Site Loader

Содержание

ПОЛУПРОВОДНИКИ • Большая российская энциклопедия

ПОЛУПРОВОДНИКИ́, ве­ще­ст­ва, ха­рак­те­ри­зую­щие­ся элек­трич. про­во­ди­мо­стью $σ$, про­ме­жу­точ­ной ме­ж­ду про­во­ди­мо­стью хо­ро­ших про­вод­ни­ков, напр. ме­тал­лов ($σ≈10^4-10^6$ Ом–1·см–1), и хо­ро­ших ди­элек­три­ков ($σ≈10^{–12}-10^{–10}$ Ом–1·см–1) (про­во­ди­мость ука­за­на при ком­нат­ной темп-ре). Ха­рак­тер­ной осо­бен­но­стью П. яв­ля­ет­ся силь­ная за­ви­си­мость их про­во­ди­мо­сти от темп-ры, при­чём в дос­та­точ­но ши­ро­ком ин­тер­ва­ле темпе­ра­тур про­во­ди­мость П., в от­ли­чие от ме­тал­лов, экс­по­нен­ци­аль­но уве­ли­чи­ва­ет­ся с рос­том темп-ры $T$: $$σ=σ_0\exp(–ℰ_a/kT).\tag{*}$$ Здесь $k$ – по­сто­ян­ная Больц­ма­на, $ℰ_a$ – энер­гия ак­ти­ва­ции элек­тро­нов в П., ко­то­рая мо­жет ме­нять­ся от не­сколь­ких мэВ до не­сколь­ких эВ, $σ_0$ – ко­эф. про­пор­цио­наль­но­сти, ко­то­рый так­же за­ви­сит от темп-ры, но эта за­ви­си­мость бо­лее сла­бая, чем экс­по­нен­ци­аль­ная. С по­вы­ше­ни­ем темп-ры те­п­ло­вое дви­же­ние раз­ры­ва­ет часть хи­мич. свя­зей в ато­мах П. и элек­тро­ны, чис­ло ко­то­рых про­пор­цио­наль­но $\exp(–ℰ_a/kT)$, ста­но­вят­ся сво­бод­ны­ми и уча­ст­ву­ют в элек­трич. про­во­ди­мо­сти. Энер­гия, не­об­хо­ди­мая для то­го, что­бы ра­зо­рвать хи­мич. связь и сде­лать ва­лент­ный элек­трон сво­бод­ным, на­зы­ва­ет­ся энер­ги­ей ак­ти­ва­ции.

П. и ди­элек­три­ки от­но­сят к од­но­му клас­су ма­те­риа­лов; раз­ли­чие ме­ж­ду ни­ми яв­ля­ет­ся ско­рее ко­ли­че­ст­вен­ным, чем ка­че­ст­вен­ным. Про­во­ди­мость ди­элек­три­ков так­же име­ет ак­ти­ва­ци­он­ный ха­рак­тер, од­на­ко $ℰ_a$ для них со­став­ля­ет 10 эВ и бо­лее, по­это­му собств. про­во­ди­мость ди­элек­три­ков мог­ла бы стать су­ще­ст­вен­ной толь­ко при очень вы­со­ких темп-рах, при ко­то­рых уже на­сту­па­ют струк­тур­ные из­ме­не­ния ве­ще­ст­ва. В свя­зи с этим тер­мин «П.» час­то по­ни­ма­ют в уз­ком смыс­ле как со­во­куп­ность ве­ществ, по­лу­про­вод­ни­ко­вые свой­ст­ва ко­то­рых яр­ко вы­ра­же­ны при ком­нат­ной темп-ре (300 К).

Хи­мич. свя­зи мо­гут быть ра­зо­рва­ны не толь­ко те­п­ло­вым дви­же­ни­ем, но и разл. внеш­ни­ми воз­дей­ст­вия­ми: элек­тро­маг­нит­ным из­лу­че­ни­ем, по­то­ком бы­ст­рых час­тиц, де­фор­ма­ци­ей, силь­ным элек­т­рич. и маг­нит­ным по­ля­ми и др. По­это­му для П. ха­рак­тер­на вы­со­кая чув­ст­ви­тель­ность про­во­ди­мо­сти к внеш­ним воз­дей­ст­ви­ям, а так­же к кон­цен­тра­ции струк­тур­ных де­фек­тов и при­ме­сей.

Классификация полупроводников

По аг­ре­гат­но­му со­стоя­нию П. де­лят­ся на твёр­дые и жид­кие (см. Жид­кие по­лу­про­вод­ни­ки), по внутр. струк­ту­ре – на кри­стал­лич. и аморф­ные (см. Аморф­ные и стек­ло­об­раз­ные по­лу­про­вод­ни­ки), по хи­мич. со­ста­ву – на не­ор­га­ни­че­ские и ор­га­ни­че­ские. Наи­бо­лее ши­ро­ко изу­че­ны и ис­поль­зу­ют­ся в по­лу­про­вод­ни­ко­вой элек­тро­ни­ке кри­стал­лич. не­ор­га­нич. П. К ним от­но­сят­ся:

– эле­мен­тар­ные П. – эле­мен­ты IV груп­пы ко­рот­кой фор­мы пе­рио­дич. сис­те­мы хи­мич. эле­мен­тов – уг­ле­род С (гра­фит, ал­маз, гра­фен, на­нот­руб­ки), гер­ма­ний Ge и крем­ний Si (ба­зо­вый эле­мент боль­шин­ст­ва ин­те­граль­ных схем в мик­ро­элек­тро­ни­ке), эле­мен­ты VI груп­пы – се­лен Se и тел­лур Te, а так­же их со­едине­ния, напр. кар­бид крем­ния SiC, об­ра­зую­щий слои­стые струк­ту­ры, и не­пре­рыв­ный ряд твёр­дых рас­тво­ров SixGe1–x;

– со­еди­не­ния AIIIBV, где А=Al, Ga, In; В=N, Р, As, Sb, напр. GaAs, AlAs, InAs, InSb, GaN, GaP и др.

– со­еди­не­ния AIIBVI, где А=Zn, Cd, Hg; B=S, Se, Te, напр. ZnTe, ZnSe, ZnO, ZnS, CdTe, CdS, HgTe и др.;

– со­еди­не­ния эле­мен­тов I и V групп с эле­мен­та­ми VI груп­пы, напр. PbS, PbSe, PbTe, Bi2Se3, Bi2Te3,Cu2O и др.;

– трой­ные и чет­вер­ные твёр­дые рас­т­во­ры на ос­но­ве со­еди­не­ний A III B V и A II B VI , напр. GaxAl1–xAs, GaxAl1–xN, CdxHg1–xTe, Cdx

Mn1–xTe, GaxIn1–xAsyP1–y и др.

При­ме­ры аморф­ных и стек­ло­об­раз­ных П.: аморф­ный гид­ри­ро­ван­ный крем­ний a-Si:H, аморф­ные Ge, Se, Te, мно­го­ком­по­нент­ные стек­ло­об­раз­ные спла­вы халь­ко­ге­ни­дов на ос­но­ве S, Se, Te.

К ор­га­ни­че­ским П. от­но­сят­ся: ряд ор­га­нич. кра­си­те­лей, аро­ма­тич. со­еди­не­ния (наф­та­лин, ан­тра­цен и др.), по­ли­ме­ры с со­пря­жён­ны­ми свя­зя­ми, не­ко­то­рые при­род­ные пиг­мен­ты. Ор­га­нич. П. су­ще­ст­ву­ют в ви­де мо­но­кри­стал­лов, по­ли­кри­стал­лич. или аморф­ных по­рош­ков и плё­нок. Дос­то­ин­ст­во ор­га­нич. П. – от­но­сит. де­ше­виз­на их про­из-ва и ме­ха­нич. гиб­кость. Они при­ме­ня­ют­ся как све­то­чув­ст­вит. ма­те­риа­лы для фо­то­эле­мен­тов и ПЗС-мат­риц; на их ос­нове соз­да­ны све­то­из­лу­чаю­щие дио­ды, в т. ч. для гиб­ких эк­ра­нов и мо­ни­то­ров.

Боль­шин­ст­во изу­чен­ных П. на­хо­дят­ся в кри­стал­лич. со­стоя­нии. Свой­ст­ва та­ких П. в зна­чит. ме­ре оп­ре­де­ля­ют­ся их хи­мич. со­ста­вом и сим­мет­ри­ей кри­с­тал­лич. ре­шёт­ки. Ато­мы крем­ния, об­ла­дая че­тырь­мя ва­лент­ны­ми элек­тро­на­ми, об­ра­зу­ют ку­бич. кри­стал­лич. ре­шёт­ку ти­па ал­ма­за с ко­ва­лент­ной свя­зью ато­мов (кри­стал­ло­гра­фич. класс $m\bar 3m$, или $O_h$). Та­кую же кри­стал­лич. ре­шёт­ку име­ют гер­ма­ний и се­рое оло­во. В GaAs ка­ж­дый атом об­ра­зу­ет 4 ва­лент­ные свя­зи с бли­жай­ши­ми со­се­дя­ми, в ре­зуль­та­те че­го по­лу­ча­ет­ся кри­стал­лич. ре­шёт­ка, по­доб­ная ре­шёт­ке ал­ма­за, в ко­то­рой бли­жай­ши­ми со­се­дя­ми ка­тио­на Ga яв­ля­ют­ся анио­ны As и на­обо­рот. За счёт час­тич­но­го пе­ре­рас­пре­де­ле­ния элек­тро­нов ато­мы Ga и As ока­зы­ва­ют­ся раз­но­имён­но за­ря­жен­ны­ми и свя­зи ме­ж­ду ато­ма­ми ста­но­вят­ся час­тич­но ион­ны­ми. Кри­стал­лич. ре­шёт­ка GaAs не об­ла­да­ет цен­тром ин­вер­сии, по­это­му в та­ких П. воз­ни­ка­ют эф­фек­ты, от­сут­ст­вую­щие в цен­тро­сим­мет­рич­ных по­лу­про­вод­ни­ко­вых струк­ту­рах, напр. пье­зо­элек­три­че­ст­во (см. Пье­зо­элек­три­ки), ге­не­ра­ция 2-й оп­тич. гар­мо­ни­ки, фо­то­галь­ва­ни­че­ские эф­фек­ты. Струк­ту­рой, по­доб­ной ар­се­ни­ду гал­лия, об­ла­да­ют InAs, InP, ZnTe, ZnSe и др.

Чис­тые и струк­тур­но со­вер­шен­ные П. по­лу­ча­ют в ре­зуль­та­те кри­стал­ли­за­ции из рас­пла­ва или рас­тво­ра. Для соз­да­ния тон­ких по­лу­про­вод­ни­ко­вых плё­нок при­ме­ня­ют ме­тод эпи­так­сии из жид­кой или га­зо­вой фа­зы.

Электроны и дырки в полупроводниках

В твёр­дом те­ле вол­но­вые функ­ции ва­лент­ных элек­тро­нов со­сед­них ато­мов пе­ре­кры­ва­ют­ся, их ва­лент­ные элек­тро­ны обоб­ще­ст­в­ля­ют­ся и воз­ни­ка­ет ус­той­чи­вая хи­мич. (ко­ва­лент­ная) связь. На ка­ж­дую связь ме­ж­ду ато­ма­ми при­хо­дит­ся по два элек­тро­на, и рас­пре­де­ле­ние элек­трон­ной плот­но­сти в про­стран­ст­ве ока­зы­ва­ет­ся жё­ст­ко фик­си­ро­ван­ным. Про­во­ди­мость П. по­яв­ля­ет­ся, ес­ли ра­зо­рвать свя­зи ме­ж­ду не­ко­то­ры­ми ато­ма­ми, напр., те­п­ло­вым или оп­тич. воз­дей­ст­ви­ем, пе­ре­дав не­боль­шой час­ти ва­лент­ных элек­тро­нов до­пол­нит. энер­гию и пе­ре­ве­дя их на ва­кант­ные (пус­тые) элек­трон­ные ор­би­та­ли, рас­по­ло­жен­ные вы­ше по энер­гии. Та­кие элек­т­ро­ны мо­гут сво­бод­но пе­ре­дви­гать­ся по кри­стал­лу, пе­ре­хо­дя с од­но­го ато­ма на дру­гой, и пе­ре­но­сить от­ри­цат. элек­трич. за­ряд. Ра­зо­рван­ная связь с не­дос­тат­ком элек­тро­на (дыр­ка) так­же мо­жет пе­ре­ме­щать­ся по кри­стал­лу за счёт пе­ре­хо­да на неё элек­тро­на из со­сед­ней свя­зи. По­сколь­ку ра­зо­рван­ная связь оз­на­ча­ет на­ли­чие ло­каль­но­го по­ло­жи­тель­но­го элек­трич. за­ря­да, дыр­ки пе­ре­но­сят по­ло­жи­тель­ный за­ряд. Дыр­ки, как и элек­тро­ны, мо­гут пе­ре­ме­щать­ся на зна­чит. рас­стоя­ния в пе­рио­дич. по­тен­циа­ле кри­стал­ла без рас­сея­ния.

В иде­аль­ных кри­стал­лах, не со­дер­жа­щих де­фек­тов и при­ме­сей, элек­тро­ны и дыр­ки все­гда по­яв­ля­ют­ся па́­ра­ми в си­лу со­хра­не­ния элек­трич. за­ря­да, од­на­ко под­виж­но­сти элек­тро­нов и ды­рок, как пра­ви­ло, раз­лич­ны. В ле­ги­ро­ван­ных П. кон­цен­тра­ции сво­бод­ных элек­тро­нов и ды­рок мо­гут раз­ли­чать­ся на неск. по­ряд­ков, так что элек­тро­про­вод­ность осу­ще­ст­в­ля­ет­ся прак­ти­че­ски пол­но­стью но­си­те­ля­ми за­ря­да од­но­го ти­па.

Чередование разрешённых и запрещённых энергетических зон в кристаллических полупроводниках. Заполнение разрешённых зон: (а) при абсолютном нуле температуры; (б) при отличной от нуля температуре. Чёрны…

По­сле­до­ва­тель­ное и стро­гое опи­са­ние со­стоя­ний но­си­те­лей за­ря­да и их дви­же­ния в кри­стал­лах мож­но сде­лать в рам­ках зон­ной тео­рии. Осн. со­стоя­ние крис­тал­ла при темп-ре 0 К фор­ми­ру­ет­ся за счёт по­сле­до­ва­тель­но­го за­пол­не­ния элек­тро­на­ми наи­низ­ших энер­ге­тич. со­стоя­ний. Со­глас­но прин­ци­пу Пау­ли, в ка­ж­дом со­стоя­нии с оп­ре­де­лён­ным зна­че­ни­ем спи­на мо­жет на­хо­дить­ся толь­ко один элек­трон. В за­ви­си­мо­сти от кри­стал­лич. струк­ту­ры и от чис­ла элек­тро­нов в ка­ж­дом из ато­мов, со­став­ляю­щих кри­сталл, воз­мож­ны два слу­чая: 1) элек­тро­ны пол­но­стью за­пол­ня­ют неск. ниж­них раз­ре­шён­ных зон, а все верх­ние зо­ны ос­та­ют­ся пус­ты­ми; 2) од­на из раз­ре­шён­ных зон за­пол­не­на час­тич­но. В пер­вом слу­чае рас­пре­де­ле­ние элек­трон­ной плот­но­сти в кри­стал­ле фик­си­ро­ва­но, элек­тро­ны не мо­гут уча­ст­во­вать в про­во­ди­мо­сти и кри­сталл яв­ля­ет­ся П. или ди­элек­три­ком. Во вто­ром слу­чае часть элек­тро­нов в пре­де­лах час­тич­но за­пол­нен­ной зо­ны мо­жет сво­бод­но пе­ре­ме­щать­ся по кри­стал­лу3 и крис­талл яв­ля­ет­ся ме­тал­лом. В П. и ди­элек­три­ках верх­няя пол­но­стью за­пол­нен­ная раз­ре­шён­ная зо­на энер­гий на­зы­ва­ет­ся ва­лент­ной зо­ной, ниж­няя пус­тая зо­на – зо­ной про­во­ди­мо­сти. Энер­ге­тич. ин­тер­вал ме­ж­ду дном (ми­ни­му­мом энер­гии) зо­ны про­во­ди­мо­сти и по­тол­ком (мак­си­му­мом энер­гии) ва­лент­ной зо­ны на­зы­ва­ет­ся ши­ри­ной за­пре­щён­ной зо­ны $ℰ_g$. Раз­ли­чие ме­ж­ду П. и ди­элек­три­ка­ми чис­то ко­ли­че­ст­вен­ное: ус­лов­но счи­та­ют, что ве­ще­ст­ва с $ℰ_g<2$ эВ яв­ля­ют­ся П., а с $ℰ_g>2$ эВ – ди­элек­три­ка­ми. При от­лич­ной от ну­ля темп-ре те­п­ло­вое дви­же­ние пе­ре­рас­пре­де­ля­ет элек­тро­ны по энер­гии: часть элек­тро­нов «за­бра­сы­ва­ет­ся» из ва­лент­ной зо­ны в зо­ну про­во­ди­мо­сти. При этом по­яв­ля­ют­ся сво­бод­ные но­си­те­ли за­ря­да – элек­тро­ны в зо­не про­во­ди­мо­сти и дыр­ки в ва­лент­ной зо­не (рис.). Ко­ли­че­ст­во сво­бод­ных элек­тро­нов и ды­рок экс­по­нен­ци­аль­но за­ви­сит от темп-ры, по­это­му тем­пе­ра­тур­ная за­ви­си­мость про­во­ди­мо­сти П. оп­ре­де­ля­ет­ся фор­му­лой ( * ).

В ши­ро­ком клас­се П. ши­ри­на энер­ге­тич. зон зна­чи­тель­но пре­вы­ша­ет те­п­ло­вую энер­гию при ком­нат­ной темп-ре (0,025 эВ), по­это­му но­си­те­ли за­ря­да за­пол­ня­ют со­стоя­ния толь­ко вбли­зи экс­тре­му­мов раз­ре­шён­ных зон, т. е. вбли­зи дна зо­ны про­во­ди­мо­сти и по­тол­ка ва­лент­ной зо­ны. За­ви­си­мость энер­гии от ква­зи­им­пуль­са вбли­зи экс­тре­му­ма час­то ока­зы­ва­ет­ся квад­ра­тич­ной, и мож­но вве­сти пред­став­ле­ние об эф­фек­тив­ной мас­се но­си­те­лей за­ря­да, ко­то­рая за­ви­сит от но­ме­ра раз­ре­шён­ной зо­ны и на­прав­ле­ния ква­зи­им­пуль­са. В не­ко­то­рых П. од­но­му зна­че­нию энер­гии от­ве­ча­ет неск. экс­тре­му­мов в пер­вой зо­не Брил­лю­эна и но­си­те­ли за­ря­да рас­пре­де­ле­ны по эк­ви­ва­лент­ным «до­ли­нам» (ок­ре­ст­но­стям экс­тре­му­мов). Та­кие П. на­зы­ва­ют мно­го­до­лин­ны­ми.

Примеси и дефекты в полупроводниках

Элек­трич. про­во­ди­мость П. мо­жет быть обу­слов­ле­на как элек­тро­на­ми соб­ственных ато­мов дан­но­го ве­ще­ст­ва (соб­ст­вен­ная про­во­ди­мость), так и элек­т­рона­ми и дыр­ка­ми при­мес­ных ато­мов (при­мес­ная про­во­ди­мость). Про­цесс вне­дре­ния при­ме­сей в П. для по­лу­че­ния не­об­хо­ди­мых фи­зич. свойств на­зы­ва­ет­ся ле­ги­ро­ва­ни­ем по­лу­про­вод­ни­ков. По­сколь­ку энер­гия свя­зи но­си­те­лей за­ря­да в при­мес­ных ато­мах со­став­ля­ет от не­сколь­ких мэВ до не­сколь­ких де­сят­ков мэВ, имен­но при­мес­ная про­во­ди­мость объ­яс­ня­ет экс­по­нен­ци­аль­ный рост кон­цен­тра­ции сво­бод­ных но­си­те­лей за­ря­да в боль­шин­ст­ве П. в ин­тер­ва­ле тем­пе­ра­тур вбли­зи ком­нат­ной.

При­ме­си в П. обыч­но вво­дят в про­цес­се рос­та струк­ту­ры, они мо­гут быть до­но­ра­ми или ак­цеп­то­ра­ми, т. е. по­став­щи­ка­ми элек­тро­нов или ды­рок. Ес­ли, напр., в гер­ма­ний Ge или крем­ний Si (эле­мен­ты IV груп­пы) вве­сти при­мес­ные ато­мы эле­мен­тов V груп­пы (As, P), то 4 внеш­них элек­тро­на этих ато­мов об­ра­зу­ют ус­той­чи­вую связь с че­тырь­мя со­сед­ни­ми ато­ма­ми ре­шёт­ки, а пя­тый элек­трон ока­жет­ся не­свя­зан­ным и бу­дет удер­жи­вать­ся око­ло при­мес­но­го ато­ма толь­ко за счёт ку­ло­нов­ско­го взаи­мо­дей­ст­вия, ос­лаб­лен­но­го ди­элек­трич. по­ля­ри­за­ци­ей сре­ды. Та­кой при­мес­ный атом яв­ля­ет­ся до­но­ром и лег­ко ио­ни­зу­ет­ся при ком­нат­ной темп-ре. Ак­цеп­тор воз­ни­ка­ет, напр., при вве­де­нии в Ge или Si эле­мен­тов III груп­пы (Ga, Al). В этом слу­чае для об­ра­зо­ва­ния всех че­ты­рёх свя­зей с бли­жай­ши­ми ато­ма­ми тре­бу­ет­ся до­пол­нит. элек­трон, ко­то­рый бе­рёт­ся из внутр. обо­ло­чек ато­мов, так что при­мес­ный атом ока­зы­ва­ет­ся за­ря­жен от­ри­ца­тель­но. Элек­тро­ней­траль­ность вос­ста­нав­ли­ва­ет­ся за счёт то­го, что внутр. не­за­пол­нен­ная ор­би­таль рас­пре­де­ля­ет­ся вбли­зи со­сед­них ато­мов ре­шёт­ки, рас­по­ло­жен­ных от при­мес­но­го на рас­стоя­ни­ях, пре­вос­хо­дя­щих меж­атом­ное рас­стоя­ние. На­ли­чие до­но­ров или ак­цеп­то­ров при­во­дит со­от­вет­ст­вен­но к про­во­ди­мо­сти n- или р-ти­па.

П., в ко­то­рых мо­гут од­но­вре­мен­но су­ще­ст­во­вать ак­цеп­тор­ные и до­нор­ные при­ме­си, на­зы­ва­ют­ся ком­пен­си­ро­ван­ны­ми. Ком­пен­са­ция при­ме­сей при­во­дит к то­му, что часть элек­тро­нов от до­но­ров пе­ре­хо­дит к ак­цеп­то­рам, и в ре­зуль­та­те воз­ни­ка­ет зна­чит. кон­цен­тра­ция ио­нов, ко­то­рые эф­фек­тив­но влия­ют на про­во­ди­мость по­лу­про­вод­ни­ков.

Ам­пли­ту­да вол­но­вой функ­ции элек­тро­нов или ды­рок, ло­ка­ли­зо­ван­ных на при­мес­ных ато­мах, со­став­ля­ет 1–10 нм. Это оз­на­ча­ет, что при кон­цен­тра­ции при­мес­ных ато­мов ок. 1018 см–3 вол­но­вые функ­ции элек­тро­нов и ды­рок со­сед­них ато­мов на­чи­на­ют пе­ре­кры­вать­ся, но­си­те­ли за­ря­да мо­гут пе­ре­хо­дить от ио­на к ио­ну и П. ста­но­вит­ся вы­ро­ж­ден­ным (см. Вы­ро­ж­ден­ные по­лу­про­вод­ни­ки). Та­кие П. на­зы­ва­ют­ся силь­но­ле­ги­ро­ва­ны­ми. Из-за силь­но­го эк­ра­ни­ро­ва­ния ку­ло­нов­ско­го при­тя­же­ния но­си­те­ли за­ря­да в них ока­зы­ва­ют­ся сво­бод­ны­ми да­же при та­ких низ­ких темп-рах, при ко­то­рых бы­ла не­воз­мож­на тер­мич. ак­ти­ва­ция элек­тро­на или дыр­ки из изо­ли­ро­ван­но­го ато­ма.

В от­сут­ст­вие внеш­не­го элек­трич. по­ля или ос­ве­ще­ния кон­цен­тра­ция сво­бод­ных но­си­те­лей за­ря­да на­зы­ва­ет­ся рав­но­вес­ной и оп­ре­де­ля­ет­ся ши­ри­ной за­пре­щён­ной зо­ны П., эф­фек­тив­ны­ми мас­са­ми но­си­те­лей за­ря­да, кон­цен­тра­ци­ей при­ме­сей и энер­ги­ей свя­зи при­мес­ных но­си­те­лей за­ря­да.

На­ря­ду с при­ме­ся­ми, ис­точ­ни­ка­ми но­си­те­лей за­ря­да мо­гут быть и разл. де­фек­ты струк­ту­ры, напр. ва­кан­сии (от­сут­ствие од­но­го из ато­мов ре­шёт­ки), ме­ж­узель­ные ато­мы, а так­же не­дос­та­ток или из­бы­ток ато­мов од­но­го из ком­по­нен­тов в по­лу­про­вод­ни­ко­вых со­еди­не­ни­ях (от­кло­не­ния от сте­хио­мет­рич. со­ста­ва).

Электрические свойства полупроводников

Во внеш­нем элек­трич. по­ле на но­си­те­ли за­ря­да в твёр­дом те­ле дей­ст­ву­ет си­ла, ко­то­рая из­ме­ня­ет их ско­рость и при­во­дит к на­прав­лен­но­му дви­же­нию. Под дей­ст­ви­ем си­лы но­си­те­ли за­ря­да долж­ны ус­ко­рять­ся, од­на­ко в кри­стал­лах вслед­ст­вие взаи­мо­дей­ст­вия элек­тронов с де­фек­та­ми, ко­ле­ба­ния­ми ре­шёт­ки и т. д. воз­ни­ка­ет си­ла тре­ния, ко­то­рая урав­но­ве­ши­ва­ет си­лу, дей­ст­вую­щую со сто­ро­ны по­ля. В ре­зуль­та­те но­си­те­ли за­ря­да дви­жут­ся с по­сто­ян­ной сред­ней (дрей­фо­вой) ско­ро­стью $v_{др}$, за­ви­ся­щей от на­пря­жён­но­сти $E$ элек­трич. по­ля. Мож­но вве­сти по­ня­тие под­виж­но­сти но­си­те­лей за­ря­да $μ=v_{др}/E$. Дей­ст­вие си­лы тре­ния оз­на­ча­ет, что в элек­трич. по­ле но­си­тель за­ря­да ис­пы­ты­ва­ет сво­бод­ное ус­ко­ре­ние толь­ко в про­ме­жут­ке вре­ме­ни $Δt$ ме­ж­ду дву­мя ак­та­ми рас­сея­ния, так что $v_{др}=eEτ/m$ ($m$ – эф­фек­тив­ная мас­са но­си­те­ля, $e$ – его за­ряд, $τ$ – вре­мя ре­лак­са­ции, за ко­то­рое сво­бод­ный но­си­тель за­ря­да в от­сут­ст­вие по­ля те­ря­ет свой на­прав­лен­ный ква­зи­им­пульс). Обыч­но $τ$ не за­ви­сит от ве­ли­чи­ны внеш­не­го по­ля и оп­ре­де­ля­ет­ся теп­ло­вым хао­тич. дви­же­ни­ем но­си­те­лей за­ря­да в твёр­дом те­ле, так что ско­рость те­п­ло­во­го дви­же­ния на неск. по­ряд­ков пре­вос­хо­дит $v_{др}$. Так, напр., для ти­пич­ных П. при $T=300$ К в весь­ма силь­ном элек­трич. по­ле ($E$=3·104 В/м) ско­рость $v_{др}$ со­став­ля­ет 10–100 м/с, а ве­ли­чи­на ср. те­п­ло­вой ско­ро­сти – 105–106 м/с.

Ве­ли­чи­ны $τ$ и $μ$ за­ви­сят от ти­па про­во­ди­мо­сти, хи­мич. со­ста­ва П., темп-ры, кон­цен­тра­ции де­фек­тов и при­ме­сей. При темп-рах ни­же темп-ры ки­пе­ния жид­ко­го азо­та (77 К) под­виж­ность $μ$ воз­рас­та­ет с рос­том темп-ры, а при темп-рах вы­ше 77 К – умень­ша­ет­ся, про­хо­дя че­рез мак­си­мум вбли­зи 100 К. Та­кая за­ви­си­мость $μ(T)$ объ­яс­ня­ет­ся на­ли­чи­ем двух осн. при­чин рас­сея­ния но­си­те­лей за­ря­да – на за­ря­жен­ных при­ме­сях и фо­но­нах. При низ­ких темп-рах, ко­гда при­мес­ные ато­мы ио­ни­зо­ва­ны, рас­сея­ние на них пре­вос­хо­дит рас­сея­ние на фо­но­нах, по­сколь­ку рав­но­вес­ных фо­но­нов ма­ло. С уве­ли­че­ни­ем темп-ры ср. энер­гия но­си­те­лей воз­рас­та­ет, эф­фек­тив­ность рас­сея­ния умень­ша­ет­ся, вре­мя ме­ж­ду столк­но­ве­ния­ми и под­виж­ность воз­рас­та­ют. При темп-рах ок. 100 К рез­ко воз­рас­та­ет кон­цен­тра­ция рав­но­вес­ных фо­но­нов и взаи­мо­дей­ст­вие с ни­ми ог­ра­ни­чи­ва­ет под­виж­ность, вслед­ст­вие это­го с уве­ли­че­ни­ем темп-ры под­виж­ность умень­ша­ет­ся. При $T$=300 К ха­рак­тер­ные зна­че­ния $τ$ для П. ле­жат в ин­тер­ва­ле 10–13–10–12 с, а $μ$  – в ин­тер­ва­ле 102–10–2 м/с. При мень­ших зна­че­ни­ях под­виж­но­сти дли­на сво­бод­но­го про­бе­га (про­из­ве­де­ние ср. ско­ро­сти теп­ло­во­го дви­же­ния на вре­мя $τ$) ста­но­вит­ся мень­ше рас­стоя­ния ме­ж­ду ато­ма­ми и го­во­рить о сво­бод­ном дви­же­нии но­си­те­лей за­ря­да нель­зя. Воз­ни­ка­ет прыж­ко­вая про­во­ди­мость, ко­то­рая обу­слов­ле­на пе­ре­ско­ка­ми но­си­те­лей за­ря­да в про­стран­ст­ве от од­но­го ио­на к дру­го­му (реа­ли­зу­ет­ся в ор­га­ни­че­ских по­лу­про­вод­ни­ках).

На­прав­лен­но­му дви­же­нию но­си­те­лей за­ря­да во внеш­нем элек­трич. по­ле пре­пят­ст­ву­ет их те­п­ло­вое хао­тич. дви­же­ние. Ес­ли в ре­зуль­та­те при­ло­же­ния элек­т­рич. по­ля но­си­те­ли со­би­ра­ют­ся у гра­ни­цы об­раз­ца и их кон­цен­тра­ция за­ви­сит от ко­ор­ди­нат, то хао­тич. дви­же­ние при­во­дит к вы­рав­ни­ва­нию кон­цен­тра­ции и но­си­те­ли пе­ре­хо­дят из об­лас­ти про­ст­ран­ст­ва с боль­шей кон­цен­тра­ци­ей в об­ласть, где их кон­цен­тра­ция мень­ше. Та­кой про­цесс на­зы­ва­ет­ся диф­фу­зи­ей но­си­те­лей за­ря­да и оп­ре­де­ля­ет­ся ко­эф. диф­фу­зии $D$. В ус­ло­ви­ях рав­но­ве­сия пол­ный по­ток но­си­те­лей за­ря­да от­сут­ст­ву­ет, так что диф­фу­зи­он­ный по­ток пол­но­стью ком­пен­си­ру­ет по­ток час­тиц во внеш­нем по­ле. Это оз­на­ча­ет, что ко­эф. диф­фу­зии свя­зан с под­виж­но­стью. Для не­вы­ро­ж­ден­ных но­си­те­лей $D=kTμ/e$ (со­от­но­ше­ние Эйн­штей­на). Для ти­пич­ных П. при ком­нат­ной темп-ре ве­ли­чи­на $D$ со­став­ля­ет 10–3–10–2 м2/с. Для не­рав­но­вес­ных но­си­те­лей за­ря­да, напр. в слу­чае ин­жек­ции в элек­трон­но-ды­роч­ном пе­ре­хо­де (см. p–n-Пе­ре­ход), вво­дит­ся по­ня­тие диф­фу­зи­он­ной дли­ны $L_D$, ко­то­рая оп­ре­де­ля­ет умень­ше­ние чис­ла но­си­те­лей в про­цес­се диф­фу­зии за счёт их реком­би­на­ции: $L_D=\sqrt{D\tau_0}$, где $τ_0$ – вре­мя жиз­ни не­ос­нов­ных но­си­те­лей.

На­ло­же­ние внеш­не­го маг­нит­но­го по­ля из­ме­ня­ет ус­ло­вия про­те­ка­ния элек­трич. то­ка в П. и при­во­дит к галь­ва­но­маг­нит­ным яв­ле­ни­ям, ко­то­рые наи­бо­лее силь­но про­яв­ля­ют­ся в маг­нит­ных по­лу­про­вод­ни­ках и по­лу­маг­нит­ных по­лу­про­вод­ни­ках. В П. для ис­сле­до­ва­ний и прак­тич. при­ме­не­ний наи­бо­лее час­то маг­нит­ное по­ле при­кла­ды­ва­ют пер­пен­ди­ку­ляр­но элек­трич. по­лю, в этом слу­чае име­ют ме­сто Хол­ла эф­фект и Шуб­ни­ко­ва – де Хаа­за эф­фект, клас­сич. маг­ни­то­со­про­тив­ле­ние, сла­бая ло­ка­ли­за­ция но­си­те­лей за­ря­да, а в дву­мер­ных струк­ту­рах – кван­то­вый эф­фект Хол­ла и дроб­ный кван­то­вый эф­фект Хол­ла. В маг­нит­ном по­ле на за­ря­жен­ные час­ти­цы дей­ст­ву­ет си­ла Ло­рен­ца, они на­чи­на­ют вра­щать­ся в плос­ко­сти, пер­пен­ди­ку­ляр­ной на­прав­ле­нию маг­нит­но­го по­ля, с цик­ло­трон­ной час­то­той $ω_с$ и со­хра­ня­ют свою ско­рость вдоль маг­нит­но­го по­ля. В за­ви­си­мо­сти от ве­ли­чи­ны про­из­ве­де­ния $ω_сτ$ раз­ли­ча­ют клас­си­че­ские сла­бые ($ω_сτ≪1$), клас­си­че­ские ($ω_сτ>1$) и кван­тую­щие ($ωсτ≫1$ и $\hbar ω_с≫kT$) маг­нит­ные по­ля, где $\hbar$ – по­сто­ян­ная План­ка.

В маг­нит­ных по­лях, ко­гда $ω_сτ∼1$, дви­же­ние но­си­те­лей за­ря­да мож­но опи­сы­вать клас­сич. урав­не­ния­ми Нью­то­на, в этом слу­чае име­ет ме­сто эф­фект Хол­ла, со­стоя­щий в воз­ник­но­ве­нии до­пол­нит. элек­трич. по­ля, пер­пен­ди­ку­ляр­но­го внеш­ним элек­трич. и маг­нит­но­му по­лям. Это до­пол­нит. по­ле ком­пен­си­ру­ет по­ток час­тиц, вы­зван­ный со­вме­ст­ным дей­ст­ви­ем при­ло­жен­ных элек­трич. и маг­нит­но­го по­лей, и за­ви­сит от ве­ли­чи­ны маг­нит­но­го по­ля и кон­цен­тра­ции сво­бод­ных но­си­те­лей за­ря­да, а его на­прав­ле­ние оп­ре­де­ля­ет­ся зна­ком за­ря­да, по­это­му эф­фект Хол­ла ис­поль­зу­ет­ся для оп­ре­де­ле­ния зна­ка и кон­цен­тра­ции но­си­те­лей за­ря­да.

В бо­лее силь­ных по­лях, ко­гда $ω_сτ≫1$, но ха­рак­тер­ная энер­гия но­си­те­лей за­ря­да зна­чи­тель­но пре­вос­хо­дит $\hbar ω_с$, не­об­хо­ди­мо учи­ты­вать кван­то­ва­ние но­си­те­лей за­ря­да во внеш­нем маг­нит­ном по­ле, в ре­зуль­та­те плот­ность со­стоя­ний как функ­ция об­рат­но­го по­ля при­об­ре­та­ет вид ост­рых, пе­рио­ди­че­ски рас­по­ло­жен­ных пи­ков. При уве­ли­че­нии маг­нит­но­го по­ля эти пи­ки на­чи­на­ют пе­ре­се­кать уро­вень хи­мич. по­тен­циа­ла элек­трон­но­го га­за, в ре­зуль­та­те в кван­тую­щем маг­нит­ном по­ле со­про­тив­ле­ние ос­цил­ли­ру­ет.

В дву­мер­ных по­лу­про­вод­ни­ко­вых струк­ту­рах при $ω_сτ≫1$ и $\hbar ω_с≫kT$ воз­ни­ка­ет кван­то­вый эф­фект Хол­ла, со­стоя­щий в по­яв­ле­нии сту­пе­нек на за­ви­си­мо­сти по­пе­реч­но­го со­про­тив­ле­ния от маг­нит­но­го по­ля. Вы­со­та сту­пе­нек с боль­шой точ­но­стью рав­ня­ет­ся кван­ту удель­но­го со­про­тив­ле­ния $h/e^2$. Зна­че­ние про­доль­но­го со­про­тив­ле­ния об­ра­ща­ет­ся в нуль в маг­нит­ных по­лях, от­ве­чаю­щих сту­пень­кам на за­ви­си­мо­сти по­пе­реч­но­го со­про­тив­ле­ния от маг­нит­но­го по­ля и пи­кам ме­ж­ду сту­пень­ка­ми. Та­кое по­ве­де­ние объ­яс­ня­ет­ся осо­бен­но­стя­ми дви­же­ния но­си­те­лей за­ря­да в силь­ном маг­нит­ном по­ле в ус­ло­ви­ях дей­ст­вия слу­чай­ных элек­трич. и де­фор­ма­ци­он­ных по­лей, имею­щих разл. про­стран­ст­вен­ный мас­штаб. При ещё боль­шем маг­нит­ном по­ле име­ет ме­сто дроб­ный кван­то­вый эф­фект Хол­ла, про­яв­ляю­щий­ся в до­пол­нит. рас­ще­п­ле­нии сту­пе­нек. Од­на­ко кван­то­вый ха­рак­тер но­си­те­лей за­ря­да мо­жет про­яв­лять­ся и в сла­бых маг­нит­ных по­лях. Ока­за­лось, что при низ­ких темп-рах в П. и ме­тал­лах на­блю­да­ет­ся не­боль­шое (ок. 1–5% от об­ще­го) из­ме­не­ние про­во­ди­мо­сти, про­пор­цио­наль­ное квад­ра­ту маг­нит­но­го по­ля. Этот эф­фект объ­яс­ня­ет­ся яв­ле­ни­ем сла­бой ло­ка­ли­за­ции, со­стоя­щим в уве­ли­че­нии со­про­тив­ле­ния про­во­дя­щих ма­те­риа­лов за счёт уси­ле­ния рас­сея­ния на­зад при диф­фу­зи­он­ном дви­же­нии час­тиц.

Оптические свойства полупроводников

Зон­ная струк­ту­ра кри­стал­лов про­яв­ля­ет­ся в свой­ст­вах про­пус­ка­ния, от­ра­же­ния и по­гло­ще­ния по­лу­про­вод­ни­ка­ми элек­тро­маг­нит­но­го из­лу­че­ния. Наи­бо­лее оче­вид­но су­ще­ст­во­ва­ние за­пре­щён­ной зо­ны сле­ду­ет из то­го, что из­лу­че­ние с энер­ги­ей кван­та, мень­шей ши­ри­ны за­пре­щён­ной зо­ны $ℰ_g$ чис­то­го П., не по­гло­ща­ет­ся. По­гло­ще­ние на­чи­на­ет­ся толь­ко то­гда, ко­гда энер­гия кван­та пре­вы­сит $ℰ_g$. Для П. ти­па GaAs при низ­ких темп-рах дли­на вол­ны, на ко­то­рой ин­тен­сив­ность па­даю­ще­го из­лу­че­ния умень­ша­ет­ся в $e$ раз, при­бли­зи­тель­но рав­на 0,1 мкм. При та­ком по­гло­ще­нии кван­та све­та в П. воз­ни­ка­ют элек­трон и дыр­ка и име­ет ме­сто за­кон со­хра­не­ния ква­зи­им­пуль­са. Обыч­но им­пульс све­та зна­чи­тель­но мень­ше квази­им­пуль­сов но­си­те­лей за­ря­да, и при оп­тич. пе­ре­хо­де элек­тро­на из ва­лент­ной зо­ны в зо­ну про­во­ди­мо­сти ква­зи­им­пульс не из­ме­ня­ет­ся, так что в мо­мент ро­ж­де­ния элек­трон и дыр­ка име­ют про­ти­во­по­лож­ные ква­зи­им­пуль­сы. Та­кие пе­ре­хо­ды на­зы­ва­ют­ся пря­мы­ми; они про­ис­хо­дят в т. н. пря­мо­зон­ных П. (GaAs, InSb, Te, SiC), в ко­то­рых по­то­лок ва­лент­ной зо­ны и дно зо­ны про­во­ди­мо­сти рас­по­ло­же­ны в од­ной точ­ке зо­ны Брил­лю­эна.

Элек­трон­ные пе­ре­хо­ды со зна­чит. из­ме­не­ни­ем ква­зи­им­пуль­са про­ис­хо­дят в т. н. не­пря­мо­зон­ных П. (Ge, Si, AlAs, GaP), у ко­то­рых вер­ши­на ва­лент­ной зо­ны и дно зо­ны про­во­ди­мо­сти раз­не­се­ны в про­стран­ст­ве ква­зи­им­пуль­сов на ве­ли­чи­ну по­ряд­ка $π/d$, где $d$ – меж­атом­ное рас­стоя­ние в кри­стал­лич. ре­шёт­ке. В этом слу­чае для вы­пол­не­ния за­ко­на со­хра­не­ния ква­зи­им­пуль­са не­об­хо­ди­мо уча­стие треть­ей час­ти­цы, в ка­че­ст­ве ко­то­рой мо­жет вы­сту­пать ли­бо при­мес­ный атом, ли­бо фо­нон. Ти­пич­ная дли­на по­гло­ще­ния для не­пря­мых пе­ре­хо­дов со­став­ля­ет 1–10 мкм.

В спек­тре по­гло­ще­ния П. при­сут­ст­ву­ют ши­ро­кие энер­ге­тич. по­ло­сы, что ука­зы­ва­ет на то, что элек­тро­ны в ва­лент­ных зо­нах свя­за­ны сла­бо и лег­ко по­ля­ри­зу­ют­ся под дей­ст­ви­ем элек­трич. по­ля. Это оз­на­ча­ет, что П. ха­рак­те­ри­зу­ют­ся от­но­си­тель­но боль­шой ди­элек­трич. про­ни­цае­мо­стью $ε$, напр. в Ge $ε=16$, в GaAs $ε=11$, в PbTe $ε=30$. Бла­го­да­ря боль­шим зна­че­ни­ям $ε$ ку­ло­нов­ское взаи­мо­дей­ст­вие элек­тро­нов и ды­рок друг с дру­гом или с за­ря­жен­ны­ми при­ме­ся­ми силь­но по­дав­ле­но, ес­ли они на­хо­дят­ся друг от дру­га на рас­стоя­нии, пре­вы­шаю­щем раз­ме­ры эле­мен­тар­ной ячей­ки. Это и по­зво­ля­ет во мно­гих слу­ча­ях рас­смат­ри­вать дви­же­ние ка­ж­до­го но­си­те­ля за­ря­да не­за­ви­си­мо от дру­гих. Ес­ли бы ку­ло­нов­ское взаи­мо­дей­ст­вие не ос­лаб­ля­лось, то при­мес­ные ио­ны мог­ли бы свя­зы­вать но­си­те­ли за­ря­да в ус­той­чи­вые, ло­ка­ли­зован­ные в про­стран­ст­ве об­ра­зо­ва­ния с энер­ги­ей ок. 10 эВ. В этом слу­чае при темп-рах ок. 300 К те­п­ло­вое дви­же­ние прак­ти­че­ски не мог­ло бы ра­зо­рвать эти свя­зи, соз­дать сво­бод­ные но­си­те­ли за­ря­да и при­вес­ти к за­мет­ной элек­тро­про­вод­но­сти. Та­кое свя­зы­ва­ние име­ет ме­сто в П. и ди­элек­три­ках, но из-за ос­лаб­ле­ния ку­ло­нов­ско­го взаи­мо­дей­ст­вия и от­но­си­тель­но ма­лых эф­фек­тив­ных масс элек­тро­нов и ды­рок (ок. 0,1–0,5 от мас­сы сво­бод­но­го элек­тро­на) энер­гия свя­зи та­ких об­ра­зо­ва­ний (эк­си­то­нов) со­став­ля­ет 1–50 мэВ, что мно­го мень­ше энер­гии ио­ни­за­ции ато­мов. Эк­си­то­ны лег­ко иони­зу­ют­ся при темп-рах вы­ше темп-ры жид­ко­го азо­та и, т. о., не пре­пят­ст­ву­ют об­ра­зо­ва­нию сво­бод­ных но­си­те­лей. Тем не ме­нее при низ­ких темп-рах об­ра­зо­ва­ние эк­си­то­нов при­во­дит к по­гло­ще­нию в чис­тых П. элек­тро­маг­нит­но­го из­лу­че­ния с энер­ги­ей кван­та, мень­шей $ℰ_g$ на ве­ли­чи­ну энер­гии свя­зи эк­си­то­на.

Про­зрач­ность П. в уз­кой об­лас­ти час­тот вбли­зи края собств. по­гло­ще­ния из­ме­ня­ет­ся под дей­ст­ви­ем внеш­них (элек­трич., маг­нит­но­го и др.) по­лей. Элек­трич. по­ле, ус­ко­ряя элек­трон, мо­жет в про­цес­се оп­тич. пе­ре­хо­да пе­ре­дать ему не­боль­шую до­пол­нит. энер­гию, в ре­зуль­та­те че­го пря­мые оп­тич. пе­ре­хо­ды из ва­лент­ной зо­ны в зо­ну про­во­ди­мо­сти про­ис­хо­дят под дей­ст­ви­ем кван­тов све­та с энер­ги­ей, мень­шей $ℰ_g$ (Кел­ды­ша – Фран­ца эф­фект).

В од­но­род­ном маг­нит­ном по­ле за­кон со­хра­не­ния ква­зи­им­пуль­са при­во­дит к со­хра­не­нию кру­го­во­го дви­же­ния элек­тро­нов и ды­рок по­сле по­гло­ще­ния из­лу­чения. В ре­зуль­та­те за­ви­си­мость ко­эф. по­гло­ще­ния от час­то­ты па­даю­ще­го из­лу­че­ния при­ни­ма­ет вид уз­ких пи­ков. Кро­ме собств. по­гло­ще­ния (за счёт пря­мых или не­пря­мых пе­ре­хо­дов), в П. име­ет ме­сто по­гло­ще­ние све­та сво­бод­ны­ми но­си­те­ля­ми, свя­зан­ное с их пе­ре­хо­да­ми в пре­де­лах од­ной раз­ре­шён­ной зо­ны. Их вклад в об­щее по­гло­ще­ние мал, по­сколь­ку чис­ло сво­бод­ных но­си­те­лей за­ря­да в П. ма­лó по срав­не­нию с пол­ным чис­лом ва­лент­ных элек­тро­нов, и для их реа­ли­за­ции тре­бу­ет­ся уча­стие треть­ей час­ти­цы – при­ме­си или фо­но­на. Кро­ме то­го, в не­ле­ги­ро­ван­ных П. со зна­чит. до­лей ион­ной свя­зи на­блю­да­ет­ся по­гло­ще­ние да­лё­ко­го ИК-из­лу­че­ния за счёт воз­бу­ж­де­ния ко­ле­ба­ний ре­шёт­ки – фо­но­нов.

Спектр фо­то­лю­ми­нес­цен­ции П. со­сре­до­то­чен в уз­кой об­лас­ти вбли­зи ши­ри­ны за­пре­щён­ной зо­ны. Вклад в фо­то­лю­ми­нес­цен­цию П. мо­гут вно­сить разл. ме­ха­низ­мы из­лу­ча­тель­ной ре­ком­би­на­ции: зо­на – зо­на, зо­на – при­месь, до­нор – ак­цеп­тор, с уча­сти­ем фо­но­на, из­лу­че­ние сво­бод­ных, свя­зан­ных или ло­ка­ли­зо­ван­ных эк­си­то­нов, эк­си­тон-по­ля­ри­тон­ная, би­эк­си­тон­ная ре­ком­би­на­ции. В не­ле­ги­ро­ван­ных струк­ту­рах с кван­то­вы­ми яма­ми низ­ко­тем­пе­ра­тур­ная фо­то­лю­ми­нес­цен­ция об­у­слов­ле­на из­лу­ча­тель­ной ре­ком­би­на­ци­ей эк­си­то­нов, ло­ка­ли­зо­ван­ных на ше­ро­хо­ва­то­стях по­верх­но­сти и флук­туа­ци­ях со­ста­ва.

Оп­тич. свой­ст­ва твёр­дых рас­тво­ров П. мож­но ме­нять в ши­ро­ких пре­де­лах, под­би­рая хи­мич. со­став рас­тво­ра, что об­услов­ли­ва­ет их ши­ро­кое при­ме­не­ние в при­бо­рах оп­то­элек­тро­ни­ки, в пер­вую оче­редь в ка­че­ст­ве ра­бо­чих ма­те­риа­лов ла­зе­ров, све­то- и фо­то­дио­дов, сол­неч­ных эле­мен­тов, де­тек­то­ров из­лу­че­ния.

Полупроводниковые гетеро- и наноструктуры

Совр. фи­зи­ка П. – это, пре­ж­де все­го, фи­зи­ка по­лу­про­вод­ни­ко­вых ге­те­ро­ст­рук­тур и на­но­ст­рук­тур. В по­след­них воз­ни­ка­ет ряд но­вых фи­зич. яв­ле­ний, ко­то­рые не­воз­мож­ны в объ­ём­ных П., напр. кван­то­вые це­ло­чис­лен­ный и дроб­ный эф­фек­ты Хол­ла. В на­но­ст­рук­ту­рах дви­же­ние сво­бод­ных но­си­те­лей за­ря­да ог­ра­ни­че­но в од­ном или не­сколь­ких на­прав­ле­ни­ях, что при­во­дит к раз­мер­ным эф­фек­там, кар­ди­наль­но из­ме­няю­щим энер­ге­тич. спек­тры но­си­те­лей за­ря­да, а так­же фо­но­нов и др. ква­зи­ча­стиц. Важ­ную роль в на­но­ст­рук­ту­рах иг­ра­ют ге­те­ро­гра­ни­цы, по­сколь­ку в сис­те­мах ма­ло­го раз­ме­ра от­но­ше­ние пло­ща­ди по­верх­но­сти к внутр. объ­ё­му струк­ту­ры яв­ля­ет­ся боль­шим. Наи­бо­лее со­вер­шен­ные по­лу­про­вод­ни­ко­вые на­но­ст­рук­ту­ры по­лу­ча­ют ме­то­да­ми мо­ле­ку­ляр­но-пуч­ко­вой эпи­так­сии и га­зо­фаз­ной эпи­так­сии из ме­тал­ло­ор­га­нич. со­еди­не­ний.

В нач. 21 в. сло­жи­лась ус­той­чи­вая тер­ми­но­ло­гия низ­ко­раз­мер­ной фи­зи­ки П. Сис­те­ма­ти­ка на­чи­на­ет­ся с оди­ноч­но­го ге­те­ро­пе­ре­хо­да ме­ж­ду дву­мя ком­по­зи­ци­он­ны­ми ма­те­риа­ла­ми – по­лу­про­вод­ни­ка­ми A и B. Один или оба ма­те­риа­ла мо­гут быть твёр­ды­ми рас­тво­ра­ми (при­ме­ры ге­те­ро­пар A/B: GaAs/Al1–xGaxAs, ZnSe/BeTe). По оп­ре­де­ле­нию, в ге­те­ро­пере­хо­дах пер­во­го ти­па за­пре­щён­ная зо­на $ℰ_g$ од­но­го из ком­по­зиц. ма­те­риа­лов ле­жит внут­ри за­пре­щён­ной зо­ны др. ма­те­риа­ла. В этом слу­чае по­тен­ци­аль­ные ямы для элек­тро­нов или ды­рок рас­по­ло­же­ны в од­ном и том же слое. В ге­те­ро­пе­ре­хо­дах вто­ро­го ти­па дно зо­ны про­во­ди­мо­сти ни­же в од­ном, а по­то­лок ва­лент­ной зо­ны вы­ше в дру­гом П. Для ука­зан­ных ге­те­ро­пар за­пре­щён­ные зо­ны пе­ре­кры­ва­ют­ся. Име­ют­ся так­же гете­ро­пе­ре­хо­ды вто­ро­го ти­па (напр., InAs/GaSb), у ко­то­рых за­пре­щён­ные зо­ны не пе­ре­кры­ва­ют­ся и дно зо­ны про­во­ди­мо­сти од­ного П. ле­жит ни­же по­тол­ка ва­лент­ной зо­ны дру­го­го П. К треть­ему ти­пу от­но­сят гете­ро­пе­ре­хо­ды, в ко­то­рых один из сло­ёв яв­ля­ет­ся бес­ще­ле­вым П., напр. в па­ре HgTe/CdTe. Двой­ной ге­те­ро­пе­ре­ход B/A/B пер­во­го ти­па пред­став­ля­ет со­бой струк­ту­ру с оди­ноч­ной кван­то­вой ямой, ес­ли $ℰ^A_g<ℰ^B_g$, или струк­ту­ру с оди­ночным барь­е­ром, ес­ли $ℰ^A_g>ℰ^B_g$.

К по­лу­про­вод­ни­ко­вым на­но­ст­рук­ту­рам от­но­сят кван­то­вые ямы, кван­то­вые про­во­ло­ки, кван­то­вые точ­ки. В кван­то­вой яме дви­же­ние сво­бод­но­го но­си­те­ля за­ря­да (элек­тро­на или дыр­ки) ог­ра­ни­че­но в од­ном из на­прав­ле­ний. В ре­зуль­та­те воз­ни­ка­ет про­стран­ст­вен­ное кван­то­ва­ние и энер­ге­тич. спектр по од­но­му из кван­то­вых чи­сел из не­пре­рыв­но­го ста­но­вит­ся дис­крет­ным – ка­ж­дая трёх­мер­ная энер­ге­тич. элек­трон­ная зо­на пре­вра­ща­ет­ся в се­рию дву­мер­ных под­зон раз­мер­но­го кван­то­ва­ния. Ес­теств. раз­ви­ти­ем од­но­барь­ер­ной струк­ту­ры яв­ля­ют­ся двух- и муль­ти­барь­ер­ные струк­ту­ры, на ос­но­ве ко­то­рых соз­да­ют­ся ре­зо­нанс­но-барь­ер­ные при­бо­ры. От оди­ноч­ной кван­то­вой ямы пе­ре­хо­дят к струк­ту­ре с дву­мя или тре­мя кван­то­вы­ми яма­ми и струк­ту­рам с це­лым на­бо­ром изо­ли­ро­ван­ных кван­то­вых ям. По ме­ре то­го как барь­е­ры ста­но­вят­ся тонь­ше, тун­не­ли­ро­ва­ние но­си­те­лей за­ря­да из од­ной ямы в дру­гую ста­но­вит­ся за­мет­нее, и элек­трон­ные со­стоя­ния в под­зо­нах раз­мер­но­го кван­то­ва­ния изо­ли­ро­ван­ных ям транс­фор­ми­ру­ют­ся в трёх­мер­ные ми­ни­зон­ные со­стоя­ния. В ре­зуль­та­те пе­рио­дич. струк­ту­ра изо­ли­ро­ван­ных кван­то­вых ям, или тол­сто­барь­ер­ная сверх­ре­шёт­ка, пре­вра­ща­ет­ся в тон­ко­барь­ер­ную сверх­ре­шёт­ку, или про­сто сверх­ре­шёт­ку. По­лу­про­вод­ни­ко­вая сверх­ре­шёт­ка ис­поль­зу­ет­ся для со­зда­ния кван­то­вых кас­кад­ных ла­зе­ров, из­лу­че­ние ко­то­рых воз­ни­ка­ет при пе­ре­хо­де элек­тро­нов ме­ж­ду слоя­ми струк­ту­ры.

Кро­ме струк­тур с кван­то­вы­ми яма­ми, су­ще­ст­ву­ют и др. дву­мер­ные сис­те­мы, напр. гра­фен и струк­ту­ра ме­талл – ди­элек­трик – по­лу­про­вод­ник (МДП-струк­ту­ра), ко­то­рая ис­поль­зу­ет­ся в мик­ро­элек­тро­ни­ке в ви­де по­ле­во­го МДП-тран­зи­сто­ра.

В од­но­мер­ных сис­те­мах – кван­то­вых про­во­ло­ках – дви­же­ние но­си­те­лей за­ря­да сво­бод­но толь­ко в од­ном на­прав­ле­нии (напр., в уг­ле­род­ной на­нот­руб­ке, по­лу­чае­мой свёр­ты­ва­ни­ем гра­фе­но­вой по­лос­ки и за­кре­п­ле­ни­ем её про­ти­во­по­лож­ных сто­рон). Др. при­мер та­кой струк­ту­ры – кван­то­вая яма, вы­ра­щен­ная на ско­ле, со­дер­жа­щем пер­пен­ди­ку­ляр­ную ему кван­то­вую яму. Кван­то­вая ме­ха­ни­ка до­пус­ка­ет фор­ми­ро­ва­ние од­но­мер­ных элек­трон­ных со­стоя­ний на сты­ке двух та­ких ям.

В кван­то­вых точ­ках дви­же­ние но­си­те­лей за­ря­да ог­ра­ни­че­но во всех трёх на­прав­ле­ни­ях, напр. в на­нок­ри­стал­лах CdSe, вы­ра­щен­ных в стек­лян­ной мат­ри­це, и в эпи­так­си­аль­ных кван­то­вых точ­ках GaAs/InAs, вы­ра­щен­ных по ме­ха­низ­му Странс­ки – Кра­ста­но­ва.

Ши­ро­кое при­ме­не­ние по­лу­чи­ли по­лу­про­вод­ни­ко­вые ла­зе­ры на кван­то­вых ямах и мас­си­вах кван­то­вых то­чек. В струк­ту­ре с двой­ным ог­ра­ни­че­ни­ем сти­му­ли­ро­ван­ное из­лу­че­ние вы­хо­дит из тор­ца, пер­пен­ди­ку­ляр­но на­прав­ле­нию рос­та. Кван­то­вый мик­ро­ре­зо­на­тор, т. е. кван­то­вые ямы или кван­то­вые точ­ки, вы­ра­щен­ные в ак­тив­ной об­лас­ти оп­тич. мик­ро­ре­зо­на­то­ра, ис­поль­зу­ет­ся для соз­да­ния вер­ти­каль­но из­лу­чаю­щих ла­зе­ров.

Воз­мож­ность в ши­ро­ких пре­де­лах управ­лять фи­зич. свой­ст­ва­ми П. при­во­дит к их мно­го­чис­лен­ным и раз­но­об­раз­ным при­ме­не­ни­ям (см. По­лу­про­вод­ни­ко­вые ма­те­риа­лы).

Полупроводники — это… Что такое Полупроводники?

Полупроводники — вещества, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких эВ (электрон-вольта), то есть соизмерима с kT. Например, алмаз можно отнести к широкозонным полупроводникам, а InAs — к узкозонным.

В зависимости от того, отдаёт ли атом примеси электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства изоляторов.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых соединений. Их делят на несколько типов: одноэлементные полупроводники IV группы периодической системы элементов, сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно. Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.

Физические свойства и применения

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

Собственный полупроводник при температуре абсолютного ноля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (cм. вырожденные полупроводники).

В связи с тем, что технологи могут получать очень чистые вещества встаёт вопрос о новом эталоне для числа Авогадро.

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксирован уровень Ферми в середине запрещённой зоны.

Методы получения

Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот  \omega &amp;lt;E_g / \hbar , где Eg — ширина запрещённой зоны,  \hbar — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2π / λ, где λ — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решетки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Полупроводники

  • кремний, Si
  • германий, Ge
  • серое олово, α-Sn
  • карбид кремния, SiC
  • нитрид бора, BN
  • нитрид алюминия, AlN
  • фосфид алюминия, AlP
  • арсенид алюминия, AlAs
  • нитрид галлия, GaN
  • фосфид галлия, GaP
  • арсенид галлия, GaAs
  • антимонид галлия, GaSb
  • фосфид индия, InP
  • арсенид индия, InAs
  • антимонид индия, InSb
  • селенид цинка, ZnSe
  • селенид кадмия, CdSe
  • теллурид кадмия, CdTe
  • теллурид цинка, ZnTe
  • теллурид ртути, HgTe
  • оксид цинка, ZnO
  • диоксид титана, TiO2
  • сульфид цинка, ZnS
  • сульфид свинца, PbS
  • теллурид свинца, PbTe
  • теллурид олова, SnTe
  • теллурид висмута, Bi2Te3
  • органические полупроводники

См. также

Ссылки

Wikimedia Foundation. 2010.

Аморфный полупроводник — Википедия

Аморфный полупроводник — вещество в аморфном состоянии, которое имеет ряд свойств, характерных для кристаллических полупроводников. К таким свойствам, в частности, относятся сильная температурная зависимость электрической проводимости, существование порога оптического поглощения[1][2][3]. Важность этих материалов обусловлена уникальными свойствами, которые открывают широкие возможности для их практического использования. Наиболее изученными аморфными полупроводниками являются аморфные германий и кремний, сплавы халькогенидов с различными металлами (например, As-S-Se, As-Ge-Se-Тe), стекловидные селен и теллур.

Электронная структура[править | править код]

Схематическое изображение структуры кристаллического, аморфного и аморфного гидрогенизированного кремния.

Свойства аморфных полупроводников как неупорядоченных систем, для которых отсутствует дальний порядок, не могут быть объяснены на основе классической зонной теории для кристаллов. Атомы в аморфном полупроводнике вместо упорядоченного расположения образуют непрерывную случайную сеть. Благодаря своей структуре некоторые атомы имеют оборванные связи, которые, фактически, являются дефектами в непрерывной случайной сети и могут привести к аномальной электропроводности материала. Однако из-за наличия ближнего порядка в аморфных полупроводниках некоторые особенности энергетического спектра электронов и электронных свойств подобны свойствам кристаллических полупроводников. Хотя энергетический спектр аморфных полупроводников и подобный энергетического спектра кристаллических, он не тождественен ему.

Для обоих типов полупроводников характерно наличие валентной, запрещенной и зоны проводимости. Близки и формы распределения плотности состояний в валентной зоне и зоне проводимости. В то же время структура состояний в запрещённой зоне в некристаллических полупроводниках отличается от кристаллических. Вместо четко очерченной запрещенной зоны, которая наблюдается в кристаллических полупроводников, запрещённая зона аморфных полупроводников содержит обусловленные структурным разупорядочением локализованные состояния, которые формируют хвосты плотности состояний выше валентной зоны и ниже зоны проводимости. Эти хвосты локализованных состояний распространяются в запрещённую зону на несколько десятых эВ. Те состояния, которые находятся ближе к середине запрещённой зоны, более локализованы («мелкие» локализованные состояния), находящиеся ближе к краям зон — протяжённые. Такой аналог запрещённой зоны полупроводников, в аморфных полупроводниках сплошь заполнен локализованными уровнями, называется щелью подвижности или запрещённой зоной по подвижности, а границы щели подвижности, которые разделяют локализованные и делокализованных состояний, называются порогами подвижности.

«Мелкие» локализованные состояния в хвостах зон, находящихся в тепловом обмене с делокализованных состояниями выше порога подвижности, представляют собой уровни «прилипания». Многократный захват резко снижает дрейфовую подвижность носителей тока. Взаимодействие свободных электронов в разрешённых зонах с «мелкими» локализованными состояниями в хвостах зон обуславливает переход к дрейфовому характеру переноса. Если система локализованных состояний характеризуется высокой плотностью, то дрейф заменяется дисперсионным транспортом [4] .

Проводимость[править | править код]

Для аморфных полупроводников выделяют три механизма электропроводности, которые преобладают в различных температурных диапазонах [2] :

  • проводимость, обусловленная носителями в делокализованных состоянии, температурная зависимость которой описывается выражением:
σ=σ1e−ΔE/kT{\displaystyle \sigma =\sigma _{1}e^{-\Delta E/kT}}.

Этот тип проводимости, аналогичный собственной проводимости кристаллических полупроводников, преобладает при высоких температурах;

  • проводимость, обусловленная носителями, возбужденными в локализованные состояния в «хвостах» зон .
  • проводимость, обусловленная носителями, которые совершают прыжки между локализованными состояниями вблизи уровня Ферми, то есть прыжковая проводимость, которая описывается формулой Мотта для трёхмерногослучая:
σ=σ3e−(T0/T)1/4{\displaystyle \sigma =\sigma _{3}e^{-(T_{0}/T)^{1/4}}}.

Прыжковая проводимость преобладает при низких температурах. В халькогенидных стеклообразных проводниках эффективное взаимодействие между локализованными электронами может носить характер притяжения; это приводит к их спариванию, и прыжковая проводимость, как правило, не наблюдается.

В отличие от кристаллических, большинство аморфных полупроводников практически нечувствительны к добавлению примесей. Объяснение может заключаться в том, что в аморфных веществах может осуществляться такая перестройка связей, где все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентных связи. Предполагается, что в аморфном кремнии атом фосфора окружен пятью атомами кремния. Если это так, то примесные уровни образовываться не будут.

Следует отметить, что дрейфовая подвижность носителей тока в аморфных полупроводниках значительно ниже подвижности в кристаллах. Большинство аморфных полупроводников характеризуются заметной фотопроводимостью .

Эффект переключения[править | править код]

Для многих халькогенидных стекловидных полупроводников в системах металл — полупроводниковая пленка наблюдается быстрый (~ 10−10с) обратный эффект переключения с высокоомного в низкоомное состояние, при котором проводимость возрастает на несколько порядков под действием сильного электрического поля[5]. В частности, существует переключение с «памятью», когда низкоомное состояние сохраняется и после снятия электрического поля (эффект Овчинского). Эта «память» стирается сильным и коротким импульсом тока. Единственная теория, которая объясняла бы это явление, по состоянию на 2019 год не создана, разработан только ряд моделей и гипотез, хотя соответствующие аморфные полупроводники уже используются для создания элементов памяти.

Природа эффекта переключения может быть как электронная за счёт инжекции носителей тока из металлического контакта в полупроводник, так и тепловая вследствие эффекта шнурования тока. Инжекции носителей можно достичь, приложив высокое напряжение между металлических контактов на поверхности аморфного полупроводника. Если напряжение уменьшить, то электроны «упадут» из проводящих состояний в ловушки вблизи верхнего края щели подвижности, откуда затем могут быть легко возбуждены в зону проводимости. Эта неравновесная ситуация может привести к такому заселению энергетических состояний вблизи верхнего края щели подвижности, как будто уровень Ферми поднялся в эту область. В результате проводимость полупроводника возрастёт. По тепловой природы эффекта переключения в проводнике возникает горячая «нить», в результате увеличения температуры в которой проводимость вещества в ней также растёт. Увеличение температуры является следствием выделения тепла Джоуля — Ленца при прохождении электрического тока через полупроводник.

Оптические свойства[править | править код]

Оптические свойства аморфных полупроводников обусловлены их электронный структурой. Исследование оптических свойств даёт обширную информацию о зонной структуре[6]. Сравнение оптических свойств некристаллических полупроводников с кристаллическими указывает на сходство этих свойств, но не тождественность. В спектрах поглощения аморфных полупроводников, как и кристаллических, имеется полоса собственного поглощения, положение края которой определяет ширину оптической запрещенной зоны. Коэффициент оптического поглощения аморфных полупроводников α(ω){\displaystyle \alpha (\omega )} заметно падает до некоторой пороговой частоты ω0{\displaystyle \omega _{0}}. Поэтому в зависимости от способа получения аморфного полупроводника наблюдается два типа поведения:

  • коэффициент оптического поглощения резко обрывается по пороговой частоте, практически падая до нуля, образуя резкий край зоны (край поглощения)
  • коэффициент оптического поглощения только уменьшается, оставаясь конечным в области частот, ниже пороговой, образуя «хвост» в спектре поглощения.

Наличие края поглощения можно объяснить тем, что, несмотря на большую концентрацию локализованных состояний в запрещённой зоне подвижности, оптически возбуждены переходы между локализованными состояниями маловероятны из-за большого расстояния.

Частотная зависимость коэффициента поглощения в области оптического «хвоста» хорошо описывается правилом Урбаха [7] :

α(ω)∼exp⁡{−h(ω−ω0)/2πE}{\displaystyle \alpha (\omega )\sim \exp\{-h(\omega -\omega _{0})/2\pi \mathrm {E} \}},

где E{\displaystyle \mathrm {E} }- некоторая характерная энергия. В области частот, превышающих пороговую, частотная зависимость коэффициента поглощения достаточно хорошо описывается формулой

α(ω)∼(ω−ω0)2/ω{\displaystyle \alpha (\omega )\thicksim (\omega -\omega _{0})^{2}/\omega }.

Если сравнивать спектры поглощения аморфного полупроводника и того же полупроводника в кристаллическом состоянии, то кроме сдвига края поглощения в длинноволновую область наблюдается уширение спектрального максимума, который сдвигается в область коротких волн. Пики в спектрах α(ω){\displaystyle \alpha (\omega )}, отвечающие особым точкам Вант — Хоффа в кристаллических полупроводниках, в аморфных обычно «размываются», иногда вообще исчезая.

Экситонные линии в спектрах оптического поглощения аморфных полупроводников, как правило, не наблюдаются[7].

Многие аморфные полупроводники характеризуются выраженной фотопроводностью, однако, в отличие от кристаллических полупроводников, концентрация фотовозбуждённых неравновесных носителей тока в них может на порядок превышать концентрацию равновесных при одной и той же температуре. Зависимость фотопроводимости σϕ{\displaystyle \sigma _{\phi }} от интенсивности света I{\displaystyle I} в большинстве аморфных полупроводников может быть описана зависимостью σϕ∼In,{\displaystyle \sigma _{\phi }\sim I^{n},} где 0,5≤n≤1.{\displaystyle 0{,}5\leq n\leq 1.}

Технологии получения аморфных полупроводников проще и продуктивнее технологии получения кристаллических, что существенно удешевляет соответствующие материалы и продукты на их основе. Аморфные кремний и германий получают путем их испарения и конденсации в глубоком вакууме или катодной распылением в аргоновой плазме.

Практическое применение аморфных полупроводников определяется особенностями их структуры, свойств, химической стойкостью и механической прочностью, а также технологичностью их обработки и возможностью получения материалов с заданными свойствами. Преимущества неупорядоченных полупроводников, которые определяют их практическое применение, по сравнению с кристаллическими заключаются в следующем[8]:

  • практическое отсутствие ограничений по площади;
  • низкая (по сравнению с монокристаллами) стоимость производства, слабая связь «размеры-стоимость»;
  • возможность изготовления электронных матриц на некристаллических подложках;
  • соотношение некоторых электрофизических характеристик, которые недоступны в кристаллах;
  • наличие уникальных эффектов, которые отсутствуют в кристаллах и позволяют разработку приборов на новых принципах.

Аморфные полупроводники используются для создания фотоэлектрических преобразователей, тонкоплёночных транзисторов, элементов памяти, жидкористалических дисплеев. Некоторые устройства регистрации оптических изображений удалось создать только благодаря использованию аморфных полупроводников. К таким устройствам относятся, например, телевизионные трубки типа «видикон», современные фотокопировальные приборы и регистрирующие среды типа «халькогенидных стекловидный полупроводник — термопластик».

В 1956 году Н. А. Горюнова и Б. Т. Коломиец обнаружили, что некоторые стекловидные халькогениды имеют полупроводниковые свойства. Выявление этого факта, а также следующие фундаментальные работы А. Ф. Иоффе, А. Р. Регеля, А. И. Губанова, Н. Мотта и Э. Дэвиса стали толчком к большому числу теоретических и экспериментальных исследований аморфных полупроводников.

В 1960 году Иоффе и Регель высказали предположение, что электрические свойства аморфных полупроводников определяются не дальним, а ближним порядком. На основе этой идеи была развита теория неупорядоченных материалов, которая позволила объяснить многие свойства некристаллических веществ. В 1961—1962 годах А. Д. Пирсоном, Б. Т. Коломийцем, С. Г. Овшинским независимо друг от друга был обнаружен эффект переключения. В патентной литературе эффект переключения, на который Овшинским в 1963 году был получен патент США, называется эффектом Овшинского. Он впервые указал на возможность использования эффекта переключения для создания элементов памяти. Значительный прогресс в теоретических и экспериментальных исследованиях, а также перспективы практического использования аморфных полупроводников способствовали значительному повышению интереса к ним со стороны научного сообщества.

Наибольших успехов здесь удалось достичь в начале 70-х годов, когда были разработаны промышленные технологии получения аморфных полупроводниковых галогенидов, из которых были изготовлены кинескопы, флуоресцентные ламп тлеющего разряда, оптические приборы памяти, поляризационные переключатели, процессоры для фотолитографии и тому подобное.

В 1972 году было проведено первое заседание японского постоянного семинара по физике и использование аморфных полупроводников под руководством керамического общества Японии[9]. С 1974 по 1982 год семинары по физике и использование аморфных полупроводников проводились практически ежегодно. Открытие в 1976 году возможности легирования аморфного кремния (a-Si), полученного в тлеющем разряде, положило начало использованию его фотопроводящих свойств, связанных с сильным оптическим поглощением в видимой части спектра. В 1979 году был создан первый тонкоплёночный транзистор на основе a-Si.

  • Аморфные полупроводники и приборы на их основе / под ред. Горелика С. С.. — М.: Металлургия, 1986. — 366 с. (рус.)
  • Чабан И. А. Эффект переключения в халькогенидных стеклах // Физика твердого тела. — 2007. — Т. 49. — С. 405—410. (рус.)
  • Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. — 2-е изд., перераб. и доп. — : Мир, 1982. — 386 с. (рус.)
  • Забродский А. Г.,Немов С. А.,Равич Ю. И. Электронные свойства неупорядоченных систем.. — С.-Петербург: «Наука», 2000. — 70 с. — ISBN 5-02-024927-0. (рус.)
  • Меден А. Физика и примененение аморфных полупроводников: пер. с англ. / А. Меден, М. Шо. — М.: Мир, 1991. — 670 с. — ISBN 5-03-001895-6. (рус.)
  • Названов В. Ф. Физика неупорядоченных полупроводников: Учеб. пособие для студ. физ. и мех.- мат. фак.. — Саратов: Изд-во «Саратов», 2004. — 56 с. — ISBN 5-292-03340-5. (рус.)
  • Попов А. И. Аморфные полупроводники в микро- и наноелектронике // Приложение к журналу «Вестник РГРТУ». — 2009. — № 4. — ISSN 1995-4565. (рус.)
  • Дойніков Л. І. Аморфні напівпровідники: від ідеї до виробництва / Л. І. Дойніков, В.Т. Маслюк.. — Київ: Т-во «Знання», УРСР, 1984. — 47 с.
  • Хамакава Й. Аморфные полупроводники и приборы на их основе. Под редакцией докт.техн.наук С.С. Горелика.. — М.: Металлургия, 1986. — 376 с. (рус.)
  • Васін А. В. Структурно-морфологічні, електронні та оптичні властивості аморфних нанокомпозитних матералів на основі сполук SiOС: дис. на здобуття наук. ступеня д-ра фіз.-мат. наук: 01.04.17. — К.: Інститут фізики напівпровідників ім. В. Є. Лашкарьова НАН України, 2016. — 328 с.

полупроводники — это… Что такое полупроводники?

ПОЛУПРОВОДНИКИ́ -о́в; мн. (ед. полупроводни́к, -а́; м.). Физ. Вещества, которые по электропроводности занимают промежуточное место между проводниками и изоляторами. Свойства полупроводников. Производство полупроводников. // Электрические приборы и устройства, изготовленные из таких веществ. Радиоприёмник на полупроводниках.

Полупроводнико́вый, -ая, -ое. П-ое вещество. П-ое производство. П-ая электроника. П-ые свойства веществ. П-ые материалы. П-ые приборы, установки.

ПОЛУПРОВОДНИКИ́, вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106 — 104 Ом-1 см-1) и диэлектриков (10-8 — 10-12 Ом-1 см-1), обусловлена переносом электронов и возрастает при повышении температуры. Наиболее существенная особенность полупроводников — способность изменять свои свойства в чрезвычайно широких пределах под влиянием различных воздействий (температуры, освещения, электрического и магнитного поля, внешнего гидростатического давления). В результате таких воздействий характеристики полупроводника могут сильно изменяться, (например, электропроводность может меняться в 106-107 раз). Именно эта способность изменять свойства под влиянием внешних воздействий и обусловила широкое применение полупроводников. На основе различных полупроводниковых материалов (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ) разработано и создано огромное количество разнообразных полупроводниковых приборов (см. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ).
Физические свойства полупроводников получили свое объяснение на основе зонной теории (см. ЗОННАЯ ТЕОРИЯ), которая позволяет сформулировать критерий, разделяющий твердые вещества на два класса — металлы и полупроводники (диэлектрики). В металлах валентная зона (см. ВАЛЕНТНАЯ ЗОНА) заполнена полностью или перекрывается с зоной проводимости (см. ПРОВОДИМОСТИ ЗОНА). В полупроводниках и диэлектриках зона проводимости отделена от валентной зоны запрещенной зоной (см. ЗАПРЕЩЕННАЯ ЗОНА), и не содержит носителей. Деление неметаллических веществ на полупроводники и изоляторы (диэлектрики) является чисто условным. Ранее к изоляторам относили вещества с величиной запрещенной зоны Eg >2—3 эВ. Однако многие из таких кристаллов являются типичными полупроводниками.
Проводимость в полупроводниках
Электрический ток в полупроводниках связан с дрейфом носителей заряда (см. дрейф заряженных частиц (см. ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ)). В полупроводниках появление носителей заряда определяется рядом факторов, важнейшими из которых являются химическая чистота материала и температура. В зависимости от чистоты полупроводники подразделяют на собственные и примесные.
В собственном полупроводнике можно пренебречь влиянием примесей при данной температуре. Так как в полупроводниках запрещенная зона не очень широкая, в собственном полупроводнике при температуре абсолютного нуля валентная зона полностью заполнена электронами, а зона проводимости абсолютно свободна: он не обладает электропроводностью и ведет себя подобно идеальному диэлектрику. При температурах, отличных от абсолютного нуля, имеется конечная вероятность того, что некоторые из электронов за счет тепловых флуктуаций (неравномерного распределения тепловой энергии между частицами) преодолеют потенциальный барьер и окажутся в зоне проводимости. Вероятность перехода электрона из валентной зоны в зону проводимости зависит от температуры и ширины запрещенной зоны( Eg), ПОЛУПРОВОДНИКИ-Eg/kT.
В собственном полупроводнике каждый переход электрона в зону проводимости сопровождается образованием дырки (см. ДЫРКА) в валентной зоне. Благодаря дыркам электроны валентной зоны также принимают участие в процессе электропроводности за счет эстафетных переходов под действием электрического поля на более высокие освободившиеся энергетические уровни. Совокупное поведение электронов валентной зоны можно представить как движение дырок, обладающих положительным зарядом и некоторой эффективной массой (см. ЭФФЕКТИВНАЯ МАССА). Чем выше температура и меньше ширина запрещенной зоны, тем выше скорость тепловой генерации носителей заряда (электронов и дырок). Одновременно с генерацией в полупроводнике непрерывно идет и обратный процесс, процесс рекомбинации (см. РЕКОМБИНАЦИЯ в физике) носителей заряда, т.е. возвращение электронов в валентную зону с исчезновением пары носителей заряда. В результате протекания двух конкурирующих процессов в полупроводнике при любой температуре устанавливается некоторая равновесная концентрация электронов no и дырок po, которые равны друг другу в собственном полупроводнике (равновесная концентрация электронов ni = равновесной концентрации дырок pi) . (Индекс i происходит от англ. intrinsic — собственный).
В собственных полупроводниках наблюдается электронно-дырочный механизм проводимости.
Электрофизические свойства примесного полупроводника определяются в первую очередь типом и концентрацией примеси, которая создает дополнительные уровни в запрещенной зоне полупроводника. При малой концентрации примесей расстояние между примесными атомами велико, их электронные оболочки не взаимодействуют друг с другом. Поэтому примесные энергетические уровни являются дискретными, т. е. не расщепляются в зону, как это имеет место для уровней основных атомов кристаллической решетки. Роль дискретных уровней могут играть и всевозможные дефекты структуры, в первую очередь, вакансии и междоузельные атомы. Примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны. Примеси, являющиеся источником электронов, называются донорами (см. ДОНОР (в физике)), а энергетические уровни этих примесей — донорными уровнями. Основными носителями тока в таких полупроводниках являются электроны, возникает электронная проводимость (проводимость n -типа). Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторами (см. АКЦЕПТОР), а энергетические уровни этих примесей — акцепторными уровнями. Основные носители заряда в таких полупроводниках — дырки. В них наблюдается дырочная проводимость (проводимость p -типа).
В полупроводниках всегда присутствуют оба типа носителей заряда. Основными называют носители заряда, концентрация которых в данном полупроводнике больше, неосновными — носители заряда, концентрация которых меньше. В полупроводнике n — типа основные носители заряда — электроны, неосновные — дырки, в полупроводнике p-типа дырки — основные, а электроны — неосновные.
Если в полупроводнике n — типа увеличить концентрацию доноров, то возрастет число электронов, переходящих в единицу времени с примесных уровней в зону проводимости. Соответственно возрастет скорость рекомбинации носителей заряда и уменьшится равновесная концентрация дырок. При помощи соотношения:
no.po = n2i
называемого соотношением действующих масс для носителей заряда всегда можно, найти концентрацию неосновных носителей заряда, если известна концентрация основных. Характерная особенность полупроводников — рост электропроводности с увеличением температуры — обусловлена ростом концентрации носителей при увеличении температуры.
Механизмы рассеяния и подвижность носителей заряда в полупроводниках
Под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения (скорость дрейфа) и создают электрический ток. Подвижность носителей заряда (см. ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ЗАРЯДА), равная средней скорости носителей заряда в полупроводнике в электрическом поле с напряженностью 1В/см, зависит от длины их свободного пробега, а, следовательно, определяется процессами рассеяния (см. РАССЕЯНИЕ МИКРОЧАСТИЦ) движущихся в полупроводнике электронов.
Процесс рассеяния представляет собой искривление траектории движения носителя заряда под влиянием сил, действующих на электрон или дырку со стороны рассеивающего центра. Если таким центром является положительный ион, то рассеивающей силой будет кулоновский потенциал, если рассеивающим центром является нейтральный атом примеси, рассеиваемый электрон, сталкиваясь с ним, выбивает электрон, принадлежащий атому, рассеиваемый электрон остается в атоме, а выбитый, получив энергию, движется по измененной траектории. Так как электроны неразличимы, акт обмена электронами рассматривается как акт изменения траектории электрона, т. е. рассеяние. Характерной особенностью рассеяния на нейтральных атомах является независимость времени релаксации от энергии рассеиваемых носителей заряда и температуры. Процесс рассеяния электронов на тепловых колебаниях решетки рассматривается как столкновение с фононом (см. ФОНОН). Поскольку число фононов определяется температурой, то и рассеяние носителей заряда зависит от температуры. Рассеивающими центрами при движении электрона являются также структурные дефекты (см. ДЕФЕКТЫ) кристаллической решетки — дислокации (см. ДИСЛОКАЦИИ), вакансии, имеет место также электрон-электронное рассеяние.
В реальных полупроводниках действуют одновременно несколько механизмов рассеяния, причем вклад каждого из них может сильно меняться с изменением температуры и концентрации примеси.
Механизмы рекомбинации в полупроводниках
Закон действующих масс для носителей заряда применим только к равновесным процессам. Генерация носителей заряда в полупроводниках может осуществляться не только за счет теплового воздействия но и при облучении светом, при воздействии электрического поля, при инжекции (см. ИНЖЕКЦИЯ НОСИТЕЛЕЙ ЗАРЯДА) через контакт и т. д. В результате таких воздействий в полупроводнике появляются дополнительные, неравновесные носители заряда. Их концентрация является избыточной по отношению к равновесной и после прекращения нетеплового возбуждения полупроводник возвращается в равновесное состояние, при этом избыточная концентрация носителей заряда за счет процесса рекомбинации спадает до нуля. Принцип действия почти всех электронных приборов основан на явлении инжекции неравновесных носителей при воздействии на кристалл внешних сил (световое, электромагнитное излучение радиочастотного диапазона, облучение ядерными частицами и т. д.). Поэтому скорость рекомбинации определяет быстродействие прибора. Чем больше скорость рекомбинации, тем на более высоких частотах будет работать прибор.
Скорость рекомбинации характеризуется временем жизни носителей заряда — характеристическим временем, по истечении которого избыточная концентрация носителей заряда при линейной рекомбинации уменьшается в е раз. Т. е. характеризует среднее время существования избыточной концентрации и зависит от вида и механизма рекомбинации, состава полупроводника, температуры.
Существует два вида рекомбинации: зона — зона, при котором избыточные электроны из зоны проводимости непосредственно переходят в валентную зону, и рекомбинация через глубокие уровни в запрещенной зоне полупроводника.
При рекомбинации происходит отдача энергии, полученной при генерации. Механизмы рекомбинации классифицируют по способу отдачи энергии, выделяющейся при акте захвата носителей при рекомбинации.
Наиболее вероятные механизмы рекомбинации в полупроводниках:
— излучательная рекомбинация, при которой энергия выделяется в виде кванта электромагнитного излучения;
— фононная рекомбинация, связанная с непосредственной передачей выделяющейся энергии колебаниям атомной решетки:
— ударная рекомбинация (эффект Оже (см. ИОНИЗАЦИЯ)), когда энергия сначала передается ближайшему свободному электрону (или дырке), который затем отдает свою избыточную энергию либо колебаниям атомов решетки, либо другим носителям.
Все три механизма могут осуществляться как при рекомбинации зона-зона, так и при рекомбинации через локальные центры.
Оптические явления в полупроводниках
При воздействии на полупроводник светом могут быть реализованы следующие типы взаимодействия квантов света с носителями заряда: собственное поглощение, экситонное поглощение, поглощение на свободных носителях, примесное поглощение.
В случае собственного поглощения происходит взаимодействие фотонов с электронами в валентной зоне, т. е. с собственными электронами атомов, составляющих кристаллическую решетку, Фотоны определенной энергии способны отдать свою энергию этим электронам, оторвать их от атомов и перевести электроны на более высокие энергетические уровни. В этом случае фотоны поглощаются в кристалле. При собственном поглощении переходы могут быть прямые, когда волновой вектор электрона остается неизменным, и электрон и оставляемая им дырка имеют одинаковые квазиимпульсы. Возможны также непрямые переходы с участием фононов, которым передается избыточный импульс. По краю собственного поглощения можно определить ширину запрещенной зоны полупроводника.
В некоторых полупроводниках наблюдается экситонное поглощение. При поглощении фотонов образуются экситоны (см. ЭКСИТОН), которые могут блуждать по кристаллу. При столкновении с примесными центрами экситон может либо распасться и образовать электрон и дырку, либо рекомбинировать и перевести атом в невозбужденное состояние. В первом случае экситону необходима тепловая энергия, во втором — либо происходит излучение кванта энергии, либо энергия экситона переходит решетке полупроводника в виде теплоты.
Поглощение на свободных носителях имеет место, когда фотоны реагируют со свободными носителями заряда в разрешенных зонах. При этом энергия фотонов расходуется на перевод носителей заряда на более высокие уровни. Под действием электрического поля световой волны носители заряда совершают колебательные движения синхронно с полем и при столкновении с узлами решетки отдают накопленную энергию.
В случае примесного поглощения света фотоны взаимодействуют с примесными атомами, ионизируя или возбуждая их. Взаимодействие фотонов с примесными атомами носит резонансный характер.
В полупроводниковых кристаллах также имеет место поглощение света кристаллической решеткой. Оно проявляется в далекой ИК-области спектра и накладывается на другие виды поглощения.
В случае примесного и собственного оптического поглощения происходит генерация неравновесных носителей заряда, которая сопровождается изменением электрических свойств полупроводника при освещении — наблюдается эффект фотопроводимости (см. ФОТОПРОВОДИМОСТЬ), используемый для создания широкого класса приборов. К неравновесным оптическим явлениям, характерным для полупроводниковых кристаллов и нашедших широкое применение в полупроводниковом приборостроении относится люминесценция (см. ЛЮМИНЕСЦЕНЦИЯ).
Сильно легированные полупроводники
При больших концентрациях примесей или дефектов проявляется их взаимодействие, ведущее к качественным изменениям свойств полупроводников. Это можно наблюдать в сильно легированных полупроводниках, когда что среднее расстояние между атомами примеси становится меньше (или порядка) среднего расстояния а, на котором находится от примеси захваченный ею электрон или дырка. В таких условиях носитель вообще не может локализоваться на каком-либо центре, т. к. он все время находится на сравнимом расстоянии сразу от нескольких одинаковых примесей. Более того, воздействие примесей на движение электронов вообще мало, т. к. большое число носителей со знаком заряда, противоположным заряду примесных ионов, экранируют (т. е. существенно ослабляют) электрическое поле этих ионов. В результате все носители, вводимые с этими примесями, оказываются свободными даже при самых низких температурах.
Полупроводники в сильном электрическом поле
Сильное электрическое поле влияет на подвижность и концентрацию носителей заряда. Существуют несколько механизмов увеличения концентрации носителей в сильном электрическом поле. Основными механизмами являются три: термоэлектрическая (термополевая) ионизация (эффект Френкеля), электростатическая ионизация (туннельный эффект (см. ТУННЕЛЬНЫЙ ЭФФЕКТ)) и ударная ионизация (см. УДАРНАЯ ИОНИЗАЦИЯ).
Механизм термополевой ионизации реализуется при низких температурах, когда концентрация электронов в зоне проводимости определяется вероятностью их освобождения с донорных уровней. На электрон, находящийся на донорном уровне, в электрическом поле помимо силы кулоновского притяжения к иону-донору действует сила F=-qE, способная помочь электрону оторваться от донора и стать свободным. Т. е. повышается вероятность перехода электронов с донорных уровней в зону проводимости, что и означает увеличение концентрации носителей и возрастание электропроводности.
При более высоких температурах, когда донорная примесь ионизирована полностью, главную роль в увеличении концентрации носителей играют явления, связанные с ударной и электростатической (туннельной) ионизацией решетки кристалла в полях большой напряженности.

Полупроводник — это… Что такое Полупроводник?

Полупроводник (Semiconductor) — это

Полупроводники долгое время не привлекали особого внимания ученых и инженеров. Одним из первых начал систематические исследования физических свойств полупроводников выдающийся советский физик Абрам Федорович Иоффе. Он выяснил что полупроводники — особый класс кристаллов со многими замечательными свойствами:

1. С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается.

2. Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводниковых приборов: диодов, транзисторов, тиристоров и др.

3. Контакты различных полупроводников в определенных условиях при освещении или нагревании являются источниками фото — э. д. с. или, соответственно, термо — э. д. с.

Строение полупроводников и принцип их действия.

Как было уже сказано, полупроводники представляют собой особый класс кристаллов. Валентные электроны образуют правильные ковалентные связи. Такой идеальный полупроводник совершенно не проводит электрического тока (при отсутствии освещения и радиационного облучения).

Так же как и в непроводниках электроны в полупроводниках связаны с атомами, однако данная связь очень непрочная. При повышении температуры ( T>0 K), освещении или облучении электронные связи могут разрываться, что приведет к отрыву электрона от атома. Такой электрон является носителем тока. Чем выше температура полупроводника, тем выше концентрация электронов проводимости, следовательно, тем меньше удельное сопротивление. Таким образом, уменьшение сопротивления полупроводников при нагревании обусловлено увеличением концентрации носителей тока в нем.

1.2 Алмазный полупроводник

В отличии от проводников носителями тока в полупроводниковых веществах могут быть не только электроны, но и «дырки». При потере электрона одним из атомов полупроводника на его орбите остается пустое место-«дырка» при воздействии электрическим поле на кристалл «дырка » как положительный заряд перемещается в сторону вектора E, что фактически происходит благодаря разрыву одних связей и восстановление других. «Дырку» условно можно считать частицей, несущей положительный заряд.

Механизм проведения электрического тока полупроводниками

Электропроводность полупроводников: — обеспечивается свободными электронами и дарками; — остается постоянной в пределах области температур, специфической для каждого вида полупроводников, и увеличивается с повышением температуры; — зависит от примесей; — увеличивается под действием света и с возрастанием напряженности электрического поля.

В зависимости от того, отдаёт ли атом примеси электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства изоляторов.

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. Так как, образуя кристаллы, атомы полупроводников устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1, 76*10-19Дж против 11, 2*10-19Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0, 4*10-19Дж), и отдельные атомы получают энергию для отрыва электрона от атома. В процессе повышения температуры количество свободных электронов возрастает — удельное сопротивление падает. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1, 5 — 2 эВ.

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешел электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение позитивно заряженного атома без перемещения самого атома. Этот процесс назвали «дыркой».

Виды полупроводников

По характеру проводимости

— Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

— Примесная проводимость

Для создания полупроводниковых механизмов используют кристаллы с примесной проводимостью. Такие кристаллы изготовляются с помощью внесения смесей с атомами трехвалентного или пятивалентного химического элемента.

1.3 Транзистор схема

По виду проводимости

— Электронные полупроводники (n-типа)

Этот вид полупроводников имеет примесную природу. В четырехвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

— «Дырочные полупроводники (р-типа)»

Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырехвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, Индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвертым атомом кремния у атома Индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники p-типа, называются акцепторными.

Использование полупроводников в электродинамике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников — дырчатого и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В. В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт. Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

1.4 Плупроводникr

Транзистор

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором.

1.5 Транзистор из жидкого полупроводника

Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор. Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых соединений. Их делят на несколько типов: одноэлементные полупроводники IV группы периодической системы элементов, сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно. Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.

Физические свойства и применения

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

Собственный полупроводник при температуре абсолютного ноля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).

В связи с тем, что технологи могут получать очень чистые вещества встаёт вопрос о новом эталоне для числа Авогадро.

Наиболее важные для техники полупроводниковые приборы — диоды, транзисторы, тиристоры основаны на использовании замечательных материалов с электронной или дырочной проводимостью.

Широкое применение полупроводников началось сравнительно недавно, а сейчас они получили очень широкое применение. Они преобразуют свтовую и тепловую энергию в электрическую и, наоборот, с помощью электроэнергии создают тепло и холод. Полупроводниковые приборы можно встретить в обычном радиоприемнике и в квантовом генераторе — лазере, в крошечной атомной батарее и в микропроцессорах.

Инженеры не могут обходиться без полупровдниковых выпрямителей,

переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить надежность.

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксирован уровень Ферми в середине запрещённой зоны.

Методы получения

Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где Eg — ширина запрещённой зоны, — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2π / λ, где λ — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решетки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Группа IV

собственные полупроводники

Углерод, C

Кремний, Si

Кремний, Ge

Cерое олово, α-Sn

составной полупроводник

Карбид кремния, SiC

Кремний-германий, SiGe

Группа III-V

2-х компонентные полупроводники

Антимонид алюминия, AlSb

Арсенид алюминия, AlAs

Нитрид алюминия, AlN

Фосфид алюминия, AlP

Нитрид бора, BN

Фосфид бора, BP

Арсенид бора, BAs

Антимонид галлия, GaSb

Арсенид галлия, GaAs

Нитрид галлия, GaN

Фосфид галлия, Gap

Антимонид Индия, InSb

Арсенид Индия, InAs

Нитрид Индия, InN

фосфид Индия, InP

3-х компонентные полупроводники

AlxGa1-xAs

InGaAs, InxGa1-xAs

InGaP

AlInAs

AlInSb

GaAsN

GaAsP

AlGaN

AlGaP

InGaN

InAsSb

InGaSb

4-х компонентные полупроводники

AlGaInP, InAlGaP, InGaAlP, AlInGaP

AlGaAsP

InGaAsP

AlInAsP

AlGaAsN

InGaAsN

InAlAsN

GaAsSbN

5-ти компонентные полупроводники

GaInNAsSb

GaInAsSbP

Группа II-VI

2-х компонентные полупроводники

Селенид кадмия, CdSe

Сульфид кадмия, CdS

Теллурид кадмия, CdTe

Оксид цинка, ZnO

Селенид цинка, ZnSe

Сульфид цинка, ZnS

Теллурид цинка, ZnTe

3-х компонентные полупроводники

CdZnTe, CZT

HgCdTe

HgZnTe

HgZnSe

Группа I-VII

2-х компонентные полупроводники

Хлорид купрума, CuCl

Группа IV-VI

2-х компонентные полупроводники

Селенид свинца, PbSe

Сульфид свинца, PbS

Теллурид свинца, PbTe

Сульфид олова, SnS

Теллурид олова, SnTe

3-х компонентные полупроводники

PbSnTe

Tl2SnTe5

Tl2GeTe5

Группа V-VI

2-х компонентные полупроводники

Теллурид висмута, Bi2Te3

Группа II-V

2-х компонентные полупроводники

Фосфид кадмия, Cd3P2

Арсенид кадмия, Cd3As2

Антимонид кадмия, Cd3Sb2

Фосфид цинка, Zn3P2

Арсенид цинка, Zn3As2

Антимонид цинка, Zn3Sb2

Другие

CInGaSe

Силицид платины, PtSi

Иодид висмута(III), BiI3

Иодид ртути(II), HgI2

Бромид таллия(I), TlBr

Иодид меди(II), PbI2

Дисульфид молибдена, MoS2

Селенид галлия, GaSe

Сульфид олова(II), SnS

Сульфид висмута, Bi2S3

Разные оксиды

Диоксид титана, TiO2

Оксид меди(I), Cu2O

Оксид меди(II), CuO

Диоксид урана, UO2

Триоксид урана, UO3

Органические полупроводники

Тетрацен

Пентацен

Акридон

Перинон

Флавантрон

Индантрон

Индол

Alq3

Магнитные полупроводники

Ферромагнетики

Оксид европия, EuO

Сульфид европия, EuS

CdCr2Se4

GaMnAs

Pb1-xSnxTe легированный Mn2+

GaAs легированный Mn2+

ZnO легированный Co2+

Антиферромагнетики

Теллурид европия, EuTe

Селенид европия, EuSe

Оксид никеля, NiO

Технологии обработки полупроводников

Наряду с сотрудничеством отдела исследования и развития организации Atotech с институтом CNSE (США) по разработке новых технологий (разработок) медных покрытий для внутренней проводки микросхем, внедряется передовой метод, основанный на электролитическом и химическом осаждении металла для различных применений в горизонтальной вейферной сборке.

Передовая технология сборки

Финишная обработка контактных площадок

Нанесение покрытия через трафарет

3D сборка

Передовая технология сборки Atotech подкрепляется международной компанией и структурой логистики фирмы с огромным ноу-хау в области электронной индустрии в целом с нашими филиалами в более 30 странах. Мы можем предложить полупроводниковой отрасли наши технологии химической обработки, опыт электролитического производства, а также глобально действующую структуру поддержки. Метод передовой сборки основан на металлизации межслойных переходов, произведенной химическим или электролитическим путем для различных применений в горизонтальной вейферной сборке.

Требования миниатюризации в межслойных технологиях и, соответственно, более высокий ввод/вывод, а также возросшие электрические нагрузки на тракт сигнала требуют инновативные процессы сборки вейферов. Включение электроосажденной купрума в процесс сборки полупроводниковых вейферов, как, например, перераспределяющего слоя (RDL) или медного контактного столбика, имеет следующие преимущества:

Применение малого шага,

Эффективная передача сигнала

Тепловая стабильность

Более того, для экономически эффективного производства полупроводниковых устройств химический процесс обеспечивает меньшее осаждение металла. Уникальная технология Atotech по химической универсальной финишной обработке контактных площадок может применяться в двух главных областях использования, в качестве диффузионного барьера для соединения шин на алюминиевых и медных контактных площадках и как паяемое финишное покрытие для перевернутого кристалла. Основные преимущества:

Исключительная антикоррозийная устойчивость осажденного металла

Высокая надежность паяных соединений

Улучшенная надежность соединения шин для высокотемпературных применений

Источники

ru.wikipedia.org ВикипедиЯ – свободная энциклопедия

glossary.ru Голоссарий. РУ

atotech.com АвтоТех

radiopartal.tut.su Радиопортал

Энциклопедия инвестора. 2013.

Оптические явления в полупроводниках

При любой температуре более абсолютного нуля в полупроводнике происходят процессы генерации и рекомбинации носителей и в результате устанавливается равновесные концентрации электронов и дырок n 0 = p0 . Помимо тепловой генерации возможны и другие механизмы появления носителей зарядов: при облучении светом, при воздействии сильного электрического поля, механических нагрузок и др. Действие таких внешних факторов приводит к появлению дополнительных, неравновесных носителей заряда, концентрация которых является избыточной по отношению к равновесной: Δ n = n – n 0 ; Δp = p – р 0 , n и p – полные (неравновесные) концентрации электронов и дырок, возникающие под действием температуры и других факторов. При генерации носителей электроны переходят на более высокий энергетический уровень, поэтому этот процесс происходит с потреблением энергии, соответственно, процесс рекомбинации происходит с выделением энергии так как носители переходят с более высокого на более низкий энергетический уровень. Что касается оптических явлений в полупроводниках, то последнее обстоятельство приводит к тому, что полупроводники могут поглощать и выделять световую энергию в зависимости от преобладания одного над другим процессов генерации и рекомбинации. Рассмотрим эти процессы.

Поглощение света.Свет, проникая в полупроводник, вступает в обменное (энергетическое) взаимодействие с кристаллической решёткой. Пусть Р0 мощность падающего на кристалл светового потока. Световой поток, проходя через кристалл, ослабляется вследствие процесса поглощения.Выделим в кристалле тонкий слой dx на расстоянии х от поверхности, на которую падает

Рисунок 3.8. Поглощение света полупроводниками. световой поток (рис. 3.8). В этом слое поглощается часть энергии падающего светового потока dP = — α W dx.. Здесь α – коэффициент поглощения, численно равный относительному изменению мощности светового потока на единицу пути пройденного им в кристалле (размерность м – 1 , см – 1 ). Поглощение излучения в полупроводниках связано с изменением состояния электронов, а также с  

изменением колебательной энергии атомов решётки. В связи с этим различают несколько механизмов поглощения света полупроводниками. На рис. 3.9 приведены зонные диаграммы, иллюстрирующие различные типы процессов поглощения света.

Рисунок 3.9. Различные механизмы поглощения света полупроводниками: — а) собственное поглощение; — б) экситонное поглощение; — в), — г) примесное поглощение.

Собственное поглощение обусловлено переходами электронов из валентной зоны в зону проводимости, т.е. энергия света расходуется на возбуждение валентных электронов в зону проводимости. По закону сохранения энергии энергия фотона ( ф ) hυ должна быть в этом случае не меньше ширины запрещённой зоны ΔW = Wc – Wv, т.е. hυ ≥ ΔW (Wc – дно зоны проводимости; Wv – потолок валентной зоны; hυ – энергия фотона). Отсюда максимальная длинаволны (красная граница) собственного поглощения:

. ( 3.9 ).

Переходы из валентной зоны в зону проводимости могут быть прямыми и непрямыми. Рассмотренные переходы являются прямыми, они осуществляются под действием энергии фотона на электрон, имеющий такой же квазиимпульс (волновой вектор), что и оставляемая им дырка. Если валентная зона и зона проводимости имеют сложную структуру, то могут возникнуть непрямые переходы под совместным действием фотона и «порции» тепловой энергии (фонона). Поскольку для осуществления непрямого перехода необходимо взаимодействие не двух, а трёх частиц (электрона, фотона и фонона), то вероятность их меньше вероятности прямых переходов. Соответственно меньше и показатель поглощения.

Экситонное поглощение. В некоторых полупроводниках возможно образование экситона – системы из взаимосвязанных собственными электростатическими полями электрона и дырки. Экситон электрически нейтрален, может хаотически блуждать по кристаллу и при столкновении с примесными центрами может либо образовать два заряда ( электрон и дырку), либо рекомбинировать и привести атом в нейтральное состояние. Первое требует сообщение экситону тепловой энергии, необходимой для перевода электрона с экситонного уровня в зону проводимости; второе сопровождается либо излучением кванта энергии, либо чаще всего отдачей энергии экситона решётке полупроводника в виде теплоты. Энергетические уровни электрона, возбуждённого под действием фотона hυ и находящегося в составе экситона, располагаются в запрещённой зоне немного ниже дна зоны проводимости ( см. рис. 3.9 – б), где Wэ – экситонные уровни ). Поэтому энергия образования экситона несколько меньше ширины запрещённой зоны, поскольку последняя представляет собой энергетический минимум, необходимый для образования пары свободных ( и разделённых ) носителей. Это же обстоятельство приводит к тому, что экситонное поглощение сдвинуто в низкочастотную часть спектра по сравнению с собственным поглощением.

Примесное поглощение происходит при ионизации примесных атомов кристаллической решётки. При этом энергия поглощаемых фотонов света расходуется либо на перебрасывание электронов с донорных уровней в зону проводимости ( рис. 3. 9 – в), либо из валентной зоны на акцепторные уровни (рис. 3 9 – г). Так как энергия ионизации примесей значительно меньше ширины запрещённой зоны, то примесное поглощение смещено от края собственного поглощения в далёкую инфракрасную область и может наблюдаться при низких температурах ( ниже температуры истощения примеси), когда большинство атомов примеси не ионизованы.

Как следует из рассмотрения механизмов собственного, экситонного и примесного вида поглощения, длина волны поглощаемого света определяется шириной энергетического промежутка, преодолеваемого электроном при воздействии фотона. В связи с этим в выражении (3.9) вместо ширины запрещённой зоны следует использовать энергию ΔWэ = Wэ – Wv при экситоном поглощении; ΔWд = Wс – Wд при поглощении электронами донорных уровней; ΔWа = Wа — Wv при возбуждении акцепторных атомов.

При всех видах поглощения свет в полупроводнике возникают дополнительные ( нескомпенсированные ) носители заряда и это приводит к изменению проводимости полупроводника. Изменение элетрической проводимости ( удельного сопротивления ) под действием электромагнитного излучения называют фотопроводимостью ( фоторезистивным эффектом). Фотопроводимость Δγ равна разности проводимостей полупроводника на свету и в темноте: , где Δn и Δр – концентрации неравновесных носителей заряда, возникающих вследствие оптической генерации. Основные свойства полупроводниковой фотопроводимости:

– фотопроводимость носит временный характер – после облучения она более или менее быстро возвращается к темновой;

– при воздействии импульса света фотопроводимость возрастает до установившегося значения по экспоненциальному закону;

– при слабых световых потоках зависимость фотопроводимости от интенсивности света носит линейный характер;

– спектральная зависимость фотопроводимости соответствует спектрам оптического поглощения полупроводника.

Излучение света полупроводниками сопровождается выделением электромагнитной энергии излучения в оптическом диапазоне, что может происходить в процессе рекомбинации неравновесных носителей. Поскольку при рекомбинации возможно выделение и тепловой энергии, то при создании светоизлучающих приборов необходимо создать условия, обеспечивающие именно излучательную рекомбинацию. Различают несколько механизмов рекомбинации, принцип действия которых поясняет рис. 3.10.

Межзонная. или прямая рекомбинация происходит при переходе свободного электрона из зоны проводимости на один из свободных уровней валентной зоны, что соответствует исчезновению пары носителей заряда – свободного электрона и дырки (рис. 3.10 – а). При этом излучается фотон света. Однако прямая рекомбинация маловероятна, потому что для её осуществления необхо –

Рисунок 3. 10. Зонные диаграммы полупроводника при излучении света: а) – прямая рекомбинация; б), в) – примесные рекомбинации; г) – аннигиляция экситона.

 

димо совпадение в пространстве положения дырки и электрона с одинаковыми и противоположно направленными импульсами. Это приводит к тому, что, например, в германии на 10 тысяч рекомбинаций лишь одна происходит в результате непосредственного исчезновения пары электрон – дырка.

Аналогичные процессы происходят и при исчезновении экситона (рис. 3. 10 – г ), однако, это чаще всего сопровождается излучением фонона, который затрачивается на нагрев кристаллической решётки.

Излучение света может происходить и при рекомбинационных процессах на примесных уровнях ( примесная рекомбинация ): при переходе электрона из зоны проводимости на акцепторный уровень (рис. 3.10 – б) или с донорного уровня в зону проводимости (рис. 3.10 – в). Строго говоря рис. 3.10 поясняет лишь часть процесса рекомбинационного излучения с использованием примесных уровней. Примесные уровни являются частным случаем так назы –

ваемых рекомбинационных ловушек Рекомбинационными ловушками называются примеси и дефекты ( примесные атомы или ионы, различные включения, незаполненные узлы в решётке и др.), создающие свои уровни в запрещённой

Рисунок 3.11. Механизм рекомбинации с участием ловушек: а), б) – донорный и акцепторный уровни в качестве ловушек; схемы расположения ловушек захвата ЛЗ и рекомбинационных ловушек РЛ для р – полупроводника ( — а) и n – полупроводника ( — б ).

 

зоне полупроводника. Рекомбинация с помощью ловушек происходит в два этапа – 1 — захват электрона из зоны проводимости на свободный уровень ловушки (рис. 3.11 – а) и второй этап – 2 – переход электрона на свободный уровень в валентной зоне. На уровне ловушки электрон будет находиться до тех пор, пока к нему не подойдёт дырка, т.е. этапы 1 и 2 могут отделять различные промежутки времени. Если в исходном состоянии уровень ловушки занят электроном ( рис.3.11 – б), то на первом этапе произойдёт захват дырки из валентной зоны ( т.е. электрон перейдёт на свободное состояние в валентной зоне), а на втором ловушка примет электрон из зоны проводимости. В результате последовательных переходов 1 и 2 произойдёт исчезновение пары носителей заряда и в случае а) и в случае б). Такой двухступенчатый процесс более вероятен, чем непосредственная рекомбинация с участием примесных уровней ( рис. 3.10 – а ) и – б )), потому что он не требует одновременного присутствия в одной точке пространства электрона и дырки.

Кроме рекомбинационных ловушек в запрещённой зоне полупроводника могут существовать уровни, которые захватывают носители только одного знака – так называемые ловушки захвата. Носитель заряда, находящийся на таком уровне, через некоторое время освобождается и снова может принимать участие в процессе электропроводности. Характерной особенностью ловушек захвата является их взаимодействие только с одной зоной – проводимости или валентной. Неравновесные носители заряда, переходя на мелкие уровни ловушек захвата на некоторое время выбывают из процесса рекомбинации. Поэтому наличие ловушек захвата уменьшает скорость рекомбинации, так как уменьшается количество переходов носителей заряда на уровни рекомбинационных ловушек.

В процессе рекомбинации освобождается энергия, которая либо излучается в виде фотона ( излучательная рекомбинация ), либо передаётся кристаллической решётке в виде фонона ( безызлучательная рекомбинация — фононная). Для построения светоизлучающих полупроводниковых приборов используют и межзонную рекомбинацию ( полупроводники с узкой запрещённой зоной), и рекомбинацию через примесные уровни (широкозонные полупроводники), причём достижение высокого совершенства структуры кристалла, снижение остаточных примесей позволяет достичь высоких значений части излучательных рекомбинаций – более 80 % от общего числа рекомбинаций.

Во всех случаях излучательной рекомбинации длина волны излучаемого света определяется, как и при поглощении света, шириной энергетического промежутка между начальным и конечным уровнями, занимаемых носителями ( см. выражение 3.9).

 



Дата добавления: 2016-11-26; просмотров: 3634;


Похожие статьи:

Полупроводники — Википедия. Что такое Полупроводники

Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности сегодня.

Полупроводники́ — материалы, по удельной проводимости занимающие промежуточное место между проводниками и диэлектриками, и отличающиеся от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводников является увеличение электрической проводимости с ростом температуры[1].

Полупроводниками являются кристаллические вещества, ширина запрещённой зоны которых составляет порядка электрон-вольта (эВ). Например, алмаз можно отнести к широкозонным полупроводникам (около 7 эВ), а арсенид индия — к узкозонным (0,35 эВ). К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.).

Атом другого химического элемента в чистой кристаллической решётке (например, атом фосфора, бора и т. д. в кристалле кремния) называется примесью. В зависимости от того, отдаёт ли примесной атом электрон в кристалл (в вышеприведённом примере – фосфор) или захватывает его (бор), примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

Механизм электрической проводимости

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,04·10−19 Дж), и отдельные электроны получают энергию для отрыва от ядра. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное электрическое сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Этот процесс обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.

Обычно подвижность дырок в полупроводнике ниже подвижности электронов.

Энергетические зоны

Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.

Подвижность

Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов легирующих примесей

Подвижностью μ{\displaystyle \mu } называют коэффициент пропорциональности между дрейфовой скоростью v→{\displaystyle {\vec {v}}} носителей тока и величиной приложенного электрического поля E→{\displaystyle {\vec {E}}}:

v→=μE→.{\displaystyle {\vec {v}}=\mu {\vec {E}}.}

При этом, вообще говоря, подвижность является тензором:

 vα=μαβEβ.{\displaystyle \ v_{\alpha }=\mu _{\alpha \beta }E_{\beta }.}

Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.

Размерность подвижности — м²/(В·с) в СИ или см/(В·с)в системе СГС.

Собственная плотность

При термодинамическом равновесии, концентрация электронов полупроводника связана с температурой следующим соотношением:

n¯=2h4(2πmkT)3/2e−EC−EFkT{\displaystyle {\bar {n}}={\frac {2}{h^{3}}}(2\pi mkT)^{3/2}e^{-{\frac {E_{C}-E_{F}}{kT}}}}

где:

h{\displaystyle h} — Постоянная Планка;
m{\displaystyle m} — масса электрона;
T{\displaystyle T} — абсолютная температура;
EC{\displaystyle E_{C}} — уровень зоны проводимости;
EF{\displaystyle E_{F}} — уровень Ферми.

Также, концентрация дырок полупроводника связана с температурой следующим соотношением:

p¯=2h4(2πmkT)3/2e−EF−EVkT{\displaystyle {\bar {p}}={\frac {2}{h^{3}}}(2\pi mkT)^{3/2}e^{-{\frac {E_{F}-E_{V}}{kT}}}}

где:

h{\displaystyle h} — Постоянная Планка.
m{\displaystyle m} — эффективная масса дырки;
T{\displaystyle T} — абсолютная температура;
EF{\displaystyle E_{F}} — уровень Ферми;
EV{\displaystyle E_{V}} — уровень валентной зоны.

Собственная концентрация ni{\displaystyle n_{i}} связана с n¯{\displaystyle {\bar {n}}} и p¯{\displaystyle {\bar {p}}} следующим соотношением:

n¯p¯=ni2{\displaystyle {\bar {n}}{\bar {p}}=n_{i}^{2}}

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

σ=1ρ=q(Nnμn+Npμp){\displaystyle \sigma ={\frac {1}{\rho }}=q(N_{\rm {n}}\mu _{\rm {n}}+N_{\rm {p}}\mu _{\rm {p}})}

где ρ{\displaystyle \rho } — удельное сопротивление, μn{\displaystyle \mu _{\rm {n}}} — подвижность электронов, μp{\displaystyle \mu _{\rm {p}}} — подвижность дырок, Nn,p{\displaystyle N_{n,p}} — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

σ=1ρ=qN(μn+μp){\displaystyle \sigma ={\frac {1}{\rho }}=qN(\mu _{\rm {n}}+\mu _{\rm {p}})}
Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)
\sigma ={\frac  {1}{\rho }}=qN(\mu _{{{\rm {n}}}}+\mu _{{{\rm {p}}}}) Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

σ≈qNnμn{\displaystyle \sigma \approx qN_{\rm {n}}\mu _{\rm {n}}}
Дырочные полупроводники (р-типа)
\sigma \approx qN_{{{\rm {n}}}}\mu _{{{\rm {n}}}} Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

σ≈qNpμp{\displaystyle \sigma \approx qN_{\rm {p}}\mu _{\rm {p}}}

Использование в радиотехнике

Полупроводниковый диод

\sigma \approx qN_{{{\rm {p}}}}\mu _{{{\rm {p}}}} Схема полупроводникового кремниевого диода. Ниже приведено его символическое изображение на электрических принципиальных схемах.

Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

φ=VTln⁡(NnNpni2){\displaystyle \varphi =V_{\rm {T}}\ln \left({\frac {N_{\rm {n}}N_{\rm {p}}}{n_{\rm {i}}^{2}}}\right)}

где VT{\displaystyle V_{\rm {T}}} — термодинамическое напряжение, Nn{\displaystyle N_{\rm {n}}} — концентрация электронов, Np{\displaystyle N_{\rm {p}}} — концентрация дырок, ni{\displaystyle n_{\rm {i}}} — собственная концентрация[2].

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость, диод пропускает максимальный электрический ток).При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость, диод сопротивляется пропусканию электрического тока). Обратный ток полупроводникового диода близок к нулю, но не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

Транзистор

Структура биполярного n-p-n транзистора.

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов,
  • сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.

Группа IIB IIIA IVA VA VIA
Период
2 5 B 6 C 7 N
3 13 Al 14 Si 15 P 16 S
4 30 Zn 31 Ga 32 Ge 33 As 34 Se
5 48 Cd 49 In 50 Sn 51 Sb 52 Te
6 80 Hg

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех, ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот ω<Eg/ℏ{\displaystyle \omega <E_{g}/\hbar } , где Eg{\displaystyle E_{g}} — ширина запрещённой зоны, ℏ{\displaystyle \hbar } — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2π/λ{\displaystyle 2\pi /\lambda }, где λ{\displaystyle \lambda } — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения из двух, трёх и более химических элементов. Полупроводниковые материалы из двух элементов называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV

Широкое применение получили следующие соединения:

AIIIBV
  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
AIIBV
AIIBVI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
AIVBVI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.

Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.

Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа AIIIBV
Параметры AlSb GaSb InSb AlAs GaAs InAs
Температура плавления, К 1333 998 798 1873 1553 1218
Постоянная решётки, Å 6,14 6,09 6,47 5,66 5,69 6,06
Ширина запрещённой зоны ΔE, эВ 0,52 0,7 0,18 2,2 1,32 0,35
Диэлектрическая проницаемость ε 8,4 14,0 15,9
Подвижность, см²/(В·с):
электронов 50 5000 60 000 4000 34000[3]
дырок 150 1000 4000 400 460[3]
Показатель преломления света, n 3,0 3,7 4,1 3,2 3,2
Линейный коэффициент теплового
расширения, K-1
6,9·10-6 5,5·10-6 5,7·10-6 5,3·10-6

Группа IV

  • собственные полупроводники
  • составной полупроводник

Группа III-V

  • 2-компонентные полупроводники
  • 3-компонентные полупроводники
  • 4-компонентные полупроводники
  • 5-компонентные полупроводники

Группа II-VI

  • 2-компонентные полупроводники
  • 3-компонентные полупроводники

Группа I-VII

  • 2-компонентные полупроводники

Группа IV-VI

  • 2-компонентные полупроводники
  • 3-компонентные полупроводники

Группа V-VI

  • 2-компонентные полупроводники

Группа II—V

  • 2-компонентные полупроводники

Другие

  • Разные оксиды

Органические полупроводники

Магнитные полупроводники

См. также

Примечания

  1. Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4.
  2. ↑ Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
  3. 1 2 Индия арсенид // Химическая энциклопедия

Литература

  • Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
  • Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.
  • Киреев П. С. Физика полупроводников. — М., Высшая школа, 1975. — Тираж 30000 экз. — 584 с.

Ссылки

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.