Site Loader

Емкость конденсатора формула через напряжение и заряд

По назначению конденсатор можно сравнить с батарейкой. Но имеется принципиальное отличие в работе данных элементов. Существуют отличия в предельной емкости и скорости зарядки конденсатора и батарейки.

Формула заряда конденсатора

Величина заряда конденсатора (q) связана с его емкостью (C) и разностью потенциалов (U) между его обкладками как:

где q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками.

Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Заряд на пластинах плоского конденсатора равен:

где – электрическая постоянная; – площадь каждой (или наименьшей) пластины; – расстояние между пластинами; – диэлектрическая проницаемость диэлектрика, который находится между пластинами конденсатора.

Заряд на обкладках цилиндрического конденсатора вычисляется при помощи формулы:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Заряд на обкладках сферического конденсатора найдем как:

где – радиусы обкладок конденсатора.

Заряд конденсатора связан с энергией поля (W) внутри него:

Из формулы (6) следует, что заряд можно выразить как:

Рассмотрим последовательное соединение из N конденсаторов ( рис. 1).

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении, обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды.

При параллельном соединении конденсаторов (рис.2), соединяют обкладки, имеющие заряды одного знака. Суммарный заряд соединения (q) равен сумме зарядов конденсаторов.

Примеры решения задач по теме «Заряд конденсатора»

Задание Каковы заряды на обкладках конденсаторов, если они имеют емкости Ф и Ф, соединены последовательно и присоединены к батарее с ЭДС равной В (рис.3)? Чему равен суммарный заряд соединения?

Решение Разности потенциалов на обкладках конденсаторов будут при таком соединении равны:

Заряд на первом конденсаторе при этом равен:

Заряд на обкладках второго конденсатора:

Суммарный заряд системы можно найти как:

Тогда суммарный заряд равен:

Ответ Кл; Кл; Кл
Задание Емкость пускового устройства электрического двигателя равна C. Энергии имеющейся в конденсаторе достаточно для того чтобы поднять груз массы m на высоту h. Чему равен заряд конденсатора?
Решение При поднятии груза на высоту h происходит переход энергии поля конденсатора () в потенциальную энергию тела (), поднятого над Землей, поэтому запишем:

Энергию найдем как:

Энергию электрического поля конденсатора будет удобнее выразить:

Подставим в выражение (2.1) правые части (2.2) и (2.3), имеем:

По назначению конденсатор можно сравнить с батарейкой. Но имеется принципиальное отличие в работе данных элементов. Существуют отличия в предельной емкости и скорости зарядки конденсатора и батарейки.

Формула заряда конденсатора

Величина заряда конденсатора (q) связана с его емкостью (C) и разностью потенциалов (U) между его обкладками как:

где q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками.

Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Заряд на пластинах плоского конденсатора равен:

где – электрическая постоянная; – площадь каждой (или наименьшей) пластины; – расстояние между пластинами; – диэлектрическая проницаемость диэлектрика, который находится между пластинами конденсатора.

Заряд на обкладках цилиндрического конденсатора вычисляется при помощи формулы:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Заряд на обкладках сферического конденсатора найдем как:

где – радиусы обкладок конденсатора.

Заряд конденсатора связан с энергией поля (W) внутри него:

Из формулы (6) следует, что заряд можно выразить как:

Рассмотрим последовательное соединение из N конденсаторов ( рис. 1).

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении, обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды.

При параллельном соединении конденсаторов (рис.2), соединяют обкладки, имеющие заряды одного знака. Суммарный заряд соединения (q) равен сумме зарядов конденсаторов.

Примеры решения задач по теме «Заряд конденсатора»

Задание Каковы заряды на обкладках конденсаторов, если они имеют емкости Ф и Ф, соединены последовательно и присоединены к батарее с ЭДС равной В (рис.3)? Чему равен суммарный заряд соединения?

Решение Разности потенциалов на обкладках конденсаторов будут при таком соединении равны:

Заряд на первом конденсаторе при этом равен:

Заряд на обкладках второго конденсатора:

Суммарный заряд системы можно найти как:

Тогда суммарный заряд равен:

Ответ Кл; Кл; Кл
Задание Емкость пускового устройства электрического двигателя равна C. Энергии имеющейся в конденсаторе достаточно для того чтобы поднять груз массы m на высоту h. Чему равен заряд конденсатора?
Решение При поднятии груза на высоту h происходит переход энергии поля конденсатора () в потенциальную энергию тела (), поднятого над Землей, поэтому запишем:

Энергию найдем как:

Энергию электрического поля конденсатора будет удобнее выразить:

Подставим в выражение (2.1) правые части (2.2) и (2.3), имеем:

Одним из важных элементов электрической цепи является конденсатор, формулы для которого позволяют рассчитать и подобрать наиболее подходящий вариант. Основная функция данного устройства заключается в накоплении определенного количества электроэнергии. Простейшая система включает в себя два электрода или обкладки, разделенные между собой диэлектриком.

В чем измеряется емкость конденсатора

Одной из важнейших характеристик конденсатора является его емкость. Данный параметр определяется количеством электроэнергии, накапливаемой этим прибором. Накопление происходит в виде электронов. Их количество, помещающееся в конденсаторе, определяет величину емкости конкретного устройства.

Для измерения емкости применяется единица – фарада. Емкость конденсатора в 1 фараду соответствует электрическому заряду в 1 кулон, а на обкладках разность потенциалов равна 1 вольту. Эта классическая формулировка не подходит для практических расчетов, поскольку в конденсаторе собираются не заряды, а электроны. Емкость любого конденсатора находится в прямой зависимости от объема электронов, способных накапливаться при нормальном рабочем режиме. Для обозначения емкости все равно используется фарада, а количественные параметры определяются по формуле: С = Q / U, где С означает емкость, Q – заряд в кулонах, а U является напряжением. Таким образом, просматривается взаимная связь заряда и напряжения, оказывающих влияние на способность конденсатора к накоплению и удержанию определенного количества электричества.

Для расчетов емкости плоского конденсатора используется формула:
в которой ε = 8,854187817 х 10 -12 ф/м представляет собой постоянную величину. Прочие величины: ε – является диэлектрической проницаемостью диэлектрика, находящегося между обкладками, S – означает площадь обкладки, а d – зазор между обкладками.

Формула энергии конденсатора

С емкостью самым тесным образом связана другая величина, известная как энергия заряженного конденсатора. После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.

В процессе зарядки происходит расходование энергии внешнего источника для разделения зарядов с положительным и отрицательным значением, которые, затем располагаются на обкладках конденсатора. Поэтому в соответствии с законом сохранения энергии, она не исчезает бесследно, а остается внутри конденсатора в виде электрического поля, сосредоточенного между пластинами. Разноименные заряды образуют взаимодействие и последующее притяжение обкладок между собой.

Каждая пластина конденсатора под действием заряда создает напряженность электрического поля, равную Е/2. Общее поле будет складываться из обоих полей, возникающих в каждой обкладке с одинаковыми зарядами, имеющими противоположные значения.

Таким образом, энергия конденсатора выражается формулой: W=q(E/2)d. В свою очередь, напряжение выражается с помощью понятий напряженности и расстояния и представляется в виде формулы U=Ed. Это значение, подставленное в первую формулу, отображает энергию конденсатора в таком виде: W=qU/2. Для получения окончательного результата необходимо использовать определение емкости: C=q/U, и в конце концов энергия заряженного конденсатора будет выглядеть следующим образом: Wэл = CU 2 /2.

Формула заряда конденсатора

Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: U

c = E.

Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.

В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).

Течение зарядного тока в цепи происходит практически за тысячные доли секунды, до того момента, пока напряжение конденсатора не станет равным электродвижущей силе генератора. Напряжение увеличивается плавно, а потом постепенно замедляется. Далее значение напряжения конденсатора будет постоянным. Во время зарядки по цепи течет зарядный ток. В самом начале он достигает максимальной величины, так как напряжение конденсатора имеет нулевое значение. Согласно закона Ома I

зар = Е/Ri, поскольку к сопротивлению Ri приложена вся ЭДС генератора.

Формула тока утечки конденсатора

Ток утечки конденсатора вполне можно сравнить с воздействием подключенного к нему резистора с каким-либо сопротивлением R. Ток утечки тесно связан с типом конденсатора и качеством используемого диэлектрика. Кроме того, важным фактором становится конструкция корпуса и степень его загрязненности.

Некоторые конденсаторы имеют негерметичный корпус, что приводит к проникновению влаги из воздуха и возрастанию тока утечки. В первую очередь это касается устройств, где в качестве диэлектрика использована промасленная бумага. Значительные токи утечки возникают из-за снижения электрического сопротивления изоляции. В результате нарушается основная функция конденсатора – способность получать и сохранять заряд электрического тока.

Основная формула для расчета выглядит следующим образом: Iут = U/Rd, где Iут, – это ток утечки, U – напряжение, прилагаемое к конденсатору, а Rd – сопротивление изоляции.

физика процессов и формула расчёта

Накопление заряда на обкладках конденсатораКонденсатор — фундаментальный электронный компонент (наряду с резистором и катушкой индуктивности), предназначенный для накопления электрической энергии. Лучшей аналогией его работы будет сравнение с аккумуляторной батареей. Однако основой устройства последней являются обратимые химические реакции, а накопление заряда на обкладках конденсатора имеет исключительно электрическую природу.

Устройство и принцип работы

В простейшем варианте конструкция состоит из двух электродов в форме проводящих пластин (называемых обкладками), разделённых диэлектриком, толщина которого ничтожно мала по сравнению с размерами обкладок. Практически применяемые радиоэлектронные компоненты содержат много слоёв диэлектрика и электродов. В качестве обозначения конденсатора на схеме используются два параллельных отрезка с пространством между ними. Они символизируют металлические пластины обкладок физического прибора, электрически разделённые между собой.

Конструкция конденсаторов

Многие считают Майкла Фарадея автором изобретения, но на самом деле это не так. Но он сделал главное — продемонстрировал первые практические примеры и способы использования этого прибора для хранения электрического заряда в своих экспериментах. Благодаря Фарадею человечество получило способ измерять возможность накапливать заряд. Эта величина называется ёмкостью и измеряется в Фарадах.

Работу конденсатора можно проиллюстрировать на примере событий, проходящих во вспышке цифровой фотокамеры за отрезок времени между нажатием кнопки и тем моментом, когда вспышка погаснет. Основой электронной схемы этого осветительного устройства является конденсатор, в котором происходит следующее:

  • Зарядка. После нажатия кнопки поток электронов приходит в конденсатор и останавливается на одной из его пластин благодаря диэлектрику. Этот поток называется зарядным током.
  • Накопление. Поскольку под действием электродвижущей силы всё больше и больше электронов будут поступать на обкладку и распределяться по ней, отрицательный заряд обкладки может расти до момента, пока накопленный потенциал не будет отталкивать поступающий избыточный поток электронов. Вторая пластина из-за дефицита электронов приобретает положительный заряд, по модулю равный отрицательному на первой. Зарядный ток будет протекать до тех пор, пока напряжение на обеих пластинах не сравняется с приложенным. Сила или скорость тока зарядки будет находиться на максимальном уровне в момент, когда пластины полностью разряжены, и приблизится к нулю в момент, когда напряжение на обкладках и источнике будут равны.
  • Сохранение. Поскольку обкладки заряжены противоположно, ионы и электроны будут притягиваться друг к другу, но не смогут соединиться из-за диэлектрической прослойки, создавая электростатическое поле. Благодаря этому полю конденсатор удерживает и сохраняет заряд.
  • Разряд. Если в цепи появляется возможность для электронов протечь другим путём, то напряжение, накопленное между положительными и отрицательными зарядами обкладок, мгновенно реализуется в электрический ток, импульс которого в лампе вспышки преобразуется в световую энергию.

Работа конденсатора

Таким образом в фотовспышке реализуется способность конденсатора накопить для импульса энергию из батареи питания. Аккумулятор фотокамеры также является устройством, накапливающим энергию, но из-за химической природы накопления генерирует и отдаёт её медленно.

Ёмкость, заряд и напряжение

Свойство конденсатора сохранять заряд на пластинах в виде электростатического поля называется ёмкостью. Чем больше площадь обкладок и меньше расстояние между ними, тем большее количество заряда они способны накопить и, соответственно, обладают большей ёмкостью. При подаче напряжения на конденсатор отношение заряда Q к напряжению V даст значение ёмкости С. Свойство конденсатора Формула заряда конденсатора будет выглядеть так:

Q=C*V.

Мера электрической ёмкости — фарад (Ф). Эта единица всегда положительная и не имеет отрицательных значений. 1 Ф равен ёмкости конденсатора, который способен сохранить заряд в 1 кулон на пластинах с напряжением в 1 вольт.

Фарад — очень большая единица измерения, для удобства использования применяют в основном её дольные меры:

  • Микрофарад (мкФ): 1мкФ=1/1000000 Ф.
  • Нанофарад (нФ): 1нФ=1/1000000000 Ф.
  • Пикофарад (пФ): 1пФ=1/000000000000 Ф.

Значение диэлектрика

Кроме общего размера обкладок и расстояния между ними, существует ещё один параметр, влияющий на ёмкость — используемый тип изолятора. Фактор, по которому определяется способность диэлектрика повышать ёмкость конденсатора в сравнении с вакуумом, называется диэлектрической проницаемостью и описывается для разных материалов постоянной величиной от 1 и до бесконечности (теоретически):

  • вакуум: 1,0000;
  • воздух: 1,0006;
  • бумага: 2,5—3,5;
  • стекло: 3—10;
  • оксиды металлов 6—20;
  • электротехническая керамика: до 80.

Значение диэлектрика

Кроме конденсаторов с твёрдым диэлектриком (керамических, бумажных, плёночных) существуют также электролитические. В последних используют алюминиевые или танталовые пластины с оксидным изолирующим слоем в качестве одного электрода и раствор электролита в качестве другого.

Электролитический конденсаторГлавные особенности этой конструкции состоят в том, что она позволяет накапливать сравнительно внушительный заряд при небольших габаритах и является полярным электрическим накопителем. То есть включается в электрическую цепь с соблюдением полярности.

Энергия, которую способны накопить большинство конденсаторов, обычно невелика — не больше сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому конденсаторы не могут заменить, например, аккумуляторные батареи в качестве источника питания. И хотя они способны эффективно выполнять только одну работу (сохранение заряда), их применение весьма многообразно в электрических цепях. Конденсаторы используются как фильтры, для сглаживания сетевого напряжения, в качестве устройств синхронизации и для других целей.

Как найти максимальный заряд конденсатора формула. Энергия конденсатора

Конденсаторы являются неотъемлемой частью электрических схем. В большинстве случаев оперируют такими понятиями, как емкость и рабочее напряжение. Эти параметры являются основополагающими.

В некоторых случаях для более полного понимания работы упомянутого элемента необходимо иметь представление, что означает энергия заряженного конденсатора, как она вычисляется и от чего зависит.

Определение понятия энергии

Наиболее просто вести рассуждения применительно к плоскому конденсатору. В основе его конструкции лежат две металлических обкладки, разделенные тонким слоем диэлектрика.

Если подключить емкость к источнику напряжения, то нужно обратить внимание на следующее:

  • На разделение зарядов по обкладкам электрическим полем затрачивается определенная работа. В соответствии с законом сохранения энергии, эта работа равняется энергии заряженного конденсатора;
  • Разноименно заряженные обкладки притягиваются друг к другу. Энергия заряженного конденсатора в этом случае равняется работе, затраченной на сближение пластин друг к другу вплотную.

Данные соображения позволяют сделать вывод, что формулу энергии заряженного конденсатора можно получить несколькими способами.

Вывод формулы

Энергия заряженного плоского конденсатора наиболее просто определяется, исходя из работы по сближению обкладок.

Рассмотрим силу притяжения единичного заряда одной из обкладок к противоположной:

В данном выражении q0 – величина заряда, E – напряженность поля обкладки.

Поскольку напряженность электрического поля определяется из выражения:

E=q/(2ε0S), где:

  • q – величина заряда,
  • ε0 – электрическая постоянная,
  • S – площадь обкладок,

формулу силы притяжения можно записать как:

Для всех зарядов сила взаимодействия между обкладками, соответственно, составляет:

Работа по сближению пластин равняется произведению силы взаимодействия на пройденное расстояние. Таким образом, энергия заряженного конденсатора определяется выражением:

Важно! В приведенном выражении должна быть разница в положениях пластин. Записывая только одну величину d, подразумеваем, что конечным результатом будет полное сближение, то есть d2=0.

С учетом предыдущих выражений можно записать:

Известно, что емкость плоского конденсатора определяется из такого выражения:

В результате энергия определяется как:

Полученное выражение неудобно тем, что вызывает определенные затруднения определения заряда на обкладках. К счастью, заряд, емкость и напряжение имеют строгую взаимосвязь:

Теперь выражение принимает полностью понятный вид:

Полученное выражение справедливо для конденсаторов любых типов, не только плоских, и позволяет без затруднений в любой момент времени определять накопленную энергию. Емкость обозначается на корпусе и является величиной постоянной. В крайнем случае ее несложно измерять, используя специальные приборы. Напряжение измеряется вольтметром с необходимой точностью. К тому же очень просто зарядить конденсатор не полностью (меньшим напряжением), снизив, таким образом, запасенную энергию.

Для чего необходимо знать энергию

В большинстве случаев применения емкостей в электрических цепях понятие энергии не употребляется. Особенно это относится к время,- и частотозадающим цепям, фильтрам. Но есть области, где необходимо использовать накопители энергии. Наиболее яркий пример –фотографические вспышки. В накопительном конденсаторе энергия источника питания накапливается сравнительно медленно – несколько секунд, но разряд происходит практически мгновенно через электроды импульсной лампы.

Конденсатор, подобно аккумулятору, служит для накопления электрического заряда, но между этими элементами есть много различий. Емкость аккумулятора несравненно выше, чем у конденсатора, но последний способен отдать ее практически мгновенно. Лишь недавно, с появлением ионисторов, это различие несколько сгладилось.

Какова же ориентировочная величина энергии? Можно для примера вычислить ее для уже упомянутой фотовспышки. Пускай, напряжение питания составляет 300 В, а емкость накопительного конденсатора – 1000 мкФ. При полном заряде величина энергии составит 45 Дж. Это довольно большая величина. Прикосновение к выводам заряженного элемента может привести к несчастному случаю.

Как и любая система заряжен-ных тел, конденсатор обладает энер-гией. Вычислить энергию заряжен-ного плоского конденсатора с одно-родным полем внутри него не-сложно.

Энергия заряженного конденса-тора.

Для того чтобы зарядить конденсатор, нужно совершить рабо-ту по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта ра-бота равна энергии конденсатора. В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, со-держащую лампу накаливания, рас-считанную на напряжение в не-сколько вольт (рис. 4). При раз-рядке конденсатора лампа вспыхи-вает. Энергия конденсатора пре-вращается в другие формы: тепло-вую, световую.

Выведем формулу для энергии плоского конденсатора .

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности дру-гой пластины (рис. 5). Согласно формуле W p = qEd. для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

Можно доказать, что эти форму-лы справедливы для энергии любого конденсатора, а не только для плос-кого.

Энергия электрического поля.

Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электриче-ском поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напря-женность.

Так как напряженность электри-ческого поля прямо пропорциональ-на разности потенциалов

(U = Ed), то согласно формуле

энергия конденсатора прямо пропор-циональна напряженности электри-ческого поля внутри него: W p ~ E 2 . Детальный расчет дает следующее значение для энергии поля, приходя-щейся на единицу объема, т.е. для плотности энергии:

где ε 0 — электрическая постоянная

Применение конденсаторов.

Энер-гия конденсатора обычно не очень велика — не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, акку-муляторы в качестве источников электрической энергии.

Но это совсем не означает, что конденсаторы как накопители энергии не получили практического при-менения. Они имеют одно важное свойство: конденсаторы могут на-капливать энергию более или менее длительное время, а при разрядке через цепь малого сопротивления они отдают энергию почти мгновенно. Именно это свойство используют широко на практике.

Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заря-жаемого предварительно специаль-ной батареей. Возбуждение кванто-вых источников света — лазеров осу-ществляется с помощью газораз-рядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроем-кости.

Однако основное применение кон-денсаторы находят в радиотехнике. С этим вы познакомитесь в XI классе.

Энергия конденсатора пропор-циональна его электроемкости и квадрату напряжения между плас-тинами. Вся эта энергия сосредото-чена в электрическом поле. Плот-ность энергии поля проп

Заряд конденсатора, теория и примеры задач

Определение и заряд конденсатора

Возможность конденсатора накопить электрический заряд зависит от главной характеристики конденсатора – емкости (C).

По своему назначению конденсатор можно уподобить батарейке. Однако существует принципиальное отличие в принципах работы этих элементов. Отличаются, также максимальные емкости и скорости зарядки и разряда конденсатора и батарейки.

Если к конденсатору присоединить источник напряжения (рис.1), то на одной из пластин конденсатора станут накапливаться отрицательные заряды (электроны), на другой положительные частицы (положительные ионы). Между обкладками конденсатора находится диэлектрик, вследствие этого, заряды не могут перебраться на противоположную пластину. Однако заметим, что электроны двигаются от источника тока до пластины конденсатора.

При первоначальном соединении конденсатора и источника тока на обкладках конденсатора много свободного места. Это означает, что сопротивление току этот момент времени минимально, сам ток максимален. В ходе зарядки конденсатора сила тока в цепи постепенно падает, до того момента пока не закончится свободное место на обкладках. При полной зарядке конденсатора ток в цепи прекратится.

Время, которое затрачивается на зарядку конденсатора от нулевого заряда (максимального тока) до полностью заряженного конденсатора (минимальная или нулевая сила тока) называют переходным периодом заряда конденсатора. На практике процесс зарядки конденсатора считают законченным, если сила тока уменьшилась до 1% от начальной величины.

Величина заряда конденсатора (q) связана с его емкостью (C) и разностью потенциалов (U) между его обкладками как:

   

Примеры решения задач

Понравился сайт? Расскажи друзьям!

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *