Site Loader

Содержание

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.


Условное обозначение
диода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром


Выводы диода

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

Назначение диода, анод диода, катод диода, как проверить диод мультиметром


Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.


Условное обозначение
диода на схеме

На рисунке показано

условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром


Выводы диода

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.


Что такое анод и катод — простое объяснение

Простое объяснение понятий анод и катод. Как их легко определить и запомнить.


Среди терминов в электрике встречаются такие понятия как анод и катод. Это касается источников питания, гальваники, химии и физики. Термин встречается также в вакуумной и полупроводниковой электронике. Им обозначают выводы или контакты устройств и каким электрическим знаком они обладают. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус. Содержание:

Электрохимия и гальваника

В электрохимии есть два основных раздела:

  1. Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
  2. Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.

Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?

  • Анод – электрод на котором наблюдается окислительная реакция, то есть он отдаёт электроны. Электрод, на котором происходит окислительная реакция – называется восстановителем.
  • Катод – электрод на котором протекает восстановительная реакция, то есть он принимает электроны. Электрод, на котором происходит восстановительная реакция – называется
    окислителем
    .

Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны.

Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде.

В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду). Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.

Внимание: ток всегда втекает в анод!

Или то же самое на схеме:


Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.


Гальванотехника

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

В электронике

Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:

Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.

У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.

Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:

У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.

С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.


Заключение

Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:

Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.

Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

  • Чем отличается переменный ток от постоянного
  • Фазное и линейное напряжение в сети
  • Как зарядить батарейку в домашних условиях
НравитсяЧто такое анод и катод — простое объяснение0)Не нравитсяЧто такое анод и катод — простое объяснение0)

Куда течет ток или где же этот чертов катод? / Хабр

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

— Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем…
Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «Аткуда» (от Анода) и «Куда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Всех с 1 апреля! Улыбайтесь, господа. Улыбайтесь!

Вакуумный диод: характеристика, принцип работы

 

Собирая различные электрические приборы в своей домашней лаборатории, многие люди не только экономят деньги на приобретении новой техники, но и чинят вышедшие из строя электроизделия. Для полноценной работы многих приборов требуются диоды, которые сегодня представлены самыми разнообразными экземплярами. В сегодняшней статье речь пойдет о таком элементе, которые довольно часто встречается в электрических схемах – вакуумный диод.

Чтобы правильно использовать такую детальку, необходимо знать ее устройство, а также какая схема и принцип работы для нее характерны. Обо всем этом вы узнаете из этой статьи.

Что представляет собой устройство

Современный диод вакуумного типа представляет собой баллон, выполненный из металлокерамики или стекла, лишенный воздуха. Их этого баллона выкачивают воздух до давления, находящегося на уровне 10-6 — 10-7 мм рт. ст. Отсюда и название данного элемента электросхем.

Устройство вакуумного диода

Строение диод вакуумного типа

Внутри такой баллон размещены два электрода. Одним из них является катод. Он имеет вид металлического вертикального цилиндра, который покрыт слоем оксида щелочно-земельных металлов (кальция, стронция, бария). Благодаря такому напылению данный элемент получил название оксидный катод.

Обратите внимание! При его нагревании с поверхности происходит значительно большее испускание электродов, чем с обычного металлического элемента аналогичного вида.

Катод внутри содержит изолированный проводник, нагреваемый переменным или постоянным током. При нагревании, катод испускает электроны, которые движутся и достигают второго элемента вакуумного диода – анода.
Анод имеет вид овального или круглого цилиндра. Он с катодом имеет общую ось. Схема диода вакуумного типа имеет следующий вид.

Устройство диодов вакуумного типа

Схема диода вакуумного типа

Кроме вакуумного диода существует еще такое понятие, как электровакуумный диод.
Под собой электровакуумный диод подразумевает двухэлектродную вакуумную электронную лампу. Ее строение аналогично диоду вакуумного типа. По сути это одно и тоже. Здесь катод представляет собой W-образную или прямую нить. Он, в процессе работы такой лампы, нагревается до определенной температуры. В результате нагрева возникает термоэлектронная эмиссия. В ходе подачи на анод отрицательного напряжения относительно катода, электроны возвращаются обратно на катод. Когда на анод подается положительное напряжение, часть из эмитированных электронов начинает двигаться в нему. В результате возникает ток.
В результате своей работы вакуумные диоды и их аналоги способны на выпрямление приложенного к ним напряжения. Таким основным своей свойством обладают вакуумные выпрямители, поэтому они используются в качестве детекторов сигналов высокой частоты и выпрямления переменного тока.
Такое устройство характерно для всех изделий подобного типа. При этом данное устройство и определяет основные характеристики изделия, а также то, какое применение оно будет иметь.

Обратите внимание! Частотный диапазон для диода вакуумного типа несколько ограничен и не превышает 500 МГц. При этом интегрированные в волноводы дисковые диоды, способны на детектирование частоты до 10 ГГц.

Формы основных элементов диода

Элементы вакуумного диода

Форма катода и анода

Катод, входящий в состав диода вакуумного типа, зачастую имеет вид латинских букв W или V. Такая форма используется для увеличения длины изделия. В тоже время анод будет более выгодным, если станет изготавливаться в виде коробки, лишенной боковых граней. В сечении анод имеет форму прямоугольника с закругленными углами.

Такая форма анода определяется необходимостью для того, чтобы он во всех направлениях по возможности находился на одинаковом расстоянии от нагреваемого катода. По этой причиной наиболее выгодной формой для обоих элементов является эллиптическая.
Чтобы снизить степень нагрева анода в его устройстве часто фигурируют ребра (крылышки). Благодаря их наличию, анод имеет более качественное отведение тепла.
И катод и анод в баллоне крепятся при помощи специальных держателей. Для большего удобства в эксплуатации, внизу лампы устанавливается цоколь, состоящий из изоляционного материала. Он оснащен металлическими ножками-штырьками. Эти штырьки обеспечивают контакт лампы при включении ее в гнезда ламповой панели.
Вот такое устройство имеет электровакуумная лампы или диод вакуумного типа.

 

Принцип функционирования диода вакуумного типа

Чтобы схема, в которую входит выпрямитель вакуумного типа, работала как надо, следует понимать принцип работы такой детали.

Функционирование диода

Принцип работы диода

Принцип работы вакуумных диодов представляет собой следующую картину:

  • в ходе разогрева катода, электроны с его поверхности начнут отделяться;
  • их отделение происходит за счет формирования термоэлектронной эмиссии;
  • освобожденные с поверхности электроны начинают препятствовать вылету других электронов. В следствии этого вокруг поверхности катода образуется облако электронов;
  • часть электронов этого облака, обладающие наименьшими скоростями, опускается обратно на поверхность катода;
  • в ситуации, когда задается определенная температура, облако электронов стабилизируется. Это означает, что с катода вылетает столько же электронов, сколько потом на него опускается;
  • при наличии нулевого напряжения, например, при ситуации короткого замыкания анода на катоде, в лампе начинает течь ток электронов по направлению от катода к аноду. В данной ситуации наиболее быстрые электроны способны преодолеть имеющуюся потенциальную яму, из-за чего они и притягиваются к аноду. Отсечка тока происходит в той ситуации, когда на анод подается отрицательное запирающее напряжение. Это напряжение должно иметь один вольт или ниже.
  • в ситуации подачи положительного напряжения на анод, в диоде формируется ускоряющее поле, которое способствует возрастанию на аноде тока. Когда ток на этом элементе достигает значений, которые близки в пределу эмиссии катода, происходит замедление роста тока и его стабилизация. Т.е. наблюдается эффект «насыщения».

Вот по такому принципу работают диоды вакуумного типа.

Важная характеристика диодного элемента – ВАХ

Все диоды, в не зависимости от того, вакуумные оны или нет, обладают таким параметром, как вольт амперная характеристика или сокращенно ВАХ.

Графическое отображения ВАХ

ВАХ вакуумного диода

Чтобы разобраться, что же это за вольт амперная характеристика, рассмотрим график на примере происходящих в лампе процессов.
В самом начале, когда на аноде отсутствует напряжения, вокруг катода в следствие его нагрева формируется электронное облако. Когда на аноде возникает положительное небольшое напряжение, самые быстрые электроны, входящие в электронное облако катода, начинают устремляться к аноду. В результате можно регистрировать анодный ток небольшой величины. В ситуации, когда анодное напряжение будет продолжать увеличиваться, из электронного облака все большее число электронов будут перетекать к аноду в плоть до полного «рассасывания» катодного электронного облака. Это состояние соответствует точке В на графике, приведенном выше. Такое напряжение означает, что всех вылетающие из катода электроны будут немедленно притягиваться к аноду.
Обратите внимание! Дальнейшее нарастание анодного тока при сохранении величины накала не происходит. Чтобы добиться увеличение данного показателя необходимо использовать дополнительные электроны. А они здесь отсутствуют. Для этого увеличения показателя можно повысить накал катода, но такой способ не используется поскольку приводит к уменьшению срока службы катодного элемента.
Таким образом вся эмиссия катода при конкретной температуре накала будет исчерпана. В результате анод достиг ситуации «насыщения током».
Все эти процессы, поэтапно, отращены на вольт амперной характеристики, приведенной выше. Такой параметр, как вольт амперную характеристику в высшей точке, можно рассматривать как предел возможностей диода.
Как видим принцип работы изделия неотделим от ВАХ. При этом последняя является его отражением.

Где используются такие изделия

Применение электровакуумных ламп определяется их основными возможностями или свойствами, а именно способностью пропускать ток только в одном направлении. Это связано с тем, что в диоде движение электронов возможно только от катода к аноду. Иногда такое свойство диодных выпрямителей называется односторонней проводимостью. Благодаря такому свойству, вакуумные диоды применяются в качестве преобразователя постоянного тока в переменный (его выпрямления). Такие способности данного рода изделий обеспечили им обширное применение в радиоаппаратуре.

Обратите внимание! Использование диода вакуумного типа позволит решить проблему питания радиоаппаратуры от промышленной сети переменного тока.

Схема, по которой можно использовать диода в качестве выпрямителя для переменного тока, довольно проста.

Принцип использования диода как выпрямитель

Схема диода, работающего как выпрямитель

В данной ситуации между анодом и катодом следует включить источник переменного тока. Вверху графика отражено напряжение источника переменного тока. Здесь имеется периодическое его изменение с определенной частотой по типу синусоиды. С такой же чистотой меняется напряжение на аноде по отношению к катоду. Часть времени анод будет положительным (верхняя часть графика), а часть – отрицательным (нижняя часть графика).
При положительных полупериода на аноде будет положительное напряжение. В такой ситуации ток будет течь, а при противоположном значении полупериода – он будет отсутствовать. В результате получаться импульсы, равные по частоте переменному току.

Заключение

Зная особенности функционирования диодов вакуумного типа, можно максимально полно использовать их особенности в работе радиоэлектронных приборов. Помните, что каждый вид диодов имеет свои особенности и способен оптимально работать в определенных условиях. Учет всех параметров его работы, а также ВАХ, позволит выжать из изделия максимум без нарушения принципов его функционирования.

 

Компоненты электроники: диоды — манекены

  1. Программирование
  2. Электроника
  3. Компоненты
  4. Компоненты электроники: диоды

Дуг Лоу

Диод — это электронный компонент, изготовленный из комбинации полупроводникового материала P-типа и N-типа, известный как p-n переход, с выводами, прикрепленными к двум концам. Эти выводы позволяют легко встраивать диод в электронные схемы.

Вывод, прикрепленный к полупроводнику n-типа, называется катодом . Таким образом, катод — это отрицательная сторона диода. Положительная сторона диода, то есть вывод, прикрепленный к полупроводнику p-типа, называется анодом .

Когда источник напряжения подключен к диоду так, что положительная сторона источника напряжения находится на аноде, а отрицательная сторона — на катоде, диод становится проводником и позволяет току течь.Напряжение, подключенное к диоду в этом направлении, называется прямым смещением .

Но если вы измените направление напряжения, приложив положительную сторону к катоду, а отрицательную — к аноду, ток не будет течь. Фактически диод становится изолятором. Напряжение, подключенное к диоду в этом направлении, называется обратным смещением .

Прямое смещение позволяет току течь через диод. Обратное смещение не позволяет току течь. (Во всяком случае, до определенного момента.Как вы обнаружите через несколько мгновений, существуют пределы того, сколько обратного напряжения смещения может удерживать диод.)

Это схематическое обозначение диода:

Анод слева, катод справа. Вот два полезных приема, чтобы запомнить, какая сторона символа — анод, а какая — катод:

  • Думайте об анодной стороне символа как о стрелке, указывающей направление обычного тока — от положительного к отрицательному.Таким образом, диод позволяет току течь в направлении стрелки.

  • Вертикальную линию на стороне катода можно представить как гигантский знак минус, указывающий, какая сторона диода отрицательна для прямого смещения.

Прямое и обратное смещение можно проиллюстрировать двумя очень простыми схемами, которые соединяют лампу с батареей с помощью диодов. В схеме слева диод смещен в прямом направлении, поэтому ток течет по цепи, и лампа загорается.В схеме справа диод смещен в обратном направлении, поэтому ток не течет, и лампа остается темной.

Обратите внимание, что в типичном диоде требуется определенное прямое напряжение, прежде чем протечет ток. Эта сумма обычно очень небольшая. В большинстве диодов это напряжение составляет около половины вольта. До этого напряжения ток не течет. Однако при достижении прямого напряжения через диод легко протекает ток.

Этот минимальный порог напряжения в прямом направлении называется прямым падением напряжения на диоде .Это потому, что схема теряет это напряжение на диоде. Например, если вы поместите вольтметр на выводы диода в цепи с прямым смещением, вы увидите прямое падение напряжения на диоде.

Тогда, если вы поместите вольтметр на клеммы лампы, напряжение будет разницей между напряжением батареи (9 В) и прямым падением напряжения на диоде.

Например, если прямое падение напряжения на диоде составляло 0,7 В, а напряжение батареи было ровно 9 В, напряжение на лампе было бы 8.3 В.

У диодов

также есть максимальное обратное напряжение, которое они могут выдержать до того, как они сломаются, и позволят току течь в обратном направлении через диод. Это обратное напряжение (иногда называемое PIV , для пикового обратного напряжения или PRV для пикового обратного напряжения ) является важной спецификацией для диодов, которые вы используете в своих схемах, поскольку вам необходимо убедиться, что ваши диоды выиграют ». не подвергаться риску, превышающему их рейтинг PIV.

Помимо падения прямого напряжения и пикового обратного напряжения, диоды также рассчитаны на максимальный номинальный ток.Превышите этот ток, и диод не подлежит ремонту.

,Полярность

— learn.sparkfun.com

Избранные любимец 39

Что такое полярность?

В области электроники полярность указывает, является ли компонент схемы симметричным или нет. Неполяризованный компонент — деталь без полярности — может быть подключен в любом направлении и по-прежнему работать так, как должен. Симметричный компонент редко имеет более двух выводов, и каждый вывод компонента эквивалентен.Вы можете подключить неполяризованный компонент в любом направлении, и он будет работать точно так же.

Поляризованный компонент — деталь с полярностью — может быть подключен к цепи только в одном направлении. Поляризованный компонент может иметь два, двадцать или даже двести контактов, и каждый из них имеет уникальную функцию и / или положение. Если поляризованный компонент был неправильно подключен к цепи, в лучшем случае он не будет работать должным образом. В худшем случае неправильно подключенный поляризованный компонент будет дымить, искры и быть очень мертвой деталью.

Ассортимент поляризованных компонентов: батареи, интегральные схемы, транзисторы, регуляторы напряжения, электролитические конденсаторы и диоды, среди прочего.

Полярность — очень важное понятие, особенно когда речь идет о физическом построении цепей. Включаете ли вы детали в макет, припаиваете их к печатной плате или вшиваете их в проект электронного текстиля, очень важно иметь возможность идентифицировать поляризованные компоненты и подключать их в правильном направлении.Так вот для чего мы здесь! В этом руководстве мы обсудим, какие компоненты имеют полярность, а какие нет, как определить полярность компонентов и как проверить некоторые компоненты на полярность.

Рассмотрите возможность чтения

Если ваша голова еще не кружится, возможно, можно будет прочитать оставшуюся часть этого руководства. Полярность — это концепция, которая основывается на некоторых концепциях электроники более низкого уровня и усиливает некоторые другие. Если вы еще этого не сделали, подумайте о том, чтобы ознакомиться с некоторыми из приведенных ниже руководств, прежде чем читать это.

Что такое схема?

Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.

Как использовать макетную плату

Добро пожаловать в чудесный мир макетов. Здесь мы узнаем, что такое макетная плата и как с ее помощью построить вашу самую первую схему.

Как пользоваться мультиметром

Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.

Полярность диодов и светодиодов

Примечание: Мы будем иметь в виду поток тока относительно положительных зарядов (то есть обычного тока) в цепи.

Диоды позволяют току течь только в одном направлении, и они всегда поляризованы . У диода два вывода. Положительная сторона называется анодом , а отрицательная — катодом .

Обозначение диодной цепи с маркировкой анода и катода.

Ток через диод может течь только от анода к катоду, что объясняет, почему важно, чтобы диод был подключен в правильном направлении. Физически каждый диод должен иметь какую-то индикацию анода или катода. Обычно диод имеет линию рядом с выводом катода , которая соответствует вертикальной линии в символе цепи диода.

Ниже приведены несколько примеров диодов. Верхний диод, выпрямитель 1N4001, имеет серое кольцо возле катода.Ниже этого сигнальный диод 1N4148 использует черное кольцо для маркировки катода. Внизу находится пара диодов для поверхностного монтажа, каждый из которых использует линию, чтобы отметить, какой вывод является катодом.

Обратите внимание на линии на каждом устройстве, обозначающие сторону катода, которые совпадают с линией на изображении выше.

Светодиоды

LED означает светоизлучающий диод , что означает, что, как и их диодные собратья, они поляризованы. Есть несколько идентификаторов для поиска положительных и отрицательных контактов светодиода.Вы можете попробовать найти более длинную ногу , которая должна указывать на положительный анодный штифт.

Или, если кто-то подрезал ножки, попробуйте найти плоский край на внешнем корпусе светодиода. Контакт, ближайший к плоскому краю , будет отрицательным катодным контактом.

Могут быть и другие индикаторы. У SMD-диодов есть ряд идентификаторов анода / катода. Иногда проще всего проверить полярность с помощью мультиметра. Установите мультиметр в положение диода (обычно обозначается символом диода) и прикоснитесь каждым щупом к одной из клемм светодиода.Если светодиод горит, положительный зонд касается анода, а отрицательный зонд касается катода. Если он не загорается, попробуйте поменять зонды местами.

Полярность крошечного желтого светодиода для поверхностного монтажа проверяется мультиметром. Если положительный вывод касается анода, а отрицательный — катода, светодиод должен загореться.


Диоды, конечно, не единственный поляризованный компонент. Есть масса деталей, которые не будут работать при неправильном подключении.Далее мы обсудим некоторые другие распространенные поляризованные компоненты, начиная с интегральных схем.

Полярность интегральной схемы

Интегральные схемы (ИС)

могут иметь восемь или восемьдесят контактов, и каждый контакт на ИС имеет уникальную функцию и положение. При использовании микросхем очень важно соблюдать полярность. Есть большая вероятность, что они задымятся, растают и испортятся при неправильном подключении.

ИС со сквозным отверстием обычно поставляются в двухрядном корпусе (DIP) — два ряда контактов, каждый из которых расположен на расстоянии 0.1 дюйм шириной, достаточной для того, чтобы охватить центр макета. Микросхемы DIP обычно имеют выемку , чтобы указать, какой из множества контактов является первым. Если не выемка, на ИС может быть выгравирована точка в корпусе рядом с контактом 1.

Микросхема с точкой и вырезом для обозначения полярности. Иногда вы получаете и то, и другое, иногда только одно или другое.

Для всех корпусов ИС номера выводов последовательно увеличиваются при перемещении против часовой стрелки от вывода 1.

ИС для поверхностного монтажа могут иметь QFN, SOIC, SSOP или другие форм-факторы. Эти микросхемы обычно имеют точек около контакта 1.

ATmega32U4 в корпусе TQFP, рядом с распиновкой таблицы данных.

Конденсаторы электролитические

Не все конденсаторы поляризованы, но когда они поляризованы, очень важно, не перепутать полярность.

Керамические конденсаторы — маленькие (1 мкФ и менее), обычно желтые, — имеют , а не поляризованные.Вы можете придерживаться их любым способом.

Керамические конденсаторы для сквозных отверстий и SMD 0,1 мкФ. Они НЕ поляризованы.

Колпачки электролитические (в них есть электролиты), похожие на консервные банки, поляризованы . Отрицательный штифт крышки обычно обозначается знаком «-» с отметкой и / или цветной полосой вдоль банки. У них также может быть на более длинная положительная ветвь .

Ниже представлены электролитические конденсаторы емкостью 10 мкФ (слева) и 1 мФ, на каждом из которых есть символ тире, обозначающий отрицательный вывод, а также более длинный положительный вывод.

Подача отрицательного напряжения на электролитический конденсатор в течение длительного периода времени приводит к кратковременному, но катастрофическому отказу. Они сделают pop , и верхняя часть колпачка либо вздувается, либо лопается. С этого момента колпачок будет практически мертв, действуя как короткое замыкание.

Другие поляризованные компоненты

Аккумуляторы и блоки питания

Правильная полярность в вашей цепи начинается и заканчивается правильным подключением источника питания.Независимо от того, получает ли вы питание от настенной бородавки или от LiPo батареи, очень важно убедиться, что вы случайно не подключили их обратно и случайно не подали 9 В или 4,2 В.

Любой, кто когда-либо заменял батарейки, знает, как определить их полярность. На большинстве батарей положительные и отрицательные клеммы обозначаются символом «+» или «-». В других случаях это может быть красный провод для положительного и черный провод для отрицательного.

Ассортимент аккумуляторов.Литий-полимерный, плоская ячейка, щелочная батарея 9 В, щелочная батарея AA и NiMH AA. У каждого есть способ обозначать положительные или отрицательные клеммы. Блоки питания

обычно имеют стандартный разъем, который обычно должен иметь полярность. У бочкового домкрата, например, два провода: внешний и внутренний; внутренний / центральный провод обычно является положительной клеммой. Другие разъемы, такие как JST, имеют ключ и , поэтому вы просто не можете подключить их наоборот.

Для дополнительной защиты от обратной полярности источника питания вы можете добавить защиту от обратной полярности с помощью диода или полевого МОП-транзистора.

Транзисторы, полевые МОП-транзисторы и регуляторы напряжения

Эти (традиционно) трехконтактные поляризованные компоненты объединяются вместе, потому что они имеют одинаковые типы корпусов. Транзисторы со сквозным отверстием, полевые МОП-транзисторы и регуляторы напряжения обычно поставляются в корпусах TO-92 или TO-220, как показано ниже. Чтобы определить, какой из выводов является каким, найдите плоский край на корпусе TO-92 или металлический радиатор на TO-220 и сопоставьте его с выводом в таблице данных.

Выше транзистор 2N3904 в корпусе TO-92, обратите внимание на изогнутые и прямые края.Регулятор 3,3 В в корпусе ТО-220, обратите внимание на металлический радиатор сзади.

и т. Д.

Это лишь верхушка айсберга поляризованных компонентов. Даже неполяризованные компоненты, такие как резисторы, могут поставляться в поляризованных корпусах. Блок резисторов — группа из пяти или около того предварительно установленных резисторов — является одним из таких примеров.

Блок поляризованных резисторов. Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце. Точка представляет собой первый общий штифт.

К счастью, каждый поляризованный компонент должен каким-то образом сообщать вам, какой вывод какой.Обязательно всегда читайте таблицы и проверяйте корпус на наличие точек или других маркеров.

Ресурсы и движение вперед

Теперь, когда вы знаете, что такое полярность и как ее определить, почему бы не ознакомиться с некоторыми из этих руководств по теме:

    Основные сведения о разъемах
  • — существует ряд разъемов, которые имеют собственную полярность. Обычно это отличный способ убедиться, что вы не подаете питание или какой-либо другой сигнал в обратном направлении.
  • Диоды — наш яркий пример полярности компонентов. В этом руководстве более подробно рассказывается, как работают диоды и какие типы диодов существуют.
  • LilyPad Design Kit Эксперимент 1. Схемы существуют не только на макетных и печатных платах, вы также можете вшивать их в рубашки и другие ткани! Ознакомьтесь с руководствами по LilyPad Design Kit, чтобы узнать, как начать работу. Знание полярности очень важно для правильного подключения этих светодиодов.

Resistor pack

,

Что такое PIN-диод? — Определение, структура, работа и приложения

Определение: Диод, в котором внутренний слой с высоким сопротивлением зажат между P- и N-областями полупроводникового материала такого типа, известен как PIN-диод. Слой с высоким сопротивлением внутренней области обеспечивает большое электрическое поле между P- и N-областями. Электрическое поле возникает из-за движения дырок и электронов. Направление электрического поля — от n-области к p-области.

Высокое электрическое поле генерирует большие пары электронных дырок, благодаря которым диод обрабатывает даже слабые сигналы. PIN-диод — это тип фотодетектора, используемый для преобразования энергии света в электрическую.

Внутренний слой между областями P- и N-типа увеличивает расстояние между ними. Ширина области обратно пропорциональна их емкости. Если расстояние между областями P и N увеличивается, их емкость уменьшается.Эта характеристика диодов увеличивает время их отклика и делает диод пригодным для работы в микроволнах.

Обозначение PIN диода

Символьное представление PIN-диода показано на рисунке ниже. Анод и катод — это два вывода PIN-диода. Анод — это положительный вывод, а катод — их отрицательный вывод.

symbol-of-pin-diode

Структура диода PIN

Диод состоит из P-области и N-области, разделенных внутренним полупроводниковым материалом.В P-области дырка является основным носителем заряда, а в n-области электрон является основным носителем заряда. Внутренняя область не имеет свободного носителя заряда. Он действует как изолятор между n и p-областью. I-область имеет высокое сопротивление, которое препятствует прохождению потока электронов через нее.

pin-diode-symbol

Работа PIN диода

Работа PIN-диода аналогична работе обычного диода. Когда диод несмещен, их носитель заряда будет рассеиваться.Слово диффузия означает, что носители заряда обедненной области пытаются переместиться в свою область. Процесс диффузии продолжается до тех пор, пока заряды не станут равновесными в области истощения.

pin-diode

Пусть N и I-слои составляют область истощения. Диффузия дырки и электрона через область создает обедненный слой через область NI. Тонкий обедненный слой индуцирует через n-область, а толстый обедненный слой противоположной полярности индуцирует через I-область.

ПИН-диод с прямым смещением

Когда диод остается смещенным вперед, заряды непрерывно вводятся в I-область из P- и N-областей. Это снижает прямое сопротивление диода, и он ведет себя как переменное сопротивление.

Носитель заряда, который входит из P- и N-области в i-область, не сразу объединяется во внутреннюю область. Конечное количество заряда, хранящегося во внутренней области, снижает их удельное сопротивление.

Считайте, что Q — это количество заряда, накопленного в области истощения.Τ — время, затраченное на рекомбинацию зарядов. Количество зарядов, хранящихся в собственной области, зависит от времени их рекомбинации. Прямой ток начинает течь в область I. equation-1

Где, I F — прямой ток
τ- время рекомбинации

Сопротивление (R s ) тока при прямом смещении обратно пропорционально заряду Q, накопленному в собственной области. equation-2

Где, w — ширина области
μ — подвижность электронов
μ 0 — подвижность дырок

Из уравнений (1) и (2) получаем equation-3

Приведенное выше уравнение показывает, что сопротивление собственной области зависит от ширины области.

Обратно смещенный PIN-диод

Когда на диод подается обратное напряжение, ширина обедненной области увеличивается. Толщина области увеличивается до тех пор, пока весь подвижный носитель заряда I-области не уносится от нее. Обратное напряжение, необходимое для полного удаления носителя заряда из I-области, известно как напряжение качания.

При обратном смещении диод ведет себя как конденсатор. Области P и N действуют как положительная и отрицательная пластины конденсатора, а внутренняя область — изолятор между пластинами.equation-5

Где, A — диод
w — толщина собственной области

Самая низкая частота, с которой начинается эффект, выражается как

.

equation-7

Где, ε — диэлектрическая проницаемость кремния

Применение ПИН-диода

  • Высоковольтный выпрямитель — Используется как высоковольтный выпрямитель. Диод имеет большую внутреннюю область между N и P-областями, которая может выдерживать высокое обратное напряжение.
  • Фотодетектор — PIN-диод используется для преобразования световой энергии в электрическую.Диод имеет большую область истощения, что улучшает их характеристики за счет увеличения объема преобразования света.

PIN-диод наиболее подходит для низковольтных устройств.

,

Диод

обзор

Диод — это электронный компонент с двумя выводами, который проводит электричество только в одном направлении. Этот термин обычно используется для обозначения полупроводникового диода . Действительно, диоды были первыми электронными компонентами, которые были построены с использованием полупроводниковых материалов (в настоящее время используется в основном кремний, хотя германий также используется для некоторых приложений).Направление, в котором диод пропускает ток, известно как прямое направление диода . В другом направлении (известном как обратное направление диода ) диод предотвращает протекание тока. Полупроводниковый материал в диоде состоит из двух смежных областей , каждая из которых была «легирована» химическими примесями для придания ей определенных электрических характеристик.

Одна из областей содержит большое количество отрицательных носителей заряда (свободных электронов) и называется полупроводниковым материалом n-типа .Другая область характеризуется отсутствием электронов (часто называемых «дырками») во многих химических связях между атомами внутри области. Эти отверстия действуют как носителей положительного заряда , а область называется полупроводниковым материалом p-типа . Один вывод диода, известный как катод , подключен к области n-типа. Другой вывод, известный как анод , подключен к области p-типа. Электроны текут с катода на анод.Обычный ток, конечно, идет в противоположном направлении, поэтому обычный ток выходит из диода через катод. Сама природа диода означает, что он должен быть правильно включен в цепь. По этой причине большинство дискретных компонентов диода маркируются таким образом, чтобы идентифицировать катод (обычно с черной или белой полосой). Типичный диод вместе с обозначением его принципиальной схемы показан ниже. Обратите внимание, что направление стрелки в символе цепи указывает направление обычного тока, протекающего через диод.


Типовой диод и обозначение его принципиальной схемы


В двух схемах, показанных ниже, типичный диод включен последовательно с лампой и батареей. В левом варианте положительный полюс батареи подключен к аноду диода, так что обычный ток будет течь в направлении стрелки (т.е.е. от анода к катоду). Свойства диода означают, что он позволит току течь в этом направлении, и лампа загорится. В правом варианте батарея подключается наоборот, т.е. отрицательной клеммой подключена к аноду диода. Диод не будет проводить ток в этом направлении, поэтому ток в цепи не течет, и лампа не горит.


Диод позволяет току течь только в одном направлении


Свойства полупроводниковых материалов

Чтобы помочь вам понять, как работает диод, мы попытаемся объяснить свойства полупроводниковых материалов, начав с рассмотрения природы связей , образованных между атомами, из которых состоят различные материалы.Первое, что нужно понять, это то, что для каждого элемента в периодической таблице будет определенное количество электронов на орбите вокруг ядра атома. Число электронов, вращающихся вокруг атома, будет различным для каждого элемента, но во всех случаях атомы будут расположены на одной или нескольких орбитах, известных как оболочек . Каждая оболочка требует определенного количества электронов, чтобы считаться завершенной, а электроны во внешней оболочке атома известны как валентных электронов.Именно эти валентные электроны придают атому электрические свойства, которые, в свою очередь, определяют, как атом может сочетаться с другими атомами. Валентные электроны образуют ковалентных связей с валентными электронами других атомов. В твердых телах атомы обычно объединяются в регулярно повторяющуюся трехмерную структуру, известную как кристаллическая решетка . Полупроводниковые материалы, такие как кремний или германий, имеют четыре валентных электрона. Структура атома кремния проиллюстрирована ниже.


Модель атома кремния (слева) и в упрощенном виде (справа)


На внешней оболочке атома кремния четыре электрона. Для того чтобы оболочка была полной (и, следовательно, стабильной), внешней оболочке потребуется восемь электронов. В структуре кристаллической решетки кремния каждый валентный электрон совместно с ближайшим атомом кремния образует четыре ковалентные связи, как показано ниже.Таким образом, каждый атом имеет «половину» восьми валентных электронов. Такое количество валентных электронов придает кристаллической решетке очень стабильную структуру, а также очень затрудняет выход электронов из своих атомов. В результате полупроводниковые элементы, такие как кремний и германий, в чистом виде являются очень хорошими изоляторами. Структура кристаллической решетки чистого полупроводникового материала показана ниже.


Ковалентные связи в кристаллической решетке


При нормальных температурах атомы в кристаллической решетке будут вибрировать, вызывая разрыв некоторых ковалентных связей и освобождение валентных электронов.Когда электрон таким образом разрывает свою связь, во внешней оболочке атома, откуда он пришел, создается область положительного заряда (называемая дыркой ), как показано ниже. Атом становится положительным ионом . Дырку можно представить как положительный заряд, равный по величине отрицательному заряду электрона. Свободные электроны в полупроводниковом материале будут притягиваться к дыркам из-за их противоположного (положительного) заряда, и если электрон падает в дыру и заполняет ее, ион снова становится нейтральным атомом.


Кристаллическая решетка кремния со свободными электронами и дырками


Когда батарея подключается через чистый полупроводниковый материал, она притягивает свободные электроны в кристаллической структуре к положительному выводу и поставляет больше свободных электронов на отрицательный вывод. Свободные электроны от разорванных ковалентных связей движутся через полупроводник, «прыгая» от одного отверстия к другому в направлении положительного вывода, заставляя его выглядеть как , как если бы положительно заряженные дырки движутся к отрицательному выводу.Ток, протекающий в чистом полупроводниковом материале, очень мал, и его можно рассматривать как потоки свободных электронов и дырок, идущие в противоположных направлениях, как показано ниже. Этот поток тока называется собственной проводимостью , потому что носители заряда (свободные электроны и дырки) приходят изнутри самого материала. Степень проводимости также зависит от температуры, поскольку ковалентные связи легче разрываются при повышении температуры, создавая больше свободных электронов и дырок и уменьшая сопротивление полупроводникового материала.


Ток в собственном полупроводнике


Использование полупроводниковых материалов для создания таких устройств, как диоды, требует увеличения проводимости материала. Это может быть достигнуто путем добавления примесей в полупроводник контролируемым образом — процесс, известный как легирование . Легированный полупроводниковый материал известен как примесный полупроводник , потому что добавленные к нему примеси вводят дополнительные носители заряда.Необходимо тщательно выбирать материалы, используемые в процессе легирования. Они должны иметь атомы примерно того же размера, что и атомы кремния или германия, которые они заменяют, чтобы они могли вписаться в кристаллическую решетку. У них также должно быть правильное количество валентных электронов для достижения желаемого результата, заключающегося в увеличении количества либо отрицательных носителей заряда (электронов), либо положительных носителей заряда (дырок).

Чтобы создать полупроводник с большим количеством отрицательных носителей заряда (известный как полупроводник n-типа ), чистый полупроводниковый материал легируют таким материалом, как фосфор, который имеет пять валентных электронов (и, таким образом, говорится быть пятивалентной ).На схеме ниже показано, что происходит, когда атом фосфора вводится в решетку кристалла кремния. Четыре его валентных электрона образуют ковалентные связи с четырьмя соседними атомами кремния, но пятый валентный электрон не может образовывать связь и, таким образом, не связан прочно с молекулярной структурой кристаллической решетки. Этот «запасной» электрон может относительно легко перемещаться внутри кристаллической структуры и, следовательно, доступен для проводимости. Примесный атом называется донорным атомом , потому что он обеспечивает электрон для проводимости.


Структура кристаллической решетки кремния n-типа


«Неочищенный» кремний является полупроводником n-типа, поскольку основных носителей заряда являются отрицательно заряженными электронами (обратите внимание, что общий заряд в кристалле остается нулевым, потому что каждый атом в структуре остается электрически нейтральным). Правильное количество примесных атомов добавляется к кремнию (или германию) для обеспечения необходимого увеличения проводимости.Несколько положительно заряженных дырок останутся в материале n-типа и будут действовать как собственные носители заряда. Эти дыры образуются при разрыве ковалентных связей между атомами кремния. Из-за относительно небольшого количества дырок по сравнению с количеством свободных электронов в материале их называют неосновными носителями . На диаграмме ниже показана проводимость в полупроводнике n-типа.


Основными носителями заряда в материале n-типа являются электроны.


Чтобы создать полупроводниковый материал, в котором основными носителями заряда являются положительно заряженные дырки (известный как полупроводник p-типа ), кремний или германий легируют таким материалом, как бор, который имеет три валентных электрона (и, следовательно, сказал трехвалентный ).На схеме ниже показано, что происходит, когда атом бора вводится в решетку кристалла кремния. Его три валентных электрона образуют ковалентные связи с тремя соседними атомами кремния. Связь между атомом бора и четвертым атомом кремния остается неполной, дырка действует как положительный заряд, который может захватывать свободный электрон, движущийся через кристаллическую решетку. Примесный атом называется акцепторным атомом , потому что он легко принимает электрон, чтобы завершить свою связь с атомом кремния.


Структура кристаллической решетки кремния p-типа


«Неочищенный» кремний является полупроводником p-типа, поскольку большинство носителей заряда являются положительно заряженными дырками (обратите внимание, что, как и в случае материала n-типа, общий заряд в кристалле остается нулевым, поскольку каждый атом в структуре остается электрически нейтральным) ,Правильное количество примесных атомов добавляется к кремнию (или германию) для обеспечения необходимого увеличения проводимости. Несколько отрицательно заряженных электронов останутся в материале p-типа и будут действовать как собственные носители заряда. Эти электроны освобождаются при разрыве ковалентных связей между атомами кремния. Из-за относительно небольшого количества присутствующих электронов по сравнению с количеством дырок в материале, именно электроны теперь становятся неосновными носителями. Обратите внимание, что для полупроводниковых материалов как n-типа, так и p-типа повышение температуры приведет к увеличению количества неосновных носителей, присутствующих в материале, поскольку ковалентные связи между атомами кремния (или германия) легче разрываются.На диаграмме ниже показана проводимость в полупроводнике p-типа.


Основными носителями заряда в материале p-типа являются дырки.


P-n переход

Работа многих полупроводниковых устройств, в том числе диодов, зависит от эффектов, возникающих на стыке полупроводниковых материалов n-типа и p-типа (p-n переход , ).Такой переход, который может быть сформирован в той же структуре непрерывной кристаллической решетки с использованием соответствующих методов легирования, показан ниже. После создания перехода свободные электроны в материале n-типа рядом с переходом могут перемещаться через переход (посредством процесса, известного как диффузия ) в материал p-типа, где они занимают дырки. В результате этого процесса диффузии область n-типа рядом с переходом становится положительно заряженной из-за потери электронов, в то время как область p-типа на другой стороне перехода становится отрицательно заряженной из-за получения электронов.В то же время кажется, что дырки диффундируют через переход в противоположном направлении (на самом деле они создаются в области n-типа в результате миграции электронов в область p-типа), и эти дырки могут захватывать любые оставшиеся свободные электроны. в непосредственной близости.


Электроны и дырки рядом с переходом мигрируют через него.


Движение отрицательных и положительных носителей заряда через переход прекращается довольно быстро, потому что увеличение отрицательного заряда в материале p-типа препятствует дальнейшему потоку электронов в область p-типа, в то время как накопление положительного заряда в материал n-типа препятствует созданию большего количества отверстий в области n-типа.Области n-типа и p-типа, непосредственно прилегающие к переходу, становятся относительно свободными от основных носителей заряда (см. Ниже) и вместе образуют новую область, называемую обедненным слоем . Слой истощения, хотя и менее 10 -3 мм в ширину, эффективно становится изолятором. Между переходом существует небольшая разность потенциалов, называемая напряжением перехода, которое действует от n-типа к p-типу. Напряжение перехода составляет около 0,1 В для германия и 0,6 В для кремния.


Слой обеднения создается миграцией носителей заряда.


Если батарея подключена через p-n переход, положительный вывод которого подключен к стороне p-типа, а отрицательный вывод — к стороне n-типа, напряжение перехода будет увеличиваться по мере того, как свободные электроны и дырки отводятся от перехода, и сопротивление соединения станет еще больше.Переход называется с обратным смещением . Электроны и дырки будут более сильно отталкиваться p-n-переходом, и слой обеднения станет шире (см. Ниже). Только очень небольшое количество электронов и дырок (созданных ковалентными связями, разрывающимися с обеих сторон перехода при нормальных температурах) будет обмениваться через p-n переход, вызывая протекание крошечного тока (известного как ток утечки ).


Показанный здесь переход имеет обратное смещение.


Если батарея подключена через p-n переход с противоположной полярностью, т.е.е. с его положительной клеммой, подключенной к стороне n-типа, а ее отрицательной клеммой к стороне p-типа, переход называется с прямым смещением . Слой обеднения будет сужаться по мере того, как свободные электроны и дырки подталкиваются к переходу, и если приложенное напряжение превышает напряжение перехода, ток будет течь через переход, потому что большинство носителей смогут пересечь его. Электроны будут мигрировать со стороны n-типа на сторону p-типа, а дырки будут мигрировать в противоположном направлении (см. Ниже).И снова возникнет утечка тока из-за обмена неосновными носителями, создаваемого нормальным разрывом ковалентных связей по обе стороны от перехода. На этот раз, однако, ток утечки способствует протеканию тока основной несущей, и сопротивление перехода очень низкое.


Прямое смещение


Переходный диод — это обычно используемый тип диода, который использует свойства p-n перехода.Он состоит из p-n-перехода, один вывод которого подключен к p-стороне (анод), а другой — к n-стороне (катоду). Упрощенный вид кремниевого диода с «планарной» конструкцией показан ниже. Тонкий слой кремния n-типа припаян к металлической основе, которая соединена с катодом. Тонкая пленка из оксида кремния образуется на верхней поверхности ломтика при нагревании его паром до температуры около 1100 ° C и действует как изолирующий материал. Затем в оксидной пленке химически вытравливается «окно», и пары, содержащие соответствующий легирующий агент, могут диффундировать через него, превращая открытую область среза в кремний p-типа.Затем алюминий испаряется на область p-типа, что позволяет припаять к ней анодный вывод. Наконец, диод герметичен во внешнем кожухе для защиты от влаги и света.


Секция через кремниевый диод


Характеристики диодов

Диоды демонстрируют определенное поведение, которое делает их очень полезными в электронных приложениях.Когда диод смещен в обратном направлении, он позволяет только очень небольшому току утечки течь в обратном направлении, даже когда обратное напряжение относительно высокое. Поскольку диод позволяет току течь только в одном направлении, он является жизненно важным компонентом в схемах, преобразующих переменный ток в постоянный (процесс, известный как выпрямление ). Другой интересной характеристикой диода является то, что при прямом смещении его прямое напряжение не увеличивается значительно, даже когда через диод протекают относительно высокие токи.Ниже показаны типичные характеристические кривые кремниевых и германиевых диодов при 25 ° C. Обратите внимание, что для обоих типов прямой ток ( I F ) невелик до тех пор, пока прямое напряжение ( В F ) не составит около 0,6 В для кремния и около 0,1 В для германия. После этого небольшое изменение V F вызывает большое увеличение I F .


Характеристики кремниевых и германиевых диодов


Обратный ток I R пренебрежимо мал и остается таким, когда обратное напряжение В R увеличивается.Однако, если V R увеличивается в достаточной степени, изоляция обедненного слоя разрушается, и I R увеличивается внезапно и быстро. Если это происходит, обычно диод выходит из строя. Напряжение пробоя может варьироваться от нескольких вольт до 1000 вольт для кремния и 100 вольт для германия, в зависимости от конструкции диода и степени используемого легирования (спасибо моему другу Клаусу Польманну за то, что он указал, что моя исходная диаграмма не показал точки пробоя кремниевой кривой!).Двумя важными электрическими характеристиками диода являются средний прямой ток и максимальное обратное напряжение , которые не должны превышаться при нормальных условиях.

Преобразование мощности

Электроэнергия вырабатывается как переменный ток, поскольку это наиболее экономичная форма для выработки и распределения больших объемов электроэнергии.Электроэнергия, поступающая в ваш дом (если вы живете в Великобритании), — это переменный ток 230 В с частотой 50 Гц. Однако для работы многих электронных устройств требуется постоянный ток относительно низкого напряжения. Диоды могут быть использованы для создания цепей, которые выпрямляют переменный ток для получения постоянного тока. Переменный ток называется так, потому что ток течет сначала в одном направлении, а затем в противоположном. Это изменение направления происходит много раз в секунду, в зависимости от частоты a.с. поставка. Простейший вид выпрямительной схемы называется полуволновым выпрямителем и позволяет использовать только половину переменного тока. форма волны для прохождения через цепь. В полуволновом выпрямителе используется единственный диод, который проводит электричество, когда ток течет в одном направлении, но не в другом. Базовая схема однополупериодного выпрямителя показана ниже.


Базовый однополупериодный выпрямитель


В показанной схеме выпрямленный ток эффективно освещает лампу, подавая на нее один полупериод переменного тока для каждого полного цикла, который имеет место (только половина a.с. форма волны может проходить через диод). Если бы диод был удален, лампа будет получать ток в течение обоих полупериодов и, следовательно, горела бы ярче. Хотя свет горит относительно тускло, он не мигает, потому что нить накала не успевает остыть и снова нагреться между полупериодами. Однако для большинства приложений оба полупериода переменного тока потребуется форма волны, и простого полуволнового выпрямления, обеспечиваемого одним диодом, будет недостаточно.Схема преобразования, которая делает оба полупериода переменного тока. Источник постоянного тока называется двухполупериодным выпрямителем . В одной из наиболее часто используемых схем двухполупериодного выпрямителя используются четыре диода в схеме, называемой двухполупериодным мостом . Схема показана ниже.


Двухполупериодный мостовой выпрямитель


На двух схемах ниже показано, как обычный ток протекает в цепи и через нагрузку в течение каждого полупериода a.с. Форма волны. В каждом случае ток, текущий к нагрузке от источника переменного тока. источник показан красными стрелками, а обратный ток (от нагрузки обратно к источнику) показан синими стрелками. Обратите внимание, что независимо от полярности полупериода ток всегда течет через нагрузку в одном и том же направлении. В каждом полупериоде другая пара диодов будет смещена в прямом направлении и позволит току проходить в прямом направлении (диоды, показанные серым цветом для каждого полупериода, имеют обратное смещение и будут блокировать ток в обратном направлении. направление).


Обычный ток в положительном полупериоде



Обычный ток в отрицательном полупериоде


Точечный диод

Конструкция германиевого точечного диода показана ниже.Острие золотой или вольфрамовой проволоки прижимается к таблетке германия n-типа. Во время изготовления через диод пропускается кратковременный ток, который образует крошечную область p-типа в таблетке вокруг наконечника, образуя p-n переход с очень небольшой площадью.


Конструкция точечного диода


При обратном смещении обедненный слой в диоде действует как изолятор, зажатый между двумя проводящими «пластинами» (областями p-типа и n-типа).В результате диод действует как конденсатор. Тема конденсаторов рассматривается в другом месте, но по сути конденсатор — это устройство, которое может накапливать электрический заряд. Конденсаторы также обладают свойством блокировать постоянный ток, позволяя протекать переменному току, особенно на высоких частотах, например, в радиосигналах (чем выше частота переменного тока, тем меньше конденсатор препятствует прохождению тока). Точечные диоды (иногда называемые кристаллами ) часто используются в качестве сигнальных диодов для обнаружения радиосигналов.

Точечный диод часто используется для обнаружения высокочастотного сигнала из-за его крошечной площади перехода и, следовательно, малой емкости, что делает его чувствительным к маломощным высокочастотным токам, присутствующим в радиосигналах. Германиевые точечные диоды обычно используются в качестве детекторов в радиосхемах из-за их относительно низкого прямого напряжения (около 0,2 В), что позволяет им обнаруживать более низкие напряжения сигнала. Радиосигналы по существу состоят из сигналов звуковой частоты, модулированных на несущей радиочастоты.Детектор работает, эффективно действуя как полуволновой выпрямитель, превращая радиосигнал переменного тока в колебательный сигнал постоянного тока. Затем этот сигнал отправляется через фильтр нижних частот для извлечения исходного сигнала звуковой частоты.

Стабилитрон

В нормальном диоде с переходом работа диода при его напряжении пробоя или выше приведет к разрушению обедненного слоя и приведет к необратимому повреждению диода. диоды Зенера диоды, которые могут быть сделаны, чтобы проводить ток в обратном направлении при определенной фиксированной опорное напряжение (напряжение пробоя их) без ущерба страдания. Каждый стабилитрон рассчитан на определенное напряжение обратного пробоя (от 2,4 В и выше), при котором он будет проводить ток в обратном направлении, и имеет максимальную номинальную мощность (типовые значения — 400 мВт и 1,3 Вт). Стабилитрон может использоваться отдельно для обеспечения чувствительного к напряжению переключателя или последовательно с токоограничивающим резистором для регулирования напряжения.Обозначение принципиальной схемы стабилитрона показано ниже вместе с характеристической кривой для типичного стабилитрона.


Условное обозначение принципиальной схемы стабилитрона



Характеристика напряжения и тока стабилитрона


Из кривой видно, что увеличение обратного напряжения оказывает незначительное влияние на обратный ток, пока не будет достигнуто напряжение пробоя В Z (также известное как напряжение стабилитрона ).В этот момент ток может быстро увеличиваться в широком диапазоне с небольшим изменением напряжения или без него. Обратите внимание, что наклон кривой между точками A и B на графике почти вертикальный. Если обратное напряжение снова упадет ниже напряжения пробоя, обратный ток снова станет незначительным. Чтобы ограничить обратный ток и предотвратить перегрев стабилитрона, нельзя превышать номинальную мощность стабилитрона. Максимальный обратный ток, который может быть перенесен, можно рассчитать по следующей формуле:

где:

I MAX = максимальный обратный ток

P = номинальная мощность диода

В = напряжение стабилитрона

Стабилитроны производятся с определенным напряжением стабилитрона от 2.От 4 В до 200 В, и стабилитрон с заданным напряжением стабилитрона может быть использован последовательно с соответствующим резистором в цепи регулятора источника питания для поддержания постоянного выходного напряжения, даже если само напряжение питания подвержено колебаниям. В простой схеме регулятора напряжения, показанной ниже, используется один стабилитрон (Z), соединенный последовательно с резистором (R) и постоянным током. источник питания (в данном случае сухой аккумулятор на 12 В, напряжение которого со временем может упасть). Требуемое выходное напряжение составляет 8 В, а нагрузочное устройство потребляет ток 100 мА.


Простая схема регулятора питания


В этой схеме, пока напряжение питания превышает требуемое выходное напряжение (или, точнее, напряжение стабилитрона) на несколько вольт, напряжение на стабилитроне будет стабильным. Если мы выбираем резистор подходящего номинала, падение напряжения на резисторе ( В, R ) всегда должно быть разницей между напряжением стабилитрона диода ( В, Z ) и напряжением питания ( В, ). ПОСТАВКА ).Ближайшее стандартное напряжение стабилитрона к требуемому выходному напряжению (8 В) составляет 8,2 В, что приемлемо близко к целевому напряжению. В дополнение к току нагрузки стабилитрон будет потреблять как минимум еще 5 мА, поэтому максимальное значение тока ( I MAX ) в 110 мА должно соответствовать нашим требованиям (хорошее практическое правило — допускать от 10% до 20% сверх тока нагрузки). Мы также должны выбрать стабилитрон с подходящей номинальной мощностью, чтобы он мог выдерживать максимальный ток, который может протекать через него ( I MAX ).Максимальную мощность, рассеиваемую диодом, можно рассчитать как:

В Z × I МАКС = 8,2 В × 0,110 A = 0,902 Вт

Самая низкая стандартная номинальная мощность стабилитрона, превышающая это значение, составляет 1,3 Вт, что должно быть вполне достаточным. Как уже упоминалось, падение напряжения на резисторе будет разницей между напряжением источника и напряжением стабилитрона (12 В — 8.2 В = 3,8 В). Используя закон Ома, мы можем рассчитать необходимое значение сопротивления следующим образом:

В R = 3,8 В = 34,545 Ом
I MAX 0,110 A

Ближайшее значение стандартного резистора, превышающее 34,545 Ом, составляет 39 Ом. Мы также должны убедиться, что номинальная мощность резистора соответствует работе.Мы можем рассчитать мощность, рассеиваемую в резисторе, как:

В R × I MAX = 3,8 В × 0,110 A = 0,418 Вт

Если бы мы могли быть достаточно уверены, что напряжение питания никогда не превысит 12 В, мы, вероятно, могли бы обойтись резистором номиналом 0,5 Вт, хотя было бы разумно выбрать резистор номиналом 1 Вт или 2 Вт, просто на всякий случай. ,Фактически, всегда стоит учитывать возможность возникновения ситуации перенапряжения при работе с относительно нестабильными источниками питания и учитывать это при выборе компонентов схемы.


,

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *