Site Loader

Содержание

Физические явления. Гром, гроза и молния — РОСТОВСКИЙ ЦЕНТР ПОМОЩИ ДЕТЯМ № 7

Гром-это вещество,явление или физическое тело?

Извините, я не уловил мысль. Помогите понять, что имелось ввиду. «Как и в случае равномерного движения, можно пользоваться формулой [tex]s \: = ut[/t … ex]для определения пути, пройденного за данный промежуток времени при определённой средней скорости, и формулой [tex]t \: = \frac{s}{u} [/tex]для определения времени, за которое пройден данный путь с данной средней скоростью. Но пользоваться этими формулами можно только для того участка пути и для того промежутка времени, для которых эта средняя скорость была рассчитана. Например, зная среднюю скорость на участке пути AB и зная длину AB, можно определить время, за которое был пройден этот участок, но нельзя найти время, за которое была пройдена половина участка АВ, т.к. средняя скорость на половине участка при неравномерном движении, вообще говоря, не будет равна средней скорости на всём участке. Что имеется ввиду под предпоследним предложением? Объясните просторно и понятно, даю 40 баллов​

ПОЖАЛУЙСТА, СРОЧНО! 1).

Известно, что нота «до» первой октавы имеет частоту 262 Hz. Также известно, что частоты двух одноимённых нот соседних октав от … личаются ровно в 2 раза. В какой октаве находится звук, порождённые колебаниями, ищображенными на графике? (график приложен) 2). Нарисовать график 3). Определить музыкальный инструмент

Для того, чтобы быстрее остудить кастрюлю с горячей водой, Вам предложили: 1) поставить кастрюлю на лёд, 2) положить лёд на крышку кастрюли. Выберите … один из вариантов и обоснуйте его.

В системе, показанной на рисунке, все нити невесомы и находятся в вертикальном положении. Верхний груз в два раза легче нижнего. Верхняя нить натянута … с силой T1=19 Н, нижняя — с силой T3=10 Н. Определите силу натяжения средней нити T2 .

28. На полиці стоять дві бронзові статуетки, одна з яких є учетверо зменшеною копією другої. У скільки разів відрізняються тиски, що створюють ці стат … уетки на полицю? 29. Знайти максимальну висоту колони, яку можна збудувати з каменю, що має межу міцності на стискання 5 МПа і густину 5000 кг/м3.

Вважати g = 10 м/с2. 30. Який тиск чинить вода на нижню поверхню плоскої крижинки площею 20 см2 та масою 500 г?

Визначити омічний опір коливального контуру, індуктивність якого 1 Гн, якщо за час 0,01 с амплітуда напруги на конденсаторі зменшуєтся в 4 рази

Решите пожалуйста 3 задачи​

Решите пожалуйста эти 3 задачи)​

решите пожалуйста задачу 18 даю 20 баллов

решите пожалуйста задачу 11 даю 20 баллов

физика атмосферы, в результате чего

Такое явление, как гроза, одновременно пугает и завораживает. Вспышки молний, расчерчивающих потемневшее небо, и страшные раскаты грома… В древности люди думали, что так боги проявляют свой гнев на жителей Земли. В настоящее время наука может дать точное описание и объяснение этому природному явлению.

Как появляется молния и гром: краткое описание явления

Искровой разряд

Молния — это гигантский электрический разряд, всегда сопровождающийся яркой вспышкой и звуковыми раскатами — громом. Вспышка молнии редко бывает одиночной, обычно они бывают от 2-3 до нескольких десятков разрядов. Образование этого явления возможно в кучево-дождевых облаках или слоисто-дождевых тучах огромных размеров (до 7 км в высоту). Такие облака и тучи легко выделить среди других по насыщенному темно-синему цвету. 

Источник: yandex.by

Молнии могут образовываться:

  1. Внутри одной тучи.
  2. Между соседними наэлектризованными облаками.
  3. Между тучами и поверхностью земли. 

Грозовые облака состоят из пара, который в верхних слоях тучи из-за низкой температуры конденсирован в виде кристалликов льда. Для того чтобы туча стала грозовой, ледяные кристаллы внутри нее должны начать активно двигаться. Этому способствуют потоки теплого воздуха, поднимающиеся с нагретой поверхности. Теплые массы воздуха влекут за собой вверх более мелкие кристаллики льда, которые наталкиваются на более крупные. В результате этого процесса маленькие кристаллы оказываются положительно заряженными, крупные — отрицательно заряженными.

При этом маленькие кристаллики льда концентрируются в верхней части тучи, которая становится положительно заряженной, а большие — в нижней, отрицательно заряженной. Напряженность электрического поля в таком облаке достигает огромных значений: 1 миллион вольт на 1 метр. При соприкосновении противоположно заряженных слоев в местах столкновения ионы и электроны образуют канал, все заряженные частицы устремляются по нему вниз, и образуется мощный электрический разряд — молния. 

Полученный канал раскаляется до 30000 градусов Цельсия и образует яркий свет, который видно доли секунды. После того, как канал образован, грозовая туча начинает разряжаться: за первым ударом молнии следуют два и более разрядов. 

Звук разряда

Через несколько секунд после вспышки молнии возникает гром. Гром — это взрывоподобные колебания воздуха, которые происходят из-за резкого повышения давления вдоль канала, чему способствует разогрев атмосферы до 30000 градусов Цельсия.  

Удар молнии — это своего рода взрыв, который вызывает ударную волну, очень опасную для человека или животного, оказавшегося поблизости. Находясь на отдаленном расстоянии от эпицентра грозы, мы не можем ощутить ударную волну электрического разряда, но хорошо слышим звуковую, которую и называем громом или громовыми раскатами.

Сколько молний возникает ежедневно

Благодаря данным со спутников ученые узнали, что в каждую секунду на Земле происходит 44 ± 5 ударов молнии. То есть за сутки случается более 3,5 миллионов разрядов, а их количество в год составляет порядка 1,4 миллиарда. При этом около 25% ударяют в землю и примерно 75% вспыхивают среди облаков.

Природа молнии в физике

Молния не образуется мгновенно из ничего, хоть все и происходит очень быстро. Один электрический разряд можно разделить на 2 стадии:

  1. Ступенчатый лидер.
  2. Обратная вспышка.
Ступенчатый лидер

Перед вспышкой молнии в небе можно увидеть небольшое пятно, которое движется от облака к поверхности земли.

Это пятно называют «ступенчатым лидером», оно является тем самым каналом, по которому чуть позже будет произведен электрический разряд. Лидер может разветвляться, как и последующий удар молнии по этому каналу. Происходит это из-за неравномерной ионизации воздуха. 
Обратная вспышка

Когда ступенчатый лидер достигает поверхности земли, по проложенному им каналу начинает течь ток. В этот момент и можно видеть основную вспышку молнии, которая сопровождается огромным выделением энергии и высокими показателями силы тока. При этом лидер всегда распространяется от тучи к земле, а яркая вспышка, которую мы называем молнией, наоборот, от земли к туче.

Молния — это явление, которое идет не от тучи к земле, а происходит между ними.

Почему возникает гром

Удар молнии всегда сопровождается звуками грома. Объясним, как возникает гром.

При вспышке молнии происходит резкий скачок температуры окружающего воздуха до огромных значений, что приводит к расширению нагретого воздуха по типу взрыва, вызывающему ударную волну или раскат грома.

Почти всегда громкость звука увеличивается к концу раската из-за отражения звука от облаков и поверхности земли. Чем большее число молний прошло по каналу, тем продолжительнее будет сотрясение воздуха. При значительной длине электрического разряда звук с разных его участков доходит в разное время и образуются громовые раскаты.
Скорость света и скорость звука

Из-за того, что скорость звука (330 метров в секунду) гораздо меньше скорости света (299 792 458 метров в секунду), гром всегда появляется немного позже молнии. 

По времени задержки грома от молнии можно рассчитать расстояние до того места, куда ударил разряд. Для этого нужно посчитать, сколько секунд прошло между вспышкой и звуками грома. 3 секунды будут примерно равны расстоянию в 1 километр.

Разновидности молний

На Земле существует несколько разновидностей молний. 

  1. Наземные (составляют всего около 25% от общего количества).
  2. Внутриоблачные (самое распространенное явление).
  3. Молнии, образующиеся в высших слоях атмосферы, которые можно увидеть только при помощи специальных приборов.
  4. Вулканические.
  5. Огни святого Эльма.
  6. Шаровые.

К наземным относятся:

Линейная. Частый вид, образование которого мы как раз и приводили выше, описывая разряд между небом и землей. Молния представляет собой изогнутую линию с ответвлениями, один конец которой находится в небе, другой — на поверхности земли. 

Источник: pxhere.com Молния «земля-облако» образуется, когда разряд попадает в объект, расположенный на большой высоте. Высокие предметы накапливают электростатический заряд и тем самым приманивают молнии. Источник: yandex.uz

Ленточная. Интересный редкий вид молнии, который представляет собой ряд одинаковых каналов, находящихся на небольшом расстоянии и параллельных друг другу. Ученые считают, что причиной данного явления выступает сильный ветер, который значительно расширяет каналы.

Источник: popmech.ru

Пунктирная или жемчужная. Очень редкий вид, который представляет собой не сплошной разряд, а линию, состоящую из частых промежутков, похожих на пунктиры. Ученые предполагают, что такой эффект возможен по причине быстрого остывания некоторых участков молнии. 

Источник: tainaprirody.ru

Шторовая. В отличие от других видов возникает над облаками. Внешне выглядит эффектно — как сеть разрядов. При ней можно слышать негромкий гул. Такую молнию впервые сфотографировали только в 1994 году.

Источник: rusdialog.ru

Внутриоблачные или межоблачные электрические разряды бывают 2-х видов:

«Облако-облако». Самый распространенный вид молний, когда оба концы электрического разряда находятся в небе. Это происходит потому, что соседние облака имеют разные заряды и пробивают друга друга. Такой вид молнии не опасен для человека, так как не достигает поверхности земли.

Источник: wallhere.com

Горизонтальная. Напоминает собой молнию «облако-земля», но при этом не достигает земли. Вспышки по небу распространяются в разные стороны, выглядит такой разряд очень эффектно и считается чрезвычайно мощным. 

Источник: agrometeo.od.ua

Вспышки, которые образуются на высоте 40 км и выше от поверхности земли, делятся на:

Спрайты. Привычные нам электрические разряды образуются на высоте порядка 16 км. Спрайты же возникают гораздо выше, от 50 до 130 км над землей. Это вспышки холодной плазмы, которые бьют из облаков вверх. Они образуются группами при сильной грозе и появляются спустя несколько секунд после мощной молнии. Обладают следующими параметрами: средняя длина вспышки составляет 60 км, длительность — до 100 миллисекунд, диаметр — до 100 км.

Источник: mirkosmosa.ru

Эльфы. Представляют собой масштабные разряды в виде конусов со слабым красным светом. Их диаметр около 400 км. Возникают в верхних частях грозовых облаков. Их высота составляет 100 км, длительность — 3 миллисекунды.

Источник: interplanetaryfest.org

Джеты. Вспышки с синим свечением и трубчато-конусной формой. В высоту достигают 40-70 км. Длятся чуть дольше эльфов.

Источник: twitter.com

Необычными видами электрических разрядов считаются:

Вулканическая. Такой вид образуется при извержении вулкана. Связано это со столкновением электрических зарядов, которые несут в себе пепел и магма.

Источник: emosurf.com

Огни Святого Эльма. Это разряды, возникающие на острых концах высоких объектов (вершины скал, мачты судов, деревья, башни и т.п.). Возникают по причине высокой напряженности электрического поля во время грозы летом или метели зимой.

Источник: knowhow.pp.ua

Шаровая. Этот вид электрического разряда представляет собой шарообразный сгусток плазмы диаметром 10-20 см, который свободно перемещается по воздуху, имеет непредсказуемую траекторию движения и способен взрываться. С уверенностью можно говорить о том, что это самый интересный и малоизученный вид молний.

Источник: www.yapfiles.ru

Интересные факты о молниях в небе

  1. Самая длинная молния на Земле зафиксирована в 2007 году в Оклахоме, США. Ее длина составила 321 км.
  2. Самая долгая молния — наблюдалась в течение 7,74 секунды — зафиксирована в Альпах.
  3. Похожие природные явления образуются и на других планетах. Ученым удалось зафиксировать вспышки на Венере, Уране, Сатурне, Юпитере и выяснить, что на Сатурне они гораздо мощнее, чем на Земле.
  4. Значения характеристик тока в молнии очень высоки: сила тока порой достигает сотен тысяч Ампер, напряжение равно миллиарду Вольт.
  5. Температура канала молнии достигает рекордных 30000 градусов Цельсия, что почти в 5-6 раз больше температуры на Солнце, а ширина канала, по которому проходит ток, — всего 1 сантиметр в диаметре.
  6. Скорость молнии составляет в среднем около 56000 км в секунду, при том что гроза движется со скоростью около 40 км/час. Средняя длина электрического разряда равна 9,5 километрам.
  7. Обычная вспышка длится 0,2-0,3 секунды и состоит из 3-4 электрических разрядов.
  8. В Венесуэле, в устье реки Кататумбо, круглый год ночью можно наблюдать множество молний, которые возникают без перерыв в течение длительного времени. Пик необычного явления приходится на май и октябрь.
  9. При попадании электрического разряда в песок или горную породу образуются фульгуриты. Фульгуриты представляют собой стеклянные, полые внутри трубочки разнообразных форм и размеров.
  10. Молния попадает в самолеты один раз за 5-10 тысяч летных часов.
  11. Вероятность увидеть шаровой сгусток плазмы — 1 к 10 000.
  12. Вероятность умереть от удара молнии довольно низкая: 1 к 2000000.
  13. При попадании электрического разряда непосредственно в землю или человека оставляет витиеватые следы, которые внешне напоминают молнию по форме.
  14. Молния всегда ищет самый короткий путь для удара между землей и небом. Поэтому чаще всего бьет в высокие объекты, возвышающиеся над поверхностью земли. Именно по этой причине во время грозы очень опасно находиться на равнине или на поверхности воды, так как человек в этом случае превращается в самый высокий объект.
  15. Громоотводы были придуманы в качестве ловушки для молний, но стопроцентной гарантии они не дают. По наблюдениям ученых 3 заряда из 10 приходят мимо.

Если в вашей учебе наметилась непогода, срочно обращайтесь за помощью к образовательному сервису Феникс.Хелп. Как надежный громоотвод, мы возьмем всю вашу учебную нагрузку на себя.

что об этом нужно знать

В теплое время года довольно часто бывают грозы ‑ впечатляющие природные явления, тем не менее, вызывающие не только любопытство, но и страх. Во время грозы между облаками и Землей возникают электрические разряды, которые хорошо видно и слышно: молния наблюдается в виде ветвящихся светящихся линий, пронизывающих небо, а несколько позже мы слышим раскатистый звук грома. При этом, как правило, наблюдается ливневый дождь, сопровождающийся шквальным ветром и градом. Гроза является одним из наиболее опасных атмосферных явлений: только наводнения связаны с большим, чем у гроз количеством человеческих жертв. Интерес к изучению природного электричества возник еще в давние времена. Первым, кто исследовал электрическую природу молнии, был Бенджамин Франклин – американский политический деятель, но вместе с тем ученый и изобретатель. Именно он еще в 1752 году предложил первый проект молниеотвода. Давайте попробуем разобраться, какую опасность несет гроза, и что нужно знать и делать, чтобы себя обезопасить.

Одновременно на Земле действует около полутора тысяч гроз, средняя интенсивность разрядов оценивается как 100 молний в секунду или свыше 8 миллионов в день. По поверхности планеты грозы распределяются неравномерно. Над океаном гроз наблюдается приблизительно в десять раз меньше, чем над континентами. В тропической и экваториальной зоне (от 30° северной широты до 30° южной широты) сосредоточено около 78 % всех молниевых разрядов. Максимум грозовой активности приходится на Центральную Африку. В полярных районах Арктики и Антарктики и над полюсами гроз практически не бывает. Интенсивность гроз следует за солнцем: максимум гроз приходится на лето (в средних широтах) и дневные послеполуденные часы. Минимум зарегистрированных гроз приходится на время перед восходом солнца. На грозы влияют также географические особенности местности: сильные грозовые центры находятся в горных районах Гималаев и Кордильер.

Во время грозы между тучами и Землей возникает огромное напряжение, достигающее значения в 1000000000 В. При таком напряжении воздух ионизируется, превращаясь в плазму, и возникает гигантский электрический разряд с силой тока до 300000 А. Температура плазмы в молнии превышает 10000 °С. Молния проявляется яркой вспышкой света и ударной звуковой волной, которую несколько позднее слышно в качестве грома. Опасна молния еще и тем, что она может ударить совершенно неожиданно, и ее путь может быть непредсказуем. Однако расстояние до грозового фронта и скорость его приближения или удаления можно легко определить при помощи секундомера. Для этого необходимо засечь время между вспышкой света молнии и раскатом грома. Скорость звука в воздухе составляет примерно 340 м/с, поэтому, если вы услышали гром через 10 с после вспышки света, то до грозового фронта примерно 3,4 км. Измеряя таким образом время между вспышкой света и громом, а также время между разными ударами молнии, можно определить не только расстояние до них, но и скорость приближения или удаления грозового фронта:

где  – скорость звука,  – время между вспышкой света и громом первой молнии,  – время между вспышкой света и громом второй молнии,  – время между молниями. Если значение скорости получится положительным, то грозовой фронт приближается, а если отрицательным – удаляется. При этом необходимо учитывать, что направление ветра не всегда совпадает с направлением движения грозы.

Если все-таки вы попали в грозу, то следует соблюдать ряд простых правил, чтобы себя обезопасить:

Во-первых, во время грозы желательно избегать открытой местности. Молния с большей вероятностью бьет в самую высокую точку, одинокий человек в поле – это и есть та самая точка. Если Вы по какой-то причине остались в поле один на один с грозой, спрячьтесь в любом возможном углублении: канавке, ложбинке или самом низком месте поля, сядьте на корточки и пригните голову. При этом следует помнить, что песчаная и каменная почвы имеют меньшую электропроводность, а значит, они безопаснее, чем глинистая. Не следует прятаться под отдельно стоящими деревьями, так как они в первую очередь подвержены ударам молнии. А если вы находитесь в лесу, то лучше всего прятаться под низкорослыми деревьями с густой кроной.

Во-вторых, во время грозы избегайте воды, так как природная вода – хороший проводник тока. Удар молнии распространяется вокруг водоема в радиусе около 100 метров. Нередко она бьет в берега. Поэтому во время грозы необходимо подальше отойти от берега, при этом нельзя купаться и ловить рыбу. Кроме того, при грозе желательно избавиться от металлических предметов. Часы, цепочки и даже раскрытый над головой зонтик – потенциальные цели удара. Известны случаи удара молнии по находящейся в кармане связке ключей.

В-третьих, если гроза застала Вас в машине, то она достаточно хорошо защищает от молнии, так как даже при ударе молнии разряд идет по поверхности металла. Поэтому закройте окна, отключите радиоприёмник и GPS-навигатор. Не следует дотрагиваться до любых металлических деталей автомобиля. Очень опасно во время грозы разговаривать по мобильному телефону. Лучше всего во время грозы его тоже выключить. Были случаи, когда входящий звонок становился причиной попадания молнии. Велосипед и мотоцикл в отличие от машины от грозы вас не спасут. Необходимо слезть, уложить транспорт на землю и отойти на расстояние примерно 30 м от него.

В природе существуют разные виды молний: линейные (наземные, внутриоблачные, молнии в верхней атмосфере) и шаровые молнии – светящиеся плавающие в воздухе образования, уникально редкое природное явление. Если природа линейной молнии ясна и ее поведение более предсказуемо, то природа шаровой молнии до сих пор хранит в себе множество тайн. Несмотря на то, что вероятность поражения человека шаровой молнией мала, тем не менее, она представляет серьезную опасность, так как не существует надежных методов и правил защиты от нее.

Поведение шаровой молнии непредсказуемо. Она может неожиданно появляться где угодно, в том числе в закрытых помещениях. Отмечены случаи появления шаровой молнии из телефонной трубки, электрической бритвы, выключателя, розетки, репродуктора. Достаточно часто она проникает в здания через трубы, открытые окна и двери. Известны случаи, когда шаровая молния проникала в помещение через узкие щели и даже замочную скважину. Размеры шаровой молнии могут быть различными: от нескольких сантиметров до нескольких метров. В большинстве случаев шаровая молния легко парит или катится над землей, иногда подскакивая, но может и зависнуть над поверхностью земли. Как утверждают очевидцы, шаровая молния реагирует на ветер, сквозняк, восходящие и нисходящие потоки воздуха. Но это не всегда так: известны случаи, кода шаровая молния никак не реагировала на потоки воздуха.

Шаровая молния может внезапно появиться и так же внезапно исчезнуть, не нанеся вреда человеку или помещению. Например, может залететь в окно и вылететь из помещения через открытую дверь или дымовую трубу, пролетев мимо Вас. При этом следует знать, что всякий контакт с человеком приводит к тяжелым травмам, ожогам, а в большинстве случаев к смертельному исходу. Поэтому, если вы увидели шаровую молнию, безопаснее всего удалиться от нее на максимально возможное расстояние.

Кроме того шаровая молния часто взрывается. Возникающая при этом ударная воздушная волна может травмировать человека или привести к разрушениям. Например, известны случаи взрывов молний в печках, дымоходах, что привело к серьезным разрушениям. Температура внутри шаровой молнии достигает 5000 °С, поэтому она может стать причиной пожара. Статистика поведения шаровой молнии говорит о том, что в 80% случаев взрывы не были опасны, однако тяжелые последствия все-таки возникали в 10% взрывов.

По предложенному методу мы предлагаем вам рассчитать расстояние до грозового разряда и его скорость, если первый гром был слышен через 20 секунд после наблюдения первой молнии, а второй через 15 секунд после наблюдения второй молнии. Время между молниями составляет 1 минуту.

Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы

Тест по физике: физические тела, явления, вещества

Предлагаю вам тест по физике: физические тела, явления, вещества. Тест был опубликован вчера на Яндекс-Дзен канале «Домобуч». Физика у моих подписчиков не такой популярный предмет, как русский язык, поэтому ответили всего 30 человек. Многие ответили верно, но есть и запутавшиеся. Вы тоже можете пройти этот тест, а под картинкой посмотреть ответы и комментарии.

 

Тест по физике: физические тела, явления, вещества

 

Картиночка)

 

Ответы и пояснения

Вопрос № 1

Ответ: физическое тело — это любой предмет.

Физическая величина описывает физическое тело. Не каждое физическое тело можно взять в руки, например, Луну.

 

Вопрос № 2

Ответ: физическую величину можно измерить или вычислить, выразить в соответствующих единицах. Физическая величина описывает свойства физических тел и явлений.

 

Вопрос № 3

Ответ: вертолёт, ножницы, Луна.

  • Алюминий и спирт — это вещества.
  • Снегопад, метель, гром — физические явления.

 

Вопрос № 4

Ответ: ртуть, спирт, алюминий.

  • Вертолёт и Луна — это физические тела.
  • Снегопад, метель, гром — физические явления.

 

Вопрос № 5

Ответ: снегопад, кипение, метель, гром.

  • Алюминий и ртуть — это вещества.
  • Луна и вертолёт — физические тела.

 

Вопрос № 6

Ответ: катится шар, колеблется маятник часов, летит птица.

  • Шелест листвы, раскат грома — это звуковые явления.
  • Плавится свинец, тает снег — это тепловые явления.
  • Сверкает молния, мерцают звёзды — это световые явления.
  • Гроза — это электрическое явление.

 

Вопрос № 7

Ответ: кипит вода, тает снег, плавится свинец.

  • Мерцают звёзды, сверкает молния — это световые явления.
  • Катится шар, летит птица — это механические явления.
  • Раскат грома, шелестит листва — это звуковые явления.
  • Гроза — это электрическое явление.

 

 

Вопрос № 8

Ответ: раскат грома, шелестит листва, пение птиц.

  • Гроза — это электрическое явление.
  • Сверкает молния, мерцают звёзды — световые явления.
  • Кипит вода, плавится свинец — тепловые явления.
  • Катится шар, летит птица — механические явления.

 

Вопрос № 9

Ответ. Электрические явления: включился электрочайник, гроза.

  • Сверкает молния, мерцают звёзды — это световые явления.
  • Плавится свинец, кипит вода — тепловые явления.
  • Катится шар, летит птица — механические явления.
  • Пение птиц, шелестит листва — звуковые явления.

 

Вопрос № 10

Ответ: сверкает молния, мерцают звёзды..

  • Гроза — электрическое явление.
  • Летит птица, катится шар — механические явления.
  • Кипит вода, плавится свинец — тепловые явления.
  • Пение птиц, шелестит листва — звуковые явления.

 

Второй тест по физике ТУТ.

МОЛНИЯ (явление) — это… Что такое МОЛНИЯ (явление)?

МО́ЛНИЯ, гигантский электрический искровой разряд в атмосфере, сопровождающийся обычно яркой вспышкой света и громом (см. ГРОМ). Чаще всего наблюдаются линейные молнии — разряды между грозовыми облаками (см. ОБЛАКА) (внутриоблачные) или между облаками и земной поверхностью (наземные).Процесс развития наземной молнии состоит из несколько стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизуют их. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью около 5·107 м/с, после чего его движение приостанавливается на несколько десятков мкс, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2·105 м/с. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молний используется для создания молниеотвода (см. МОЛНИЕОТВОД). В заключительной стадии по ионизованному лидером каналу следует обратный, или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч А, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до 108 м/с, а в конце уменьшающейся до 107 м/с. Температура канала при главном разряде может превышать 25 000 °С. Длина канала наземной молнии 1—10 км, диаметр — несколько см. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунд, достигая сотен и тысяч А. Такие молнии называют затяжными, они наиболее часто вызывают пожары.
Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со средней скоростью 106 м/с. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создает «ленточную» молнию — светящуюся полосу.
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 50% в умеренных широтах до 90% в экваториальной полосе. Прохождение молний сопровождается изменениями электрических и магнитных полей и радиоизлучением — атмосфериками (см. АТМОСФЕРИКИ). Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолет — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
Особый вид молний — шаровая молния (см. ШАРОВАЯ МОЛНИЯ), светящийся сфероид, обладающий большой удельной энергией, образующийся нередко вслед за ударом линейной молнии.

1. Физические тела. Физические явления

1. Укажите, что относится к понятию «физическое тело», а что к понятию «вещество»: самолет, космический корабль, медь, авторучка, фарфор, вода, автомобиль.
Физическое тело — самолет, космический корабль, авторучка.
Вещество — медь, фарфор, вода.

2. Приведите примеры следующих физических тел: а) состоящих из одного и того же вещества; б) состоящих из различных веществ одинакового названия и назначения.
а) Из одного вещества: стол, карандаш, стул — из дерева,
б) Из различных веществ: пластиковая и стеклянная бутылка.

3. Назовите физические тела, которые могут быть сделаны из стекла, резины, древесины, стали, пластмассы.
Стекло: колба лампы, бутылка.
Резина: покрышка, воздушный шарик.
Древесина: дверь, паркет.
Сталь: резец, лезвие ножа.
Пластмасса: корпус шариковой ручки, калькулятора.

4. Укажите вещества, из которых состоят следующие тела: ножницы, стакан, футбольная камера, лопата, карандаш.
Ножницы — сталь; стакан — стекло; футбольная камера — резина; лопата — сталь; карандаш — дерево.

5. Начертите в тетради таблицу и распределите в ней следующие слова: свинец, гром, рельсы, пурга, алюминий, рассвет, буран, Луна, спирт, ножницы, ртуть, снегопад, стол, медь, вертолет, нефть, кипение, метель, выстрел, наводнение.

6. Приведите примеры механических явлений.
Механические явления: падение тела, колебание маятника.

7. Приведите примеры тепловых явлений.
Тепловые явления: таяние снега, кипение воды.

8. Приведите примеры звуковых явлений.
Звуковые явления: гром, свист милиционера.

9. Приведите примеры электрических явлений.
Электрические явления: молния, искра свечи зажигания.

10. Приведите примеры магнитных явлений.
Магнитные явления: взаимодействие двух магнитов, вращение стрелки компаса.

11. Приведите примеры световых явлений.
Световые явления: свет лампочки, северное сияние.

12. Предлагаемую ниже таблицу начертите в тетради и впишите слова, относящиеся к механическим, звуковым, тепловым, электрическим, световым явлениям: шар катится, свинец плавится, холодает, слышны раскаты грома, снег тает, звезды мерцают, вода кипит, наступает рассвет, эхо, плывет бревно, маятник часов колеблется, облака движутся, гроза, летит голубь, сверкает молния, шелестит листва, горит электрическая лампа.

13. Назовите два-три физических явления, которые наблюдаются при выстреле из пушки.
Полет снаряда, звук выстрела и взрыв пороха.

Эксперт БФУ им. И. Канта рассказал о наиболее встречающихся в Калининградской области типах молний

Грозы — нередкое атмосферное явление для летнего периода в Калининградской области.

Термин «гроза» объединяет комплекс атмосферных метеорологических явлений (дождь, шквалистый ветер, молнии, гром). Молния — искровой разряд, возникающий между тучами или между тучей и земной поверхностью. При электрическом разряде выделяется большое количество энергии, затрачивающейся на разогревание воздуха в узком канале, — трассе распространения электрического разряда. Из-за быстрого нагревания воздух резко расширяется и возникает ударная волна. Эта волна воспринимается как звук, называемый громом.

Удар молнии может причинить большие неприятности. Ее разрушающее воздействие обусловлено выделением тепловой энергии, от которой могут загораться или даже разрываться деревья, дома, башни. Для предотвращения поражения молнией на высоких домах и сооружениях устанавливают молниезащиту (иногда, не совсем точно, ее называют громоотводом) — металлические стержни, имеющие надежную токопроводящую связь с землей.

Как рассказал доктор наук, профессор института физико-математических наук и информационных технологий БФУ им. И. Канта Иван Карпов, существует разные типы электрических разрядов — молний, которые наблюдаются как в нижней, так и в верхней атмосфере (выше 50 км).

В нижней атмосфере (тропосфера), как правило, бывают линейные молнии облако-облако (разряд такой молнии происходит между облаками вдоль достаточно узкой траектории — трассы), или молния облако-земля. Причина образования таких молний – накопление электростатического заряда в грозовых облаках Трассы молний видятся как ломаные линии, что определяется локальной электропроводностью атмосферы.

Как отметил Иван Карпов, в Калининградской области чаще всего встречаются линейные молнии. Такие молниевые разряды характерны для нижней атмосферы, и Калининградская область здесь ничем не отличается от остальных регионов.

В верхней атмосфере (выше 50 км) наблюдаются особые виды молний: эльфы, джеты и спрайты. Это те электрические разряды, трассы которых направлены вверх.

 

“В последнее время молниевые разряды в средней и верхней атмосфере (50-120 км) привлекают внимание исследователей. Предполагается, что такие процессы отражают динамику нижних слоев атмосферы и могут служить индикатором метеорологических, сейсмических, тектонических и т.д. событий. Молниевые разряды на высотах ионосферы влияют на локальные характеристики ионосферы. Это может приводить к негативному влиянию на работу спутниковых систем связи, навигации и т.д. Шаровая молния – отдельный вид молнии, природа которой остается загадкой. Такая молния представляет собой движущийся в воздухе светящийся объект в форме шара. По свидетельствам очевидцев, шаровая молния может двигаться по непредсказуемой траектории, разделяться на более мелкие молнии, может взорваться, а может просто неожиданно исчезнуть. Существует множество гипотез о происхождении шаровой молнии, но ни одна пока не признана достоверной. Физические процессы, стабилизирующие горячую плазму (миллионы градусов) в объеме, неизвестны и непонятны. В лабораторных условиях получить шаровую молнию не удается”, — рассказал Иван Карпов.

По словам исследователя, чаще всего воздействию молний подвергаются горы, одиночные здания, высокие деревья, электротехнические сооружения, поскольку электрический разряд «облако-земля» идет по трассе с наиболее высокой электропроводностью (по пути наименьшего сопротивления).

Иван Карпов объяснил, по какой причине зачастую молния бьет в одно и тоже место:

 

 

“Трасса молниевого разряда на трассе «облако-земля» определяется особенностями формирования грозовых облаков и свойствами поверхности. Условия возникновения разряда могут меняться в зависимости от сезона, в то время как свойства поверхности (прежде всего особенности рельефа) изменяются слабо. Поэтому, повторяемость событий может быть высокая”.

Также профессор объяснил, почему раньше грозы сотрясали небо только поздней весной и летом, а сейчас случаются и зимой.

 

 

“Сезонная зависимость связана с естественным годовым ходом изменения атмосферы. При этом причины формирования грозовых облаков во многом связаны с процессами электризации воздуха. Вследствие климатических изменений, антропогенных факторов в атмосфере могут формироваться условия для развития грозовых облаков (накопления электрических зарядов) в необычное время”, — рассказал Иван Карпов.

 

 

По мнению Ивана Карпова, летать на самолетах или передвигаться на автомобиле в грозу достаточно опасно.

 

“Электрические разряды огромной мощности, конечно же, опасны для всех видов транспорта. Правда, люди, понимая физическую природу воздействия электрических разрядов на технику, научились минимизировать их последствия. Однако, конечно же, надо избегать попадания в такие ситуации”, — заявил исследователь.

 

 

Ссылка на оригинал статьи

гроза | Определение, типы, структура и факты

Гроза , сильное кратковременное погодное нарушение, которое почти всегда связано с молнией, громом, плотными облаками, сильным дождем или градом и сильными порывистыми ветрами. Грозы возникают, когда слои теплого влажного воздуха поднимаются большим быстрым восходящим потоком в более прохладные области атмосферы. Там влага, содержащаяся в восходящем потоке, конденсируется, образуя возвышающиеся кучево-дождевые облака и, в конечном итоге, осадки. Столбы охлажденного воздуха затем опускаются к земле, ударяясь о землю сильными нисходящими потоками и горизонтальными ветрами. В то же время электрические заряды накапливаются на частицах облаков (каплях воды и льда). Разряды молнии возникают, когда накопленный электрический заряд становится достаточно большим. Молния нагревает воздух, через который проходит, так интенсивно и быстро, что возникают ударные волны; эти ударные волны слышны как раскаты и раскаты грома. Иногда сильные грозы сопровождаются кружащимися воздушными вихрями, которые становятся достаточно концентрированными и мощными, чтобы образовывать торнадо.

гроза

Гроза с молнией.

© Пол Лэмпард / stock.adobe.com

Британская викторина

Молния: факт или вымысел?

Безопасны ли небоскребы от ударов молнии? Помогают ли кристаллы льда производить молнии? Узнайте больше о самом электрическом явлении в природе в этой викторине.

  • Узнайте, как быстрые восходящие потоки теплого воздуха образуют кучево-дождевые облака, что приводит к проливным дождям и молниям.

    Формирование грозы.

    Encyclopædia Britannica, Inc. См. Все видео для этой статьи
  • Наблюдайте за плотностью вспышек молний в типичный год с самым высоким уровнем в Южной Америке, Африке и Австралазии

    Как показано на анимации, год грозовой активности -round наиболее популярен в континентальных районах тропиков, особенно в Южной Америке, Африке и Австралазии.Удары молний в высоких широтах усиливаются в весенние и летние месяцы (май – сентябрь в северном полушарии и ноябрь – март в южном полушарии).

    Адаптировано из NASA См. Все видео к этой статье

Известно, что грозы случаются почти во всех регионах мира, хотя они редки в полярных регионах и нечасты на широтах выше 50 ° северной широты и 50 ° южной широты. Поэтому умеренный и тропический регионы мира наиболее подвержены грозам.В США районами максимальной грозовой активности являются полуостров Флорида (более 80 грозовых дней в году, а в некоторых районах более 100), побережье Мексиканского залива (60–90 дней в году) и горы Нью-Мексико (50 –80 дней в году). В Центральной Европе и Азии в среднем от 20 до 60 грозовых дней в году. Было подсчитано, что в любой момент в мире происходит около 1800 гроз.

В этой статье рассматриваются два основных аспекта гроз: их метеорология (т.е., их образование, структура и распространение) и их электризация (т. е. генерация молнии и грома). Для отдельного освещения связанных явлений, не описанных в этой статье, см. Торнадо , шаровые молнии, бусовые молнии, а также красные спрайты и синие струи.

Грозовые образования и структура

Вертикальное движение атмосферы

Самые короткие, но сильные возмущения в ветровых системах Земли затрагивают большие области восходящего и нисходящего воздуха.Грозы не являются исключением из этого правила. Говоря техническим языком, считается, что гроза возникает, когда атмосфера становится «неустойчивой к вертикальному движению». Такая нестабильность может возникнуть, когда относительно теплый легкий воздух перекрывается более прохладным и тяжелым воздухом. В таких условиях более холодный воздух имеет тенденцию опускаться, вытесняя более теплый воздух вверх. Если поднимается достаточно большой объем воздуха, образуется восходящий поток (сильный поток поднимающегося воздуха). Если восходящий поток влажный, вода конденсируется и образует облака; конденсация, в свою очередь, высвобождает скрытую тепловую энергию, дополнительно подпитывая восходящее движение воздуха и увеличивая нестабильность.

гроза: структура

Когда атмосфера становится достаточно нестабильной, чтобы сформировать большие мощные восходящие и нисходящие потоки (как показано красными и синими стрелками), образуется возвышающееся грозовое облако. Иногда восходящие потоки бывают достаточно сильными, чтобы расширить верхнюю часть облака до тропопаузы, границы между тропосферой (или нижним слоем атмосферы) и стратосферой. Щелкните значки в левой части рисунка, чтобы просмотреть иллюстрации других явлений, связанных с грозами.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Когда в нестабильной атмосфере инициируются восходящие движения воздуха, поднимающиеся частицы теплого воздуха ускоряются по мере того, как они поднимаются через более прохладную окружающую среду, потому что они имеют меньшую плотность и большую плавучесть. Это движение может создать модель конвекции, при которой тепло и влага транспортируются вверх, а более холодный и сухой воздух транспортируется вниз.Области атмосферы, где вертикальное движение относительно велико, называются ячейками, а когда они переносят воздух в верхнюю тропосферу (самый нижний слой атмосферы), они называются глубокими ячейками. Грозы возникают, когда глубокие ячейки влажной конвекции организуются и сливаются, а затем производят осадки и, в конечном итоге, молнии и гром.

Восходящие движения могут быть инициированы в атмосфере разными способами. Распространенным механизмом является нагревание поверхности земли и прилегающих слоев воздуха солнечным светом. Если поверхностного нагрева достаточно, температура нижних слоев воздуха будет расти быстрее, чем верхних слоев, и воздух станет нестабильным. Способность земли быстро нагреваться — вот почему большинство гроз формируется над сушей, а не над океанами. Неустойчивость также может возникать, когда слои холодного воздуха нагреваются снизу после того, как они перемещаются по теплой поверхности океана или по слоям теплого воздуха. Горы также могут вызывать восходящее атмосферное движение, действуя как топографические барьеры, заставляющие подниматься ветры.Горы также действуют как высокоуровневые источники тепла и нестабильности, когда их поверхности нагреваются Солнцем.

мировых моделей частоты грозы

Грозы чаще всего происходят в тропических широтах над сушей, где воздух, скорее всего, быстро нагреется и образует сильные восходящие потоки.

Encyclopædia Britannica, Inc.

Огромные облака, связанные с грозами, обычно начинаются как изолированные кучевые облака (облака, образованные конвекцией, как описано выше), которые вертикально развиваются в купола и башни. Если имеется достаточная нестабильность и влажность, а фоновый ветер благоприятен, тепло, выделяемое за счет конденсации, еще больше усилит плавучесть поднимающейся воздушной массы. Кучевые облака будут расти и сливаться с другими ячейками, образуя огромное кучевое облако, простирающееся еще выше в атмосферу (6000 метров [20 000 футов] или более над поверхностью). В конечном итоге образуется кучево-дождевое облако с его характерной верхней частью в форме наковальни, вздымающимися сторонами и темным основанием. Кучево-дождевые облака обычно производят большое количество осадков.

Что вызывает звук грома?

Ответ

Гром возникает из-за быстрого расширения воздуха, окружающего путь разряда молнии.

Муссонный шторм, вызвавший разветвленную молнию в Центре посетителей Красных холмов в национальном парке Сагуаро в Аризоне. Пит Грегуар, фотограф, NOAA Weather in Focus Photo Contest 2015. Библиотека фотографий NOAA.

От облаков до ближайшего дерева или крыши молнии требуется всего несколько тысячных долей секунды, чтобы разлететься в воздухе. Обычно говорят, что громкий гром, который следует за разрядом молнии, исходит от самого молнии. Однако ворчание и рычание, которое мы слышим во время грозы, на самом деле происходят из-за быстрого расширения воздуха, окружающего молнию.

Когда молния соединяется с землей из облаков, второй удар молнии возвратится от земли к облакам по тому же каналу, что и первый удар. Тепло от электричества этого обратного хода повышает температуру окружающего воздуха примерно до 27 000 ° C (48 632 F °).Быстрое повышение температуры приводит к быстрому увеличению давления воздуха, которое в 10-100 раз превышает нормальное атмосферное давление. Под таким давлением нагретый воздух вырывается наружу из канала, сжимая окружающий воздух. Когда нагретый воздух расширяется, давление падает, воздух охлаждается и сжимается. Результатом является ударная волна с громким грохотом, разносящимся во всех направлениях.

Огромное облако предвещает грозу над Грумом, крошечным поселением вдоль старого U.С. Маршрут 66 в Техасском попрошайничестве Кэрол М. Хайсмит, фотограф, 2014. Отдел эстампов и фотографий, Библиотека Конгресса.

Поскольку электричество проходит по кратчайшему пути, большинство разрядов молний близки к вертикали. Ударные волны, расположенные ближе к земле, сначала достигают вашего уха, а затем ударные волны падают сверху. Вертикальные молнии часто слышны в одном долгом грохоте. Однако, если молния раздваивается, звуки меняются. Ударные волны от разных ответвлений молний отражаются друг от друга, от низко нависающих облаков и близлежащих холмов, создавая серию более низких, непрерывных грохотов грома.

Молния. Оклахома, 2009. Коллекция Национальной лаборатории сильных штормов, фото-библиотека NOAA.

Интересные факты о громе

  • Чтобы определить, насколько близко молния, посчитайте секунды между вспышкой и ударом грома. Каждая секунда соответствует примерно 300 м (984,25 фута).
  • Гром слышен не только во время грозы. Нечасто, но не редко, слышать гром, когда идет снег.
  • Молния не всегда создает гром. В апреле 1885 года пять молний ударили в памятник Вашингтону во время грозы, но грома не было слышно.
Линия застройки кучево-дождевых гроз. Вид из-за шторма на ранних этапах разработки. Национальная коллекция лаборатории сильных штормов, фотоархив NOAA.

Опубликовано: 17.06.2021. Автор: Справочная секция по науке, Библиотека Конгресса

Что вызывает молнию?

Гроза в сельской местности.Кредит: noaanews.noaa.gov

Гром и молния. Когда дело доходит до сил природы, немногие вещи вызывают столько страха, благоговения или восхищения, не говоря уже о легендах, мифах и религиозных представлениях. Как и все в естественном мире, то, что изначально рассматривалось Богами как действие (или другие сверхъестественные причины), с тех пор стало признано естественным явлением.

Но, несмотря на все, что люди узнали на протяжении веков, когда дело доходит до молнии, остается некоторая загадка.Эксперименты проводились со времен Бенджамина Франклина; однако мы по-прежнему сильно полагаемся на теории о том, как ведет себя освещение.

Описание:

По определению, молния — это внезапный электростатический разряд во время грозы. Этот разряд позволяет заряженным областям в атмосфере временно уравновесить себя, когда они ударяются об объект на земле. Хотя молния всегда сопровождается звуком грома, далекие молнии можно увидеть, но они находятся слишком далеко, чтобы можно было услышать гром.

Типы:

Молния может принимать одну из трех форм, которые определяются тем, что находится на «конце» канала ответвления (т. Е. Молния). Например, существует внутриоблачное освещение (IC), которое происходит между электрически заряженными областями облака; освещение облака в облако (CC), когда оно возникает между одним функциональным грозовым облаком и другим; и молния облако-земля (CG), которая в основном возникает в грозовом облаке и заканчивается на поверхности Земли (но также может возникать в обратном направлении).

Внутриоблачная молния чаще всего возникает между верхней (или «наковальней») частью и нижней частью данной грозы. В таких случаях наблюдатель может видеть только вспышку света, не слыша грома. Здесь часто применяется термин «тепловая молния» из-за связи между ощущаемой на месте теплотой и удаленными вспышками молнии.

В случае молнии «облако-облако» заряд обычно исходит из-под наковальни или внутри нее и карабкается через верхние облачные слои во время грозы, обычно генерируя разряд молнии с множеством ответвлений.

Облако-земля (CG) — самый известный тип молнии, хотя он является третьим по распространенности — на него приходится примерно 25% случаев во всем мире. В этом случае молния принимает форму разряда между грозовым облаком и землей, обычно имеет отрицательную полярность и инициируется ступенчатой ​​ветвью, движущейся вниз от облака.

Молния

CG является наиболее известной, потому что, в отличие от других форм молнии, она заканчивается на физическом объекте (чаще всего на Земле) и, следовательно, поддается измерению с помощью инструментов.Кроме того, он представляет наибольшую угрозу для жизни и имущества, поэтому понимание его поведения рассматривается как необходимость.

Недвижимость:

Освещение возникает, когда в атмосфере возникают восходящие и нисходящие потоки ветра, создавая механизм зарядки, который разделяет электрические заряды в облаках, оставляя отрицательные заряды внизу и положительные вверху. Поскольку заряд в нижней части облака продолжает расти, разность потенциалов между облаком и землей, которая заряжена положительно, также растет.

Когда пробой в нижней части облака создает карман положительного заряда, образуется канал электростатического разряда, который начинает двигаться вниз с шагом в десятки метров в длину. В случае молнии IC или CC этот канал затем направляется в другие карманы областей положительных зарядов. В случае ударов КГ ступенчатый лидер притягивается к положительно заряженной земле.

Многие факторы влияют на частоту, распределение, силу и физические свойства «типичной» молнии в определенном регионе мира.К ним относятся высота земли, широта, преобладающие ветровые течения, относительная влажность, близость к теплым и холодным водоемам и т. Д. В определенной степени соотношение между IC, CC и CG молнией также может варьироваться в зависимости от сезона в средних широтах.

Около 70% молний происходит над сушей в тропиках, где атмосферная конвекция наиболее высока. Это происходит как из-за смеси более теплых и более холодных воздушных масс, так и из-за различий в концентрациях влаги, и обычно это происходит на границах между ними.В тропиках, где уровень замерзания, как правило, выше в атмосфере, только 10% вспышек молний являются компьютерными. На широте Норвегии (около 60 ° северной широты), где точка замерзания ниже, 50% молний приходится на КГ.

Эффекты:

В общем, молния оказывает на окружающую среду три измеримых воздействия. Во-первых, это прямое воздействие самого удара молнии, которое может привести к повреждению конструкции или даже физическому ущербу. Когда молния попадает в дерево, оно испаряет сок, что может привести к взрыву ствола или отрыву больших ветвей и падению на землю.

Когда молния ударяет в песок, почва, окружающая плазменный канал, может плавиться, образуя трубчатые структуры, называемые фульгуритами. Здания или высокие сооружения, пораженные молнией, могут быть повреждены, поскольку молния ищет непредусмотренные пути к земле. И хотя примерно 90% людей, пораженных молнией, выживают, люди или животные, пораженные молнией, могут получить серьезные травмы из-за повреждения внутренних органов и нервной системы.

Гром также является прямым результатом электростатического разряда. Поскольку плазменный канал перегревает воздух в непосредственной близости от него, газообразные молекулы подвергаются быстрому увеличению давления и, таким образом, расширяются наружу от молнии, создавая слышимую ударную волну (иначе.гром). Поскольку звуковые волны распространяются не от одного источника, а по длине пути молнии, различные расстояния до источника могут вызывать эффект качения или грохота.

Излучение высокой энергии также возникает в результате удара молнии. К ним относятся рентгеновские лучи и гамма-лучи, которые были подтверждены посредством наблюдений с использованием электрического поля и детекторов рентгеновского излучения, а также космических телескопов.

Исследования:

Первое систематическое и научное исследование молнии было проведено Бенджамином Франклином во второй половине 18 века.До этого ученые выяснили, как электричество можно разделить на положительные и отрицательные заряды и сохранить. Они также отметили связь между искрами, производимыми в лаборатории, и молнией.

Франклин предположил, что облака электрически заряжены, из чего следовало, что сама молния была электрической. Первоначально он предложил проверить эту теорию, поместив железный стержень рядом с заземленным проводом, который будет удерживаться на месте изолированной восковой свечой. Если бы облака были электрически заряжены, как он ожидал, то между железным стержнем и заземленным проводом прыгали искры.

В 1750 году он опубликовал предложение, согласно которому воздушный змей будет запускаться во время шторма для привлечения молнии. В 1752 году Томас Франсуа Д’Алибар успешно провел эксперимент во Франции, но использовал 12-метровый железный стержень вместо воздушного змея для образования искр. К лету 1752 года Франклин, как полагают, сам провел эксперимент во время сильного шторма, обрушившегося на Филадельфию.

Для своей усовершенствованной версии эксперимента Фрэнкинг атаковал ключ к воздушному змею, который был соединен влажной нитью с изолирующей шелковой лентой, обернутой вокруг суставов руки Франклина.Между тем тело Франклина обеспечивало проводящий путь для электрических токов к земле. Франклин не только показал, что грозы содержат электричество, но и сделал вывод о том, что нижняя часть грозы, как правило, также была отрицательно заряжена.

Незначительный прогресс был достигнут в понимании свойств молнии до конца 19 века, когда фотографии и спектроскопические инструменты стали доступны для исследования молний. В этот период многие ученые использовали фотографию с временным разрешением для идентификации отдельных ударов молнии, которые образуют разряд молнии на землю.

Множественные пути молнии из облака в облако, Свифтс-Крик, Австралия. Кредит: fir0002 / flagstaffotos.com.au

Исследования молний в наше время восходят к работе C.T.R. Уилсон (1869 — 1959), который первым применил измерения электрического поля для оценки структуры грозовых зарядов, участвующих в грозовых разрядах. Уилсон также получил Нобелевскую премию за изобретение Туманной камеры, детектора частиц, используемого для определения присутствия ионизированного излучения.

К 1960-м годам интерес вырос благодаря жесткой конкуренции, вызванной космической эрой. Когда космические корабли и спутники отправлялись на орбиту, были опасения, что молния может создать угрозу для аэрокосмических аппаратов и твердотельной электроники, используемой в их компьютерах и инструментах. Кроме того, улучшенные возможности измерений и наблюдений стали возможны благодаря усовершенствованию космических технологий.

В дополнение к наземному обнаружению молний, ​​на борту спутников было сконструировано несколько приборов для наблюдения за распределением молний. К ним относятся оптический детектор переходных процессов (OTD) на борту спутника OrbView-1, запущенного 3 апреля 1995 г., и последующий датчик изображения молнии (LIS) на борту TRMM, запущенный 28 ноября 1997 г.

Вулканическая молния:

Вулканическая активность может создавать благоприятные для молнии условия несколькими способами. Например, мощный выброс огромного количества материала и газов в атмосферу создает плотный шлейф из сильно заряженных частиц, который создает идеальные условия для молнии.Кроме того, плотность золы и постоянное движение в шлейфе постоянно вызывают электростатическую ионизацию. Это, в свою очередь, приводит к частым и мощным вспышкам, поскольку шлейф пытается нейтрализовать себя.

Этот тип грозы часто называют «грязной грозой» из-за высокого содержания твердого материала (золы). На протяжении всей истории было зарегистрировано несколько случаев вулканических молний. Например, во время извержения Везувия в 79 году нашей эры Плиний Младший заметил несколько мощных и частых вспышек, происходящих вокруг вулканического шлейфа.

Внеземная молния:

Частота ударов молний по всему миру, по данным НАСА. Предоставлено: Википедия / Citynoise.

Молния наблюдалась в атмосферах других планет нашей Солнечной системы, таких как Венера, Юпитер и Сатурн. Что касается Венеры, то первые признаки того, что молнии могут присутствовать в верхних слоях атмосферы, были обнаружены советскими миссиями «Венера» и «Пионер» США в 1970-х и 1980-х годах.Радиоимпульсы, зарегистрированные космическим аппаратом Venus Express (в апреле 2006 г.), были подтверждены как происхождение от молнии на Венере.

Грозы, похожие на земные, наблюдались на Юпитере. Считается, что они являются результатом влажной конвекции в тропосфере Юпитера, где конвективные шлейфы переносят влажный воздух из глубин в верхние части атмосферы, где он затем конденсируется в облака размером около 1000 км.

Серия ударов молний, ​​снятая камерой Nightpod на борту МКС над Римом в 2012 году.Предоставлено: ESA / NASA / André Kuipers.

Изображение ночного полушария Юпитера, полученное Галилеем в 1990 году и космическим кораблем Кассини в декабре 2000 года, показало, что штормы всегда связаны с молниями на Юпитере. Хотя удары молнии в среднем в несколько раз мощнее, чем на Земле, они, по-видимому, менее часты. Несколько вспышек были обнаружены в полярных регионах, что сделало Юпитер второй известной планетой после Земли, на которой наблюдаются полярные молнии.

Освещение также наблюдалось на Сатурне. Первый случай произошел в 2010 году, когда космический зонд «Кассини» обнаружил вспышки на ночной стороне планеты, что совпало с обнаружением мощных электростатических разрядов. В 2012 году изображения, сделанные зондом Кассини в 2011 году, показали, что массивный шторм, охвативший северное полушарие, также генерировал мощные вспышки молний.

  • В результате удара молнии на песчаном участке образовался фульгерит.Кредит: blogs.discovermagazine. com
  • Вулкан Колима (Volcán de Colima) на снимке 29 марта 2015 года с молнией. Предоставлено: Сезар Канту.
  • Художественная концепция грозы Венеры. Предоставлено: НАСА.

Ученый ищет новые идеи для изучения молнии

Ссылка : Что вызывает молнию? (2015, 10 июля) получено 15 июля 2021 г. с https: // физ.org / news / 2015-07-lightning.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Суровая погода 101: Основные сведения о молниях

Суровая погода 101

Основы Lightning
Что такое молния?
Молния — это гигантская электрическая искра в атмосфере между облаками, воздухом или землей.На ранних стадиях развития воздух действует как изолятор между положительными и отрицательными зарядами в облаке и между облаком и землей. Когда противоположные заряды накапливаются достаточно, эта изолирующая способность воздуха разрушается, и происходит быстрый разряд электричества, который мы называем молнией. Вспышка молнии временно выравнивает заряженные области в атмосфере до тех пор, пока противоположные заряды не накопятся снова.

Молния может возникать между противоположными зарядами в грозовом облаке (внутриоблачная молния) или между противоположными зарядами в облаке и на земле (молния облако-земля).

Молния — одно из старейших наблюдаемых природных явлений на Земле. Его можно увидеть в извержениях вулканов, чрезвычайно интенсивных лесных пожарах, ядерных взрывах на поверхности, сильных метелях, сильных ураганах и, очевидно, в грозах. .

Подробнее об исследовании молний NSSL читайте здесь.
Что вызывает гром?
Молния вызывает гром! Энергия из канала молнии нагревает воздух на короткое время примерно до 50 000 градусов по Фаренгейту, что намного горячее, чем поверхность Солнца.Это приводит к тому, что воздух взрывается наружу. Огромное давление в исходной ударной волне, направленной наружу, быстро уменьшается с увеличением расстояния и в пределах десяти ярдов или около того становится достаточно маленьким, чтобы восприниматься как звук, который мы называем громом.

Гром можно услышать на расстоянии до 25 миль от разряда молнии, но частота звука меняется с расстоянием от каналов молнии, которые его производят, потому что более высокие частоты быстрее поглощаются воздухом. Очень близко к молнии, первый гром, который вы слышите, исходит из ближайших каналов, которые производят рвущий звук, потому что этот гром содержит высокие частоты.Через несколько секунд вы слышите резкий щелчок или громкий треск из каналов молнии чуть дальше, а через несколько десятков секунд гром из самой отдаленной части вспышки стихает до низкочастотного грохота.

Поскольку свет распространяется по воздуху примерно в миллион раз быстрее, чем звук, вы можете использовать гром, чтобы оценить расстояние до молнии. Просто посчитайте количество секунд от момента появления вспышки до момента, когда вы услышите молнию. Звук распространяется примерно на одну пятую мили в секунду или одну треть километра в секунду, поэтому деление количества секунд на 5 дает количество миль до вспышки, а деление на 3 дает количество километров.

Куда бьет молния?
Большинство, если не все, вспышки молний, ​​вызванные штормами, начинаются внутри облака. Если вспышка молнии ударит по земле, канал будет направлен вниз к поверхности. Когда он проходит менее чем примерно в сотне ярдов от земли, такие объекты, как деревья, кусты и здания, начинают посылать искры, встречая его. Когда одна из искр соединяет развивающийся вниз канал, мощный электрический ток быстро проходит по каналу к объекту, который произвел искру.Высокие объекты, такие как деревья и небоскребы, с большей вероятностью, чем окружающая земля, произведут одну из соединяющих искр, и поэтому с большей вероятностью будут поражены молнией. Горы также являются хорошими целями. Однако это не всегда означает, что высокие предметы будут поражены. Молния может ударить по земле в открытом поле, даже если линия деревьев находится рядом.
Что вызывает молнию?
Создание молнии — сложный процесс. Обычно мы знаем, какие условия необходимы для возникновения молнии, но до сих пор ведутся споры о том, как именно облако накапливает электрические заряды и как образуется молния.Ученые считают, что первоначальный процесс создания областей заряда во время грозы включает в себя мелкие частицы града, называемые крупой, которые составляют примерно от четверти миллиметра до нескольких миллиметров в диаметре и растут за счет сбора еще более мелких капель переохлажденной жидкости. Когда эти частицы крупы сталкиваются и отскакивают от более мелких частиц льда, крупа приобретает один знак заряда, а более мелкая частица льда приобретает другой знак заряда. Поскольку более мелкие частицы льда поднимаются в восходящем потоке быстрее, чем частицы крупы, заряд на частицах льда отделяется от заряда на частицах крупы, и заряд на частицах льда накапливается над зарядом на частицах крупы.

Лабораторные исследования показывают, что крупа приобретает положительный заряд при температурах немного ниже 32 градусов по Фаренгейту, но получает отрицательный заряд при более низких температурах, немного выше во время шторма. Ученые считают, что две области с наибольшим зарядом в большинстве штормов вызваны в основном крупой, несущей отрицательный заряд в середине шторма, и частицами льда, несущими положительный заряд в верхней части шторма. Однако небольшая область положительного заряда часто находится ниже области основного отрицательного заряда из-за того, что крупа набирает положительный заряд на более низких, более теплых высотах.Небольшие частицы льда, которые столкнулись с отрицательной крупой в нижней части, могут внести положительный заряд в середину шторма.

Концептуальная модель, разработанная NSSL и университетскими учеными, показывает распределение электрического заряда внутри глубокой конвекции (грозы). В основном восходящем потоке (внутри и над красной стрелкой) есть четыре области основных зарядов. В конвективной области, но за пределами вытяжки (внутри и над синей стрелкой) имеется более четырех областей заряда.

Вы можете узнать больше о молниях в онлайн-школе погоды JetStream Национальной службы погоды.

Как электрический заряд распространяется во время грозы?

Распределение заряда в грозовых облаках [+]

Концептуальная модель, разработанная NSSL и университетскими учеными, показывает распределение электрического заряда внутри глубокой конвекции (грозы). В основном восходящем потоке (внутри и над красной стрелкой) есть четыре области основных зарядов.В конвективной области, но за пределами вытяжки (внутри и над синей стрелкой) имеется более четырех областей заряда.

Исследователи NSSL используют трехмерную облачную модель для исследования полного жизненного цикла гроз. Модель показала, как крупа или другие капли могут помочь сформировать области с более низким зарядом во время шторма.

Команда

NSSL запускает инструментальный метеозонд для изучения молний в северной Флориде. [+]

Исследователи NSSL были пионерами в области запуска метеозонд с инструментами во время грозы.Эта возможность позволила NSSL собирать данные о погоде в непосредственной близости от торнадо и сухих линий, а также во время грозы, собирая критически необходимые наблюдения в условиях, близких к грозам. Кроме того, эти мобильные лаборатории и системы воздухоплавания предоставили первые вертикальные профили электрических полей внутри грозы, что привело к новой концептуальной модели электрических структур в конвективных бурях.

Один из способов проверки своих теорий исследователями — это измерения сильных гроз в полевых условиях и последующий анализ результатов.Крупномасштабные полевые эксперименты с участием многих инструментов, в первую очередь сосредоточенных на атмосферном электричестве, включают в себя эксперимент по глубоким конвективным облакам и химии (DC3), исследование электрификации MCS и поляриметрического радара, исследование сильной грозовой электрификации и осадков и эксперимент по электрификации грозы и молниям.

Более суровая погода 101:
← Часто задаваемые вопросы о наводнениях Типы молний → Учебник по физике

: Lightning

Пожалуй, самым известным и мощным проявлением электростатики в природе является гроза.Грозы неизбежны от внимания человечества. Их никогда не приглашали, никогда не планировали и никогда не оставляли незамеченными. Ярость удара молнии разбудит человека посреди ночи. Они отправляют детей вбегать в родительские спальни, требуя уверенности в том, что все будет в безопасности. Ярость удара молнии способна прервать полуденные разговоры и дела. Они — частая причина отмены игр с мячом и прогулок в гольф. Дети и взрослые одинаково толпятся у окон, чтобы наблюдать за появлением молний в небе, трепещущие перед мощью статических разрядов.Действительно, гроза — это самое яркое проявление электростатики в природе.

В этой части Урока 4 мы обсудим два вопроса:

  • Какова причина и механизм поражения молнии?
  • Как громоотводы служат для защиты зданий от разрушительного воздействия удара молнии?
Накопление статического заряда в облаках

Научное сообщество давно размышляет о причинах ударов молнии.Даже сегодня это предмет многочисленных научных исследований и теоретизирования. Детали того, как облако становится статически заряженным, не совсем понятны (на момент написания этой статьи). Тем не менее, есть несколько теорий, которые имеют большой смысл и демонстрируют многие концепции, ранее обсуждавшиеся в этом разделе Физического класса.

Предвестником любого удара молнии является поляризация положительных и отрицательных зарядов внутри грозового облака. Известно, что вершины грозовых облаков приобретают избыток положительного заряда, а низы грозовых облаков приобретают избыток отрицательного заряда.Два механизма кажутся важными для процесса поляризации. Один из механизмов включает разделение заряда посредством процесса, который напоминает зарядку трением. Известно, что облака содержат бесчисленные миллионы взвешенных капель воды и частиц льда, которые движутся и кружатся в турбулентном режиме. Дополнительная вода из земли испаряется, поднимается вверх и образует скопления капель по мере приближения к облаку. Эта поднимающаяся вверх влага сталкивается с каплями воды в облаках. При столкновении электроны отрываются от поднимающихся капель, вызывая отделение отрицательных электронов от положительно заряженной капли воды или кластера капель.

Второй механизм, который способствует поляризации грозового облака, связан с процессом замораживания. Повышение влажности сопровождается более низкими температурами на больших высотах. Эти более низкие температуры вызывают замерзание скопления капель воды. Замороженные частицы имеют тенденцию более плотно сгруппироваться и образуют центральные области кластера капель. Замороженная часть скопления поднимающейся влаги становится отрицательно заряженной, а внешние капли приобретают положительный заряд.Воздушные потоки внутри облаков могут оторвать внешние части скоплений и унести их вверх, к вершине облаков. Замороженная часть капель с их отрицательным зарядом имеет тенденцию тяготеть к нижней части грозовых облаков. Таким образом, облака становятся еще более поляризованными.

Считается, что эти два механизма являются основными причинами поляризации грозовых облаков. В конце концов, грозовое облако становится поляризованным: положительные заряды переносятся в верхние части облаков, а отрицательные части тяготеют к нижней части облаков.Не менее важное влияние на поверхность Земли оказывает поляризация облаков. Электрическое поле облака распространяется через окружающее его пространство и вызывает движение электронов на Земле. Электроны на внешней поверхности Земли отталкиваются нижней поверхностью отрицательно заряженного облака. Это создает противоположный заряд на поверхности Земли. Здания, деревья и даже люди могут испытывать накопление статического заряда, поскольку электроны отталкиваются дном облака. С облаком, поляризованным на противоположности, и с положительным зарядом, индуцированным на поверхности Земли, все готово для второго акта драмы удара молнии.

Механика удара молнии

По мере увеличения накопления статического заряда в грозовом облаке электрическое поле, окружающее облако, становится сильнее. Обычно воздух, окружающий облако, был бы достаточно хорошим изолятором, чтобы предотвратить разряд электронов на Землю. Тем не менее, сильные электрические поля, окружающие облако, способны ионизировать окружающий воздух и делать его более проводящим.Ионизация заключается в отрыве электронов от внешних оболочек молекул газа. Таким образом, молекулы газа, из которых состоит воздух, превращаются в суп из положительных ионов и свободных электронов. Изолирующий воздух превращается в проводящую плазму . Способность электрических полей грозового облака преобразовывать воздух в проводник делает возможной передачу заряда (в виде молнии) от облака к земле (или даже к другим облакам).

Удар молнии начинается с разработки шагового лидера .Избыточные электроны на дне облака начинают путешествие через проводящий воздух к земле со скоростью до 60 миль в секунду. Эти электроны движутся зигзагообразными путями к земле, разветвляясь в разных местах. Переменные, которые влияют на детали фактического пути, малоизвестны. Считается, что присутствие примесей или частиц пыли в различных частях воздуха может создавать области между облаками и землей, которые обладают большей проводимостью, чем другие области. По мере роста ступенчатого лидера он может освещаться пурпурным свечением, характерным для молекул ионизированного воздуха.Тем не менее, лидер — это не настоящий удар молнии; он просто обеспечивает дорогу между облаком и Землей, по которой в конечном итоге будет перемещаться молния.

Когда электроны ступенчатого лидера приближаются к Земле, происходит дополнительное отталкивание электронов вниз от поверхности Земли. Количество положительного заряда, находящегося на поверхности Земли, становится еще больше. Этот заряд начинает мигрировать вверх через здания, деревья и людей в воздух.Этот восходящий восходящий положительный заряд — известный как стример — приближается к ступенчатому лидеру в воздухе над поверхностью Земли. Лента может встретиться с лидером на высоте, эквивалентной длине футбольного поля. После установления контакта между косой и лидером намечается полный проводящий путь и начинается молния. Точка контакта между наземным зарядом и облачным зарядом быстро поднимается вверх со скоростью до 50 000 миль в секунду. Целый миллиард триллионов электронов могут пройти этот путь менее чем за миллисекунду.За этим начальным ударом следует несколько последовательных вторичных ударов или скачков заряда. Эти вторичные выбросы разнесены во времени так близко, что могут выглядеть как один удар. Огромный и быстрый поток заряда по этому пути между облаком и Землей нагревает окружающий воздух, заставляя его сильно расширяться. Расширение воздуха создает ударную волну, которую мы наблюдаем как гром.

Молниеотводы и другие средства защиты

Высокие здания, фермерские дома и другие строения, восприимчивые к ударам молнии, часто оснащены громоотводами .Крепление заземленного громоотвода к зданию — это защитная мера, которая предпринимается для защиты здания в случае удара молнии. Первоначально концепция громоотвода была разработана Беном Франклином. Франклин предположил, что молниеотводы должны состоять из заостренного металлического столба, который поднимается вверх над зданием, которое он предназначен для защиты. Франклин предположил, что громоотвод защищает здание одним из двух способов. Во-первых, стержень служит для предотвращения разряда молнии заряженным облаком.Во-вторых, громоотвод служит для безопасного отвода молнии на землю в том случае, если облако действительно разряжает свою молнию с помощью болта. Теории Франклина о работе громоотводов существуют уже несколько столетий. И только в последние десятилетия научные исследования предоставили доказательства, подтверждающие, как они действуют для защиты зданий от повреждений молнией.

Первую из двух предложенных Франклином теорий часто называют теорией рассеяния молнии .Согласно теории, использование громоотвода на здании защищает здание, предотвращая удар молнии. Идея основана на том принципе, что напряженность электрического поля вокруг заостренного объекта велика. Сильные электрические поля, окружающие заостренный предмет, служат для ионизации окружающего воздуха, тем самым повышая его проводящую способность. Теория диссипации утверждает, что по мере приближения грозового облака между статически заряженным облаком и громоотводом устанавливается проводящий путь.Согласно теории, статические заряды постепенно перемещаются по этому пути к земле, что снижает вероятность внезапного и взрывного разряда. Сторонники теории рассеяния молнии утверждают, что основная роль молниеотвода — разрядить облако в течение более длительного периода времени, предотвращая, таким образом, чрезмерное накопление заряда, характерное для удара молнии.

Вторая из предложенных Франклином теорий о работе громоотвода является основой теории отведения молнии .Теория отвода молнии утверждает, что молниеотвод защищает здание, обеспечивая проводящий путь заряда к Земле. Громоотвод обычно прикрепляют толстым медным кабелем к заземляющему стержню, который закапывают в землю внизу. Внезапный разряд из облака будет направлен к поднятому громоотводу, но безопасно направлен на Землю, что предотвратит повреждение здания. Громоотвод, присоединенный к нему кабель и заземляющий полюс обеспечивают путь с низким сопротивлением от области над зданием к земле под ним.Отводя заряд через систему молниезащиты, здание избавляется от повреждений, связанных с прохождением через него большого количества электрического заряда.

Исследователи молний в настоящее время в целом убеждены, что теория рассеяния молнии дает неточную модель того, как работают громоотводы. Действительно, кончик громоотвода способен ионизировать окружающий воздух и делать его более проводящим. Однако этот эффект распространяется только на несколько метров над кончиком громоотвода.Несколько метров повышенной проводимости над кончиком стержня не способны разряжать большое облако, простирающееся на несколько километров. К сожалению, в настоящее время нет научно проверенных методов предотвращения молний. Более того, недавние полевые исследования показали, что кончик молниеотвода не нужно резко заострять, как предлагал Бен Франклин. Было обнаружено, что громоотводы с тупым концом более восприимчивы к ударам молнии и, таким образом, обеспечивают более вероятный путь разряда заряженного облака.При установке молниеотвода на здание в качестве меры молниезащиты обязательно, чтобы стержень был приподнят над зданием и соединен проводом с низким сопротивлением с землей.


Проверьте свое понимание

Используйте свое понимание, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.

1. ИСТИНА или ЛОЖЬ:

Наличие громоотводов на крыше зданий не позволяет облаку со статическим зарядом передать свой заряд в здание.

2. ИСТИНА или ЛОЖЬ:

Если вы поместите громоотвод на крышу своего дома, но не заземлите его, то ваш дом все равно будет в безопасности в маловероятном случае удара молнии.

Статическое электричество 4: Статическое электричество и молния

Фото: Clipart.ком
Назначение

Чтобы помочь учащимся понять концепции, связанные со статическим электричеством, на единственном примере: молния.


Контекст

Этот урок является первым из серии из четырех частей, посвященных статическому электричеству. Эти уроки призваны помочь учащимся понять, что статическое электричество — это явление, связанное с положительными и отрицательными зарядами.

Понимание статического электричества должно начинаться с концепции, что вся материя состоит из атомов, а все атомы состоят из субатомных частиц, среди которых есть заряженные частицы, известные как электроны и протоны.Протоны несут положительный заряд (+), а электроны — отрицательный заряд (-). Число электронов в атоме — от одного до примерно 100 — совпадает с числом заряженных частиц или протонов в ядре и определяет, как атом будет связываться с другими атомами, образуя молекулы. Электрически нейтральные частицы (нейтроны) в ядре увеличивают его массу, но не влияют на количество электронов и поэтому почти не влияют на связи атома с другими атомами (его химическое поведение).

Чтобы лучше понять статическое электричество, вы должны помочь своим ученикам установить связь между их повседневным опытом работы со статическим электричеством, например, молнией, получением сотрясений после перетасовки по ковру, снятием с себя одежды, которая цепляется друг за друга. фен, причесывание волос зимой — со статическими упражнениями, проводимыми в классе.Попросите их попытаться описать и объяснить свой повседневный опыт работы со статикой в ​​терминах, которые они изучают: отталкивание, притяжение, статический заряд, перенос электронов. Важно, чтобы учащиеся усвоили концепцию, согласно которой противоположно заряженные объекты притягиваются друг к другу, а одноименные заряженные объекты отталкиваются. Менее важно то, что они могут вспомнить, какие материалы имеют тенденцию к накоплению отрицательного или положительного заряда.

Когда два разных материала вступают в тесный контакт, например, войлок трется о воздушный шар или две воздушные массы в грозовом облаке, электроны могут переходить от одного материала к другому.Когда это происходит, в одном материале оказывается избыток электронов, и он становится отрицательно заряженным, в то время как другой в конечном итоге испытывает недостаток электронов и становится положительно заряженным. Это накопление несбалансированных зарядов на объектах приводит к явлениям, которые мы обычно называем статическим электричеством.

Когда учащиеся только начинают понимать атомы, они не могут уверенно проводить различие между атомами и молекулами. Студенты часто приходят к мысли, что атомы каким-то образом просто заполняют материю, а не к правильному представлению о том, что атомы являются материей.У учеников средней школы также есть проблемы с представлением о том, что атомы находятся в постоянном движении. Принятие этих концепций необходимо студентам, чтобы понять атомную теорию и ее объяснительную силу. («Контрольные показатели научной грамотности», стр. 75.)

В курсе «Статическое электричество 1: знакомство с атомами» учащихся просят просмотреть веб-сайты, чтобы узнать об основной структуре атома, а также о положительных и отрицательных зарядах его субчастиц. Этот урок закладывает основу для дальнейшего изучения статического и текущего электричества, сосредоточив внимание на идее положительных и отрицательных зарядов на атомном уровне.Из-за количества и сложности информации, связанной с этой темой, учащиеся со временем получат понимание этих концепций. Важно, чтобы они исследовали эту тему в различных контекстах.

Статическое электричество 2: Знакомство со статическим электричеством помогает расширить представления учащихся об атомах и их отношении к статическому электричеству. На этом уроке учащиеся проводят несколько простых экспериментов, создавая статическое электричество, чтобы продемонстрировать, как противоположные заряды притягиваются друг к другу, а подобные заряды отталкиваются.Затем студенты изучают веб-сайт, который более подробно объясняет эти концепции.

Статическое электричество 3: Подробнее о статическом электричестве помогает расширить представления учащихся об атомах и их отношении к статическому электричеству. На этом уроке студенты изучают веб-сайт, чтобы изучить концепции, связанные со статическим электричеством. Затем ученики проводят эксперименты, в которых они создают статическое электричество и демонстрируют, как противоположные заряды притягиваются друг к другу, а подобные заряды отталкиваются.

Статическое электричество 4: Статическое электричество и молния знакомит учащихся с концепциями молнии и их отношением к статическому электричеству.На этом уроке учащиеся изучают различные веб-сайты, чтобы узнать о молнии, а затем объяснить своими словами, что вызывает молнию и как это связано со статическим электричеством.


Мотивация

Прежде чем попросить учащихся изучить веб-сайты, посвященные молниям и статическому электричеству, обсудите с ними их текущие знания по этой теме.

Раздайте пакет активности «Статическое электричество и молния». Студенты должны заполнить Часть 1 пакета в это время.Попросите учащихся записать свои ответы своими словами. Сообщите им, что они вернутся к этим ответам позже на уроке, после того, как завершат веб-квест. Обсудите со студентами, как они ответили на вопросы из Части 1 своего практического пакета.


Разработка

На этом уроке учащиеся будут использовать свою электронную таблицу «Статическое электричество и молния», чтобы пройти веб-квест, изучая следующие веб-сайты, чтобы больше узнать о молниях и статическом электричестве:

Предложите учащимся работать в парах или небольших группах, чтобы они могли помочь друг другу понять факты и концепции, используемые при исследовании Интернета.

После того, как учащиеся завершат часть 2 пакета заданий, проведите обсуждение, чтобы помочь им осмыслить идеи. Ниже приведены вопросы из пакета с предлагаемыми ответами.

Статическое электричество и молния

  • Объясните, что вызывает молнию. Как принцип притяжения противоположных зарядов способствует возникновению молнии? (Воздух, капли воды и даже кристаллы льда сильно трутся друг о друга внутри грозовой тучи, создавая два противоположных вида электрического заряда: отрицательный и положительный.Когда притяжение между зарядами настолько велико, что они толкают воздух навстречу друг другу, у вас есть молния.)
  • Нарисуйте схему, чтобы проиллюстрировать, что происходит с электронами в облаках и на земле во время грозы.
  • Как проще всего определить, как далеко от вас находится молния? (Свет распространяется быстрее звука. Если вы видите вспышку молнии, считайте секунды, пока не услышите гром. Разделите полученное число на пять, и это скажет вам, на сколько миль находится молния.)

Основы статического электричества

  • Опишите влияние статического электричества на материю. Используйте несколько примеров из своей повседневной жизни. (Статическое электричество может привести к слипанию или слипанию материалов. Например, вы можете наблюдать «статическое прилипание» к одежде, исходящей из сушилки. Это может привести к тому, что материалы отталкиваются или расходятся. Вы можете увидеть, как ваши волосы отталкиваются друг от друга после расчесывания. сухой день. Он может создавать искры, летящие от одного объекта к другому.Например, после того, как вы прошли по ковру, вы можете наблюдать искру от вашего пальца прямо перед тем, как коснуться дверной ручки. Вы также можете увидеть очень большие искры, когда увидите молнию во время грозы.)
  • Опишите, как работает электроскоп для обнаружения статического электричества. (При наличии статического электричества заряды спускаются вниз по стержню электроскопа и накапливаются на фольгах. Поскольку каждая фольга собирает одинаковый тип заряда, они разделяются или отталкиваются друг от друга.)
  • Почему лучше не использовать металлы для создания статического электричества? (Хотя трение о металлические предметы может вызвать некоторое статическое электричество, на самом деле это не работает.Это связано с тем, что электричество обычно проходит через металл, а не накапливается на поверхности, как это происходит с материалом, который не проводит электричество, например, пластиком.)
  • Опишите, как Бен Франклин доказал, что молния является статическим электричеством. (Бен Франклин доказал, что молния является статическим электричеством, запустив воздушного змея во время шторма и обнаружив статическое электричество, увидев, как волоски на веревке воздушного змея встают дыбом и создают искру на металлическом кайте, прикрепленном к воздушному змею.)
  • Как статическое электричество может повредить компьютер? (Если вы прикоснетесь к печатной плате компьютера, что вызовет искру статического электричества, это может серьезно повредить схему. Внезапный выброс электронов может легко разрушить микрочипы в компьютере.)

Искры статического электричества

  • Опишите причину искры. (Искра — это внезапный выброс электронов по воздуху от одного проводника к другому, нагревая воздух до тех пор, пока он не станет раскаленным добела.По мере того как количество электрических зарядов у поверхности материалов увеличивается, притяжение между положительными и отрицательными зарядами становится больше. Если притяжение достаточно велико, некоторые электроны покинут свой материал и полетят к другому объекту. Электроны, движущиеся в воздухе, вызывают его нагрев. По мере того, как воздух нагревается, все больше и больше электронов начинают прыгать на другую сторону, вызывая еще больше тепла, пока он не станет раскаленным добела. Это искра, которую вы видите и чувствуете.)
  • Чем молния отличается от искры? (Молния работает так же, как искра, за исключением того, что она случается в больших масштабах. Молния возникает, когда капли воды вращаются в грозовой туче. Они собирают положительные или отрицательные электрические заряды, так что вскоре одно облако может быть положительным и другое облако может быть отрицательным. Возникающее электрическое давление должно быть чрезвычайно высоким, чтобы молния могла начаться. Молния может переходить от облака к облаку или от земли к облаку.)
  • Что вызывает гром? (Гром возникает из-за того, что воздух очень быстро расширяется и сжимается.)

Использование статического электричества

  • Назовите несколько полезных способов использования статического электричества. (Использование статического электричества включает борьбу с загрязнением, копировальные аппараты и покраску.)
  • Опишите, как статическое электричество можно использовать для борьбы с загрязнением воздуха. (Заводы используют статическое электричество, чтобы уменьшить загрязнение, придавая дыму электрический заряд.Когда он проходит мимо электрода с противоположным зарядом, большая часть частиц дыма прилипает к электроду. Это предотвращает попадание загрязняющих веществ в атмосферу.)

Оценка

После того, как учащиеся завершили веб-квест и ответили на вопросы в Части 2 пакета упражнений, попросите их уточнить определение статического электричества и молнии, которое они разработали в разделе «Мотивация».

В Части 3 студенты должны объяснить, какие изменения они внесли и почему они внесли их.Попросите учащихся перечислить любые доказательства, которые они нашли в веб-квесте, которые побудили их изменить свое определение.

Кроме того, попросите учащихся объяснить, как статическое электричество, молния и искры являются взаимосвязанными явлениями. Затем нарисуйте диаграмму, показывающую отрицательные и положительные заряды, возникающие во время грозы.


Расширения

Следующие Интернет-ресурсы можно использовать для дальнейшего изучения тем, связанных с молнией и статическим электричеством:

  • Lightning На сайте NOVA Online есть мероприятие по освещению в помещении, в котором даются инструкции по проведению эксперимента с участием молний и искр.
  • Static Electricity рассматривает статическое электричество с точки зрения потенциальных эффектов электростатического разряда, включая предотвращение электростатического разряда в производстве электроники, материалы для электростатических растворов и уменьшение вредного воздействия электростатического разряда.
  • На веб-сайте «Театра электричества
  • » Бостонского музея науки есть множество тем, связанных с молниями, в том числе история, воздушный змей Франклина, викторина по безопасности и ресурсы для учителей с экспериментами.

Отправьте нам отзыв об этом уроке>

(PDF) Молния, электрическое явление в природе

Молния, электрическое явление в природе.

История

Исторически, изучение молний можно проследить со времен Бенджамина Франклина (1706 —

1790). Франклин пришел к выводу, что облака электрически заряжены. В эксперименте, где

он стоял на электрическом стенде, держа железный стержень, чтобы получить электрический разряд между

другой рукой и землей, пришел к выводу, что если бы облака были электрически заряжены, то между железом прыгало бы

искр. стержень и заземленный провод.Этому эксперименту способствовал

, проведенный Томасом Франсуа Далибаром (1709 — 1799) в мае 1752 года, в котором

искры выпрыгивали из железного стержня во время грозы. G.W. Рихманн (1711 — 1753)

погиб от удара молнии, когда доказал, что грозовые облака имеют электрический заряд.

По словам Лукаша Сташевского из Технологического университета, Польша, Бенджамин

Франклин попытался проверить теорию искр, имеющих некоторое сходство с молнией, используя

шпиль, который возводился в Филадельфии.В ожидании завершения строительства шпиля ему

пришла в голову идея использовать летающий объект, например, воздушный змей. В июне 1752 года сообщалось, что он поднял воздушного змея

. Ключ был прикреплен к его концу веревки, и он привязал его к столбу шелковой нитью. По прошествии времени

, свободные волокна на струне растягивались, затем он поднес руку к ключу

, и в промежутке проскочила искра. Дождь пропитал линию и сделал ее проводящей.

Хотя этот эксперимент показал, что молния была разрядом статического электричества,

мало улучшил теоретическое понимание за более чем 150 лет.

Определение

По определению, молния — это напряжение между облаками и Землей, которое становится настолько высоким, что паразитные электроны в воздухе ускоряются до кинетической энергии, достаточной для того, чтобы выбить

электронов из атомов воздуха ( Дуглас К. Джанколи, 2005). Согласно Мартину А. Уману

(1984), молнию можно определить как кратковременный сильноточный электрический разряд, длина пути которого

обычно измеряется в километрах.Это также может быть определено как электрический разряд в

форме искры в облаке заряженного.

Процесс формирования молнии

Молнию можно сформировать в четырех типах процессов: разделение заряда,

формирование лидера, разряд и повторный удар. Процесс разделения зарядов все еще является предметом

исследований с одной гипотезой, механизм поляризации, который состоит из двух компонентов.

Во-первых, падающие капли дождя становятся электрически поляризованными, когда они падают через естественное электрическое поле атмосферы

.Во-вторых, сталкивающиеся частицы льда заряжаются электростатической индукцией

. Кроме того, есть несколько других гипотез для этого процесса, например,

разделение зарядов запускается ионизацией молекулы воздуха входящим космическим лучом.

Скорость выделения энергии — Энциклопедия по машиностроению XXL

Неупругое столкновение сопровождается рождением новых частиц с кинетической энергией Q. Найти скорость выделения энергии.  [c.105]

На рис. 12.2 приведены скорости выделения энергии в водородном и углеродном циклах в зависимости от температуры в условиях недр Солнца. Как видно из этого рисунка, скорость выделения энергии в углеродном цикле с ростом температуры растет значительно сильнее (как Т ), чем скорость выделения энергии в водородном цикле (как Т ). Это связано в конечном счете с тем, что сечение фундаментальной для водородного цикла реакции (12.13) ограничено сверху аномально малой величиной 10 барн. Поэтому уже при температурах вещества 10 К скорость выделения энергии в водородном цикле достигает насыщения. Напротив, сечения реакций углеродного цикла ограничены сверху типично ядерными сечениями ( 10 барн), уменьшенными на порядок величины константы а = 1/137 электромагнитного взаимодействия, т. е. сечениями по-  [c.606]


Рис. 12.2. Зависимость от температуры скоростей выделения энергии е (эрг/(г -с)) в водородном (кривая /) и углеродном (кривая 2) циклах.
Чтобы скорость выделения энергии соответствовала скорости выделения энергии при химических реакциях, необходимо использовать дейтерий и тритий плотностью примерно в 10 раз меньше плотности бензина. Однако реальное осуществление реакций (7.1) и (7.2) является исключительно сложной задачей. Термоядерная реакция оказывается энергетически выгодной, если  [c.281]

Как показывают опыты, технологическая эффективность разряда в жидкости зависит от начальной скорости выделения энергии установлено, что скорость выделения энергии повышается главным образом  [c.239]

К факторам, влияющим на работоспособность камеры, относятся тип топлива (к примеру, топливная пара жидкий кислород— жидкий водород имеет высокую температуру горения, а азотная кислота реагирует со многими металлами), кинетические эффекты и геометрические параметры, определяющие скорость газа. Распределение компонентов вблизи смесительной головки и скорости испарения оказывают влияние на скорость выделения энергии и теплообмен. Поэтому конструкция смесительной головки является определяющим фактором в отношении работоспособности камеры.  [c.178]

Классическое исследование структуры звезд построено нё так называемой стандартной модели , в которой считается постоянным по всей звезде произведение щ [16], где х — коэффициент поглощения, а ц — отношение средней скорости выделения энергии внутренней частью звезды (вплоть до точки, в которой определяется т]) к средней скорости выделения энергии  [c.408]

Выбор параметров разрядной цепи и напряжения, до которого заряжается конденсатор, зависит от выполняемого технологического процесса. Во второй стадии при расширении искрового канала образуется ударная волна, представляющая возмущение в среде, которое распространяется в виде зоны сжатия с крутым передним фронтом. Давление на фронте ударной волны достигает нескольких десятков тысяч атмосфер и определяется скоростью выделения энергии в канале разряда. Исследования показали, что толщина фронта ударной волны определяется величиной свободного пробега молекулы в жидкости и имеет порядок 10 — 10 м.ц.  [c.283]


Разность между активными мощностями, определяемыми по формулам (36) и (39), дает скорость выделения энергии в объеме V = а X Ь X I. Отношение этой разности к мощности, определенной по формуле (36), дает степень концентрации энергии в нагреваемых кромках трубной заготовки. С ростом частоты тока концентрация непрерывно растет.  [c.79]

Изучение реакций, происходящих в высокотемпературной дейтериевой плазме (И1.3.6.1°), является теоретической основой получения искусственных управляемых термоядерных реакций. Основной трудностью является поддержание условий, необходимых для осуществления самоподдерживающейся термоядерной реакции. Для такой реакции необходимо, чтобы скорость выделения энергии в системе, где происходит реакция, была не меньше, чем скорость отвода энергии от системы. При температурах порядка 10 К термоядерные реакции в дейтериевой плазме обладают заметной интенсивностью и сопровождаются выделением большой энергии. В единице объема плазмы при соединении ядер дейтерия выделяется мощность 3 кВт/м . При температурах порядка 10 К мощность составляет всего лишь 10 Вт/м .  [c.501]

Данные Грина по топливам, содержащим перхлорат аммония и не содержащим таких присадок, показывают, что скорость выделения энергии с единицы поверхности (произведение скорости горения, плотности топлива и его теплотворности) более правильно характеризует относительную склонность топлив различного химического состава к резонансному горению, чем одна лишь скорость горения или только энергосодержание. В его опытах со смесевыми топливами, имевшими постоянное энергосодержание, но различное распределение частиц окислителя по их размерам, было обнаружено увеличение склонности к аномальному горению  [c.355]

Оптимальная ракета производит высокую тягу на единицу расхода массы. При постоянной тяге скорость истечения выбрасываемой массы меняется обратно пропорционально скорости расхода массы, или секундному массовому расходу. Эффективная ракета должна экономно расходовать массу и поэтому интенсивно расточать энергию. Эта высокая скорость выделения энергии подразумевает, что выбрасываемое вещество нагревается до высокой температуры. Задача ракетного двигателя состоит в преобразовании хаотической тепловой энергии рабочего газообразного вещества в упорядоченное состояние, в котором скорости многих молекул настолько, насколько это возможно, ориентированы в определенном направлении. В идеальных условиях полное количество движения этих молекул в выбранном направлении будет максимальным, но их температура и давление, измеренные наблюдателем, движущимся вместе с потоком, будут равны нулю.  [c.399]

Использование радиоизотопов в качестве источников тепла затруднено тем, что невозможно контролировать скорость выделения энергии таким образом, необходимо предусматривать вспомогательную систему охлаждения с целью предотвращения разрушения (плавления или испарения) источника тепла в то время, когда он не используется. Другой недостаток связан с ограниченными возможностями производства радиоизотопов [31]. При таком высоком значении коэффициента полезного действия преобразования, как 1%, потребовался бы реактор с установленной мощностью 10 Мет, чтобы получить источники тепла для двигателей большого ракетного летательного аппарата, действующих в течение месяца. Такая мощность па порядок выше мощности всех силовых установок США, действующих в настоящее время. Основной недостаток рассматриваемого метода состоит в том, что удельная выходная мощность почти любого из пригодных к использованию радиоактивных изотопов очень низка с точки зрения стандартных характеристик ракетного дви-  [c.534]

Если электрону в валентной зоне сообщить энергию, превышающую ширину запрещенной зоны, то он, покидая валентную зону, перейдет в зону проводимости (рис, 16.4, /), При движении по зоне проводимости электрон, потеряв часть своей энергии, опускается к ее дну (рис. 16.4, 2), а в дальнейшем переходит на локальный уровень активатора (рис, 16.4, валентной зоны возникает дырка, которая ведет себя подобно положительному заряду. Дырка, двигаясь по валентной зоне, рекомбинирует (рис. 16.4, 4) с электроном, попавшим на уровень активатора из зоны проводимости. Выделенная энергия при рекомбинации электрона и дырки возбуждает ион активатора, являющийся центром высвечивания. Поскольку движение электрона в зоне проводимости происходит с большой скоростью, то процесс люминесценции в данном случае является весьма кратковременным.  [c.362]


В термоядерной (водородной) бомбе выделение энергии происходит с большой скоростью и примерно через 1 мксек после начала реакции происходит тепловой взрыв и разлетание содержимого бомбы. Поэтому стационарный режим в водородной бомбе не устанавливается.  [c.328]

Как уже отмечалось в гл. П, пластическая деформация кристаллических тел может осуществляться не только скольжением, но и двойникованием. Двойникование для кристаллов с о. ц. к., г. ц. к. и г. п. у. решетками можно наблюдать при особых условиях деформирования. При этом металлографическими способами выявляются области, иначе травящиеся, чем окружающий матричный кристалл. Отличительными признаками этих областей являются прямолинейность и строгая кристаллографическая направленность двух параллельных границ. Дифракционными (рентгеновскими и др.) методами установлено, что эти области закономерно отличаются своей ориентировкой и расположением атомов относительно матрицы. Расположение атомов внутри этой области представляет собой зеркальное отражение расположения атомов в матричном кристалле (см. рис. 77,а). Плоскости зеркального отражения, пересечение которых с плоскостью шлифа имеют вид прямолинейных границ, являются плоскостями двойникования. Так, на рис. 77,а п б плоскостью двойникования является плоскость (112). Переориентированные области называют двойниками, а процесс их образования двойникованием. Двойники в кристаллах делятся на двойники роста (рост кристалла из расплава, в процессе рекристаллизации и отжига) и деформационные двойники. Двойникование при деформации — один из механизмов сдвиговой деформации. Для деформационного двойникования характерны высокие скорости и выделение энергии в форме звука с характерным потрескиванием в процессе деформации кристалла. Двойникование сопровождается скачкообразным изменением деформирующего усилия,  [c.131]

Экспериментально показано [311, что независимо от характера деформации (растяжение, сжатие, кручение) и скорости нагрева при температуре рекристаллизации происходит выделение энергии, обусловленное исчезновением, дислокаций, образовавшихся в процессе деформации. Важно, что если дислокации образуют плоские дислокационные скопления из п копланарных дислокаций, то энергия, приходящаяся-на каждую дислокацию, пропорциональна их числу п в одном скоплении ([31]. Напротив, после отжига выстраивание дислокаций в субграницы значи-  [c.43]

С уменьшением степени деформации небольшая часть скрытой эцергии наклепа выделяется и до рекристаллизации, и тем большая, чем меньше степень деформации. При этом скорость выделения энергии на стадии возврата вначале максимальна, а затем уменьшается. При рекристаллизации скорость релаксации накопленной энергии вначале мала, затем растет до максимума и вновь падает.  [c.139]

Ранее уже упоминалось о возможности использования радиоизотопных генераторов электрической или тепловой энергий в космонавтике Однако, помимо бортовых энергоустановок, радиоактивные источники с успехом могут применяться и в космических двигателях. Такие радиоизотопные ракетные двигатели, использующие энергию радиоактивного распада, в настоящее время уже разработаны (правда, все они развивают довольно малую тягу). Причем наиболее перспективным в этом отношении является применение в качестве радиоактивных источников изотопов трансурановых элементов. Среди них наибольшее распространение получили кюрий-244 (период полураспада 18 лет) и уже упоминавшийся нами плутоний-238 (см. стр. 126). Оказывается, слишком большой период полураспада некоторых радиоизотопов является таким же недостатком, как и слишком малый период полураспада, поскольку от скорости распада зависит скорость выделения энергии. Следовательно, радиоизотоп, выбранный для ра-диоизотопного ракетного двигателя, должен распадаться достаточно быстро, чтобы обеспечить приемлемую скорость выделения энергии (на единицу массы). Вот почему в космонавтике получили широкое распространение трансурановые элементы, в среднем имеющие меньшие периоды полураспада, чем другие радиоизотопы. В частности, поэтому они неоднократно привлекались как вспомогательные радиоактивные источники и при проведении научных экспериментов в космосе. Так, кюрий-242 (период полураспада около 5 месяцев) и эйнштейний-254 служили источниками альфа-частиц в аппаратуре, использовавшейся американскими учеными для химического анализа лунного грунта. Эта аппара-  [c.131]

Эффект электроимпульсного разрушения материалов при одинаковых затратах энергии зависит от характера энерговыделения в канале разряда. Об эффективности разрушения можно судить по таким его параметрам, как максимальная длина трещин, суммарная длина и поверхность трещин, размер зоны трещинообразования и др. Наиболее общим случаем зависимости указанных параметров от скорости выделения энергии при неизменной ее величине является кривая с оптимумом. В зависимости от характера материала (хрупкие, пластичные) оптимум значительно сдвигается в область малых или больших значений мощности так, что при разрушении определенно пластичного органического стекла решающим является факт роста показателей эффекта с уменьшением мощности в разряде и соответствующем увеличении длительности выделения энергии, а для силикатного стекла, наоборот, оптимальной для разрушения является высокая скорость энерговыдлеления (рис. 1.29). Эффект разгрузки канала разряда (истечение энергии канала через устья канала пробоя и вышедшие на поверхность трещины) приводит к сокращению времени эффективного нагружения, а потому величина разрядного промежутка и глубина внедрения разряда оказывают заметное корректирующее влияние на характер зависимости эффекта разрушения от мощности разряда. При больших промежутках для горных пород действует зависимость, свойственная пластичным материалам, при малых промежутках — свойственная хрупким материалам.  [c.67]

На рисунке 4.4 представлены зависимости коэффициента динамической концентрации напряжений от отношения диаметра отверстий к длине падающей волны, в качестве теоретической зависимости использованы данные /89/. На рисунке 4.5 представлены значения максимального порядка полос и максимального напряжения на контуре отверстий от величины индуктивности разрядного контура генератора импульсов. При наличии отвфстий в электроде-классификаторе при воздействии на него электрического импульсного разряда коэффициент динамической концентрации напряжений увеличивается по фавнению с электродом без отверстий на 60%, величина максимального напряжения на контуре может достигать 625 кГ/см и с увеличением индуктивности разрядного контура резко падает, что связано с уменьшением скорости выделения энергии в канале разряда и, соответственно, уменьшением амплитуды давления в волне сжатия.  [c.167]


Протозвёздные оболочки существуют в течение характерного времени ц, т. е. при обычных условиях, — 10 — 10 лет. Они определяют наблюдаемые проявления П., поскольку непрозрачны в видимом диапазоне и перерабатывают б. ч. излучения молодых звёзд в ИК-излучение (рас. 3). Поэтому такие оболочки наз. также коконами. Непрозрачность обусловлена пылью, темп-ра к-рой для силикатных частиц не превышает 1000 К, а б. ч. пыли ещё холоднее (=ss 100 К). Вследствие этого П. излучают оси. долю энергии в диапазоне, недоступном для наземных наблюдений, и изучаются методами внеатмосферной астрономии. Вокруг достаточно массивных звёзд по мере увеличения их эфф. темп-ры образуются зоны НИ. Коконы Поглощают видимое излучение зон НИ, и эти зоны (т. н. компактные зоны НН) обнаруживаются по радиоизлучению и пику излучения в ИК-области, Градиент давления излучения и ио-визов. водорода препятствует коллапсу оболочки и в конечном итоге приводит к разлёту оболочки. Более раннюю стадию эволюции П. (коллапс) наблюдать трудно вследствие малой скорости выделения энергии на этой стадии.  [c.164]

При большинстве способов реализации обращения оно является следствием нелинейных процессов, требующих для своего протекания больших плотностей излучения скорость выделения энергии даже в малопоглощаю-щих нелинейных средах оказывается столь высокой, что качественные  [c.251]

Электрический разряд в жидкости характеризуется следующими основными величинами выделяемой при разряде энергией, изменением мгнове 1ной мощности во времени и длительностью разряда в его лидерной стадии. Эти величины зависят от многих факторов напряжения на конденсаторе в начале разряда, емкости конденсатора, величины межэлектродного промежутка, проводимости жидкости, индуктивности разрядной цепи и др. С уменьшением индуктивности разрядной цепи увеличивается скорость выделения энергии в разрядном канале.  [c.283]

На рис. 1 приведены данные Гордона [8] о выделении энергии из хо-лоднодеформированной (на 17,7%) меди в процессе отжига при различных температурах. Первоначальное быстрое падение скорости выделения энергии связано с возвратом,  [c.9]

Рассмотрим два наиболее интересных случая достижение коэффициента усиления мишени равного 1 (или выполнение, так называемого, критерия Лоуссона) и достижение предельно возможных коэффициентов усиления. Минимальная температура плазмы необходимая для зажигания мишени определяется двумя условиями 1) скорость термоядерной реакции должна быть достаточно высокой и 2) скорость выделения энергии в реакциях синтеза должна превышать потери на собственное излучение плазмы. Для DT-реакции первое условие выполняется при Т > 5-10 кэВ, второе — при температуре плазмы Т > > 1 кэВ. Поэтому будем полагать, что начальная температура плазмы составляет 10 кэВ. Подставляя в выражение для степени выгорания значения скорости термоядерной реакции и скорости звука при температуре Т = 0 кэВ легко получить  [c.39]

Многостадийный процесс преобразования электрической энергии в акустическую по необходимости зависит от электрических свойств жидкости, в которой протекает разряд теплофизических параметров нагреваемой среды упругих свойств жидкости в скважине и окружающем ее пространстве скорости выделения энергии в разрядном промежутке и, следовательно, от электрических параметров всей цепи, по которой передается энергия. Таким образом, при разработке электроискрового источника возникает ряд внутренних задач выбор элементов электрической цепи, величин энергий, напряжений, геометрии разрядного промежутка, оптимальных электрических и, возможно, теплофиаи-ческих свойств жидкости в локальном объеме, существенном для развития разряда.  [c.9]

Необходимо отметить тот факт, что при наличии непроводящей (полиэтиленовой) обсадки скважины электроискровой источник перестает работать как источник упругих волн при таких Л1, когда в необсаженной скважине параметры упругих волн выходят на асимптоту. Эффект такого рода ожидался по известным причинам — сопротивление заземления в цилиндрической полости резко возрастает по сравнению с безграничной средой, скорость выделения энергии уменьшается до таких значений, при которых не возникает лавинообразного нарастания тока в цепи разряда, а интенсивность упругих волн падает до пренебрежимо малых значений,  [c.62]

При условии, что вся потенциальная энергия ВВ переходит в кинетическую энергию движоння тел и продуктов взрыва, выделение энергии мгновенное, н частицы продуктов взрыва имеют скорость, изменяющуюся но дли[1е 13В но лииеииому закону, определить скорости метания тел. 2) Определить скорость мета-, ПИЯ первого тела в случае отсутствия второго. Использовать обо-  [c.144]

Гидродинамический режим распространения волны поглощения, вызванной ионизацией за ударной волной, со скоростью, превышающей скорость нормальной детонации (5.34), невозможен. Такому случаю соответствовало бы сжатие за ударной волной до состояния А на ударной адиабате с последующим расширением газа во время поглощения лазерного излучения вдоль отрезка прямой А 1 до точки В на ударной адиабате волны поглощения. Но в состоянии В скорость распространения волны по нагретому газу О оказывается дозвуковой. Расширение нагретого газа за такой волной тотчас бы ослабило и замедлило волну, переводя ее в режим нормальной детонации (из точки В в точку 2). Такой режим аналогичен пересжатбй детонации. Для того чтобы светодетонационная волна распространялась со скоростью большей, чем это может обеспечить поглощение лазерного излучения, должно быть дополнительное выделение энергии. Однако в условиях опытов таких дополнительных факторов нет, и, следовательно, отклонения от режима нормальной детонации невозможны.  [c.110]

В ИПХТ-М может наблюдаться ряд дополнительных физических явлений, отражающихся на рассчитываемых величинах. Наиболее существенны следующие наличие контактного электрического сопротивления между расплавом и прилегающей к нему поверхностью тигля Лк > турбулентный характер течения с зонами существенно разной завихренности МГД-неустойчивость, вызывающая, в частности, появление вертикальных складок на поверхности ( рифы ), отражающихся на выделении энергии кавитация, усиливаемая наличием сжимающих ЭМС и влияющая на поле скоростей поверхностные явления (образование пленок окислов, поверхностное натяжение), оказьшающие влияние на конфигурацию мениска и рифов.  [c.78]

Гриффитс облучал поликристаллическую MgO протонами с энергией 500 эв и обнаружил, как в случае с AI9O3, что проводимость MgO сильно увеличивается во время облучения. Восстановление свойств при комнатной температуре оказалось пропорциональным корню квадратному из времени. На этом основании было сделано предположение, что восстановление исходной проводимости зависит от диффузионных процессов. Померанц и др. [167] измеряли ток, возникающий в тонком монокристалле MgO, облучаемом импульсами электронов с энергией 1,3 Мэе. Авторы обнаружили, что он (как и предполагалось) пропорционален приложенному напряжению. Время жизни носителей зарядов составляло примерно 3-10 1 сек. Тонкие пленки MgO также подвергали бомбардировке электронами с энергией 1 кэв, чтобы обнаружить выделение кислорода из MgO вследствие облучения. Кислород выделялся из MgO, если использовались электроны с энергией выше 16,9 эв. Установлена пропорциональность между скоростью выделения кислорода и квадратом плотности тока бомбардирующих электронов.  [c.168]

Огромная масса Икара, к тому же движущаяся с космической скоростью, бесспорно, вызовет взрыв гигантской силы. Этот взрыв произойдет не потому, что в состав Икара входят какие-либо огнеопасные, взрывающиеся вещества. Взрыв — мгновенное выделение энергии — произойдет потому, что огром.ная кинетическая энергия тела стремительно перейдет в тепловую энергию. Расчеты  [c.253]



Электромагнитный импульс, уничтожающий цивилизации — Ядерная энергия — LiveJournal

В интернете можно регулярно встретить страшилки по поводу разрушительного действия электромагнитных импульсов (ЭМИ), особенно — от ядерного оружия.


Ядерный взрыв Kingfish, в ходе серии высотных подрывов Operation Fishbowl, в которой и были открыты необычно высокие уровни ЭМИ от высотных ядерных взрывов.

Что-то типа таких текстов:
“При высотном ядерном взрыве, возникает электромагнитный импульс огромной мощности, выводящий из строя электронное оборудование на расстоянии десятков километров. Т.е. все современное вооружение (кроме, конечно, автоматов Калашникова) в этой зоне превращается в хлам. Правильнее будет сказать — в хлам превращается вся их высокотехнологичная электронная начинка. Наша инфраструктура особенно городская настолько уязвима, что при ее крахе человеку в городе не выжить, во всяком случае большинству. Ведь город не производит продуктов, постоянно требует энергию как электрическую так и топливо, плюс непрерывная поставка воды обслуживание канализации. Отсутствие электричества и топлива приведет к остановке накачивающей гидросистемы, продукты будут портится и исчезнет водопровод. Осознав что положение безвыходно люди побегут из города, но уже будет поздно. Забастовки и митинги голодных людей. Погромы и грабежи магазинов, складов, богатых домов и началась анархия. Картина получается мрачная, но потенциальная возможность такого развития сюжета должна быть просчитана соответствующими ведомствами.”

Или вот
Однако даже если этого не произойдет, но ЭМИ-ракета упадет где-либо в США, это уничтожит до 90% американского населения. Бывший сотрудник ЦРУ пояснил, что в результате электромагнитного удара электроника будет выведена из строя, произойдут массовые аварии. Гражданские самолеты, которые одновременно находятся в небе и перевозят около 500 000 человек, упадут,  приведя к смертям не только пассажиров, но и всех, кто пострадает от серии катастроф. Также такой импульс полностью уничтожает запасы продовольствия. В итоге через год лишь 10% от нынешней численности населения США выживет, отметил бывший сотрудник ЦРУ.

Давайте же сегодня посмотрим на дьявольское отродье — ядерное электромагнитное оружие, его физику и реальные возможности.



Этот взрыв не имеет отношения к сегодняшней теме, но мне просто очень нравятся различные фоточки ядерных испытаний, сохраненные с сайта LANL

Начать, пожалуй надо с того, что же это такое — ЭМИ. По сути это что-то сильной фотовспышки в радиодиапазоне. Но в отличии от аналогии в лоб ЭМИ опасен не только перегрузкой радиоприемников (что-то вроде “зайчиков в глазах”) но и свойством высаживать свою электромагнитную энергию на всем проводящем. В частности, в пострадавших оказываются длинные проводные линии — электропитания и связи, радиоэлектронные устройства, не готовые к заряду бодрости в антенну и в целом, вся электроника, не защищенная хоть какими-то инженерными ходами.


Физики высотного ядерного ЭМИ, к сожалению, несколько сложнее того, что можно изложить в посте, и имеет несколько различных компонентов. А целом амплитуда от времени (в логарифмических координатах, обратите внимание) выглядит как на картинке выше. Шикарное изложение физики явления можно подчерпнуть в статье человека, объяснившего это явление (в США) — Conrad Longmire.

Проблемой воздействия ЭМИ на электрику и электронику занимается целая отдельная наука и на деле вопрос этот весьма непрост и многогранен. При должном усердии очень нежный радиоприемный узел можно защитить так, что его будет проще уничтожить ядерным взрывом, чем электромагнитным импульсом ядерного взрыва. Эффекты зависят от всего — спектра конкретного ЭМИ, геометрии прибора, взаимного расположения, проводников вокруг, фазы луны и т.п. и т.д. Уже поэтому очень большим преувеличением является огульное утверждение, что какой-бы там не был ЭМИ способен уничтожить (локально) цивилизацию — результат будет, натурально, непредсказуем.

Самый подробный анализ воздействия ЭМИ, и не только высотных ядерных, на жизнь страны я нашел в документе FAS, хотя, как мне кажется, он слегка загнут в алармискую сторону.

Тем не менее кое какие оценки сделать можно и полезно. Основные две характеристики ЭМИ, которые нам понадобятся — это его протяженность во времени (длительность) и амплитуда, выражаемая обычно в напряженности электрической компоненты электромагнитного поля в вольтах на метр.

С амплитудой, надо думать, все более менее понятно — чем больше молоток, тем больше от него дыры в стене. Характерные значения напряженностей, которые что-то могут повредить начинаются с 5 кВ/м, 50 кВ/м считается пределом для ядерного ЭМИ (об этом ниже), ЭМИ-оружие (без ядерного заряда) способно создавать амплитуды до 200 кВ/м. Чем короче ЭМИ, тем серьезнее проблемы защищающейся стороны.  Вызвано это как ростом мгновенной мощности при неизменной энергетике, так и тем, что коротковолновые составляющие лучше проникают в здания и корпуса приборов, лучше “осаживаются” на проводники.

На электронику и электрику ЭМИ воздействует несколькими способами. Во-первых на различных проводниках схемы возникают перенапряжения — от десятков вольт до киловольт, а для длинных, неудачно расположенных ЛЭП — до мегавольтов. Перенапряжения могут привести к пробою различных элементов схем/систем, особенно там, где нет схемотехнических защит специальными быстродействующими полупроводниковыми устройствами. Здесь опять важна краткость ЭМИ — чем он длиннее, тем больше энергии будет просто рассеяно в проводниках и меньше амплитуды перенапряжений.

И да, про энергию. ЭМИ переносят относительно небольшую энергию — от десятков миллиджоулей до десятков джоулей на метр квадратный. По сути, ничему, кроме как нежной электронике и неудачно спроектированным линиям электропитания (собирающим энергию с сотен тысяч квадратных метров) повредить ЭМИ не может. При этом закон обратных квадратов неумолим — взорвав 200 кг взрывчатого вещества в спецбоеприпасе и излучив 50 мегаджоулей электромагнитного излучения (такая цифра превосходит лабораторные рекорды) на расстоянии 300 метров мы получим всего ~40 Дж/м^2 и пару джоулей в приемном тракте условной носимой радиостанции, от которых можно защититься.2.


Кочующее из публикации в публикацию изображение электромагнитного оружия. Здесь набор конденсаторов создает импульс тока во взрывомагнитном генераторе первой ступени, который создает импульс тока мегаамперного уровня во втором ВМГ, который в свою очередь создает мегаамперный импульс при сотнях киловольт в СВЧ генераторе-виркаторе

Прежде, чем перейти, наконец, к ядерным взрывам — несколько цифр:

ЭМИ от молний имеет длительность в районе 1 миллисекунды и амплитуду до 10 кВ/м в непосредственной близости от молнии и 1-2 кВ/м в сотне-другой метров. ЭМИ от оружия создает напряженность до 100 кВ/м (200, насколько я понимаю — все же лабораторный предел) в объеме нескольких метров и до 1 кВ/м в сотне метров от точки подрыва и может иметь длительность в 100-200 микросекунд.

Итак, высотный ядерный взрыв (ВЯВ) и его легендарный ЭМИ. Что мы могли бы ожидать изначально? Ядерный взрыв в плане энерговыделения гораздо быстрее любой взрывчатки примерно в 1000 раз. Ядерный взрыв мощнее любой взрывчатки в тысячи и миллионы раз. Означает ли это, что ЭМИ от ВЯВ — это просто дубина побольше?


Характеристики различных ЭМИ.

Вопреки первой интуитивной догадке, в высотном ядерной взрыве непосредственно не генерируется значительных электромагнитных всплесков. Немножко разлетающейся плазмы от бывшей бомбы, море рентгеновского излучения при остывании плазмы, и немножко первичного гамма-излучения от цепной ядерной энергии — вот и все, что по сути дает ядерный взрыв в космосе, над атмосферой.

Пшик? Ничего не вышло? Но обратите внимание за улетевшим жестким гамма-излучением, унесшим жалкие 0,1-0,2% от полной мощности взрыва.

Со скоростью света очень короткий (несколько наносекунд) и отсюда крайне мощный импульс гамма-излучения распространяется в сторону поверхности и на высоте ~30 км начинает активно поглощаться плотнеющей атмосферой.  Гамма-кванты выбивают электроны из воздуха и разгоняют их до приличной энергии за счет эффекта Комптона. Электроны выбивают следующие, те — еще, и в итоге на всей засвеченной площади атмосферы за наносекунды возникает невероятное количество свободных электронов, в целом движущихся в том же направлении, что и исходное излучение.

Наверное впечатляющее зрелище.

Здесь в игру вступает магнитное поле Земли. Все наши новорожденные электрончики начинают синхронно заворачивать в магнитном поле и за счет эффекта циклотронного резонанса излучают импульс электромагнитного излучения. Его длительность — десяток наносекунд, а амплитуда — 20…50 кВ/м, но он излучается не в точке. Он излучается всем небом на тысячи километров вокруг эпицентра ВЯВ.


Моделирование распределения амплитуды ЭМИ от высотного ядерного взрыва (высота подрыва 100 км). Даже в ~700 км от эпицентра энерговыделение еще приличное. Взаимодействие с магнитным полем земли рисует этот своеобразный «смайлик».


Зависимость радиуса действия ЭМИ от высоты подрыва. Впрочем, как можно догадаться, чем выше подрыв — тем больше должна быть энергетика ядерного боеприпаса, что бы воздействовать с той же силой.

Именно этот факт, наряду с очень короткой протяженностью во времени делает ЭМИ ВЯВ столь значительным оружием. Плотность энергии мало меняется на протяжении сотен километров от эпицентра, засвечивая сразу миллионы километров квадратных. Именно в таких условиях ЛЭП могут набирать мегавольты перенапряжения, а трансформаторы на их концах получать пробои изоляции обмоток. Все остальные классы повреждений — пробои на терминалах проводной связи, сгорающие тракты радиолокаторов и радиостанций, зависшие цифровые устройства тоже возможны.


Моделирование импульса тока, вызванного ЭМИ в 100 метрах воздушной линии, лежащей в меридональном направлении.

Однако, подождите. Физика ВЯВ, подарившая оружейникам столько впечатляющую игрушку диктует и ее ограничения. Обладая импульсом гамма излучения с известной жесткостью и длительностью мы получаем логарифмическую зависимость амплитуды ЭМИ от мощности. Мегатонная бомба даст 20 кВ/м, специально подготовленная 20 мегатонная — 50 кВ/м, с 300 мегатонн, пожалуй можно выжать 80, а десяток гигатонн… Так, стоп. Видя такую зависимость, инженеры “обороны” прочертили линию в 50 кВ/м, и выпустили в рамках “библии электромагнитной совместимости” IEC 61000 главы, посвященные ЭМИ ВЯВ, с помощью которого вполне возможно создавать оборудование, которое переживет это деструктивное воздействие как ни в чем не бывало. Причем не обязательно проектировать каждый сервер или принтер устойчивым к ядерному оружию, защищать можно сразу здание, его сети питания или связи. Например, от поражения по сетям питания можно использовать различное оборудование защищающее IEEE 587 class B+ — например для защиты оборудования по линиям питания 1, 2, защиты коаксиальных линий и т.п.


Самое важное для нас в этой картинке с моделированием ВЯВ — амплитуда ЭМИ ВЯВ логарифмически зависит от мощности жесткого гамма-излучения

Насколько, в итоге может оказаться разрушительным ЭМИ ВЯВ? Существует довольно много отчетов по этой тематике [1 , 2, 3] Наиболее короткое резюме из них выглядит так: при должном внимании к проектированию силовых и коммуникационных устройств ущерб от ЭМИ ВЯВ будет минимален или вообще нулевым. При этом существующая инфраструктура в США, скажем, по мнению авторов реализована довольно пестро — где-то защита реализована, где-то нет. Наибольшей, фактически 100% стойкостью, обладает инфраструктура военных, затем идут высоковольтные ЛЭП, хорошо защищенные ограничителями перенапряжений, Tier 1 ЦОДы, ну а хуже всего защищено всякое рядовое оборудование — от магазинчиков до домашних телевизоров.


Воздействие эмитатором ЭМИ ВЯВ на телекоммуникационную плату (сама плата выключена) — виден пробой каких-то элементов возле розетки, куда приходят провода. Надо полагать, что массовой жертвой могут пасть трансформаторы в разъемах Ethernet.


Исследования американской лаборатории ORNL, например, показывают, что самыми уявзвимыми на высоковольтных подстанций оказываются не трансформаторы и ЛЭП (защищенные ограничителями перенапряжений), о которых много говорят в прессе, а измерительное оборудование и низковольтные кабели к системе управления.

Впрочем, судя по оговоркам вывод о слабости холодильников к поражению ядерными ЭМИ сделан прежде всего в силу невозможности нормального анализа по этому классу целей — еще раз напомню, что реальное поражение будет зависеть от всего на свете: как расположен прибор относительно точки подрыва, какой длины провода питания и проложены ли они под землей или в воздухе, есть ли грозозащитные устройства, из чего сооружен дом и т.п. и т.д. Невозможность расчета оставляет пространство для субьективности — если в отчете надо нагнать ужаса, пишем о критической незащищенности, надо добиться выделения денег — пишем о необходимости все посчитать, а если мы военные, то считаем что все граждане с неправильными холодильниками умрут и исходим из этого. Мы же военные.

Из чтения фактологии анализов устойчивости к ЭМИ можно сделать такой вывод — “противник” (ЭМИ ВЯВ) хорошо известен, методы защиты от него отработаны и внедрены как минимум на части критичной инфраструктуры, которая и переживет удар. Да, потери возможны, но шансы “отправиться в каменный век”, невысоки.


Интересный вывод можно сделать, рассматривая спектр ЭМИ ВЯВ. В районе 1 ГГц спектральная плотность падает к максимуму на 3 порядка, т.е. антенны всякой цифровой радиосвязи (начиная от 433 МГц) будут набирать вольты или десятки вольт непосредственно в тракт на частотах где есть хорошее согласование и низкий ксв и вполне возможно не пострадают совсем.

Но что, если все эти стандарты условий ЭМИ, для которых создано оборудование защиты недооценивают ЭМИ ВЯВ?

Вернемся к физике: для увеличения поражающего эффекта нужно либо усиливать выход жесткого гамма-излучения ядерного взрыва, либо укорачивать его импульс (не потеряв в мощности) — только так можно увеличить амплитуду ЭМИ, генерируемого атмосферой. Казалось бы, выход гамма-излучения, рождающегося в процессе деления ядер надкритичной системы жестко “запрограммирован” физикой явления. Любая другая энергия, которую мы можем взять от ядерного взрыва неизбежно релаксирует в материале бомбы и выделяется в виде жесткого рентгена — но эти “жесткие” 10 кЭв слишком мягкие на фоне 1,5 МэВ средней энергии гамма-излучения, чтобы родить достаточно электронов в атмосфере.

Любая другая, кроме термоядерных нейтронов, рожденных в реакции D+T->He4 + n. Нейтрон здесь имеет энергию 14,7 МэВ и имеет на порядки бОльший пробег в бомбе, чем любые другие частицы. Эффективно конвертировать эту энергию в гамма-излучение можно с помощью неупругого рассеяния — процесса кратковременного захвата нейтрона ядрами материи, после чего нейтрон переизлучается, а ядро остается в возбужденном состоянии, которое сбрасывается с помощью гамма-квантов. Если облучать потоком быстрых нейтронов относительно легкие ядра (например, углерод, кислород или азот), то часть энергии будет конвертироваться в поток жестких гамма-квантов. Наилучшие результаты даст жидкий или твердый кислород, но и гораздо более банальный углерод будет тоже ничего — 10-20% энергии нейтронов выделяться в виде гамма квантов с средней энергией в 4,2 МэВ. Да, выделение энергии будет идти не несколько наносекунд, а скорее несколько десятков наносекунд, но появляется возможность поднять кпд генерации гамма-излучения в ~100 раз.

1 мегатонна “стандартного” боеприпаса при высотном ядерном взрыве дает около 1 килотонны в виде гамма-излучения. В “нейтронно-углеродном” боеприпасе для генерации 1 кт гаммы нужно всего 12 кт термоядерной энергии, а с трех мегатонн можно снять до 250 кт гамма-излучения, втрое более жесткого, хоть и более растянутого во времени. Такое устройство может быть гораздо более разрушительно, чем то, что мы обсуждали выше — пускай амплитуда ЭМИ вырастет не кардинально выше (хотя, возможно, можно побороться и за 100 кВ/м), энергетика импульса, а значит и деструктивное воздействие на электронику изменится кардинально.

Впрочем, есть одно но. Описанный выше боеприпас должен работать на дейтерий-тритиевой смеси, и стандартный LiD не подойдет (т.к. LiD “горит” в виде цепочки, потребляющей собственные нейтроны и выход их наружу невелик по сравнению с общей мощностью). На 1 мегатонну нужно 24 кг трития, при том, что весь гражданский его запас в мире составляет около 30+ кг и, видимо, заметно превосходит запасы военных. Последний вывод можно сделать из сопоставления пары сотен мегаватт тяжеловодных реакторов на Маяке и сложной истории с получением трития из литиевых мишеней на реакторе Watts Bar-1 в США в сравнении с десятками гигаватт (тепловых) реакторов CANDU, на которых получается “гражданский” тритий.

Отсюда можно сделать вывод, что ЭМИ ВЯВ боеприпасы сделанные по принципу конверсии ТЯ-нейтронов вряд ли существуют в реальности, а значит разработчики стандарта IEC 61000 могут спать спокойно. Пока.   


Некоторые полезные источники
High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the U.S. Power Grid https://www.eiscouncil.org/App_Data/Upload/9b03e596-19c8-49bd-8d4e-a8863b6ff9a0.pdf
High-Frequency Protection Concepts for the Electric Power Grid https://www.eiscouncil.org/App_Data/Upload/de2ca832-e989-49aa-a28e-b74e40d2638a.pdf
Michael Sirak, “U.S. vulnerable to EMP Attack,” http://www.janes.com/defence/news/jdw/jdw040726_1_n.shtml
(HEMP) and High Power Microwave (HPM) Devices: Threat Assessments https://fas.org/sgp/crs/natsec/RL32544.pdf
https://ak-12.livejournal.com/86608.html?thread=3501648#t3501648

Новый метод измерения энергии удара молнии — ScienceDaily

Флорида, которую часто называют «столицей молнии Соединенных Штатов», является прекрасным местом для изучения количества энергии, высвобождаемой при ударе молнии. Просто спросите у доцента Школы наук о Земле Университета Южной Флориды Мэтью Пасека и его коллегу Марка Херста из Independent Geological Sciences, Inc., которые разработали уникальный метод измерения количества энергии, израсходованной молнией из облака на землю.

По словам Пасека, одна из самых сложных вещей для измерения — это количество энергии удара молнии. В то время как атмосферные физики могут аппроксимировать энергию молнии, измеряя электрический ток и температуру молнии по мере их возникновения, цифры обычно являются приблизительными.

Группа Пасека и Херста первой исследовала энергию ударов молнии, используя геологические исследования «постфактум», а не измеряя энергию во время удара. Проведя «археологию» этого удара молнии, исследователи смогли измерить энергию молнии, ударившей в песок Флориды тысячи лет назад.

Результаты их анализа были недавно опубликованы в журнале Scientific Reports .

«Когда молния ударяет в песок, она может образовать цилиндрическую стеклянную трубку, называемую фульгуритом», — объяснил Пасек. «Структура фульгурита, созданная энергией и теплом при ударе молнии, может многое рассказать нам о характере удара, особенно о количестве энергии в одном разряде молнии».

Команда собрала более 250 фульгуритов — как современных, так и древних — в песчаных шахтах округа Полк, штат Флорида., в месте, которое, как считается, было зарегистрировано тысячи лет ударов молнии, что дает возможность измерить историю ударов молнии в том, что сегодня называется коридором I-4, в регионе недалеко от Тампы и Орландо. Они проанализировали свойства фульгуритов, уделив особое внимание длине и окружности стеклянных цилиндров, поскольку по этим размерам определяется количество выделяемой энергии.

«Все знают, что в молнии много энергии, но сколько?» — объяснил Пасек.«Наша первая попытка определить распределение энергии молнии от фульгуритов, а также первый набор данных для измерения доставки энергии молнии и ее потенциального повреждения твердой поверхности земли».

Согласно Пасеку, энергия, высвобождаемая молнией, измеряется в мегаджоулях, что также выражается в МДж/м.

«Например, один мегаджоуль эквивалентен примерно 200 пищевым калориям или энергии, полученной при включении микроволновой печи на 20 минут для приготовления пищи», — объясняет он.«Это также можно сравнить с потреблением энергии 60-ваттной лампочкой, если оставить ее включенной примерно на четыре часа. Это также то же самое, что и кинетическая энергия автомобиля, движущегося со скоростью около 60 миль в час». Их исследование показало, что энергия, производимая ударом молнии, достигает пика более 20 МДж/м.

Исследователи также нашли способ отделить «обычные» удары молнии от «аномальных».

«Хотя мы представили новый метод измерения с использованием окаменелых молний, ​​мы также впервые обнаружили, что удары молнии следуют так называемому «логарифмически нормальному тренду», — объяснил Пасек.«Логнормальный тренд показывает, что самые мощные удары молнии случаются чаще, чем можно было бы ожидать, если бы вы построили кривую нормального распределения ударов. Это означает, что большие удары молнии действительно большие».

По словам Пасека, вспышка молнии может нести чрезвычайно высокое напряжение и нагревать температуру воздуха вокруг удара более чем на 30 000 градусов по Кельвину — это более 53 000 градусов по Фаренгейту. Когда молния ударяет в песок, почву, камень или глину, ток проходит через цель и нагревает материал выше уровня его испарения.При быстром охлаждении образуется фульгурит.

По словам Пасека, который также является экспертом в области астробиологии, геохимии и космохимии, молния ударяет в Землю около 45 раз в секунду, причем от 75 до 90 процентов ударов приходится на сушу.

«Около четверти этих ударов происходит из облака в землю, поэтому потенциал образования фульгуритов велик: во всем мире образуется до 10 фульгуритов в секунду», — сказал Пасек.

Их исследования служат не только для определения способа измерения огромной энергии молнии, но и для повышения осведомленности об опасностях, исходящих от потенциально смертоносных разрядов.

Можем ли мы использовать молнию в качестве источника энергии?

Апрельские ливни сменились… майскими ливнями и грозами. Со всем электричеством в воздухе естественно спросить: «Могу ли я использовать эту штуку для питания моего фена?» Знаменитый гений-сумасшедший Никола Тесла наверняка обдумывал эту идею.

Ежегодно в нашей атмосфере происходит около полутора миллиардов вспышек молний. Примерно каждый четвертый из этих болтов взрывает землю. Некоторые приземляются в Канзасе, некоторые обрушиваются на Буэнос-Айрес, а на Конго выпадает больше дождей, чем где-либо еще в мире.

Частота молнии по всей планете (Обсерватория Земли НАСА)

Средняя вспышка молнии, ударяющая из облака в землю, содержит приблизительно один миллиард (1 000 000 000) джоулей энергии. Это немалое количество, достаточное, чтобы питать 60-ваттную лампочку в течение шести месяцев плюс забытый холодильник с открытой дверцей в течение дня. В формах электричества, света, тепла и грома вся эта энергия высвобождается вспышкой за милли- или даже микросекунды. Отсюда рассмотрим практический потенциал молнии как источника энергии.17 джоулей энергии. Таким образом, все молнии во всем мире могли обеспечить только 8% домохозяйств США. В лучшем случае. Можно ли реально использовать эти несколько процентов? Чтобы ответить на этот вопрос, нам нужно рассмотреть практические аспекты захвата и использования энергии. Во-первых, мы можем представить, что Соединенным Штатам, вероятно, придется ограничиться внутренними источниками молнии. Это ограничивает нас примерно 30 миллионами болтов в год. Теперь мы можем обеспечить электроэнергией только около 0,6% наших домохозяйств.

Как насчет электротехники, необходимой для преобразования вспышки молнии в искру в розетке? Самая большая проблема здесь заключается в том, что вся энергия молнии передается за крошечные доли секунды.Это означает, что у нас должна быть невероятно большая батарея (или конденсатор), которая может мгновенно заряжаться при ударе молнии, а затем медленно и неуклонно высвобождать накопленную энергию, когда ее об этом просят. Устройства с такими возможностями сложны в производстве и очень неэффективны. Физика говорит нам, что мы не можем хранить и извлекать эту энергию со 100% эффективностью. Фактически, мы теряем большую часть энергии, которую преобразуем, почти в каждом процессе. В сочетании с ограниченной общей энергией и трудностями и потерями при доступе к ней мы едва ли можем создать крошечную долю процента энергии, которую мы используем каждый день, от атмосферных молний.

К сожалению, совершенно невозможно использовать молнию для электричества. Но взбодритесь, на это все равно приятно смотреть.

Понимание науки о молниях

Молния завораживает, но и чрезвычайно опасен. В Соединенных Штатах ежегодно происходит около 25 миллионов вспышек молний. Каждая из этих 25 миллионов вспышек — потенциальный убийца. Несмотря на то, что за последние 30 лет количество смертельных случаев от молний уменьшилось, молнии по-прежнему остаются одним из главных убийц погоды в Соединенных Штатах.Кроме того, молния ранит намного больше людей, чем убивает, и оставляет некоторых жертв с пожизненными проблемами со здоровьем.

Понимание опасности молнии важно, чтобы вы могли добраться до безопасного места, когда угрожает гроза. Если вы слышите гром — даже отдаленный грохот — вы уже рискуете стать жертвой молнии.

Как развиваются грозы

Все грозы проходят стадии роста, развития, электризации и рассеяния.Грозы часто начинают развиваться в начале дня, когда солнце нагревает воздух у земли и в атмосфере начинают подниматься очаги более теплого воздуха. Когда эти карманы воздуха достигают определенного уровня в атмосфере, начинают формироваться кучевые облака. Продолжающийся нагрев заставляет эти облака расти вертикально в атмосферу. Эти «возвышающиеся кучевые» облака могут быть одним из первых признаков развивающейся грозы. Заключительный этап развития наступает, когда вершина облака приобретает форму наковальни.

По мере роста грозового облака внутри облака образуются осадки. Хорошо развитое грозовое облако содержит в основном мелкие кристаллы льда в верхних слоях облака, смесь мелких кристаллов льда и мелкого града в средних слоях облака и смесь дождя и тающего града в нижних слоях облака. облако. Движение воздуха и столкновения различных типов осадков в середине облака вызывают заряд частиц осадков. Более легкие кристаллы льда приобретают положительный заряд и поднимаются вверх в верхнюю часть шторма восходящим воздухом.

Более тяжелый град становится отрицательно заряженным и либо подвешивается поднимающимся воздухом, либо падает в нижнюю часть шторма. Эти столкновения и движения воздуха приводят к тому, что верхняя часть грозового облака становится положительно заряженной, а средняя и нижняя части грозового облака — отрицательно заряженными.

Кроме того, вблизи нижней части грозового облака образуется небольшой положительный заряд. Отрицательный заряд в середине грозового облака заставляет землю под ним становиться положительно заряженной, а положительно заряженная наковальня заставляет землю под наковальней становиться отрицательно заряженной.

Как формируется молния

Молния — гигантская электрическая искра в атмосфере или между атмосферой и землей. На начальных стадиях развития воздух действует как изолятор между положительными и отрицательными зарядами в облаке и между облаком и землей; однако, когда разница в зарядах становится слишком большой, эта изолирующая способность воздуха нарушается, и происходит быстрый разряд электричества, известный нам как молния.

Молния может возникать между разноименными зарядами в грозовом облаке (внутриоблачная молния) или между разноименными зарядами в облаке и на земле (облако-земляная молния). Молнии от облака к земле делятся на два разных типа вспышек в зависимости от заряда облака, из которого исходит молния.

Гром

Гром — это звук, издаваемый вспышкой молнии. Когда молния проходит через воздух, она быстро нагревает воздух.Это заставляет воздух быстро расширяться и создает звуковую волну, которую мы слышим как гром. Обычно вы можете услышать гром примерно в 10 милях от удара молнии. Поскольку молния может ударить в радиусе 10 миль от грозы, если вы слышите гром, вы, вероятно, находитесь на расстоянии удара от грозы.

Узнайте больше: разработка Thunderstorm или вернитесь на страницу содержания

Наука о громе — Национальный институт грозовой безопасности

Раздел 6.1.8

по

Р.Джеймс Ваврек
Учитель естественных наук
Школа Генри У. Эггерса
Хаммонд, Индиана 46320
Ричард Китил, президент
Национальный институт грозовой безопасности
Луисвилл, Колорадо 80027
Рональд Л. Холле
Метеоролог-исследователь/консультант
Долина Оро, Аризона 85737
Джим Оллсопп
Метеоролог, координатор предупреждений
Национальная метеорологическая служба, NOAA
Ромеовиль, Иллинойс 60446
Мэри Энн Купер, доктор медицинских наук, профессор
Кафедра биоинженерии и медицины неотложных состояний
Университет Иллинойса
Чикаго, Иллинойс 60612

Введение

За последнее десятилетие было значительно информации, написанной о молнии и молниезащите.У них есть, однако в нем не было учебников для K-12 и дополнительного обучения. материалы по акустике (звуку), производимому молнией, называемой громом. Все слышали гром и немного в нем разбираются, но немногие знают любая конкретика помимо основ. Эта статья написана в первую очередь для науки. студенты, преподаватели и другие заинтересованные лица, чтобы предоставить ресурс расширить свои знания о происхождении грома.

Гром — слышимая волна давления (сжатия), создаваемая молнией.Почти все молнии генерируются грозами. Однако молния имеет также наблюдались во время метели, в столбах клубящегося дыма от лесные пожары, в облаках извергающихся вулканических обломков, возле образовавшихся огненных шаров ядерными взрывами, а также на некоторых планетах и ​​спутниках нашей Солнечной системы. Молния — это гигантская статическая электрическая искра. Где молния, есть гром, и наоборот.

Только на рубеже 20-го века был достигнут консенсус в научном сообществе о происхождении грома.Гром — это звук, издаваемый молнией, вызванный внезапным и сильным расширением перегретого воздуха в канале электрического разряда и вдоль него. Гром может быть резким или грохочущим звуком. Интенсивность и тип звука зависит от атмосферных условий и расстояния между молнией и слушатель. Чем ближе молния, тем громче гром.

Ранние теории

Древний человек, вероятно, считал молнию абсолютным оружием или оружие их богов.Коренные американцы навахо считали Громовую Птицу, мифическая птица, взмахнула крыльями и издала звук грома и источником молнии был отраженный солнечный свет от его глаз. Это было Скандинавский бог Тор, греческий бог Зевс и римский бог Юпитер, владевший могучая молния, чтобы удержать человека на своем месте. Сегодня продолжается фраза о молнии, исходящей от сверхъестественной или божественной силы. То фраза звучит примерно так: «Пусть меня ударит молния, если я ______.«Слово «болт», часто используемое для описания молнии, не имеет значения в метеорологии и является ненадлежащим образом используемым термином.

Некоторые из самых ранних теорий о громе возникли во времена греческого и Римской империи и от викингов (скандинавских) людей. Убеждения о гром включал, что он произошел перед молнией, это был обжигающий ветер, это было вызвано столкновением облаков, звук был произведен резонансом между высокими и низкими облаками, а также высокими облаками, спускающимися и сталкивающимися на низкие облака.К середине 19 века общепринятой теорией был вакуум. теория, в соответствии с которой молния создавала вакуум на своем пути (канале), и гром возник из-за последующего движения воздуха, устремляющегося в вакуум. Во второй половине XIX века была создана теория парового взрыва. когда вода вдоль канала молнии нагрелась и взорвалась от удара молнии высокая температура. Другой теорией была теория химического взрыва, которая предполагала газообразные материалы были созданы молнией, а затем взорваны.

Физика молнии

Для простоты существует два типа молний, ​​производимых грозами: молния, которая ударяет в землю, и молния, которая не ударяет. Вспышки молния между грозой и землей называется облако-земля (CG). Вспышки молнии во время грозы называются внутриоблачными (ВК). Вспышек IC примерно в пять-десять раз больше, чем вспышек CG.

Исследования последнего десятилетия подтверждают существование спрайтов, эльфов, и голубые струи, которые представляют собой необычные мгновенные вспышки, происходящие далеко над грозовые разряды в стратосферу.Эти события и условия до недавнего времени не включались в метеорологический словарь. Такой вспышки не такие яркие или такие же по внешнему виду, как наблюдаемые разряды от гроз. Они слабые, чрезвычайно мимолетные, отображают разные цветов и не производят грома, потому что они происходят в верхних областях атмосфера, в которой мало или совсем нет воздуха. Для дополнительной информации о спрайтах, джетах и ​​эльфах можно узнать на следующих сайтах: www.ghcc.msfc.nasa.gov/skeets.html или www.albany.edu/faculty/rgk/atm101/sprite.htm.

Все грозы проходят стадии роста, зрелости и рассеяния. Продолжительность жизни грозы может составлять от 45 минут до как 12 часов. Молния инициируется притяжением положительных и отрицательных заряды, но воздух (газы) в нашей атмосфере действует как изолятор, препятствуя поток электричества между электрическими полярностями. Когда электрические потенциал нарастает для преодоления сопротивления воздуха, произойдет молния.

Почти 70% всех молний происходит в полосе тропических широт между 35° северной и южной широты. Во всем мире происходит от 85% до 90% молний. над сушей, потому что солнечное излучение нагревает землю быстрее, вызывая конвекцию (грозы), чтобы быть выше и сильнее. Некоторые сильные грозы над Известно, что земля возвышается на высоту более 70 000 футов (21 000 м). Есть 50-75 вспышки на землю происходят каждую секунду на земле. В США есть более 125 миллионов вспышек молнии ежегодно; около 25 миллионов ударить по земле.Столица молний в США находится во Флориде с центром между городами Тампа и Орландо.

Вертикальная протяженность канала молнии CG составляет в среднем 3-4 мили (5-6,5 км) с максимальной высотой около 6 миль (9,6 км). Большинство вспышек компьютерной графики возникают во время грозы на высоте от 15 000 до 25 000 футов (4 500–7 600 м) над землей уровень в смешанной области воды и льда. Рекордное горизонтальное расстояние облачной вспышки составляет 118 миль (190 км), которая произошла в Даллас-Форт.Стоимость площадь.

Большинство молний в континентальной части США происходит в восточных трех четвертях страны. Штаты Тихоокеанского побережья в США имеют наименьшее количество молнии. Молния обычно ассоциируется с теплым временем года, но произошло зимой во время сильных снегопадов. Мужчину ударила молния во время снежной бури в Миннеаполисе, штат Миннесота, в марте и еще один человек в Вейл, штат Колорадо, апрель 1996 года. В феврале 2002 года 15-летний мальчик был ранен. молнией во время катания на санях.Двое мужчин, один из штата Мэн, а другой из Чикаго, были поражены молнией во время снежной бури зимой 2004-2005 гг.

Во время вспышки облако-земля первый удар молнии направлен вниз. из облака по каналу. Вспышка состоит из одного или нескольких обратных удары. Вспышка CG может иметь только один обратный ход, но обычно больше (два-три). Их называют ответными ударами, потому что вспышка рождается в облаке, а не на земле. Вспышка и штрихи ниже зарядить на землю.Затем объекты на земле посылают ленты навстречу ведущий спускается. Электрический разряд распространяется вверх на одну треть скорость света (62 000 миль в секунду или 94 000 км/сек). это за которыми обычно следуют два-три обратных удара вниз на землю. Этот вот почему вы видите мерцание молнии во время компьютерной вспышки.

Рекордное количество ответных ударов произошло на мысе Канаверал, Флорида, когда Зарегистрировано 26 ответных вспышек. Исследования показали, что во время CG вспышка молнии, начальный удар не производит такого громкого или длительного гром как последующие ответные удары.

Определения грома

Звуки, издаваемые громом, разделены на узнаваемые термины. Хлопки — внезапные громкие звуки продолжительностью от 0,2 до 2 секунд. Пилы звуки, меняющие частоту или амплитуду. Роллы — это нерегулярные звуковые вариации. Грохот продолжительный, но относительно редко повторяющийся. Ближняя молния был описан сначала как звук щелчка или разрывания ткани, а затем пушечный звук выстрела или громкий треск/щелчок с последующим непрерывным грохотом.

Малан (1963) описал их в более технических терминах: щелчок — это направленный вверх серпантин(ы), а треск – это грохот, исходящий от верхнего регионы канала. Типичный эпизод грома состоит из грохота и перекат, на который накладываются три-четыре удара или хлопка.

Ступенька идет из облака к земле. Затем возвращение инсульт позже. Конечно, на земле мы сначала слышим партию в шкафу, которые являются восходящими серпантинами, затем ступенчатый лидер, который находится дальше но произошло первым.Люди, боящиеся звука грома, страдают фобией. называется бронтофобией, а боязнь молнии называется кераунофобией.

Наука грома

Lightning имеет диаметр 1-2 дюйма (2-5 см) и может нагревать воздух до 70 000 ° F. (39 000°C) за несколько миллисекунд. Девяносто процентов электрических энергия молнии выделяется в виде тепла, которое быстро рассеивается в атмосферу. Преобразуется менее 1% энергии молнии. в звук, а остальное высвобождается в виде света.Внезапное увеличение давления и температуры заставляет окружающий воздух сильно расширяться при скорость выше скорости звука, похожая на звуковой удар. Шок волна распространяется наружу на первые 30 футов (10 м), после чего становится обычная звуковая волна, называемая громом. Скорость звука в воздухе при уровень моря составляет 758 миль в час (1130 футов в секунду; 344 м в секунду) при 68 ° F (20 ° C). Гром – это взрыв воздуха, происходящий по всей длине молнии. канал.Средняя гроза производит тысячи миль / км молний. канала за время его существования.

Скорость звука пропорциональна квадратному корню из температуры. Температура обычно уменьшается с высотой, если нет инверсии (теплый воздух над холодным воздухом). Таким образом, звук грома будет отклоняться вверх. Влажность, скорость ветра, сдвиг ветра, температурные инверсии, особенности рельефа и облака также влияют на слышимость грома. Громкость грома может быть выражен в децибелах (дБ).Удар грома обычно регистрируется около 120 дБ в непосредственной близости от земли. это в 10 раз громче, чем мусоровоз или пневматический отбойный молоток. По сравнению, Сидя перед колонками на рок-концерте, вы можете постоянно подвергаться Уровень 120+ дБ. Гром в непосредственной близости способен произвести временное глухота и может привести к разрыву барабанной перепонки уха, что может привести к повреждению слуха или глухоте.

На очень близком расстоянии гром может причинить материальный ущерб.То ударная волна, давление и распространение грома могут вызвать внешние и внутренние повреждения конструкций. Выталкивание гипсокартона, закрепленного на гвоздях, от зафиксированы горизонтальные и вертикальные деревянные стойки внутри домов. Стеклянные окна были разбиты ударом грома.

Гром содержит несколько цилиндрическую ударную волну начального давления вдоль в молниеносном канале свыше 10-кратного нормального атмосферного давления. Эта ударная волна быстро распадается на звуковую волну в пределах футов или метров.Когда гром слышен на расстоянии около 328 футов (100 м), он состоит одного сильного удара, но шипение и щелканье могут быть слышны непосредственно перед челка (восходящие стримеры). Когда его слышно на расстоянии 0,6 мили (1 км) от молнии, гром прогремит несколькими громкими ударами.

В идеальных условиях гром редко слышен за пределами 10 миль (16 км). Звук далекого грома имеет характерный низкий рокот. звук. Высота тона – степень высокого или низкого звука, обусловленная сильное поглощение и рассеяние высокочастотных составляющих оригинальные звуковые волны, в то время как грохот возникает из-за того, что звук волны излучаются из разных мест вдоль канала молнии, которые находятся на разном расстоянии от человека.Чем длиннее молниеносные каналы, тем длиннее звук грома. Люди слышат частоты грома между 20-120 Герц (Гц). Однако есть небольшое количество, менее 10%, которое неслышимый для человека, производимый молнией, называется инфразвуком. Особый Для записи этих неслышимых звуков требуются подслушивающие устройства.

Факты о громе и молнии

Молния — второй убийца, связанный с грозой, в США. В среднем, он ежегодно убивает больше людей, чем торнадо и ураганы.Сто лет назад молния, вероятно, была главной причиной грозы. убийца. В то время экономика США была преимущественно сельскохозяйственной. и трудоемкий. Большинство людей работали на улице, подвергая их часто к угрозе молнии по сравнению с сегодняшним днем. Кроме того, жилье было гораздо менее солидным, без водопровода и проводки, которые у нас есть сегодня, что действует более или менее как клетка Фарадея, чтобы направить молнию вокруг и вдали от жителей.Это не было чем-то необычным для структуры буквально разлетаться на части при попадании молнии, часто сокрушая жителей.

Молния и последующий за ней гром могут использоваться в целях защитить себя и других. Взрывоопасный метод защиты предполагает время между увиденной молнией и услышанным громом. Свет от молния движется со скоростью 186 000 миль в секунду (300 000 км/сек), достигает наблюдателя примерно через 10 микросекунд, когда точка удара 1.85 миль (3 км). Звуковая волна при температуре воздуха 68 ° F (20 ° C) и атмосферное давление 29,92 дюйма ртутного столба или 1013,25 мбар, прибывает медленнее примерно за 10 секунд. фигура 1 показывает, что временной интервал от вспышки до взрыва в 5 секунд = 1 миле (1,6 км) можно приблизить.

Группа молниезащиты (LSG), междисциплинарная группа эксперты по молниям встретились на Ежегодном мероприятии Американского метеорологического общества в 1998 г. Встреча.Новые данные о молниях показали, что большинство вспышек компьютерной графики во время грозы были в пределах 5-6 миль (8-9,6 км) от предыдущей вспышки. МСУ рекомендовал, что стало известно как правило 30/30. Используя метод вспышки-вспышки, молния у которого 30-секундный отсчет между вспышкой и громом составляет 6 миль (9,6 км) прочь. Это соответствует 5 секундам на милю (1,6 км). Возможно, что следующая вспышка CG молнии может произойти в вашем местоположении.

МСУ также предлагает подождать 30 минут после того, как услышите последний звук грома. или увидеть последнюю молнию в дневное время, прежде чем вернуться в любой внешний деятельность.Это позволяет грозе уйти из области, значительно уменьшая уровень угрозы молнии. Среднее расстояние от вспышки молнии между две вспышки в среднем составляют около 2-3 микрофонов (3-5 км), но на 6 миль (9,6 км) приходится около 80% последующих КГ. МСУ настоятельно рекомендует действие, а не реактивный подход к молниезащите. Это значит знать прогноз погоды и предварительное планирование эвакуации с места происшествия, которое включает зная более безопасное место и время, необходимое для его достижения.Статистика показала, что большинство людей, пораженных молнией, поражаются до или после грозы, не во время сильного дождя.

Вот несколько коротких стишков или лозунгов, которые следует запомнить для обеспечения безопасности:
«Если увидишь, беги».
«Если услышишь, убери.»
«Когда гремит молния, идите в помещение.»
«Молния убивает; Сыграй сейф.»

Вспышка молнии имеет яркость, инфракрасное и ультрафиолетовое излучение. излучение, которое может временно ослепить человека или серьезно повредить зрение.Поражение молнией и смерть в основном происходят на улице, часто во время рекреационные мероприятия. Повреждения молнией часто остаются на всю жизнь.

В 2000 году Национальная метеорологическая служба совместно с корпоративными и частные спонсоры организовали Неделю осведомленности о молниеносной безопасности (LSAW). Это ежегодное мероприятие проходит в последнюю полную неделю июня. То Целью LSAW является снижение травматизма и смертности от молнии за счет поощрения осведомленность и образование.Медицинская информация, молниезащита и поддержка группы для пострадавших от забастовки можно получить на следующих веб-сайтах, в дополнение к этому: www.lightningsafety.noaa.gov/, www.uic.edu/labs/lightninginjury, www.struckbylightning.org, и www.lightning-strike.org. Дополнительная информация о погоде и молниях по связанным темам может можно загрузить со следующего веб-сайта: www.nssl.noaa.gov/resources.

Необычные события

Во второй половине 19 века Х.Ф. Кретцер собрал грозу газетные статьи. Терминология, используемая для описания молнии и грома, была отличается от того, что используется сегодня. Вместо того, чтобы использовать слово гром, это было описывается как необычный акустический или оглушающий отчет, или акустический бомбардировка. Молнию описывали как электрическую бомбардировку или аккомпанемент, или электрическое пиротехническое или своеобразное пиротехническое шоу.

В течение 11 часов 17-18 июля 2003 г. в радиусе 15 миль (24 км) в Меррилвилле, штат Индиана, было 10 428 компьютерных вспышек.Поскольку большинство (от 50% до 90%) всех вспышек молнии — это вспышки IC, которые делают не ударяйтесь о землю, принимая скорость 10 вспышек облаков на вспышку CG, у этого шторма было примерно 104 280 вспышек, что соответствует 158 вспышкам. в минуту или 2,6 вспышек в секунду.

На протяжении веков существовали задокументированные записи от надежных лиц. сообщают о необычном поведении (беспокойстве, беспокойстве и раздражительности), связанном с с некоторыми домашними животными и домашним скотом до грозы.Это поведение наблюдалось у животных за час и более до первого вдалеке слышен звук грома. Предполагается, что некоторые животные реагируют на слышание длинноволновой звуковой энергии ниже уровня 20 Гц от приближающаяся гроза.

Заключение

Теории о причине грома насчитывают тысячи лет. это не было до начала 20-го века, что происхождение грома было правильно идентифицированы и приняты.Гром производится взрывным расширением нагретого воздуха, окружающего канал молнии. Гром можно услышать от максимальное расстояние около 10 миль (16 км) при хороших атмосферных условиях. Когда молния ударяет близко, гром издает громкий хлопок или щелкающий звук. Грохот, который мы слышим, — это звук грома, доносящийся до нас в разное время. от звука, производимого по его длине. Люди получили травмы и материальный ущерб от звука грома на близком расстоянии.

Если на день планируется активный отдых, проверьте местный прогноз погоды. из-за возможности гроз. Вместо этого займитесь безопасностью реактивного. Звук грома может быть тревожным звонком для молниеносной безопасности. Практикуйте правило 30/30 и посетите веб-сайты по безопасности от молний, ​​чтобы получить дополнительную информацию. Информация. Если вы увидите молнию и услышите гром в течение 30 секунд или меньше, угроза неизбежна, и следующий удар может быть нанесен по вашему местонахождению. Примите меры безопасности меры немедленно.Занятия на свежем воздухе не следует возобновлять до 30 минут после того, как был слышен последний гром или видна молния. Многие люди пораженные молнией, поражаются до или после самого сильного дождя из гроза, не во время самой сильной части. Получается, что люди платят больше внимания на дождь, чем на опасность поражения молнией.

Благодарности

Мы очень признательны следующим лицам за просмотр и улучшение этот документ, отдав свое время и знания:
— Гарольд Брукс, метеоролог-исследователь, Национальная лаборатория сильных штормов, Норман, Оклахома
— Майкл Кобе, координатор по науке, Школьный город Хаммонд, Индиана
— Кевин Ленц, ученик средней школы Алисо Нигель, Алисо Вьехо, Калифорния
— Дженнифер Дж.Ваврек, одаренный и талантливый инструктор, Стегер, Иллинойс

Каталожные номера

Аллсопп, Дж., Ваврек, Дж., и Холле, Р.Л. (1995). Сегодня будет дождь? Понимание прогноза погоды. Ученый Земли, Национальная Земля Ассоциация учителей естественных наук 12:4, 12–19 стр.

Хилл, Р. Д. (1977). Гром и молния, т. 1, изд., RH Golde, (New Йорк: Academic Press), с. 385-406 стр.

Холле, Р.Л., Лопес, Р.Э., Ховард, К.В., Ваврек, Р.Дж., и Аллсопп, Дж. (1995). Обучение молниеносной опасности. Препринты, 4-й Симпозиум по образованию, 15-20 Январь, Даллас, Техас, Бостон, Массачусетс, Американское метеорологическое общество, 96-99 гг. стр.

Холле, Р.Л., Ховард, К.В., Ваврек, Р.Дж. и Аллсопп, Дж. (1995): Безопасность при наличии молнии. Семинары по неврологии, 15, 375-380 стр.

Холле, Р.Л., Лопес, Р.Е., Ортис, Р. и соавт. (1993а). местный метеорологический среда причинно-следственных связей молнии в центральной Флориде.Препринты, 17-е Конференция по сильным локальным бурям и Конференция по атмосферному электричеству, Бостон, Массачусетс, Американское метеорологическое общество, 779–784 стр.

.

Китил, Р., (2004): Механизм грома. Национальная молниезащита Институт, 2 стр. www.lightningsfety.com/nlsi_info/thunder.html.

Kretzer, HF, (1895): Lightning Record: справочник и информация. Сент-Луис, Миссури, 106 стр.

Krider, EP, (1996): 75 лет исследований физики молнии. увольнять.Исторические очерки метеорологии 1919–1995 гг., Дж. Р. Флеминг, изд., Американское метеорологическое общество, Бостон, Массачусетс, с. 321-350 стр.

Лушин, Дж. Б., Родер, В. П., Ваврек, Р. Дж. (2005). Молниезащита для школы: обновление, препринты, 14-й симпозиум по образованию, сессия 1.3, Американское метеорологическое общество, Сан-Диего, Калифорния, 10 стр., январь 2005 г.

.

Лион. WA, 1997. Книга ответов Handy Weather, Accord Publishing, 397. стр.

Лайонс, Вашингтон, Ваврек, Р.Дж. и Холле Р.Л. (2005): Таинственные вспышки: красные спрайты – синие струи – эльфы. Ученый Земли, Национальный Ассоциация учителей наук о Земле, 17:1, 17–22 стр.

Национальный исследовательский совет (1996). Электрическая среда Земли, Исследования в области геофизики, Вашингтон, округ Колумбия: National Academy Press, 263 стр.

Раков В.А. и Уман, Массачусетс, Физика и эффекты молнии (2003), 373–393. стр.

Родер, В.П., и Ваврек, Р.Дж., (2004). Молниезащита для школ и другие общественные здания: обновление, Американское общество инженеров по технике безопасности, Информационный бюллетень, 19 января.

Умань, Массачусетс, (1986). Все о молнии, Минеола, Нью-Йорк: Dover Publications, 165 стр.

Умань, Массачусетс, (1984). Lightning, Dover Publication, 298 стр.

.

Вимейстер, П., (1961). Разряд молнии, стр. 281-312 стр.

Ваврек, Р.Дж., Холле, Р.Л., и Аллсопп, Дж. (1993a). Вспышка, чтобы ударить, Ученый-землянин, Национальная ассоциация учителей наук о Земле, 10:48.

Ваврек Р.Дж., Холле Р.Л. и Лопес Р.Е. (1999). Обновлена ​​молниезащита рекомендации, препринты, 8-й симпозиум по образованию, Американский метеорологический Общество, Даллас, Техас.

Ваврек, Р.Дж., Холле, Р.Л., и Аллсопп, Дж. (1997). Газетные отчеты молния с 1891 по 18985 год. Ученый-землянин, Национальная наука о Земле. Ассоциация учителей, 14:3, 20–22 стр.

 

ATMO336 — осень 2002 г.

ATMO336 — осень 2002 г.

Молния и гром

Молния — один из самых удивительных дисплеев в природе. Это разряд электричества, гигантский искра, которая возникает в зрелых грозах.Молния на самом деле прохождение электрического тока через воздух. Как электрический ток течет по воздуху в канале молнии, атмосферные газы нагреваются до температуры 30 000°C (54 000°F), что в 5 раз выше температуры поверхность солнца. Горячий газ испускает вспышку света (молнию) и взрывообразно расширяется, создавая гром.

В среднем за год молния вызывает больше смертей, чем любое другое явление, связанное с грозой, за исключением внезапные наводнения.В Соединенных Штатах от молнии ежегодно погибает от 75 до 100 человек. Вероятно, примерно в 10 раз больше людей получают травмы каждый год. Один одной из причин этого является то, что жертвы молнии часто выпадают непосредственно перед или после выпадения осадков в их расположение. Многие люди, по-видимому, чувствуют себя в безопасности от молнии когда нет дождя. Помните, что гроз не бывает вообще вызвать дождь.

Молния — это электрический разряд, производимый для уравновешивания различия между положительными и отрицательными зарядами в облаке, между двумя облаками или между облаком и землей. Мы будем используйте раздаточный материал в классе, чтобы объяснить и описать механизмы, которые, как считается, ответственный за образование молнии. Мы также будем ссылаться на этот рисунок, показывающий последовательность событий, происходящих при развитии облака на землю удар молнии. Опять же, мы рассмотрим только основы. Молния сложна и ни в коем случае не до конца изучена.

Близкая вспышка молнии поражает дерево на расстоянии 60 метров
«Инициированная молния», разряд инициируется присутствие высокой башни на вершине горы Сан-Сальваторе, недалеко от Лугано, Швейцария.

Во время грозы не только земля положительно заряжен, так что все на нем. Самый высокий объект в этом районе скорее всего будет поражен, будь то здание, дерево или человек, стоящий в одиночестве в поле, особенно предметы, которые острые, заостренные кончики торчат вверх.

Громоотводы размещаются на зданиях для защиты от урон от молнии. Стержень изготовлен из металла и имеет заостренный наконечник, который простирается значительно выше структуры.Положительный заряд концентрация будет максимальной на кончике стержня, таким образом увеличивается вероятность того, что молния ударит в наконечник и следуйте за металлическим стержнем без вреда для себя в землю.

Хотя громоотводы и самые высокие предметы вокруг вероятного удара, путь, по которому проходит отдельная молния болт случаен и непредсказуем. Молния, идущая от облака к земле, начинается с путешествия вниз с 15 000 до 20 000 футов в типичном летнем грозовом облаке.Когда вспышка «облако-земля» падает на землю, она не «выбирает» цель до тех пор, пока он находится примерно в 30 ярдах от земли. Несмотря на то, что ваши шансы прямые удары намного ниже, когда вы находитесь в здании или машине, были задокументированы случаи, когда световой канал фактически проходит через небольшие отверстия в конструкциях и «выковыривает» несчастная жертва. Известно даже, что свет распространяется горизонтально от грозовое облако для миль, прежде чем повернуть вниз и удариться о землю в районе окутанный ясным голубым небом.

Автомобили обычно предлагают безопасное укрытие. Когда молния ударяет в машину, она обычно покидает пассажиров целыми и невредимыми, потому что он обычно выбирает самый быстрый путь к землю вдоль внешнего металлического корпуса автомобиля.

Различные типы

Несмотря на то, что удары молнии в землю представляют наибольшую опасность людям на земле, они составляют лишь около 20% всех удары молнии. Самый распространенный вид молнии в гроза внутриоблачная молния , которая происходит в само облако.

Молнии из облака в облако — обычное явление, при котором противоположные электрические заряды в одном облаке притягивают находящиеся в еще один.

Прогнозирование, обнаружение и безопасность молний

Молния мощная. Во время молнии выделяется много энергии наносить удар. Здесь мы рассмотрим три формы энергии, перечисленные ниже:

  • Часть энергии находится в форме видимого излучения, которое мы видеть.
  • Часть энергии идет на нагрев и расширение воздуха, что генерирует звуковые волны, которые мы слышим как гром.
  • Другая энергия высвобождается как более длинноволновое излучение (которое мы не можем видеть), называемое радиоволнами.

Один из способов оценить, насколько близко к вам находится молния, — это измерить время между моментом, когда вы видите удар молнии, и когда вы слышите гром. Звук распространяется намного медленнее света, поэтому сначала вы видите молнию, затем услышать гром. Скорость звука вблизи поверхности Земли равна примерно 1 миля за 5 секунд. Так, например, если вы видите молнию, то услышать гром через 10 секунд:

Расстояние до молнии = (скорость звука) x (время, чтобы услышать гром)

Расстояние до молнии = (1 миля / 5 секунд) x (10 секунд) = 2 мили

Чтобы наилучшим образом обеспечить вашу безопасность, эксперты рекомендуют следовать правилу 30/30 .

  • Когда вы видите молнию, считайте секунды, пока не услышите гром.
  • Если это время составляет 30 секунд или меньше, быстро войдите в прочное здание. Если такое здание недоступно, следующим лучшим выбором будет автомобиль с металлическим верхом.
  • Подождите не менее 30 минут после того, как увидите последнюю молнию или услышите последний гром, прежде чем выйти на улицу.

Вероятность того, что вот-вот произойдет облачное освещение на землю, оценивается путем измерения напряженности электрического поля в воздухе.Электрическое поле является мерой силы накопления заряда. Когда определенный порог достигнута, молния вот-вот ударит куда-нибудь (см. рисунок). Измерение электрического поля оборудование используется на многих мероприятиях под открытым небом (например, турниры по гольфу, государственные ярмарки и т. д.) чтобы позволить властям дать предупреждение, что люди должны укрыться. Обратите внимание, что в то время как инструменты электрического поля могут предоставить информацию, которая говорит нам молния вот-вот ударит где-то в этом районе, невозможно точно предсказать, где ударит молния.

Облако-земля, что уже произошло, можно найти с помощью инструмент под названием молниезащитный пеленгатор , работающий по обнаружению радиоволны, создаваемые молнией. Радиоволны представляют собой тип длинноволнового излучения. Этот вид излучения способен преодолевать большие расстояния по поверхности Земли. Специализированный магнитный устройства обнаруживают характерные радиоволны, генерируемые молнией. Сеть этих магнитных устройств была создана по всей территории Соединенных Штатов как часть Национальная сеть обнаружения молний.Расположение каждого облака до удара по земле определяется с помощью триангуляции отметив направление, откуда приходят радиоволны, и время сигнала был обнаружен (см. рисунок). Эта информация отображается на картах с указанием времени и местоположения всех обнаруженных облаков до удары молнии в землю (см. ссылку справа). Это полезно для демонстрации общего движения молнии, производящие бури и плотность ударов молнии, но его нельзя использовать, чтобы предсказать, когда и где возникнет вновь развивающийся шторм. сначала произвести молнию.Недавние облака молний на землю отображают

Научитесь снижать риск молнии на улице и дома обучение по молниезащите. Очень хороший источник информации о молниезащите и медицинские проблемы, связанные с ударом предоставляется на Страница молниезащиты Национальной метеорологической службы

Удар молнии – обзор

36.2.1 Грозовые перенапряжения

Молния является основной причиной отключения линии; например, на него приходится около 70% отключений в системе электропередачи высокого напряжения (275 кВ, 400 кВ, 500 кВ и т. д.).). Физический феномен молнии показывает, что облака приобретают заряд или, по крайней мере, поляризуются. Электрические поля становятся чрезмерными до такой степени, что диэлектрик промежуточного пространства больше не может выдерживать электрическое напряжение, и происходит пробой или молниезащита; обычно это сильноточный разряд.

Удары молнии, создающие проблемы для энергетиков, это те, которые заканчиваются на линиях электропередач или рядом с ними. Их можно рассматривать как эквивалент замыкания переключателя между облаком и линией электропередач или соседней землей, что представляет собой условие изменения цепи.Это либо прямое подключение к линии, либо замыкание цепи с тесной взаимной связью с линией. Прямые последствия этого явления:

очень часто линия будет поднята до такого потенциала, что дальнейшие вспышки будут происходить в заземленных конструкциях;

заземленные конструкции могут быть подняты до такого потенциала, что они перекинутся на линию.

Помехи, создаваемые на линии электропередачи из-за явления молнии, включают бегущих волн .По сути, это скачки напряжения, которые, хотя и кратковременны, тем не менее могут вызвать перенапряжение, значительно превышающее изоляционные способности линий электропередач, что создает серьезную угрозу повреждения дорогостоящего оборудования и выхода из строя.

Основной формой волны удара молнии является волна 1,2/50 мкс, типичная грозовая волна. Это показано на рис. 36.1 .

Рисунок 36.1. Типичная форма волны от молнии

На рис. 36.1 представлена ​​форма волны тока, возрастающая на 1.2 мкс и падает до половины пикового значения за 50 мкс. Обычно важен только сильный ток, протекающий в течение первых 50 мкс, а величина пикового тока колеблется от 20 кА до 200 кА. Соотношение ток/время для вышеупомянутой формы волны определяется как:

(36.1)i=Ipeak(e-αt-e-βt)

, где t в мкс. Значения констант α и β зависят от характера нагона и обычно составляют α = 0,002 и β = 3,0.

При ударе молнии по воздушному проводу возникают равные выбросы тока формы волны, показанной на рис. 36.1 распространяются в обоих направлениях от точки удара. Таким образом, величина каждого установленного выброса напряжения определяется как:

(36,2)V=Z0Ipeak[e−αt−e−βt]2

, где Z 0 — импеданс проводника при перенапряжении.

Настройка перенапряжения зависит от эффективного импеданса проводников, в которые протекает ток (и, конечно, от пикового тока), но это значение редко бывает меньше примерно 3 МВ пик. Такое напряжение намного превышает изоляционную способность изоляторов линий электропередачи.Однако было бы экономически невыгодно проектировать их так, чтобы они выдерживали такие высокие напряжения (можно показать, что стоимость α В 2 ). В связи с этим используются воздушные экранирующие (или заземляющие) провода, которые в значительной степени предотвращают прямые удары по фазным проводникам.

При наличии заземляющего провода над воздушной линией удар, приходящийся на опору или на сам провод, вызывает выбросы в обоих направлениях вдоль провода. Достигнув соседних башен, они частично отражаются и передаются дальше, и этот процесс продолжается по всей длине линии по мере встречи башен.При этом броски напряжения, возникающие на основных фазных проводах, значительно меньше, чем в случае отсутствия заземляющего провода. Это связано с тем, что при наличии заземляющего провода скачки напряжения на фазных проводах возникают из-за эффекта взаимной связи между заземляющим проводом и фазными проводами. Коэффициент связи обычно находится в диапазоне 0,15 < k < 0,3.

Начальный скачок напряжения, создаваемый на заземляющем проводе, зависит как от импеданса опоры ( Z T ), так и от импеданса заземляющего провода ( Z EW ).В этом отношении разные конструкции башен имеют разное сопротивление перенапряжениям. Например, если вершины мачт соединены одним заземляющим проводом с импедансом перенапряжения Z EW , то эффективное сопротивление перенапряжения определяется как:

(36,3)ZTE=ZT×1/2ZEWZT+1/2ZEW

входит в комплект поставки Z EW , поскольку волна распространяется в обоих направлениях от точки удара.

Волны тока и напряжения излучаются от точки контакта в обоих направлениях вдоль заземляющего провода и вниз по мачте, если задействована мачта.Эти волны быстро сталкиваются с неоднородностями, такими как соседние башни в случае заземляющих проводов или сопротивление фундамента в случае башни.

Прямым следствием этого явления является то, что инициируются отраженные волны, которые вызывают еще другие волны, когда они возвращаются в пораженную точку. Эффект этих волн будет зависеть от изменения волнового сопротивления в точке разрыва. Например, если первоначальная волна, идущая вниз по башне, встречает низкое сопротивление основания R , то отраженная волна будет противоположного знака и будет уменьшать потенциал башни.Обратное произойдет, если сопротивление основания велико.

Теория линий электропередач 1 показывает, что коэффициент отражения ρ G на земле определяется как: возвращение на вершину башни с земли. Опять же, используя теорию линий передачи, можно показать, что они равны:

(36,6)ρE=1/2ZEW−ZT1/2ZEW+ZT

36,2.1.1 Обратное перекрытие

Разность потенциалов на подвесных изоляторах вызывает особую озабоченность, поскольку может произойти перекрытие и повреждение фазы, если это напряжение станет чрезмерным. Волны, распространяющиеся по заземляющему проводу, индуцируют волны на фазных проводах, проводник, ближайший к заземляющему проводу, подвергается наибольшему наведенному напряжению. Эффект этой связи между заземляющим проводом и фазными проводами (обычно от 0,15 до 0,3) заключается в уменьшении нагрузки на линейные изоляторы.Наведенные напряжения добавляются к напряжениям промышленной частоты или вычитаются из них. В любой момент по крайней мере одна фаза будет иметь ту же полярность, что и грозовой выброс; такая фаза, скорее всего, перекроется. Это явление более известно как обратное перекрытие .

Поэтому желательно иметь более низкое сопротивление основания. Есть два соображения:

местное удельное сопротивление самой земли; и

соединение между мачтой и землей.

Типичное значение сопротивления основания башни R составляет 25 Ом. После удара молнии время, необходимое для того, чтобы скачок напряжения прошел от вершины опоры до основания опоры и обратно со скоростью света, обычно составляет 0,25 мкс. Результирующая величина скачка напряжения, таким образом, обычно снижается примерно до 500 кВ, что является гораздо менее пугающим, чем упомянутый выше скачок напряжения в 3 МВ, возникающий в момент удара молнии.

36.2.1.2 Резюме

Проблесковые разряды, вызванные молнией, являются основной причиной отключения линий.

Воздушные грозозащитные тросы снижают величину скачков напряжения в фазных проводах.

Низкое сопротивление основания мачты снизит потенциал перенапряжения мачты и вероятность обратного перекрытия.

Распределение ископаемой энергии молнии

Местонахождение

Для этого были выбраны фульгуриты из двух песчаных шахт, ямы № 1 и ямы № 4, эксплуатируемых CC Calhoun, Inc., в центральном полуострове округа Полк, штат Флорида (США). анализ (рис.2). Эти шахты расположены вдоль и рядом с гребнем хребта Лейк-Уэльс в округе Полк, штат Флорида. В карьерах обнажается до 20 метров терригенных отложений, обозначенных Кэмпбеллом как Cypresshead Formation 23,24,25 . Эти пески состоят не менее чем на 98% из SiO 2 с остальной частью из глины и оксидных минералов и имеют схожий гранулометрический состав. Материалы из формации Сайпрессхед были перенесены из Джорджии во Флориду прибрежными течениями 26 и отложились в период от позднего плиоцена до раннего плейстоцена 27 .Среда осадконакопления интерпретируется как прибрежная морская или солоноватая 26,28,29 .

Фульгуриты, найденные на этих и других рудниках в регионе, наиболее распространены в чистом, белом, мелко- и среднезернистом кварцевом песке (пористость ~30–35%). Мы подозреваем, что пачка белого песка имеет эоловое (ветрово-отложенное) происхождение: на карьере № 1 пачка состоит из одного набора крупномасштабных наклонных косых слоев толщиной около 10 метров. Пачка несколько тоньше (около 7 м) на карьере №4; слоистость массивная, с небольшими признаками осадочного осадконакопления.Эти характеристики позволяют предположить, что песок откладывался в виде дюны и долгое время находился над уровнем моря. Всего в этих шахтах было добыто 266 фульгуритов общей длиной более 14 метров (рис. 1). Обратите внимание, что фульгуриты с неполными цилиндрами в данном исследовании не рассматриваются, так как трудно оценить диаметр и правильную длину сломанных фульгуритов. Ветвящихся фульгуритов — фульгуритов с бифуркациями — среди этих фульгуритов не обнаружено; фульгуриты, образующиеся в песке, обычно неразветвленные 6 .Фульгуриты, обнаруженные in situ , были ориентированы вертикально и не имели признаков радиального развития наружу. Каждый фульгурит, который мы наблюдали на участке поля (~0,02  км 2 ), был собран, а внутренние диаметры пустот (измерены четыре раза, дважды вверху каждого фульгурита и еще раз внизу) и общая длина фульгуритов были измерены и записаны в сантиметры. Поскольку целые фульгуриты трудно собрать, поскольку эти объекты склонны к растрескиванию, для большинства этих фульгуритов у нас нет полной длины.Кроме того, песчаные шахты по-прежнему активно производят песок в качестве строительного материала, поэтому тяжелая техника дробит и распределяет фрагменты фульгурита по поверхности шахты.

Процесс добычи затрудняет сбор полных фульгуритов, так как стекла часто раскалываются во время раскопок. Фульгуриты, извлекаемые при добыче полезных ископаемых, отделяются от песка и обычно попадают в отвалы; фульгуриты из этих местонахождений не собраны. Остальные фульгуриты, вышедшие на поверхность, выветриваются, часто растрескиваются и распределяются дальше по поверхности.Хотя было бы идеально собрать и выкопать все полные фульгуриты в песчаной шахте, это невыполнимо с финансовой точки зрения. Однако горные работы обычно прорезают песок слоями высотой ~ 1 м (высота экскаватора). С этой целью фульгуриты, которые расщепляются и разрушаются, представляют собой поперечное сечение молнии, которая ударила в область высотой около 1 м в этих дюнах, когда добыча полезных ископаемых продолжается через песок.

Состав песка и фульгурита

Песчаные рудники здесь состоят почти исключительно из кварцевого песка, и подобных рудников в регионе насчитывается более 99.2% SiO 2 30 . Кварц — единственный минерал, идентифицированный на рентгеновских дифрактограммах порошкообразных образцов песка, и рамановский анализ песка также показывает только кварц (см. СИ). Данные комбинационного рассеяния для пяти из этих фульгуритов выявили только фазы SiO 2 , в основном кварц и лешательеритовое стекло (SI) 4 . Кроме того, один анализ ICP-MS фульгурита показал ~99% SiO 2 (SI). Следовательно, проведенные здесь расчеты предполагают, что минералогический состав песка состоит исключительно из кварца.

Эти результаты согласуются с предыдущими исследованиями фульгуритов песка. Найденные здесь фульгуриты можно отнести к фульгуритам I типа по схеме Pasek et al . (2012) 6 . Другие исследования фульгуритов типа I показали, что эти объекты обычно состоят из >98% SiO 2 6,31,32 .

Расчеты

Энергия, необходимая для испарения кварца в виде SiO 2 при комнатной температуре, рассчитывается с использованием HSC Chemistry, программы моделирования термодинамического равновесия, которая ранее использовалась для определения химического состава серы Солнечной системы 33 , состава Подповерхностный океан Европы 34 и процессы образования фульгуритов 6 .Эта модель определяет энергию при давлении в один бар, необходимую для протекания реакций:

, где испарение SiO 2 сопровождается разложением этого материала на газы SiO 2 , SiO и O 2 . Код определил испарение SiO 2 примерно 0,94 МДж на моль (~ 15,7 МДж / кг). Соответственно отношение внутреннего диаметра фульгурита к энергии на единицу длины ( E ), необходимой для испарения материала с образованием фульгурита, равно: .65 г/см 3 ), Δ H vap – энергия, необходимая для испарения SiO 2 при комнатной температуре (выше 0,94 МДж/моль), MW9 – молекулярная масса SiO9 2 (60,08 г/моль) и d — внутренний диаметр фульгурита в сантиметрах. Мы не рассматриваем дальнейший перенос энергии при образовании стеклянной стенки (например, плавление песка с образованием фульгурита и нагрев соседнего песка), который может накапливать до 20 % энергии удара молнии и нагрев и ионизация газового столба внутри фульгурита не рассматривается.Эти данные не могут быть легко определены по собранным фульгуритам. Эти оценки энергии обязательно минимальны, и фактическая передача энергии может составлять более 25% наших расчетных значений.

Мы также опускаем энтальпию испарения воды из этих расчетов (40 кДж/моль). Это упущение основано на двух факторах: 1) учитывая, что геологическое положение этих песчаных дюн соответствует нахождению над уровнем моря с момента их отложения 35 , разумно предположить, что проводящий подповерхностный водоносный горизонт находится на достаточном расстоянии от поверхности песчаные дюны так, что фульгуриты, встречающиеся в песке, не были насыщены водой.Для насыщения водой требуется около 2,5 см осадков, чтобы пропитать 5 см песка, а 5 см — средняя длина фрагмента фульгурита, найденного здесь. Хотя во Флориде нередко выпадает 2,5 см осадков во время одного шторма, большая часть молний предшествует самому сильному дождю 36 . 2) Песок имеет пористость, которая допускает примерно один моль воды на моль песка, и исключение 40 кДж/моль (против 940 кДж/моль) из этих расчетов не должно вносить значительной ошибки (около 0,02 логарифмических единицы в МДж/моль). м).Однако поверхности отдельных фульгуритов варьируются от гладких до морщинистых и покрытых фрактальными разветвлениями (рис. 1). Эти различия, вероятно, связаны с различиями в физических условиях во время формирования, включая содержание воды. Кроме того, различия в толщине фульгуритового стекла могут быть частично связаны с содержанием воды в песке, поскольку более влажный песок должен лучше передавать тепло, чем сухой песок. Таким образом, более толстостенные фульгуриты могут чаще встречаться во влажном песке.

В дополнение к измерению формы фульгуритовых цилиндров, мы также определили плотность подмножества (n = 12) стекол в фульгуритах, используя метод вытеснения воды Архимедом для определения объема. Выбранные фульгуриты представляли собой полностью открытые трубки, так что измерение плотности стекла можно было проводить без измерения газа, который мог быть защемлен при схлопывании трубки. Плотность сопутствующего песка также измерялась как по массе на единицу объема, так и по закону смещения Архимеда.Последнее использовалось специально для оценки объемной плотности зерен кварца.

Распределение моделей

Поскольку мы не предполагаем, что у нас есть полная длина большинства фульгуритов в нашей коллекции, поскольку почти все они были обнаружены обнаженными на поверхности песка, мы выполнили ряд расчетов, чтобы определить, как измеренная коллекция соотносится с имитация распространения.

Мы смоделировали распределение фрагментов фульгурита в зависимости от энергии на метр по сравнению скумулятивная длина и кумулятивное число и общая энергия по сравнению с кумулятивным числом для определения результирующих распределений (см. SI). Эти модели протестировали шесть сценариев: распределения энергии на единицу длины, которые были нормальными или логарифмически нормальными, и распределения длин, которые были постоянными для всех распределений энергии на длину (другими словами, фульгуриты в один метр формировались при самой низкой энергии на единицу длины и при самой высокой энергии). , или распределения длин, которые были нормальными или логнормальными. Каждому фульгуриту была присвоена определенная энергия и определенная длина.

К этим распределениям мы применили «событие разрушения», которое разбило каждый смоделированный фульгурит на более мелкие равные части. Это событие разрушения предполагало следующее: поскольку самое слабое место фульгурита будет в середине его длины, предполагалось, что каждый фульгурит расколется пополам, а фрагменты могут затем расколоться пополам. Фульгурит будет разрушаться столько раз, сколько возможно, пока не достигнет определенной длины, которую мы устанавливаем эмпирически (SI). Диаметр фульгуритов слабо коррелирует с длиной (R = 0.38), который устанавливает максимальную длину, разрешенную в моделировании. Следует ожидать, что более толстые фульгуриты будут несколько прочнее и, следовательно, будут иметь большую длину. Исходя из этих распределений фрагментов и энергии на единицу длины, мы сравниваем наши смоделированные распределения с распределениями из реальной свиты фульгуритов.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.