопку питания можно «вырезать» из набора кнопок на передней панели.

Основная печатная плата заполнена в соответствии с трафаретной печатью, с кнопкой в ​​сборе с колпачком и регулятором настройки с небольшим самонарезающим винтом. Одна вещь, на которую следует обратить внимание, это переменный конденсатор, у которого очень потускневших контактов, которые не принимают припой .Наличие наждачной бумаги для подпиливания ног кажется хорошей идеей. Поставляемые резисторы представляют собой высококачественные пятиполосные резисторы , поэтому, если вы привыкли читать четырехдиапазонные коды, вам будет приятно переосмыслить свои множители.

Провода к динамикам можно припаять вместе с проводами к плате. К бирке можно припаять провод для крепления к антенне. Я припаял провода к клеммам аккумулятора, , но этого делать не стоит, так как одну из клемм нужно припаять уже после того, как она будет вставлена ​​в корпус.

Сборка выглядит примерно так — не ведитесь и на печатный рисунок индуктора на печатной плате — ориентация зависит от обмотки индуктора — один из них был намотан не так, как ожидалось. Еще стоит отметить, что конденсаторы в динамике «по кругу» нужно пригнуть к плате, чтобы правильно собрать комплект. Обратите внимание, что на плате есть несколько дополнительных отверстий, в которые не установлены никакие компоненты и нет трафаретной печати — никакие компоненты не предназначены для установки в эти места.

На этом этапе также хорошо подумать о том, чтобы согнуть конденсаторы на обратной стороне платы 2, чтобы она собиралась более аккуратно.

Чтобы поместить ее в корпус, вставьте заднюю антенну с биркой между корпусом и антенной и с помощью винта с резьбой большего размера закрепите ее на месте. У вас должна быть антенна с винтом, направленным наружу, на случай, если вам понадобится натянуть ее в будущем. Ручка настройки должна быть оснащена небольшим самонарезающим винтом.Положительные клеммы батареи должны быть вставлены в отсек, а затем припаяны после вставки — обратите внимание, что порядок клемм — , противоположный ожидаемому (а именно отрицательной пружине в двери). Не теряйте и дверь — она не заперта.

Горячий клей необходим, чтобы закрепить динамик на месте. Два винта используются с платой 2 (два верхних), четыре с платой 1 (только углы). Задняя часть корпуса закрывается длинным саморезом в центре, двумя короткими саморезами в аккумуляторном отсеке и двумя за антенной.

Настройка и устранение неполадок

На данном этапе я не советую закреплять или закрывать комплект до завершения настройки и устранения неполадок. Однако для проверки устройства необходима частичная сборка. Соберите аккумуляторный отсек так, чтобы питание можно было подавать от батарей типа АА, затем включите питание и наблюдайте за ЖК-дисплеем.

Если все в порядке, ЖК-дисплей должен показать время (если выключен) или частоту (если включен). Сначала включите его и прокрутите ручку настройки по всем частотам.Затем выключите его и запустите все часы и минуты (AM и PM), а затем будильник. Убедитесь, что нет отсутствующих сегментов или «закороченных» сегментов — если у вас поврежден дисплей, скорее всего, у вас есть какие-то паяные перемычки на стороне ЖК-дисплея COB или , у вас может быть ненадежное соединение с карбонизированной лентой. Проверьте соединение, нажав на штамповочный инструмент — если сегменты мерцают, возможно, у вас под лентой пузырек воздуха. Если ничего не изменится, то пора браться за фитиль для выпайки.Мне потребовалось несколько попыток, чтобы понять это правильно.

После того, как ЖК-дисплей заработает, настройка будет проста, так как необходимо отрегулировать два крайних правых винта на задней панели потенциометра. Нижний влияет на диапазон настройки — на ЖК-дисплее отображается частота, на которую вы в данный момент настроены, поэтому настройка очень проста — вам просто нужно отрегулировать винт, пока вы не сможете охватить весь FM-диапазон. Другой винт регулирует избирательность, поэтому вам нужно будет найти близко расположенные станции и отрегулировать их для получения наилучшего звука с настроенной станции.

Довольно интересно, что диапазон настройки действительно выходит за пределы FM-диапазона – изначально он был настроен на перекрытие этого диапазона, но позже я решил изменить его на 70–108,5 МГц, что частично перекрывает диапазон OIRT. Он относительно гибкий, хотя диапазон настройки зависит от точных начальной и конечной частот. Указанная частота верна с точностью до 0.1Mhz (кажется). Желательно оставить небольшой зазор на каждом конце, поскольку тепловой дрейф может немного изменить диапазон настройки конденсатора.

Если все получилось, то можно продолжать закрывать корпус целиком и прикручивать все вместе.

Не пугайтесь если у вас есть много запчастей . Кажется, этот комплект был упакован кем-то, кто лучше знает и предоставляет примерно по одному запасному компоненту каждого номинала (или больше), так что, если вы уроните один и не сможете его найти, вам не повезло! Это приятное прикосновение!

Используется

Пластиковый корпус мягкого белого цвета с несколькими царапинами, возникшими в результате транспортировки.Тем не менее, это довольно изящный агрегат. Качество звука у него сносное — не отличное, но и не плохое. Механическая кнопка питания «инверсная» — вход выключен, выход включен. Будильник работает отлично, и устройство хорошо отсчитывает время, позволяя вам установить время будильника, и радио включится. Тем не менее, вы должны убедиться, что громкость установлена ​​на адекватном уровне, а радио «настроено», иначе вы будете просыпаться со статическими помехами или тишиной. Выбор 74 МГц в качестве начального диапазона немного странный — я склонен рассматривать 76 МГц как более распространенное значение для японских радиостанций и радиостанций диапазона CCIR.

Выравнивание корпуса не идеальное — он немного трется о регулятор громкости, а разъем для наушников кажется немного неуместным.

Колесо настройки хорошо сидит на своем месте, и с учетом количества задействованных винтов устройство кажется относительно прочным и крепким. К сожалению, в конструкции нет «ножек» или ремешка, поэтому он немного трясется на столе и потенциально может упасть при переноске. Кейс не резонирует так сильно, как некоторые из более легких кейсов.

Небольшая чистка задней части удаляет следы от карандаша. Несъемная крышка аккумуляторного отсека далеко не идеальна, но в качестве комплекта для самостоятельной сборки ее не так-то просто отличить от коммерческого продукта, когда она правильно собрана. Я думаю, что это довольно хорошо искать усилие DIY.

Поскольку это радио не является настоящим радио с цифровой настройкой, оно предлагает половинчатый компромисс в виде частотомера на передней панели, который показывает, на какую частоту вы настроены. Из-за дрейфа компонентов из-за напряжения или температуры настроенная частота может смещаться (т.грамм. если вы настроены на 106,5 МГц, он может время от времени мерцать и отображать 106,6 МГц). На самом деле это не так сильно влияет на прием, но потенциально может вызвать раздражение, если вы настаиваете на том, чтобы на дисплее отображалось «правильное» число.

Контрастность LCD немного разочаровала. Похоже, что этот тип ЖК-дисплея лучше всего рассматривать снизу — поэтому, если вы поместите его на полку над собой, часы будут намного легче читать. К сожалению, нет регулировки контрастности.

Поскольку это монофонический приемник, он не декодирует мультиплексированный сигнал, а аудиовыход одинаков для левого и правого каналов.Однако, чтобы обеспечить совместимость с монофоническими и стереонаушниками, он подключается только с помощью внешних контактов, поэтому стереонаушники будут иметь «перевернутый по фазе» звук на двух каналах, что создает ужасное впечатление от прослушивания.

Фильтрация на выходе кажется не слишком хорошей, поэтому мы можем видеть пилот-тон и информацию о мультиплексировании стерео на самом выходе аудио.

Аудиозапись на частоте 96 кГц находится здесь на случай, если вы захотите ее изучить.

 

Заключение

Пока болел, успел победить очередную дешевую китайскую магнитолу.Этот комплект отличается от других тем, что имеет приличный корпус с ЖК-экраном, на котором есть счетчик частоты и функция сигнализации. Это делает его более функциональным и практичным по сравнению с другими наборами. Это также добавляет дополнительную сложность набору, что усугубляется отсутствием теории схем и руководств по сборке набора. В итоге абсолютным новичкам набор не рекомендую, особенно из-за хитрой пайки SMD COB. К счастью, кажется, что несколько перемычек на выходных контактах привода ЖК-дисплея не имеют постоянных побочных эффектов.

Его образовательная ценность ограничена из-за недостатка информации, однако он требует некоторых логических навыков для вывода о том, как лучше всего собрать устройство. Он также оправдывает себя, предоставляя дополнительные компоненты для компенсации потенциально упавших/потерянных/поврежденных компонентов во время сборки, избегая любых попыток найти конкретный потерянный компонент в последнюю минуту. Это также не особенно дорого, хотя, похоже, это не очень популярный или доступный комплект. Однако отсутствие стереодекодирования и AM-функций немного разочаровывало.Тем не менее, это было хорошее упражнение по пайке, которое развлекло меня на целый вечер.

Связанные

%PDF-1.3 % 1 0 объект >поток приложение/pdf конечный поток эндообъект 2 0 объект >/Тип/Страница/Ресурсы>/XObject>>>/CropBox[0 0 619.79919 797.03943]/Родительский 15 0 R/Поворот 0/MediaBox[0 0 619.79919 797.03943]>> эндообъект 3 0 объект >поток HWێ6,Ѓd5ow»

Что такое схема FM-приемника? – SidmartinBio

Что такое схема FM-приемника?

Радиоприемник или FM-приемник — это электронное устройство, которое принимает радиоволны и преобразует передаваемую ими информацию в пригодную для использования форму. Антенна используется для улавливания волн нужной частоты. Из радиоволн наиболее популярен FM. Частотная модуляция широко используется для FM-радиовещания.

Как сделать радиоприемник?

Чтобы получить практический результат, конструкция радиоприемника должна учитывать несколько основных критериев. Основными критериями являются усиление, селективность, чувствительность и стабильность. Приемник должен содержать детектор для восстановления информации, изначально впечатанной в несущий радиосигнал, этот процесс называется модуляцией.

Как работает радиоприемник?

Радиоприемник — это противоположность радиопередатчику. Он использует антенну для захвата радиоволн, обрабатывает эти волны, чтобы выделить только те волны, которые вибрируют на нужной частоте, извлекает аудиосигналы, которые были добавлены к этим волнам, усиливает аудиосигналы и, наконец, воспроизводит их на динамике.

Что такое радиосхема?

FM Радио Схема Принцип: Радио – это прием электромагнитных волн через воздух. Основной принцип этой схемы заключается в настройке схемы на ближайшую частоту с помощью контура бака. Передаваемые данные модулируются по частоте на передаче и демодулируются на стороне приемника.

Что такое FM-передатчик и приемник?

Передатчики — это те устройства, которые используются для отправки частотно-модулированной волны через полосу частот, а приемники — это устройства, которые получают модулированный сигнал, после чего после демодуляции он дает нам исходный сигнал.

Что такое схема передатчика?

Что такое схема FM-передатчика. Схема FM-передатчика (частотная модуляция) представляет собой схему, состоящую из одного транзистора или биполярного транзистора. В беспроводной связи FM (частотная модуляция) переносит данные или информацию, изменяя частоту несущей волны в соответствии с информацией или сигналом сообщения.

Что такое FM-канал?

Схема FM-радио представляет собой простую схему, которую можно настроить на нужную частоту на месте.В этой статье описана схема схемы FM-радио. Это радиосхема карманного размера.

Что такое FM-приемник?

Амплитудный приемник полагается на исходный сигнал несущей (частота станции), промодулированный по амплитуде. Это означает, что исходная амплитуда (сила) изменяется со скоростью звука. С другой стороны, передаваемый сигнал fm-приемника изменяется со скоростью звука, в то время как амплитудная составляющая чрезмерно усиливается и обрезается для удаления am-компоненты.

Что такое АМ-радиоприемник?

Учебное пособие по принципам проектирования АМ-радиоприемника.Это полный электронный учебник, начиная от самых основ проектирования радиоприемников и заканчивая более сложными конфигурациями, используемыми в коротковолновом радио, любительском радио или радиолюбительской электронике в качестве радиоприемника общего назначения.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.