Site Loader

p–n переход и его электрические свойства :: Электроника для всех

17.11.2011 20:22
Электронно-дырочный переход (p–n переход).

    Принцип действия полупроводниковых приборов объясняется свойствами так называемого электронно-дырочного перехода (p-n — перехода) — зоной раздела областей полупроводника с разным механизмами проводимости. 

    Электронно-дырочный переход — это область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). Поскольку в р-области электронно-дырочного перехода концентрация дырок гораздо выше, чем в n-области, дырки из n -области стремятся диффундировать в электронную область. Электроны диффундируют в р-область.

    Для создания в исходном полупроводнике (обычно 4-валентном германии или кремнии) проводимости n- или p-типа в него добавляют атомы 5-валентной или 3-валентной примесей соответственно (фосфор, мышьяк или алюминий, индий и др.)

    Атомы 5-валентной примеси (доноры) легко отдают один электрон в зону проводимости, создавая избыток электронов в полупроводнике, не занятых в образовании ковалентных связей; проводник приобретает проводимость n-типа. Введение же 3-валентной примеси (акцепторов) приводит к тому, что последняя, отбирая по одному электрону от атомов полупроводника для создания недостающей ковалентной связи, сообщает ему проводимость p-типа, так как образующиеся при этом дырки (вакантные энергетические уровни в валентной зоне) ведут себя в электрическом или магнитном полях как носители положительных зарядов. Дырки в полупроводнике р-типа и электроны в полупроводнике n-типа называются основными носителями в отличие от неосновных (электроны в полупроводнике р-типа и дырки в полупроводнике n-типа), которые генерируются из-за тепловых колебаний атомов кристаллической решетки.

    Если полупроводники  с разными типами проводимости  привести  в соприкосновение (контакт создается технологическим путем, но не механическим), то электроны в полупроводнике n-типа получают возможность  занять свободные уровни в валентной зоне полупроводника р-типа. Произойдет

рекомбинация электронов с дырками вблизи границы разнотипных полупроводников.

    Этот процесс подобен диффузии свободных электронов из полупроводника n-типа в полупроводник р-типа и диффузии дырок в противоположном направлении. В результате ухода основных носителей заряда на границе разнотипных полупроводников создается обедненный  подвижными носителями слой, в котором в n-области будут находиться положительные ионы донорных атомов; а в p- области — отрицательные ионы акцепторных атомов. Этот обедненный подвижными носителями слой протяженностью в доли микрона и является электронно-дырочным переходом.

   

Потенциальный барьер в p-n переходе.

 

    Если к полупроводнику приложить электрическое напряжение, то в зависимости от полярности этого напряжения р-n-переход проявляет совершенно различные свойства.

 

Свойства p-n перехода при прямом включении.

 

Свойства p-n перехода при обратном включении.

 

    Итак, с определенной долей приближения можно считать, что электрический ток через р-n-переход протекает, если полярность напряжения источника питания прямая, и, напротив, тока нет, когда полярность обратная.

    Однако, кроме зависимости возникшего тока от внешней энергии, например, источника питания или фотонов света, которая используется в ряде полупроводниковых приборов, существует термогенерация. При этом концентрация собственных носителей заряда резко уменьшается, следовательно, и

IОБР тоже.Таким образом, если переход подвергнуть воздействию внешней энергии, то появляется пара свободных зарядов: электрон – дырка. Любой носитель заряда, рожденный в области объемного заряда pn перехода, будет подхвачен электрическим полем EВН и выброшен: электрон – в n–область, дырка – в p– область. Возникает электрический ток, который пропорционален ширине области объемного заряда. Это вызвано тем, что чем больше EВН, тем шире область, где существует электрическое поле, в котором происходит рождение и разделение носителей зарядов. Как было сказано выше, скорость генерации носителей зарядов  в полупроводнике зависит от концентрации и энергетического положения глубоких примесей, существующих в материале.

    По этой же причине выше предельная рабочая температура полупроводника. Для германия она составляет 80º С, кремний: 150º С, арсенид галлия: 250º С (DE = 1,4 эВ). При большей температуре количество носителей заряда возрастает, сопротивление кристалла уменьшается, и полупроводник термически разрушается.

 

Вольт-амперная характеристика p-n перехода.

    Вольт-амперная характеристика (ВАХ) являет­ся графической зависимостью протекающего через р-n переход тока от приложенного к нему внешнего напря­жения I=f(U). Вольт-амперная характе­ристика р-n перехода при пря­мом и обратном включе­нии приведена ниже.

    Она состоит из прямой (0-А) и обратной (0-В-С) ветвей; на вертикальной оси отложены значения прямого и обратного тока, а на оси абсцисс — значения прямого и обратного напряжения

    Напряжение от внешнего источника, подведенное к кристаллу с р-п переходом, практически полностью со­средотачивается на обедненном носителями переходе. В зависимости от полярности возможны два варианта включения постоянного напряжения — прямое и обрат­ное.

    При прямом включении (рис. справа — верх) внешнее элект­рическое поле направлено навстречу внутреннему и частично или полиостью ос­лабляет его, снижает высо­ту потенциального барьера (Rпр). При обратном включении (рис. справа — низ) элект­рическое поле совпадает по направлению с полем  

р-п перехода и приводит к росту потенциального барьера (Rобр). 

    ВАХ p-n перехода описывает­ся аналитической функцией:

    

где

    Uприложенное к переходу внешнее напряжение соответствующего знака;

    Iо = Iтобратный (тепловой) ток р-п перехода;

    температурный потенциал, где k — постоянная Больцмана, q — элементарный заряд  (при T = 300К, 0,26 В).

    При прямом напряжении (U>0) — экспоненциальный член быстро возрастает [], единицей в скобках можно пренебречь и считать . При обратном напряжении (U<0) экспоненциальный член стремится к нулю, и ток через переход практически равен обратному току; Ip-n = -Io.

    Вольт-амперная характеристика р-n-перехода показывает, что уже при сравнительно небольших прямых напряжениях сопротивление перехода падает, а прямой ток резко увеличивается.

 

Пробой p–n перехода.

    Пробоем называют резкое изме­нение режима работы перехода, находящегося под обрат­ным напряжением.

Характерной особенностью этого из­менения является резкое уменьшение дифференциального сопротивления перехода (Rдиф). Соответствующий участок вольт-ампер­ной характеристики изображен на рисунке справа (обратная ветвь). После начала пробоя незначительное увеличение об­ратного напряжения сопровождается резким увеличени­ем обратного тока. В процессе пробоя ток может увели­чиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление Rдиф оказывается отрицатель­ным).

    Пробой бывает лавинный, тунельный, тепловой. И туннельный и лавинный пробой принято называть электрическим пробоем.

P-N-переход и диод. | HomeElectronics

Как упоминалось ранее электропроводность полупроводников сильно зависит от концентрации примесей. Полупроводники, электрофизические свойства которых зависят от примесей других химических элементов, называются примесными полупроводниками. Примеси бывают двух видов донорной и акцепторной.

Донорной называется примесь, атомы которой дают полупроводнику свободные электроны, а получаемая в этом случае электропроводность, связанная с движением свободных электронов, — электронной. Полупроводник с электронной проводимостью называется электронным полупроводником и условно обозначается латинской буквой n — первой буквой слова «негативный».

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Рассмотрим процесс образования электронной проводимости в полупроводнике. За основной материал полупроводника возьмём кремний (кремниевые полупроводники самые распространённые). У кремния (Si) на внешней орбите атома есть четыре электрона, которые обуславливают его электрофизические свойства (т.е. они перемещаясь под действием напряжения создают электрический ток). При введении в кремний атомов примеси мышьяка (As), у которого на внешней орбите пять электронов, четыре электрона вступают во взаимодействие с четырьмя электронами кремния, образуя ковалентную связь, а пятый электрон мышьяка остаётся свободным. При этих условиях он легко отделяется от атома и получает возможность перемещаться в веществе.

Акцепторной называется примесь, атомы которой принимают электроны от атомов основного полупроводника. Получаемая при этом электропроводность, связанная с перемещением положительных зарядов — дырок, называется дырочной. Полупроводник с дырочной электропроводностью называется дырочным полупроводником и условно обозначается латинской буквой p — первой буквой слова «позитивный».

Рассмотрим процесс образования дырочной проводимости. при введении в кремний атомов примеси индия (In), у которого на внешней орбите три электрона, они вступают в связь с тремя электронами кремния, но эта связь оказывается неполной: не хватает ещё одного электрона для связи с четвёртым электроном кремния. Атом примеси присоединяет к себе недостающий электрон от одного из расположенных поблизости атомов основного полупроводника, после чего он оказывается связанным со всеми четырьмя соседними атомами. Благодаря добавлению электрона он приобретает избыточный отрицательный заряд, то есть превращается в отрицательный ион. В тоже время атом полупроводника, от которого к атому примеси ушёл четвёртый электрон оказывается связанным с соседними атомами только тремя электронами. таким образом, возникает избыток положительного заряда и появляется незаполненная связь, то есть

дырка.

Одним из важных свойств полупроводника является то, что при наличии дырок через него может проходить ток, даже если в нём нет свободных электронов. Это объясняется способностью дырок переходить с одного атома полупроводника на другой.


Перемещение дырок в полупроводникеПеремещение дырок в полупроводнике
Перемещение «дырок» в полупроводнике

Вводя в часть полупроводника донорную примесь, а в другую часть — акцепторную, можно получить в нём области с электронной и дырочной проводимостью. На границе областей электронной и дырочной проводимости образуется так называемый электронно-дырочный переход.

P-N-переход

Рассмотрим процессы происходящий при прохождении тока через электронно-дырочный переход. Левый слой, обозначенный буквой n, имеет электронную проводимость. Ток в нём связан с перемещением свободных электронов, которые условно обозначены кружками со знаком «минус». Правый слой, обозначенный буквой p, обладает дырочной проводимостью. Ток в этом слое связан с перемещением дырок, которые на рисунке обозначены кружками с «плюсом».


прохождение тока через переход_1прохождение тока через переход_1
Движение электронов и дырок в режиме прямой проводимости


прохождение тока через переход_2прохождение тока через переход_2
Движение электронов и дырок в режиме обратной проводимости.

При соприкосновении полупроводников с различными типами проводимости электроны вследствие диффузии начнут переходить в p-область, а дырки — в n-область, в результате чего пограничный слой n-области заряжается положительно, а пограничный слой p-области — отрицательно. Между областями возникает электрическое поле, которое является как бы барьеров для основных носителей тока, благодаря чему в p-n переходе образуется область с пониженной концентрацией зарядов. Электрическое поле в p-n переходе называют потенциальным барьером, а p-n переход — запирающим слоем. Если направление внешнего электрического поля противоположно направлению поля p-n перехода («+» на p-области, «-» на n-области), то потенциальный барьер уменьшается, возрастает концентрация зарядов в p-n переходе, ширина и, следовательно, сопротивление перехода уменьшается. При изменении полярности источника внешнее электрическое поле совпадает с направлением поля p-n перехода, ширина и сопротивление перехода возрастает. Следовательно, p-n переход обладает вентильными свойствами.

Полупроводниковый диод

Диодом называется электро преобразовательный полупроводниковый прибор с одним или несколькими p-n переходами и двумя выводами. В зависимости от основного назначения и явления используемого в p-n переходе различают несколько основных функциональных типов полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Для каждого типа полупроводникового диода ВАХ имеет свой вид, но все они основываются на ВАХ плоскостного выпрямительного диода, которая имеет вид:


VAX_diodVAX_diod
Вольт-амперная характеристика (ВАХ) диода: 1 — прямая вольт-амперная характеристика; 2 — обратная вольт-амперная характеристика; 3 — область пробоя; 4 — прямолинейная аппроксимация прямой вольт-амперной характеристики; Uпор — пороговое напряжение; rдин — динамическое сопротивление; Uпроб — пробивное напряжение

Масштаб по оси ординат для отрицательных значений токов выбран во много раз более крупным, чем для положительных.

Вольт-амперные характеристики диодов проходят через нуль, но достаточно заметный ток появляется лишь при пороговом напряжении (Uпор), которое для германиевых диодов равно 0,1 — 0,2 В, а у кремниевых диодов равно 0,5 — 0,6 В. В области отрицательных значений напряжения на диоде, при уже сравнительно небольших напряжениях (Uобр.) возникает обратный токобр). Этот ток создается неосновными носителями: электронами р-области и дырками n-области, переходу которых из одной области в другую способствует потенциальный барьер вблизи границы раздела. С ростом обратного напряжения увеличение тока не происходит, так как количество неосновных носителей, оказывающихся в единицу времени на границе перехода, не зависит от приложенного извне напряжения, если оно не очень велико. Обратный ток для кремниевых диодов на несколько порядков меньше, чем для германиевых. Дальнейшее увеличение обратного напряжения до напряжения пробоя (Uпроб) приводит к тому что электроны из валентной зоны переходят в зону проводимости, возникает эффект Зенера. Обратный ток при этом резко увеличивается, что вызывает нагрев диода и дальнейшее увеличение тока приводит к тепловому пробою и разрушению p-n-перехода.

Обозначение и определение основных электрических параметров диодов


diodesAKdiodesAK
Обозначение полупроводникового диода

Как указывалось ранее диод в одну сторону ток проводит (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую – нет (т. е. превращается в проводник с очень большим сопротивлением), одним словом, обладает односторонней проводимостью. Соответственно выводов у него всего два. Они как повелось ещё со времён ламповой техники, называются анодом (положительным выводом) и катодом (отрицательным).

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды, как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Выпрямительные диоды

Конструктивно выпрямительные диоды делятся на плоскостные и точечные, а по технологии изготовления на сплавные, диффузионные и эпитаксиальные. Плоскостные диоды благодаря большой площади p-n-перехода используют для выпрямления больших токов. Точечные диоды имеют малую площадь перехода и, соответственно, предназначены для выпрямления малых токов. Для увеличения напряжения лавинного пробоя используют выпрямительные столбы, состоящие из ряда последовательно включенных диодов.

Выпрямительные диоды большой мощности называют силовыми. Материалом для таких диодов обычно служит кремний или арсенид галлия. Кремниевые сплавные диоды используют для выпрямления переменного тока с частотой до 5 кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенидгалиевые диоды способны работать в диапазоне частот до нескольких МГц.

Силовые диоды обычно характеризуются набором статических и динамических параметров. К статическим параметрам диода относятся:

  • падение напряжения Uпр на диоде при некотором значении прямого тока;
  • обратный ток Iобр при некотором значении обратного напряжения;
  • среднее значение прямого тока Iпр.ср.;
  • импульсное обратное напряжение Uобр.и.;

К динамическим параметрам диода относятся его временные и частотные характеристики. К таким параметрам относятся:

  • время восстановления tвос обратного напряжения;
  • время нарастания прямого тока Iнар.;
  • предельная частота без снижения режимов диода fmax.

Статические параметры можно установить по вольт-амперной характеристике диода.

Время обратного восстановления диода tвос является основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно определяется при переключении диода с заданного прямого тока Iпр на заданное обратное напряжение Uобр. Во время переключения напряжение на диоде приобретает обратное значение. Из-за инерционности диффузионного процесса ток в диоде прекращается не мгновенно, а в течении времени tнар. По существу, происходит рассасывание зарядов на границе p-n-перехода (т. е. разряд эквивалентной емкости). Из этого следует, что мощность потерь в диоде резко повышается при его включении, особенно, при выключении. Следовательно, потери в диоде растут с повышением частоты выпрямляемого напряжения.

При изменении температуры диода изменяются его параметры. Наиболее сильно от температуры зависят прямое напряжение на диоде и его обратный ток. Приблизительно можно считать, что ТКН (температурный коэффициент напряжения) Uпр = -2 мВ/К, а обратный ток диодаимеет положительный коэффициент. Так при увеличении температуры на каждые 10 °С обратный ток германиевых диодов увеличивается в 2 раза, а кремниевых – 2,5 раз.

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки. В этих диодах вместо p-n-перехода используется контакт металлической поверхности с полупроводником. В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Свойства p-n-перехода. Полупроводниковый диод. Принцип действия транзистора.

Свойства  pn-перехода.

Примесные полупроводники

 

Донорная примесь: основные носители заряда — свободные электроны. Остается положительный ион примеси.  Акцепторная примесь: основные носители заряда—дырки. Остается отрицательный ион примеси. В месте контактадонорного и акцепторного полупроводников возникает электронно-дырочный переход (p-n-переход).

Примесные полупроводники

Свойства р-п-перехода

1. Образуется запирающий слой, образованный зарядами ионов примеси: d=10-7 м,  Dj = 0.4—0,8 В.

Свойства р-п-перехода

Свойства р-п-перехода

2.  Направление внешнего поля (источника) совпадает с направлением контактного поля. Тока основных носителей заряда нет. Существует слабый токнеосновных носителей заряда. Такое включение называется обратным.

Направление внешнего поля (источника) совпадает с направлением контактного поля. Тока основных носителей заряда нет. Существует слабый токнеосновных носителей заряда. Такое включение называется обратным

3. Прямое включение. Существует ток основных носителей заряда.

p-n-переход пропускает электрический ток только в одном направлении

(свойство односторонней проводимости).

p-n-переход пропускает электрический ток только в одном направлении

Полупроводниковый диод

Схематическое изображение. Направление стрелки указывает направление тока.

Полупроводниковый диод

Устройство диода.

Устройство диода

Вольтамперная характеристика полупроводникового диода.

/, 2 участок приближенно прямолинеен -экспонента;

— пробой диода

0,3 обратный ток;

0,1— ток меняется нелинейно.

 Обратный ток обусловлен наличием неосновных носителей заряда.

Вольтамперная характеристика полупроводникового диода

Применение полупроводникового диода

Выпрямитель тока

Применение полупроводникового диода  Выпрямитель тока

Принцип действия транзистора

Условное обозначение

Направление стрелки — направление тока

На всех рисунках —  p-n-p— транзисторы.

Принцип действия транзистора

Устройство биполярного транзистора.

Основные применения: элемент усилетеля тока, напряжения или мощности; электронный ключ (например, в генераторе электромагнитных колебаний).

Устройство биполярного транзистора

Переход эмиттер — база включается в прямом направлении, а база — коллектор — в обратном. Через эмиттерный переход идет большое количество основных носителей заряда.  База очень тонкая. Концентрация основных носителей заряда в базе небольная. Поэтому рекомбинация электронов и дырок небольшая. Ток базы маленький. Заряды, пришедшие из эмиттера, по отношению к базе являютсянеосновными, поэтому они свободно проходят через коллекторный переход. До 95% дырок, попадающих из эмиттера в базу, проходят в коллектор. Т.е. Iэ ≈ Iб. При изменении Iэ с помощью источника переменного напря­жения одновременно почти во столько же раз изменяется Iк. Т.к. сопротивление коллекторного перехода во много раз превышает сопротивление эмиттерного, то при практически равных токах, напряжение на эмиттере много меньше напряжения на коллекторе.

Устройство биполярного транзистора

при практически равных токах, напряжение на эмиттере много меньше напряжения на коллекторе

n-p-n Википедия

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

Простейшая наглядная схема устройства транзистора

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

Устройство[ | ]

Упрощённая схема поперечного разреза планарного биполярного n-p-n транзистора.

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь

Переходы p-i, n-i, p+-p, n+-n типов. PIN диоды / Sandbox / Habr

В полупроводниках встречаются различные типы переходов и хотелось бы вкратце рассказать о некоторых из них.

При контакте примесного полупроводника (p- или n- типов) с собственным полупроводником (i-типа) могут образоваться p-i или n-i переходы, при этом Pp > Pi и Nn > Ni соответственно. Из-за разности концентраций носителей заряда возникнет диффузия носителей, что приведет к появлению разности потенциалов:

  • в переходе p-i-типа – между отрицательно заряженными ионами акцепторов в полупроводнике p-типа и положительно заряженными ионами в полупроводнике i-типа;
  • в переходе n-i-типа – между положительно заряженными ионами доноров в полупроводнике n-типа и отрицательно заряженными ионами в полупроводнике i-типа.

Однако эта разность потенциалов значительно меньше, чем в p-n переходе, и слой, обеднённый носителями заряда, простирается большей частью в область собственного (i-) полупроводника.

При создании p-i-n диода между p- и n- областями располагается достаточно высокоомный слой собственного полупроводника (i-типа).

В p-i-n диодах n- и p- области отделены друг от друга i-слоем, снижена напряженность электрического поля в i-слое, что позволяет повысить значение обратного напряжения, при котором начинается пробой.

В связи с пониженным потенциальным барьером на границе n-i и p-i, при прямом напряжении электроны и дырки проникают глубоко в i-слой, где происходит их взаимная рекомендация и практически исключается возможность образования пространственного заряда. Это позволяет повысить быстродействие таких диодов. Кроме того, пониженный потенциальный барьер позволяет увеличить допустимый прямой ток.
p-i-n диоды в режиме переключения могут работать на высоких частотах ( до 40ГГц), с большим обратным напряжением и обеспечивать переключение большой мощности (до мегаватт).

Создание структур p+-p-n и n+-n-p (где p+ и n+ — означает повышенную концентрацию легирующих примесей: акцепторной и донорной, соответственно), позволяет получить диоды с малым прямым напряжением, малым обратным током, большим напряжением пробоя, малым значением ёмкости p-n перехода.

p-n переход | Электрикам

p-n (пэ-эн) переход —  область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому, такой переход ещё называют электронно — дырочным переходом.

Всего есть два типа полупроводников это p и  n типа. В  n — типе основными носителями заряда являются электроны, а в p — типе основными — положительно заряженные дырки. Положительная дырка возникает после отрыва электрона от атома и на месте него образуется положительная дырка.

Что бы разобраться как работает p-n переход надо изучить его составляющие то есть полупроводник p — типа и n — типа.

Полупроводники p и n типа  изго­тавливаются на основе монокристаллического кремния, имеющего очень высокую степень чистоты, поэтому малейшие примеси (менее 0,001%) су­щественным образом изменяют его электрофизические свойства.

В полупроводнике n типа основными носителями заряда являются электроны. Для получения их используют донорные примеси, которые вводятся в кремний, — фосфор, сурьма, мышьяк.

В полупроводнике p типа основными носителями заряда являются положительно заряженные дырки. Для получения их используют акцепторные примеси — алюминий, бор.

Полупроводник n — типа  (электронной проводимости)

Примесный атом фосфора обычно замещает основной атом в узлах кри­сталлической решетки. При этом четыре валентных электрона атома фосфора вступают в связь с четырьмя валентными электронами соседних четырех атомов кремния, образуя устойчивую оболочку из восьми электронов. Пятый валентный электрон атома фосфора оказывается слабо связанным со своим атомом и под действием внешних сил (тепловые колебания решетки, внешнее электрическое поле) легко становится свободным, создавая повышенную концентрацию свободных электронов. Кристалл приобретает электронную проводимость или проводимость n-типа. При этом атом фосфора, лишенный электрона, жестко связан с кристаллической решеткой кремния положи­тельным зарядом, а электрон является подвижным отрицательным зарядом. При отсутствии действия внешних сил они компенсируют друг друга, т. е. в кремнии n-типа количество свободных электронов проводимости опреде­ляется количеством введенных донорных атомов примеси.

Полупроводник p — типа  (дырочной проводимости)

Атом алюминия, имеющий только три валентных электрона, не может самостоятельно создать устойчивую восьмиэлектронную оболочку с соседними атомами кремния, так как для этого ему необходим еще один электрон, который он отбирает у одного из атомов кремния, находящегося поблизости. Атом кремния, лишенный электрона, имеет положительный заряд и, так как он может захватить электрон соседнего атома кремния, его можно считать подвижным положительным зарядом, не связанным с кристаллической решеткой, называемым дыркой. Атом алюминия, захвативший электрон, становится отрицательно заряженным центром, жестко связанным с кристал­лической решеткой. Электропроводность такого полупроводника обусловлена движением дырок, поэтому он называется дырочным полупроводни­ком р-типа. Концентрация дырок соответствует количеству введенных атомов акцепторной примеси.

Страниц: Страница 1, Страница 2

Полупроводники p и n типа, p-n переход

Полупроводники n типа

Внесение в полупроводник примесей существенно влияет на поведение электронов и энергоуровни спектра кристалла. Валентные электроны примесных атомов создают энергетические уровни в запрещенной зоне спектра. К примеру, если в решетке германия один атом замещен пятивалентным атомом фтора, то энергия дополнительного электрона станет меньше, чем энергия, которая соответствует нижней границе зоны проводимости. Энергетические уровни подобных примесных электронов находятся ниже дна зоны проводимости. Эти уровни заполненные электронами называют донорными. Для перевода электронов с донорных уровней в зону проводимости необходима энергия меньше, чем у чистого полупроводника. После того как электроны переброшены в зону проводимости с донорных уровней, говорят, что в полупроводнике появилась проводимость n-типа. Полупроводники с донорной примесью называют электронными (донорными) или полупроводниками n-типа (negative — отрицательный). Электроны в полупроводниках n — типа служат как основные носители заряда, дырки — неосновными. Энергетическая диаграмма такого полупроводника изображена на рис.1.

Полупроводники p типа

В полупроводнике, который содержит акцепторную примесь, электроны довольно легко переходят из валентной зоны на акцепторные уровни. В такой ситуации в валентной зоне появляются свободные дырки. Число дырок в данном случае существенно больше, чем свободных электронов, которые образовались при переходе из валентной зоны в зону проводимости. В данной ситуации дырки — основные носители заряда, электроны — неосновные. Проводимость полупроводника, который включает акцепторную примесь, носит дырочный характер, сам проводник при этом называется дырочным (акцепторным) или полупроводником p-типа (positive — положительный). Энергетическая диаграмма полупроводника p-типа приведена на рис.2.

Рисунок 1.

Рисунок 2.

p-n переход

p-n переход создают в естественном полупроводнике легированием донорными и акцепторными примесями по разные стороны от границы раздела. При этом область, в которую вводились донорные примеси становится n-областью с электронной проводимостью, область в которую ввели акцепторные примеси — p-областью с преимущественной дырочной проводимостью.

Так как в n- области концентрация электронов больше (в сравнении с концентрацией дырок), а в p- области наоборот, то электроны диффундируют из n- области, в p- область, а дырки в обратном направлении. В результате в n- области возникает положительный заряд, а в p- области отрицательный Появляющаяся таким образом, разность потенциалов и электрическое поле пытаются замедлить диффузию положительных и отрицательных зарядов. При некотором напряжении возникает равновесие. Так как заряд электрона меньше нуля, то рост потенциала ведет к уменьшению потенциальной энергии электронов и росту потенциальной энергии дырок. Как следствие роста потенциала n- области потенциальная энергия электронов в этой области уменьшается, а в p- области увеличивается. С потенциальной энергией дырок дело обстоит наоборот. Характер изменения электрического потенциала совпадает с характером изменения потенциальной энергии дырок.

Итак, возникает потенциальный барьер, который противостоит потоку диффузии электронов и дырок со стороны перехода с их большей концентрацией, то есть напору электронов со стороны n- области и напору дырок из p- области. Этот потенциальный барьер растет до величины, при которой появляющееся на переходе электрическое поле порождает такие токи из носителей заряда, которые полностью компенсируют диффузионные потоки. Так достигается стационарное состояние.

Электроны и дырки в зоне проводимости полупроводников имеют конечное время жизни. Дырки, которые попали из p- области в n- область диффундируют в ней в течение некоторого времени, а затем аннигилируются с электронами. Так же ведут себя электроны, которые попали из n- области в p- область. Следовательно, концентрация избыточных дырок в n- области и концентрация электронов в p- области уменьшается (по экспоненте) при удалении от границы перехода.

[Примечание] Обычно энергия Ферми p и n- областей полупроводников отличается примерно на 1эВ. Значит, разность потенциалов, которая появляется на переходе и выравнивает энергии Ферми по разные стороны перехода, имеет величину порядка 1В.

[/Примечание]

Электрический ток, через p-n переход

Допустим, что напряжение приложено так, что у n- области потенциал имеет знак минус, со стороны p- области — плюс. Потенциальный барьер в таком случае, для основных носителей тока уменьшатся. Следовательно, сила тока основных носителей растет. Сила тока неосновных носителей почти не изменяется, так как диффузионный ток определен концентрацией носителей заряда и не зависит от приложенной разности потенциалов.

Если внешнее напряжение приложено так, что у n- области потенциал больше нуля, а со стороны p- области меньше нуля, то для основных носителей тока потенциальные барьеры увеличиваются. Тогда ток основных носителей почти равен 0. Ток неосновных носителей не изменяется. Если ток в направлении от n- области к p-области не течет, то такое направление называют запорным. Обратное направление называют проходным.

Переход металл — полупроводник имеет способность пропускать ток в одном направлении и не пропускать в другом. Причем, полупроводник может быть любого типа. Это явление связано с тем, что любой полупроводник по отношению к металлу очень беден свободными электронами. В случае перехода металл — проводник, проходным направлением будет направление от полупроводника к металлу.

p-n переход действует как диод, так как имеет одностороннюю проводимость. Наиболее часто применяемыми материалами для создания p-n переходов служат германий и кремний. У германия концентрация основных носителей больше, чем у кремния, больше их подвижность. Из-за этого проводимость p-n переходов в германии в проходном направлении существенно больше, чем у кремния, но соответственно больше обратный ток. Кремний же можно использовать в широком спектре температур.

Пример 1

Задание: Вольт — амперная характеристика для p-n перехода в кремний изображена на рис. 3. p-n перехода для германия на рис. 4. Сравните их, объясните различия.

Рисунок 3.

Рисунок 4.

Решение:

Вольтамперная характеристика p-n перехода показывает, переход имеет одностороннюю проводимость, а именно проводит ток в направлении из области p в область n. (Положительные значения напряжение U соответствуют изменению потенциала на переходе от p области к n области).

Возможной причиной отличий вольтамперной характеристики кремния (рис.3) от вольт — амперной характеристики германия служит низкая концентрация неосновных носителей в кремнии. Получается при небольших приложенных напряжениях плотность тока (j) неосновных носителей очень мала и только при U=0,6B сила тока начинает расти по экспоненте (у германия это происходит при U=0 B).

Пример 2

Задание: Что такое туннельный эффект?

Решение:

При большой концентрации атомов примеси в полупроводниках происходит расширение примесных уровней. Уровни перекрывают границу между зонами. Как результат — уровень Ферми попадает внутрь либо проводящей, либо валентной зоны. При отсутствии внешнего напряжения энергии Ферми по разные стороны перехода одинаковы. При сильном легировании переход становится узким, концентрация неосновных носителей мала.

Если приложить внешнее напряжение в проходном направлении, то появляется небольшой диодный ток. Но, так как по разные стороны перехода, который делится потенциальным барьером энергии носителей равны, возникает так называемый туннельный эффект Носители проходят через потенциальный барьер без изменения энергии. Из-за этого через потенциальный барьер течет значительный ток. При увеличении напряжения энергия электронов в n-области растет, в p —области уменьшатся, при этом область перекрытия примесных уровней становится меньше. Как следствие, уменьшается сила тока. (Максимум тока достигается, когда зоны перекрывают друг друга наибольшим образом). В тот момент, когда примесные зоны сдвигаются относительно друг друга настолько, что каждой из них на другой стороне перехода противостоит запрещенная зона, туннелированние прекращается. При этом сила тока через переход уменьшается. При высоких напряжениях зоны проводимости n и p областей оказываются на одном уровне, возникает обычный диодный ток. Сила тока снова растет. В интервале от первого максимума тока до следующего за ним минимума туннельный диод проявляет эффект отрицательного сопротивления, когда увеличение напряжения ведет к уменьшению силы тока. Рис.5 Вольт — амперная характеристика туннельного диода.

Рисунок 5.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *