Site Loader

Содержание

⚡️Как проверить кварцевый резонатор — тестер для проверки

На чтение 2 мин Опубликовано Обновлено

Кварцевые резонаторы, как и большинство других радиокомпонентов, желательно проверить на работоспособность перед их использованием в радиолюбительской практике. Одна из простейших схем такого пробника была опубликована в чешском радиолюбительском журнале. Схема пробника предельно проста в повторении, поэтому представляет интерес для широкого круга радиолюбителей.

Кварцевые резонаторы относятся к простейшим радиокомпонентам, но у радиолюбителей практически нет приборов для их проверки перед использованием. Это подчас приводит к недоразумениям. Внешне никаких повреждений кварцевый резонатор может не иметь, а в схеме не работает. Причин этому может быть много. В частности, одна из них – падение резонатора из-за неосторожного обращения. Произвести первичную проверку кварцевых резонаторов еще до их использования поможет простая конструкция, описанная в [1].

Проверяемый кварцевый резонатор подключается к контактам К2 (рис.1). На транзисторе Т1 выполнен широкодиапазонный генератор. Он рассчитан на проверку кварцев, рабочая частота которых находится в диапазоне 1…50 МГц. Несколько изменив параметры некоторых радиокомпонентов схемы, в частности. С2 и СЗ. можно проверять и другие кварцы.

В том случае, если кварцевый резонатор работоспособен. на эмиттере транзистора Т1 присутствует высокочастотное переменное напряжение. Диодами D1, D2 оно выпрямляется, сглаживается конденсатором С5 и подается на базу ключевого транзистора Т2, отпирая его. При этом светится светодиод LD1.

Схема питается от источника напряжением 9 В, но можно использовать источник напряжением, например, 5 В или 12 В. В большинстве случаев производить подбор элементов схемы при этом не потребуется, но если такая потребность возникла, то в первую очередь следует изменить номинал резисторов R1, R2.

Как проверить кварцевый резонатор в часах

Как проверить кварц на работоспособность, простая схема.

Простой и надежный способ проверки кварцевых резонаторов на исправность, простая схема генератора для проверки кварцев. 90% неисправностей кварцевых резонаторов приходится на пульты дистанционного управления вот на них мы пока и остановимся. Я хочу предложить свой метод проверенный не раз.

На первом этапе не нужны вообще никакие приборы! Нам понадобитсялюбой радиоприёмник или на худой конец музыкальный центр если нет приёмника, но тогда к центру нужно подключитъ наружную антенну к разъёму СВ-КВ что не нужно делать с радиоприёмником по причине того, что там есть магнитная антенна.

Включаем на средние волны (СВ), можно и на короткие но там похуже, подносим пульт к приёмнику или к антенне музыкального центра, и нажимаем кнопки. В приёмнике мы услышим характерный звук импульсов, -значит кварцевый резонатор и микросхема с обвязкой в пульте уже исправны.

После этого придётся раскрыть пульт и проверить светодиод.

Если в приёмнике мы ничего не слышим? Не хочу останавливаться на питании, думаю каждый с этого начинает любой ремонт. Выпаиваем аккуратно кварц, не перегревая его.

Теперь мы подошли к второму этапу непосредственно проверки кварцевого резонатора можно при помощи мультиметра 890 серии который очень распространён. Вставляем его в гнездо «Сх» и измеряем его ёмкость, при исправном резонаторе прибор покажет сотни пФ при неисправном единицы максимум десятки. Вот пример (частота резонатора — ёмкость на приборе) 440кГц-345пФ 500кГц-490пФ 4мГц-45пФ.

Опираться на эти значения как понимаете можно относительно так как погрешность у этого метода 10-15%. Но мы ведь с самого начала ставили цель проверить рабочий-нерабочий и не более.

Рис.1. Схема генератора для проверки кварцев.

Есть ещё один способ, он самый точный но нужно взятъ в руки паяльник и спаять очень простую схемку (рис.1) на микросхеме К155ЛАЗ. В схеме два резистора 330-670 Ом конденсатор любой. Вот собираем эту схемку и если к конденсатору подключим вход частотомера то узнаем частоту кварца с точностью, с которой измеряет Ваш частотомер.

А если частотомера нет тоже не огорчайтесь, возьмите всё тот же приёмник, к свободной ножке конденсатора прикрутите 0,5-1м провода, прообраз антенны, и слушайте на приемнике сигнал генератора в зависимости от частоты кварца на основной или 3 или 5 гармонике, то есть если у Вас, к примеру кварц на 440кГц то сигнал генератора Вы услышите на 440кГц,1320кГц и 2200кГц и так далее, это принцип кварцевого калибратора которые раньше стояли почти во всех военных радиоприёмниках.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов.

Колебаниям уделяется одна из самых важных ролей в современном мире. Так, даже существует так называемая теория струн, которая утверждает, что всё вокруг нас – это просто волны. Но есть и другие варианты использования данных знаний, и одна из них – это кварцевый резонатор. Так уж бывает, что любая техника периодически выходит из строя, и они тут не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как надо?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором называют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но между ними есть разница в пользу первого. Как известно, для характеристики колебательного контура используют понятие добротности. В резонаторе на основе кварцев она достигает очень высоких значений – в границах 10 5 –10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально расположенного прямоугольника, который с обеих сторон «зажат» пластинами. Внешне на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками.

Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р).

Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество – легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон — 1-10 МГц.

Для увеличения точности можно к выходу генератора подключить частотомер или осциллограф. Тогда можно будет рассчитать искомый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, причем как на гармониках, так и на основной частоте, что, в свою очередь, может дать значительное отклонение. Посмотрите на приведённые схемы (эту и предыдущую). Как видите, существуют разные способы искать частоту, и тут придётся экспериментировать. Главное – соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует довольно много способов вывести свой кварцевый резонатор из строя. С некоторыми самыми популярными стоит ознакомиться, чтобы в будущем избежать каких-то проблем:

  1. Падения с высоты. Самая популярная причина. Помните: всегда необходимо содержать рабочее место в полном порядке и следить за своими действиями.
  2. Присутствие постоянного напряжения. В целом кварцевые резонаторы не боятся его. Но прецеденты были. Для проверки работоспособности включите последовательно конденсатор на 1000 мФ – этот шаг возвратит его в строй или позволит избежать негативных последствий.
  3. Слишком большая амплитуда сигнала. Решить данную проблему можно разными способами:
  • Увести частоту генерации немного в сторону, чтобы она отличалась от основного показателя механического резонанса кварца. Это более сложный вариант.
  • Понизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор действительно из строя. Так, причиной падения активности может быть флюс или посторонние частицы (необходимо в таком случае его качественно очистить). Также может быть, что слишком активно эксплуатировалась изоляция, и она потеряла свои свойства. Для контрольной проверки по этому пункту можно на КТ315 спаять «трехточку» и проверить осцом (одновременно можно сравнить активность).

Заключение

В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой — и тогда работа кварцевого резонатора будет меньше беспокоить.

Как Проверить Кварцевый Резонатор Мультиметром.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов

Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас – это просто волны. Но есть и другие варианты использования данных познаний, и одна из их – это кварцевый резонатор. Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором именуют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но меж ними есть разница в пользу первого. Как понятно, для свойства колебательного контура употребляют понятие добротности. В резонаторе на базе кварцев она добивается очень больших значений – в границах 10 5 –10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально размещенного прямоугольника, который с обеих сторон «зажат» пластинами. Снаружи на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо либо брусок. На него наносится как минимум два электрода, которые являются проводящими полосами. Пластинка закрепляется и имеет свою свою резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг либо изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна либо очень близка к своим значениям, то требуется наименьшее количество энергии при значимых различиях для поддержания функционирования. Сейчас можно перебегать к свету главной препядствия, из-за чего, фактически, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 метода, о которых и будет поведано.

Читайте так же

Тут транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а потом сам импульс передаёт на аналоговый частотомер, который построен на 2-ух диодиках Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все другие элементы служат для стабильности работы схемы и чтоб ничего не перегорело. Зависимо от установленной частоты может изменяться напряжение, которое есть на конденсаторе С4. Это достаточно ориентировочный метод и его преимущество – легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но есть определённые ограничения: пробовать её на данной схеме следует исключительно в тех случаях, если она находится в ориентировочных рамках от 3-х до 10 МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но дальше подвергнется рассмотрению чертеж, у которого спектр — 1-10 МГц.

Как проверить кварцевый резонатор

Обычная схема для проверки кварцевых резонаторов, а если добавить в схему мультиметр с возможностью измеря…

Проверка кварцевых резонаторов

Обычная схема для проверки работоспособности кварцевых резонаторов, а так же возможность проверки частоты…

Для роста точности можно к выходу генератора подключить частотомер либо осциллограф. Тогда можно будет высчитать разыскиваемый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, при этом как на гармониках, так и на основной частоте, что, в свою очередь, может дать существенное отклонение. Поглядите на приведённые схемы (эту и предшествующую). Видите ли, есть различные методы находить частоту, и здесь придётся экспериментировать. Главное – соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Читайте так же

Данная схема дозволит найти, работоспособны ли два кварцевых резистора, которые работают в рамках от 1-го до 10 МГц. Также благодаря ей можно выяснить сигналы толчков, которые идут меж частотами. Потому вы можете не только лишь найти работоспособность, да и подобрать кварцевые резисторы, которые более подходят друг дружке по своим показателям. Схема реализована с 2-мя задающими генераторами. 1-ый из их работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтоб проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует надавить на кнопку SB1. Обозначенный показатель соответствует сигналу высочайшего уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено нужное значение для проверки (можно напряжение каждую проверку увеличивать на 0,1А-0,2В к рекомендованному в официальной аннотации по использованию механизма). При всем этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет пылать светодиод HL1. 2-ой механизм работает аналогично, и о нём будет докладывать HL2. Если их запустить сразу, то ещё будет пылать светодиод HL4.

Когда сравниваются частоты 2-ух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтоб потом сопоставить характеристики. Узреть зрительно это можно при помощи мерцания светодиода HL4. Для улучшения точности добавляют частотомер либо осциллограф. Если реальные характеристики отличаются на килогерцы, то для определения более частотного кварца нажмите на кнопку SB2. Тогда 1-ый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более частотный, ежели ZQ2.

При проверке всегда:

  1. Прочитайте аннотацию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует достаточно много методов вывести собственный кварцевый резонатор из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:

  1. Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
  2. Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ – этот шаг вернет его в строй либо дозволит избежать негативных последствий.
  3. Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
  • Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
  • Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).

Заключение

В статье подверглось рассмотрению, как проверить работоспособность таких частей электронных схем, как частота кварцевого резонатора, также их свойство. Были обговорены методы установления нужной инфы, также вероятные предпосылки, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой — тогда и работа кварцевого резонатора будет меньше тревожить.

Возможно у Вас есть свои мнения на тему «Как проверить кварцевый резонатор в часах»? Напишите об этом в комментариях.

Схемы для проверки кварцевых резонаторов. | Технические советы и не только

Мультиметр с функцией определения частоты не способен проверить кварцевый резонатор. Но, если собрать специальную схему, то резонатор начнёт работать и на экране появится значение частоты.

Работа на частоте 3.578 МГц.

Работа на частоте 3.578 МГц.

Существует много вариантов схем, но в этой статье рассмотрим только две. Первая схема с минимальным количеством деталей:

Простейшая схема для запуска и проверки кварцевых резонаторов.

Простейшая схема для запуска и проверки кварцевых резонаторов.

Используются следующие радиодетали: транзистор NPN 9018 или 9014 или КТ315;
3 резистора: 100 Ом, 1 кОм и 100 кОм;
4 конденсатора: 2 по 10 нФ (код на конденсаторе 103) и 2 по 100 пФ (код 101). Два последних подбираются по формуле 1000/F, где F — частота резонатора.
Питание 12 В, но может работать в более широком диапазоне, начиная от 1,2 В.

Вторая схема более сложная:

Схема на двух транзисторах.

Схема на двух транзисторах.

Используются 2 транзистора 9018 или другие подходящие, например, перечисленные выше.
3 резистора на 1 кОм, 2 резистора на 10 кОм и резистор на 100 Ом.
2 конденсатора на 10 нФ (103) и 2 на 150 пФ (151).

Они на фотографии ниже:

Резисторы и конденсаторы, используемые во второй схеме.

Резисторы и конденсаторы, используемые во второй схеме.

Эта схема начинает работать от 2,5 В и продолжает до 24 В. Но не все резонаторы выдают нужную частоту во всём диапазоне напряжений. Например, 3,579545 при 12 В запустился на частоте 10,6 МГц.

Повышенная частота работы. 10.6 МГц вместо 3.579 МГц.

Повышенная частота работы. 10.6 МГц вместо 3.579 МГц.

Кварц 27,145 работал только на такой гармонике:

9.047 МГц вместо 27.145 МГц.

9.047 МГц вместо 27.145 МГц.

Для возбуждения на нужной частоте не подошла ни первая, ни вторая схема. Причина мне не известна. Если Вы знаете, то буду рад получить соответствующий комментарий.

Для таких частот рекомендуется делать соединения между элементами как можно короче.

Ещё один удачно проверенный кварц:

Работа на заявленной частоте 4.43 МГц.

Работа на заявленной частоте 4.43 МГц.

Часовые кварцевые резонаторы вообще не запустились. Но их можно проверить, используя схему из часов. Выпаять родной резонатор, присоединить другой, подключить мультиметр через конденсатор 150 пФ к минусу и одному из выводов кварца. Рабочий даст такую частоту:

Частота кварца из часов.

Частота кварца из часов.

Так выглядит устройство для проверки из платы от кварцевых часов:

Часовая плата, переделанная для проверки разных кварцевых резонаторов.

Часовая плата, переделанная для проверки разных кварцевых резонаторов.

Вот что нам показывает Visual Analyser:

Visual Analyser показывает характеристики работы часового кварца.

Visual Analyser показывает характеристики работы часового кварца.

Visual Analyser является отличным виртуальным осциллографом для компьютера. Обзор программы. Ссылки на две статьи с применением этой программы: 1 и 2.

Благодарю Вас за то, что дочитали мою статью! Я старался для Вас, отблагодарите подпиской!
Если информация понравилась, ставьте лайки. Также буду рад комментариям!

Как проверить кварцевый резонатор частоты. Кварцевый резонатор-структура, принцип работы, как проверить

Современная цифровая техника требует высокой точности, поэтому совсем неудивительно, что практически любое цифровое устройство, какое бы не попалось сегодня на глаза обывателю, содержит внутри кварцевый резонатор.

Кварцевые резонаторы на различные частоты необходимы в качестве надежных и стабильных источников гармонических колебаний, чтобы цифровой микроконтроллер мог бы опереться на эталонную частоту, и оперировать с ней в дальнейшем, в процессе работы цифрового устройства. Таким образом, кварцевый резонатор — это надежная замена колебательному LC-контуру.

Если рассмотреть простой колебательный контур, состоящий из и , то быстро выяснится, что добротность такого контура в схеме не превысит 300, к тому же емкость конденсатора будет плавать в зависимости от температуры окружающей среды, то же самое произойдет и с индуктивностью.

Не даром есть у конденсаторов и катушек такие параметры как ТКЕ — температурный коэффициент емкости и ТКИ — температурный коэффициент индуктивности, показывающие, насколько изменяются главные параметры этих компонентов с изменением их температуры.

В отличие от колебательных контуров, резонаторы на базе кварца обладают недостижимой для колебательных контуров добротностью, которая измеряется значениями от 10000 до 10000000, причем о температурной стабильности кварцевых резонаторов речи не идет, ведь частота остается постоянной при любом значении температуры, как правило из диапазона от -40°C до +70°C.

Так, благодаря высоким показателям температурной стабильности и добротности, кварцевые резонаторы применяются всюду в радиотехнике и цифровой электронике.

Для задания тактовой частоты, ему всегда необходим генератор тактовой частоты, на который он мог бы надежно опереться, и генератор этот всегда нужен высокочастотный и при том высокоточный. Здесь то и приходит на помощь кварцевый резонатор. Конечно, в некоторых применениях можно обойтись пьезокерамическими резонаторами с добротностью 1000, и таких резонаторов достаточно для электронных игрушек и бытовых радиоприемников, но для более точных устройств необходим кварц.

В основе работы кварцевого резонатора — , возникающий на кварцевой пластинке. Кварц представляет собой полиморфную модификацию диоксида кремния SiO2, и встречается в природе в виде кристаллов и гальки. В свободном виде в земной коре кварца около 12%, кроме того в виде смесей в составе других минералов также содержится кварц, и в общем в земной коре более 60% кварца (массовая доля).

Для создания резонаторов подходит низкотемпературный кварц, обладающий ярко выраженными пьезоэлектрическими свойствами. Химически кварц весьма устойчив, и растворить его можно лишь в гидрофторидной кислоте. По твердости кварц превосходит опал, но до алмаза не дотягивает.

При изготовлении кварцевой пластинки, от кристалла кварца под строго заданным углом вырезают кусочек. В зависимости от угла среза полученная кварцевая пластинка будет отличаться по своим электромеханическим свойствам.

Так получается колебательная система, обладающая собственной резонансной частотой, и кварцевый резонатор, полученный таким образом, обладает собственной резонансной частотой, определяемой электромеханическими параметрами.

Теперь если приложить к металлическим электродам пластики переменное напряжение данной резонансной частоты, то проявится явление резонанса, и амплитуда гармонических колебаний пластинки весьма значительно возрастет. При этом сопротивление резонатора сильно понизится, то есть процесс аналогичен происходящему в последовательном колебательном контуре. В силу высокой добротности такого «колебательного контура», энергетические потери при его возбуждении на резонансной частоте пренебрежимо малы.

На эквивалентной схеме: C2 — статическая электроемкость пластинок с держателями, L — индуктивность, С1 — емкость, R — сопротивление, отражающие электромеханические свойства установленной пластинки кварца. Если убрать монтажные элементы, останется последовательный LC-контур.

В процессе монтажа на печатную плату, кварцевый резонатор нельзя перегревать, ведь конструкция его довольно хрупка, и перегрев может привести к деформации электродов и держателя, что непременно отразится на работе резонатора в готовом устройстве. Если же разогреть кварц до 5730°C, он вовсе утратит свои пьезоэлектрические свойства, но, к счастью, нагреть элемент паяльником до такой температуры невозможно.

Обозначение кварцевого резонатора на схеме похоже на обозначение конденсатора с прямоугольником между пластинами (кварцевая пластинка), и с надписью «ZQ» или «Z».

Часто причиной повреждения кварцевого резонатора является падение или сильный удар устройства, в котором он установлен, и тогда необходимо заменить резонатор на новый с той же резонансной частотой. Такие повреждения свойственны малогабаритным приборам, которые легко уронить. Однако, по статистике, подобные повреждения кварцевых резонаторов встречаются крайне редко, и чаще неисправность прибора оказывается вызвана иной причиной.

Чтобы проверить кварцевый резонатор на исправность, можно собрать небольшой пробник, который поможет не только убедиться в работоспособности резонатора, но и увидеть его резонансную частоту. Схема пробника представляет собой типичную схему кварцевого генератора на одном транзисторе.

Включив резонатор между базой и минусом (можно через защитный конденсатор на случай короткого замыкания в резонаторе), остается измерить частотомером резонансную частоту. Эта схема подойдет и для предварительной настройки колебательных контуров.

Когда схема включена, исправный резонатор станет способствовать генерации колебаний, и на эмиттере транзистора можно будет наблюдать переменное напряжение, частота которого будет соответствовать основной резонансной частоте тестируемого кварцевого резонатора.

Подключив к выходу пробника частотомер, пользователь сможет наблюдать эту резонансную частоту. Если частота стабильна, если небольшой нагрев резонатора поднесенным паяльником не приводит к сильному уплыванию частоты, то резонатор исправен. Если же генерации не будет, или частота будет плавать или окажется совсем другой, чем должна быть для тестируемого компонента, то резонатор неисправен, и его следует заменить.

Данный пробник удобен и для предварительной настройки колебательных контуров, в этом случае конденсатор C1 обязателен, хотя при проверке резонаторов его можно из схемы исключить. Контур просто подключается вместо резонатора, и схема начинает генерировать колебания аналогичным образом.

Пробник собранный по приведенной схеме замечательно работает на частотах от 15 до 20 МГц. Для иных диапазонов вы всегда можете поискать схемы в интернете, благо их там много, как на дискретных компонентах, так и на микросхеме.

Что такое генератор? Генератор – это по сути устройство, которое преобразует один вид энергии в другой. В электронике очень часто можно услышать словосочетание “генератор электрической энергии, генератор частоты , ” и тд.

Кварцевый генератор представляет из себя генератор частоты и имеет в своем составе . В основном кварцевые генераторы бывают двух видов:

те, которые могут выдавать синусоидальный сигнал

и те, которые выдают прямоугольный сигнал


Чаще всего в электронике используется прямоугольный сигнал

Схема Пирса

Для того, чтобы возбудить кварц на частоте резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца – это классический генератор Пирса , который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:


Пару слов о том как работает схема. В схеме есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?

В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку


Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салаге, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц в 15. Прививка набухала на пол руки)) И даже один раз меня водили сдавать кровь в подозрении на туберкулез, но как оказалось, не нашли. Оно и неудивительно;-).

Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд. Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса;-). Скажем так, “физическое ограничение”.

Первым делом нам надо подобрать катушку индуктивности . Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков


Весь процесс контролировал с помощью LC-метра , добиваясь номинала, как на схеме – 2,5 мГн. Если не доставало, прибавлял витки, если перебарщивал номинал, то убавлял. В результате добился вот такой индуктивности:


Его правильное название: .

Распиновка слева-направо: Сток – Исток – Затвор


Небольшое лирическое отступление.

Итак, кварцевый генератор мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф


Первым делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 Мегагерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).


Внизу в левом углу осциллограф нам показывает частоту:


Как вы видите 32,77 Мегагерц. Главное, что наш кварц живой и схемка работает!

Давайте возьмем кварц с частотой 27 Мегагерц:


Показания у меня прыгали. Заскринил, что успел:


Частоту тоже более-менее показал верно.

Ну и аналогично проверяем все остальные кварцы, которые у меня есть.

Вот осциллограмма кварца на 16 Мегагерц:


Осциллограф показал частоту ровнехонько 16 Мегагерц.

Здесь поставил кварц на 6 Мегагерц:


Ровно 6 Мегагерц

На 4 Мегагерца:


Все ОК.

Ну и возьмем еще советский на 1 Мегагерц. Вот так он выглядит:


Сверху написано 1000 Килогерц = 1МегаГерц;-)


Смотрим осциллограмму:


Рабочий!

При большом желании можно даже замерять частоту китайским генератором-частотомером :


400 Герц погрешность для старенького советского кварца не очень и много. Но лучше, конечно, воспользоваться нормальным профессиональным частотомером;-)

Часовой кварц

С часовым кварцем кварцевый генератор по схеме Пирса отказался работать.


“Что еще за часовой кварц?” – спросите вы. Часовой кварц – это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 2 15 . Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.

Принцип работы этой микросхемы такой: п осле того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду . А как вы помните, колебание один раз в секунду – это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название – .

В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый ряд других функций, типа будильника, календаря и тд. Такие микросхемы называется RTC (R eal T ime C lock) или в переводе с буржуйского Часы Реального Времени.

Схема Пирса для прямоугольного сигнала

Итак, вернемся к схеме Пирса. Предыдущая схема Пирса генерирует синусоидальный сигнал

Но также есть видоизмененная схема Пирса для прямоугольного сигнала

А вот и она:

Номиналы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 Мегагерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ. Точно не прогадаете.

Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.

Резистор R1 можно менять от 1 и до 20 МОм, а R2 от нуля и до 100 кОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.

Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит из шести инверторов, но использовать мы будем только один инвертор:


Вот ее распиновка:

Подключив к этой схеме часовой кварц, осциллограф выдал вот такую осциллограмму:


Кстати, вам эта часть схемы ничего не напоминает?

Не эта ли часть схемы используется для тактирования микроконтроллеров AVR ?

Она самая! Просто недостающие элементы схемы уже есть в самом МК;-)

Плюсы кварцевых генераторов

Плюсы кварцевых генераторов частоты – это высокая частотная стабильность. В основном это 10 -5 – 10 -6 от номинала или, как часто говорят, ppm (от англ. parts per million) — частей на миллион, то есть одна миллионная или числом 10 -6 . Отклонение частоты в ту или иную сторону в кварцевом генераторе в основном связано с изменением температуры окружающей среды, а также со старением кварца. При старении кварца, частота кварцевого генератора стает чуточку меньше с каждым годом примерно на 1,8х10 -7 от номинала. Если, скажем, я взял кварц с частотой в 10 Мегагерц (10 000 000 Герц) и поставил его в схему, то за год его частота уйдет примерно на 2 Герца в минус;-) Думаю, вполне терпимо.

В настоящее время кварцевые генераторы выпускают в виде законченных модулей. Некоторые фирмы, производящие такие генераторы, достигают частотной стабильности до 10 -11 от номинала! Выглядят готовые модули примерно так:


или так

Такие модули кварцевых генераторов в основном имеют 4 вывода. Вот распиновка квадратного кварцевого генератора:

Давайте проверим один из них. На нем написано 1 МГц


Вот его вид сзади:


Вот его распиновка:

Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на 8, а минусом на 4, с выхода 5 я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 Мегагерц, с очень небольшими выбросами.


Ну прям загляденье!

Да и китайский генератор-частотомер показал точную частоту:


Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок.

Резонатором называют систему способную на колебательные движения с максимальной амплитудой при определённых условиях. Кварцевый резонатор — пластина из кварца, обычно в форме параллелепипеда, действует так при подаче переменного тока (частота для разных пластин различна). Рабочую частоту этой детали определяет её толщина. Зависимость здесь обратная. Наибольшую частоту (не превышающую при том 50 МГц) имеют самые тонкие пластины.

В редких случаях можно добиться частоты в 200 МГц. Это допустимо только при работе на обертоне (неосновной частоте, превышающей основной показатель). Специальные фильтры способны погасить основную частоту кварцевой пластины и выделить кратную ей обертоновую.

Для работы подходят только нечётные гармоники (другое название обертонов). К тому же, при их использовании показания по частоте увеличиваются на более низких амплитудах. Обычно максимальным становится девятикратное уменьшение высоты волны. Далее засечь изменения становится затруднительно.

Кварц относится к диэлектрикам. В комбинации с парой металлических электродов он превращается в конденсатор, но его ёмкость мала и нет смысла её замерять. На схеме эта деталь отображается как кристаллический прямоугольник между пластинами конденсатора. Кварцевой пластине, как и иным упругим телам, свойственно наличие собственной резонансной частоты, зависящей от её размера. Пластины малой толщины имеют более высокую резонансную частоту. Как итог: необходимо лишь выбрать пластину с такими параметрами, при которых частота механических колебаний совпадала бы с приложенной к пластине частотой переменного напряжения. Кварцевая пластина, пригодна только при использовании переменного тока, поскольку постоянный ток может спровоцировать лишь единичное сжатие или разжатие.

В результате очевидно, что кварц является весьма простой резонансной системой (со всеми свойствами, присущими для колебательных контуров), но это вовсе не снижает качество его работы.

Кварцевый резонатор является даже более действенным. Показатель добротности у него составляет 10 5 — 10 7 . Резонаторы из кварца увеличивают общий срок службы конденсатора за счёт своей температурной устойчивости, долговечности и технологичности. Удобства в применении добавляют и небольшие размеры деталей. Но самое главное достоинство — способность обеспечивать стабильную частоту.

К числу минусов относят лишь узость диапазона сонастройки имеющейся частоты с частотой внешних элементов.

В любом случае, кварцевые резонаторы весьма популярны, и используются в часах, многочисленной радиоэлектронике и иных приборах. В некоторых странах кварцевые пластины устанавливаются прямо на тротуарах, а люди продуцируют энергию просто ходя туда и обратно.

Принцип работы

Функции кварцевого резонатора обеспечиваются пьезоэлектрическим эффектом. Данное явление провоцирует возникновение электрического заряда в случае, если происходит механическая деформация некоторых типов кристаллов (из природных сюда относят кварц и турмалин). Сила заряда при этом находится в прямой зависимости от силы деформации. Это называют прямым пьезоэлектрическим эффектом. Суть обратного пьезоэлектрического эффекта заключается в том, что если на кристалл воздействовать электрическим полем, он будет деформироваться.

Проверка работоспособности

Существует несколько несложных методов проверки состояния кварца в механизме. Вот пара из них:

  1. Чтобы достаточно точно определить состояние резонатора, потребуется подсоединить к генератору на выход осцилограф или частометр. Требуемые данные можно будет вычислить при помощи фигур Лиссажу. Однако, при подобных обстоятельствах возможно непреднамеренное возбуждение колебательных движений кварца как на обертонических, так и на основных частотах. Это может создавать неточность замеров. Такой метод может быть использован в диапазоне от 1 до 10 МГц.
  2. Частота работы генератора зависит от кварцевого резонатора. При подаче энергии генератор продуцирует импульсы, совпадающие с частотой основного резонанса. Череда этих импульсов пропускается через конденсатор, который отсеивает постоянный компонент, оставляя только обертоны, а сами импульсы передаются аналоговому частометру. Его легко можно сконструировать из двух диодов, конденсатора, резистора и микроамперметра. В зависимости от показаний по частоте будет изменяться и напряжение на конденсаторе. Данный метод тоже не отличается точностью и может применятся только в диапазоне от 3 до 10 МГц.

В целом, достоверную проверку кварцевых резонаторов можно осуществлять только при их замене. Да и подозревать поломку резонатора в механизме стоит только в самом крайнем случае. Хотя к портативной электронике, подверженной частым падениям, это не относится.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов

Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас — это просто волны. Но есть и другие варианты использования данных познаний, и одна из их — это кварцевый резонатор. Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором именуют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но меж ними есть разница в пользу первого. Как понятно, для свойства колебательного контура употребляют понятие добротности. В резонаторе на базе кварцев она добивается очень больших значений — в границах 10 5 -10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально размещенного прямоугольника, который с обеих сторон «зажат» пластинами. Снаружи на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо либо брусок. На него наносится как минимум два электрода, которые являются проводящими полосами. Пластинка закрепляется и имеет свою свою резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг либо изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна либо очень близка к своим значениям, то требуется наименьшее количество энергии при значимых различиях для поддержания функционирования. Сейчас можно перебегать к свету главной препядствия, из-за чего, фактически, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 метода, о которых и будет поведано.

Способ № 1

Читайте так же

Тут транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а потом сам импульс передаёт на аналоговый частотомер, который построен на 2-ух диодиках Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все другие элементы служат для стабильности работы схемы и чтоб ничего не перегорело. Зависимо от установленной частоты может изменяться напряжение, которое есть на конденсаторе С4. Это достаточно ориентировочный метод и его преимущество — легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но есть определённые ограничения: пробовать её на данной схеме следует исключительно в тех случаях, если она находится в ориентировочных рамках от 3-х до 10 МГц. Проверка кварцевых резонаторов , что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но дальше подвергнется рассмотрению чертеж, у которого спектр — 1-10 МГц.

Как проверить кварцевый резонатор

Обычная схема для проверки кварцевых резонаторов, а если добавить в схему мультиметр с возможностью измеря…

Проверка кварцевых резонаторов

Обычная схема для проверки работоспособности кварцевых резонаторов, а так же возможность проверки частоты…

Способ № 2

Для роста точности можно к выходу генератора подключить частотомер либо осциллограф. Тогда можно будет высчитать разыскиваемый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, при этом как на гармониках, так и на основной частоте, что, в свою очередь, может дать существенное отклонение. Поглядите на приведённые схемы (эту и предшествующую). Видите ли, есть различные методы находить частоту, и здесь придётся экспериментировать. Главное — соблюдайте технику безопасности.

Проверка сразу двух

кварцевых резонаторов

Читайте так же

Данная схема дозволит найти, работоспособны ли два кварцевых резистора, которые работают в рамках от 1-го до 10 МГц. Также благодаря ей можно выяснить сигналы толчков, которые идут меж частотами. Потому вы можете не только лишь найти работоспособность, да и подобрать кварцевые резисторы, которые более подходят друг дружке по своим показателям. Схема реализована с 2-мя задающими генераторами. 1-ый из их работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтоб проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует надавить на кнопку SB1. Обозначенный показатель соответствует сигналу высочайшего уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено нужное значение для проверки (можно напряжение каждую проверку увеличивать на 0,1А-0,2В к рекомендованному в официальной аннотации по использованию механизма). При всем этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет пылать светодиод HL1. 2-ой механизм работает аналогично, и о нём будет докладывать HL2. Если их запустить сразу, то ещё будет пылать светодиод HL4.

Когда сравниваются частоты 2-ух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтоб потом сопоставить характеристики. Узреть зрительно это можно при помощи мерцания светодиода HL4. Для улучшения точности добавляют частотомер либо осциллограф. Если реальные характеристики отличаются на килогерцы, то для определения более частотного кварца нажмите на кнопку SB2. Тогда 1-ый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более частотный, ежели ZQ2.

При проверке всегда:

  1. Прочитайте аннотацию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует достаточно много методов вывести собственный кварцевый резонатор из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:

  1. Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
  2. Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ — этот шаг вернет его в строй либо дозволит избежать негативных последствий.
  3. Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
  • Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
  • Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).

Поводом для создания этого прибора послужило немалое количество накопившихся кварцевых резонаторов как купленных, так и выпаянных с разных плат, причём на многих отсутствовали всякие обозначения. Путешествуя по бескрайним просторам интернета и пробуя собрать и запустить различные , было решено придумать что-нибудь своё. После многих экспериментов с разными генераторами как на разных цифровых логиках, так и на транзисторах, остановил выбор на 74HC4060, правда устранить автоколебания тоже не удалось, но как оказалось при работе устройства это не создаёт помехи.

Схема измерителя кварцев

За основу устройства взяты два генератора CD74HC4060 (74HC4060 не было в магазине, но судя по даташиту они ещё «круче»), один работает на низкой частоте, второй на высокой. Самыми низкочастотными какие у меня были, оказались часовые кварцы, а самым высокочастотным оказался негармониковый кварц на 30 МГц. Генераторы из-за их склонности к самовозбуждению было решено переключать просто коммутируя напряжение питания, о чём индицируют соответствующие светодиоды. После генераторов установил повторитель на логике. Возможно вместо резисторов R6 и R7 лучше установить конденсаторы (сам я не проверял).

Как оказалось, в устройстве запускаются не только кварцы, но и всякие фильтры о двух и более ногах, которые с успехом и были подключены в соответствующие разъёмы. Один «двуногий» похожий на керамический конденсатор запустился на 4 МГЦ, который после был с успехом применён вместо кварцевого резонатора.

На снимках видно, что применены два вида разъёмов для проверки радиодеталей. Первый сделан из частей панелек — для выводных деталей, а второй представляет фрагмент платы приклеенный и припаянный к дорожкам через соответствующие отверстия — для SMD кварцевых резонаторов. Для вывода информации применён упрощённый частотомер на микроконтроллере PIC16F628 или PIC16F628A, который автоматически переключает предел измерения, то есть на индикаторе частота будет или в кГц или в МГц .

О деталях устройства

Часть платы собрана на выводных деталях, а часть на SMD. Плата разработана под ЖКИ индикатор «Винстар» однострочный Wh2601A (это тот у которого контакты слева вверху), контакты 15 и 16, служащие для подсветки, не разведены, но кому надо может для себя добавить дорожки и детали. Я не развёл подсветку так как применил индикатор без подсветки от какого-то телефона на таком-же контроллере, но сначала стоял винстаровский. Кроме Wh2601A можно применить Wh2602B — двухстрочный, но вторая строка задействована не будет. Вместо транзистора, что на схеме можно применить любой такой же проводимости желательно с бОльшим h31. На плате разведены два входа питания, один от мини USB, другой через мост и 7805. Также предусмотрено место под стабилизатор в другом корпусе.

Настройка прибора

При настройке кнопкой S1 включить режим НЧ (загорится светодиод VD1) и воткнув в соответствующий разъём кварцевый резонатор на 32768Гц (желательно с материнской платы компьютера) подстроечным конденсатором С11 установить на индикаторе частоту 32768Гц. Резистором R8 устанавливается максимальная чувствительность. Все файлы — платы, прошивки, даташиты на используемые радиоэлементы и другое, скачайте в архиве . Автор проекта — nefedot .

Обсудить статью ПРИБОР ДЛЯ ПРОВЕРКИ ЧАСТОТЫ КВАРЦЕВ

Как проверить генерацию на кварце. Что такое кварцевый резонатор и как он работает? Проверка кварцевых резонаторов

Колебаниям уделяется одна из самых важных ролей в современном мире. Так, даже существует так называемая теория струн, которая утверждает, что всё вокруг нас — это просто волны. Но есть и другие варианты использования данных знаний, и одна из них — это кварцевый резонатор. Так уж бывает, что любая техника периодически выходит из строя, и они тут не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как надо?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором называют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но между ними есть разница в пользу первого. Как известно, для характеристики колебательного контура используют понятие добротности. В резонаторе на основе кварцев она достигает очень высоких значений — в границах 10 5 -10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально расположенного прямоугольника, который с обеих сторон «зажат» пластинами. Внешне на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками. Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Способ № 1

Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество — легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон — 1-10 МГц.

Способ № 2

Для увеличения точности можно к выходу генератора подключить частотомер или осциллограф. Тогда можно будет рассчитать искомый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, причем как на гармониках, так и на основной частоте, что, в свою очередь, может дать значительное отклонение. Посмотрите на приведённые схемы (эту и предыдущую). Как видите, существуют разные способы искать частоту, и тут придётся экспериментировать. Главное — соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

Особенности проверок

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует довольно много способов вывести свой кварцевый резонатор из строя. С некоторыми самыми популярными стоит ознакомиться, чтобы в будущем избежать каких-то проблем:

  1. Падения с высоты. Самая популярная причина. Помните: всегда необходимо содержать рабочее место в полном порядке и следить за своими действиями.
  2. Присутствие постоянного напряжения. В целом кварцевые резонаторы не боятся его. Но прецеденты были. Для проверки работоспособности включите последовательно конденсатор на 1000 мФ — этот шаг возвратит его в строй или позволит избежать негативных последствий.
  3. Слишком большая амплитуда сигнала. Решить данную проблему можно разными способами:
  • Увести частоту генерации немного в сторону, чтобы она отличалась от основного показателя механического резонанса кварца. Это более сложный вариант.
  • Понизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор действительно из строя. Так, причиной падения активности может быть флюс или посторонние частицы (необходимо в таком случае его качественно очистить). Также может быть, что слишком активно эксплуатировалась изоляция, и она потеряла свои свойства. Для контрольной проверки по этому пункту можно на КТ315 спаять «трехточку» и проверить осцом (одновременно можно сравнить активность).

Заключение

В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой — и тогда работа кварцевого резонатора будет меньше беспокоить.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов

Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас — это просто волны. Но есть и другие варианты использования данных познаний, и одна из их — это кварцевый резонатор. Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором именуют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но меж ними есть разница в пользу первого. Как понятно, для свойства колебательного контура употребляют понятие добротности. В резонаторе на базе кварцев она добивается очень больших значений — в границах 10 5 -10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально размещенного прямоугольника, который с обеих сторон «зажат» пластинами. Снаружи на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо либо брусок. На него наносится как минимум два электрода, которые являются проводящими полосами. Пластинка закрепляется и имеет свою свою резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг либо изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна либо очень близка к своим значениям, то требуется наименьшее количество энергии при значимых различиях для поддержания функционирования. Сейчас можно перебегать к свету главной препядствия, из-за чего, фактически, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 метода, о которых и будет поведано.

Способ № 1

Читайте так же

Тут транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а потом сам импульс передаёт на аналоговый частотомер, который построен на 2-ух диодиках Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все другие элементы служат для стабильности работы схемы и чтоб ничего не перегорело. Зависимо от установленной частоты может изменяться напряжение, которое есть на конденсаторе С4. Это достаточно ориентировочный метод и его преимущество — легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но есть определённые ограничения: пробовать её на данной схеме следует исключительно в тех случаях, если она находится в ориентировочных рамках от 3-х до 10 МГц. Проверка кварцевых резонаторов , что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но дальше подвергнется рассмотрению чертеж, у которого спектр — 1-10 МГц.

Как проверить кварцевый резонатор

Обычная схема для проверки кварцевых резонаторов, а если добавить в схему мультиметр с возможностью измеря…

Проверка кварцевых резонаторов

Обычная схема для проверки работоспособности кварцевых резонаторов, а так же возможность проверки частоты…

Способ № 2

Для роста точности можно к выходу генератора подключить частотомер либо осциллограф. Тогда можно будет высчитать разыскиваемый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, при этом как на гармониках, так и на основной частоте, что, в свою очередь, может дать существенное отклонение. Поглядите на приведённые схемы (эту и предшествующую). Видите ли, есть различные методы находить частоту, и здесь придётся экспериментировать. Главное — соблюдайте технику безопасности.

Проверка сразу двух

кварцевых резонаторов

Читайте так же

Данная схема дозволит найти, работоспособны ли два кварцевых резистора, которые работают в рамках от 1-го до 10 МГц. Также благодаря ей можно выяснить сигналы толчков, которые идут меж частотами. Потому вы можете не только лишь найти работоспособность, да и подобрать кварцевые резисторы, которые более подходят друг дружке по своим показателям. Схема реализована с 2-мя задающими генераторами. 1-ый из их работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтоб проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует надавить на кнопку SB1. Обозначенный показатель соответствует сигналу высочайшего уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено нужное значение для проверки (можно напряжение каждую проверку увеличивать на 0,1А-0,2В к рекомендованному в официальной аннотации по использованию механизма). При всем этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет пылать светодиод HL1. 2-ой механизм работает аналогично, и о нём будет докладывать HL2. Если их запустить сразу, то ещё будет пылать светодиод HL4.

Когда сравниваются частоты 2-ух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтоб потом сопоставить характеристики. Узреть зрительно это можно при помощи мерцания светодиода HL4. Для улучшения точности добавляют частотомер либо осциллограф. Если реальные характеристики отличаются на килогерцы, то для определения более частотного кварца нажмите на кнопку SB2. Тогда 1-ый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более частотный, ежели ZQ2.

При проверке всегда:

  1. Прочитайте аннотацию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует достаточно много методов вывести собственный кварцевый резонатор из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:

  1. Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
  2. Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ — этот шаг вернет его в строй либо дозволит избежать негативных последствий.
  3. Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
  • Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
  • Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).

Современная цифровая аппаратура нуждается в высокой точности, поэтому часто в цифровых устройствах содержится кварцевый резонатор, который является стабильным и надежным генератором гармонических колебаний. Цифровые работают на основе этой постоянной частоты, и используют ее для работы цифрового прибора. Кварцевые резонаторы являются надежной заменой контура колебаний, собранного на конденсаторе и катушке индуктивности.

Добротность контура колебаний на основе катушки и конденсатора не превышает 300. Она является характеристикой контура колебаний, определяющей величину полосы резонанса. Добротность показывает, во сколько раз энергия колебательной системы превышает потери энергии в течение одного периода колебаний. Чем больше добротность, тем меньше теряется энергии за один период, и медленнее затухают колебания. Емкость конденсатора в обычном контуре колеблется в зависимости от температуры среды. Величина индуктивности катушки также зависит от многих факторов. Существуют даже соответствующие коэффициенты, определяющие зависимость параметров этих элементов от температуры.

Кварцевые резонаторы, в отличие от вышеописанных контуров колебаний, обладают очень большой добротностью, достигающей значения в несколько миллионов. При этом температура в пределах -40 +70 градусов никак не влияет на этот параметр. Высокая стабильность работы кварцевых резонаторов при любой температуре послужила их широкому применению в цифровой электронике и радиотехнике.

Разновидности
По типу корпуса:
  • Для объемной установки (цилиндрические и стандартные).
  • Для поверхностного монтажа.
По материалу корпуса:
  • Металлические.
  • Стеклянные.
  • Пластиковые.
По форме корпуса:
  • Круглые.
  • Прямоугольные.
  • Цилиндрические.
  • Плоские.
По количеству резонансных систем:
  • Одинарные.
  • Двойные.
По защите корпуса:
  • Герметичные.
  • Негерметизированные.
  • Вакуумные.
По назначению:
  • Фильтровые.
  • Генераторные.

Важным свойством кварцевых резонаторов для успешной работы является их активность. Но она не определяется только собственными свойствами. Вся электрическая схема влияет на его активность.

В резонаторах, используемых в фильтрах, применяются такие же виды колебаний, как и в генераторных резонаторах. В фильтрах используются 2-х и 4-х электродные вакуумные резонаторы. Для многозвенных фильтров чаще всего применяются 4-х электродные, так как они более экономичные.

Принцип действия и устройство

Кварцевые резонаторы работают на основе пьезоэлектрического эффекта, образующегося на кварцевой пластинке. Кварц – это природный кристалл. Он представляет собой модификацию соединения кремния с кислородом, и имеет химическую формулу Si O 2 . Массовая доля кварца в земной коре составляет около 60%, в свободном виде 12%. В других минералах также может содержаться кварц.

Для производства кварцевых резонаторов используют низкотемпературный кварц. Он обладает выраженным пьезоэлектрическим эффектом. Химическая устойчивость кварца очень высока, растворить кварц способна только гидрофторидная кислота. По твердости кварц стоит на втором месте после алмаза. Кварцевую пластинку для резонатора изготавливают путем вырезания из кварца кусочка под заданным определенным углом. В зависимости от этого угла среза кварцевая пластинка отличается разными электромеханическими параметрами.

В результате образуется колебательный контур, обладающий собственной частотой резонанса, определяющей работу всего резонатора. Если к электродам пластинки приложить переменное напряжение с частотой резонанса, то возникнет резонансный эффект, а амплитуда колебаний пластинки значительно повысится. При этом резонатор уменьшит свое сопротивление на значительную величину. Этот процесс подобен тому процессу, который происходит в контуре колебаний последовательного вида (на основе катушки и конденсатора). Потери энергии при возбуждении кварцевого резонатора на частоте резонанса очень малы, так как добротность кварцевого контура колебаний очень высока.

Эта эквивалентная схема состоит из:
  • R – Сопротивление.
  • С1 – Емкость.
  • L – Индуктивность.
  • С2 – Статическая электрическая емкость пластинок вместе с держателями.

Эти элементы определяют электромеханические параметры кварцевой пластинки. Если удалить монтажные элементы, получается последовательный контур . При установке на монтажную плату, кварцевый резонатор не переносит чрезмерного нагрева, так как его конструкция очень хрупкая. Сильное нагревание может деформировать держатель и электроды, что отражается на функционировании готового кварцевого резонатора. Кварц полностью теряет свои свойства пьезоэлектрика при нагревании до температуры 5370 градусов. Однако паяльник не способен так сильно разогреваться.

На электрических схемах кварцевый резонатор обозначается по аналогии с конденсатором, но между пластин изображен прямоугольник, символизирующий кварцевую пластинку. На схеме резонатор обозначен «QX ».

Обычно причиной неисправностью кварцевого резонатора становится сильный удар или падение устройства, в котором он находится. В этом случае резонатор подлежит замене на новый, с такими же параметрами. Такие неисправности возникают в маленьких приборах, которые проще уронить, или повредить. Но такие повреждения резонаторов встречаются не часто, и обычно неисправность устройства кроется совсем в другом.

Как проверить кварцевые резонаторы

Для проверки резонатора на его работоспособность, собирают специальный простой тестер, помогающий проверить кроме работы резонатора, еще и его частоту резонанса. Схема такого устройства похожа на кварцевый генератор, собранный на транзисторе.

Подключив резонатор между отрицательным полюсом и базой транзистора через защитный конденсатор, с помощью частотомера измеряют частоту резонанса. Такая схема подходит для настройки контуров колебаний. При включенной схеме исправный резонатор создает колебания. В результате на эмиттере транзистора возникает переменное напряжение с частотой резонанса тестируемого резонатора.

Если к выходу тестера подключить частотомер, то можно измерить частоту резонанса. При стабильной частоте и небольшом нагревании корпуса резонатора частота не должна значительно изменяться. Если частотомер не обнаруживает возникновение частоты, либо она сильно изменяется или имеет большие отличия от номинала, то резонатор негоден и требует замены.

При использовании такого тестера для настройки контуров, емкость С1 обязательна. Но при проверке исправности резонаторов ее присутствие в схеме не требуется. При этом колебательный контур просто подсоединяют на место кварцевого резонатора и тестер начинает создавать колебания таким же образом.

Тестер, выполненный по рассмотренной схеме, хорошо зарекомендовал себя на частоте 15-20 мегагерц. Для других интервалов можно найти другие схемы, собранные на микросхемах и других компонентах.

Сфера применения

Благодаря стабильности параметров кварцевых резонаторов, они нашли широкое использование в различных областях.

  • Многие измерительные устройства работают на основе таких резонаторов, при этом точность измерений очень высока.
  • Пьезокварцевая пластина применяется в качестве резонатора в морском эхолоте для выявления объектов, расположенных в воде, исследования дна моря, определения нахождения отмелей и рифов. Это дает возможность изучения жизни в океане в глубоководных районах, а также создания точных карт морского дна.
  • Кварцевые резонаторы нашли широкую популярность в кварцевых часах , так как частота колебаний кварцевой пластины практически не зависит от температуры, и имеет малое относительное изменение частоты.

Кварцевые резонаторы расширяют свою сферу использования, потребность в них постоянно увеличивается, так как они обладают повышенными метрологическими параметрами, эффективностью работы.

Современная цифровая техника требует высокой точности, поэтому совсем неудивительно, что практически любое цифровое устройство, какое бы не попалось сегодня на глаза обывателю, содержит внутри кварцевый резонатор.

Кварцевые резонаторы на различные частоты необходимы в качестве надежных и стабильных источников гармонических колебаний, чтобы цифровой микроконтроллер мог бы опереться на эталонную частоту, и оперировать с ней в дальнейшем, в процессе работы цифрового устройства. Таким образом, кварцевый резонатор — это надежная замена колебательному LC-контуру.

Если рассмотреть простой колебательный контур, состоящий из и , то быстро выяснится, что добротность такого контура в схеме не превысит 300, к тому же емкость конденсатора будет плавать в зависимости от температуры окружающей среды, то же самое произойдет и с индуктивностью.

Не даром есть у конденсаторов и катушек такие параметры как ТКЕ — температурный коэффициент емкости и ТКИ — температурный коэффициент индуктивности, показывающие, насколько изменяются главные параметры этих компонентов с изменением их температуры.

В отличие от колебательных контуров, резонаторы на базе кварца обладают недостижимой для колебательных контуров добротностью, которая измеряется значениями от 10000 до 10000000, причем о температурной стабильности кварцевых резонаторов речи не идет, ведь частота остается постоянной при любом значении температуры, как правило из диапазона от -40°C до +70°C.

Так, благодаря высоким показателям температурной стабильности и добротности, кварцевые резонаторы применяются всюду в радиотехнике и цифровой электронике.

Для задания тактовой частоты, ему всегда необходим генератор тактовой частоты, на который он мог бы надежно опереться, и генератор этот всегда нужен высокочастотный и при том высокоточный. Здесь то и приходит на помощь кварцевый резонатор. Конечно, в некоторых применениях можно обойтись пьезокерамическими резонаторами с добротностью 1000, и таких резонаторов достаточно для электронных игрушек и бытовых радиоприемников, но для более точных устройств необходим кварц.

В основе работы кварцевого резонатора — , возникающий на кварцевой пластинке. Кварц представляет собой полиморфную модификацию диоксида кремния SiO2, и встречается в природе в виде кристаллов и гальки. В свободном виде в земной коре кварца около 12%, кроме того в виде смесей в составе других минералов также содержится кварц, и в общем в земной коре более 60% кварца (массовая доля).

Для создания резонаторов подходит низкотемпературный кварц, обладающий ярко выраженными пьезоэлектрическими свойствами. Химически кварц весьма устойчив, и растворить его можно лишь в гидрофторидной кислоте. По твердости кварц превосходит опал, но до алмаза не дотягивает.

При изготовлении кварцевой пластинки, от кристалла кварца под строго заданным углом вырезают кусочек. В зависимости от угла среза полученная кварцевая пластинка будет отличаться по своим электромеханическим свойствам.

Так получается колебательная система, обладающая собственной резонансной частотой, и кварцевый резонатор, полученный таким образом, обладает собственной резонансной частотой, определяемой электромеханическими параметрами.

Теперь если приложить к металлическим электродам пластики переменное напряжение данной резонансной частоты, то проявится явление резонанса, и амплитуда гармонических колебаний пластинки весьма значительно возрастет. При этом сопротивление резонатора сильно понизится, то есть процесс аналогичен происходящему в последовательном колебательном контуре. В силу высокой добротности такого «колебательного контура», энергетические потери при его возбуждении на резонансной частоте пренебрежимо малы.

На эквивалентной схеме: C2 — статическая электроемкость пластинок с держателями, L — индуктивность, С1 — емкость, R — сопротивление, отражающие электромеханические свойства установленной пластинки кварца. Если убрать монтажные элементы, останется последовательный LC-контур.

В процессе монтажа на печатную плату, кварцевый резонатор нельзя перегревать, ведь конструкция его довольно хрупка, и перегрев может привести к деформации электродов и держателя, что непременно отразится на работе резонатора в готовом устройстве. Если же разогреть кварц до 5730°C, он вовсе утратит свои пьезоэлектрические свойства, но, к счастью, нагреть элемент паяльником до такой температуры невозможно.

Обозначение кварцевого резонатора на схеме похоже на обозначение конденсатора с прямоугольником между пластинами (кварцевая пластинка), и с надписью «ZQ» или «Z».

Часто причиной повреждения кварцевого резонатора является падение или сильный удар устройства, в котором он установлен, и тогда необходимо заменить резонатор на новый с той же резонансной частотой. Такие повреждения свойственны малогабаритным приборам, которые легко уронить. Однако, по статистике, подобные повреждения кварцевых резонаторов встречаются крайне редко, и чаще неисправность прибора оказывается вызвана иной причиной.

Чтобы проверить кварцевый резонатор на исправность, можно собрать небольшой пробник, который поможет не только убедиться в работоспособности резонатора, но и увидеть его резонансную частоту. Схема пробника представляет собой типичную схему кварцевого генератора на одном транзисторе.

Включив резонатор между базой и минусом (можно через защитный конденсатор на случай короткого замыкания в резонаторе), остается измерить частотомером резонансную частоту. Эта схема подойдет и для предварительной настройки колебательных контуров.

Когда схема включена, исправный резонатор станет способствовать генерации колебаний, и на эмиттере транзистора можно будет наблюдать переменное напряжение, частота которого будет соответствовать основной резонансной частоте тестируемого кварцевого резонатора.

Подключив к выходу пробника частотомер, пользователь сможет наблюдать эту резонансную частоту. Если частота стабильна, если небольшой нагрев резонатора поднесенным паяльником не приводит к сильному уплыванию частоты, то резонатор исправен. Если же генерации не будет, или частота будет плавать или окажется совсем другой, чем должна быть для тестируемого компонента, то резонатор неисправен, и его следует заменить.

Данный пробник удобен и для предварительной настройки колебательных контуров, в этом случае конденсатор C1 обязателен, хотя при проверке резонаторов его можно из схемы исключить. Контур просто подключается вместо резонатора, и схема начинает генерировать колебания аналогичным образом.

Пробник собранный по приведенной схеме замечательно работает на частотах от 15 до 20 МГц. Для иных диапазонов вы всегда можете поискать схемы в интернете, благо их там много, как на дискретных компонентах, так и на микросхеме.

Проверка кварцевых резонаторов » S-Led.Ru


Известно, что 90% неисправностей кварцевых резонаторов приходится на пульты дистанционного управления. Хочу предложить свой метод проверенный не раз. На первом этапе не нужны вообще никакие приборы! Нам понадобится любой радиоприёмник или на худой конец музыкальный центр если нет приёмника, но тогда к центру нужно подключить наружную антенну к разъёму СВ-КВ что не нужно делать с радиоприёмником по причине того, что там есть магнитная антенна.

Включаем на средние волны (СВ), можно и на короткие но там похуже, подносим пульт к приёмнику или к антенне музыкального центра, и нажимаем кнопки. В приёмнике мы услышим характерный звук импульсов, -значит кварцевый резонатор и микросхема с обвязкой в пульте уже исправны. После этого придётся раскрыть пульт и проверить светодиод.

Если в приёмнике мы ничего не слышим? Не хочу останавливаться на питании, думаю каждый с этого начинает любой ремонт. Выпаиваем аккуратно кварц, не перегревая его. Теперь мы подошли к второму этапу непосредственно проверки кварцевого резонатора можно при помощи мультиметра 890 серии который очень распространён. Вставляем его в гнездо «Сх» и измеряем его ёмкость, при исправном резонаторе прибор покажет сотни пФ при неисправном единицы максимум десятки. Вот пример (частота резонатора — ёмкость на приборе) 440кГц-345пФ 500кГц-490пФ 4мГц-45пФ. Опираться на эти значения как понимаете можно относительно так как погрешность у этого метода 10-15%. Но мы ведь с самого начала ставили цель проверить рабочий-нерабочий и не более.

Есть ещё один способ, он самый точный но нужно взять в руки паяльник и спаять очень простую схемку на микросхеме К155ЛАЗ (изображена выше). В схеме два резистора 330-670 Ом конденсатор любой. Вот собираем эту схемку и если к конденсатору подключим вход частотомера то узнаем частоту кварца с точностью, с которой измеряет Ваш частотомер.
А если частотомера нет тоже не огорчайтесь, возьмите всё тот же приёмник, к свободной ножке конденсатора прикрутите 0,5-1 м. провода, прообраз антенны, и слушайте на приёмнике сигнал генератора в зависимости от частоты кварца на основной или 3 или 5 гармонике, то есть если у Вас, к примеру кварц на 440 кГц то сигнал генератора Вы услышите на 440 кГц, 1320 кГц и 2200 кГц и так далее, это принцип кварцевого калибратора которые раньше стояли почти во всех военных радиоприёмниках.


Проверка кварца на работоспособность. Тестер кварцевых резонаторов. Возможные причины выхода из строя

Предлагаем к рассмотрению очередное устройство, которое было сделано несколько дней назад. Это тестер кварцевых резонаторов для проверки эффективности (работоспособности) кварцев, используемых во многих приборах, хотя бы в электронных часах. Вся система предельно простая, но именно эта простота и требовалась.

Тестер состоит из нескольких электронных компонентов:

  • 2 транзисторы NPN BC547C
  • 2 конденсаторы 10nF
  • 2 конденсаторы 220pF
  • 2 резисторы 1к
  • 1 резистор 3k3
  • 1 резистор 47k
  • 1 светодиод

Питание от 6 батареек AA 1.5 В (или Кроны). Корпус изготовлен из коробочки от конфет и оклеен цветной лентой.

Принципиальная схема тестера кварцев

Схема выглядит следующим образом:

Второй вариант схемы:

Для проверки вставляем в SN1 кварц, после чего переключаем переключатель в положение ON. Если светодиод горит ярким светом — кварцевый резонатор исправен. А если после включения светодиод не горит или горит очень слабо, значит мы имеем дело с поврежденным радиоэлементом.

Конечно эта схема скорее для начинающих, представляющая из себя простой кварцевый тестер без определения частоты колебаний. T1 и XT сформировали генератор. C1 и C2 — делитель напряжения тока для генератора. Если кварц живой, то генератор будет работать хорошо, и его выходное напряжение будет выпрямлено элементами С3, С4, D1 и D2, транзистор Т2 откроется и светодиод зажгётся. Тестер подходит для тестирования кварцев 100 кГц — 30 МГц.

Частотомер — полезный прибор в лаборатории радиолюбителя (особенно, при отсутствии осциллографа). Кроме частотомера лично мне часто недоставало тестера кварцевых резонаторов — слишком много стало приходить брака из Китая. Не раз случалось такое, что собираешь устройство, программируешь микроконтроллер, записываешь фьюзы, чтобы он тактировался от внешнего кварца и всё — после записи фьюзов программатор перестаёт видеть МК. Причина — «битый» кварц, реже — «глючный» микроконтроллер (или заботливо перемаркированый китайцами с добавлением, например, буквы “А» на конце). И таких неисправных кварцев мне попадалось до 5% из партии. Кстати, достаточно известный китайский набор частотомера с тестером кварцев на PIC-микроконтроллере и светодиодном дисплее с Алиэкспресса мне категорически не понравился, т.к. часто вместо частоты показывал то ли погоду в Зимбабве, то ли частоты «неинтересных» гармоник (ну или это мне не повезло).

Сразу хотелось бы сказать, что проверить кварцевый резонатор с помощью мультиметра не получится . Для проверки кварцевого резонатора с помощью осциллографа необходимо подключить щуп к одному из выводов кварца, а земляной крокодил к другому, но такой способ не всегда даёт положительный результат , далее описано почему.
Одна из основных причин выхода из строя кварцевого резонатора — банальное падение, поэтому если перестал работать пульт от телевизора, брелок от сигнализации автомобиля, то первым делом необходимо его проверить. Проверить генерацию на плате не всегда получается потому, что щуп осциллографа имеет некоторую ёмкость, которая обычно составляет около 100pF, то есть, подключая щуп осциллографа, мы подключаем конденсатор номиналом 100pF. Так как номиналы ёмкостей в схемах кварцевых генераторов составляют десятки и сотни пикофарад, реже нанофарады, то подключение такой ёмкости вносит значительную ошибку в расчётные параметры схемы и соответственно может привести к срыву генерации. Ёмкость щупа можно уменьшить до 20pF, если установить делитель на 10, но и это не всегда помогает.

Исходя из выше написанного можно сделать вывод, что для проверки кварцевого резонатора нужна схема, при подключении к которой щупа осциллографа не будет срываться генерация, то есть схема должна не чувствовать ёмкость щупа. Выбор пал на генератор Клаппа на транзисторах, а для того чтобы не срывалась генерация к выходу подключён эмиттерный повторитель.


Если поставить плату на просвет видно, что с помощью сверла получаются аккуратненькие пятачки, если сверлить шуруповёртом, то почти аккуратненькие). По сути это тот же монтаж на пятачках, только пятачки не наклеиваются, а сверлятся.


Фотографию сверла можно увидеть ниже.


Теперь давайте перейдём непосредственно к проверке кварцев. Сначала возьмём кварц на 4.194304MHz.


Кварц на 8MHz.


Кварц на 14.31818MHz.


Кварц на 32MHz.


Хотелось бы несколько слов сказать про гармоники, Гармоники — колебания на частоте кратной основной, если основная частота кварцевого резонатора 8MHz, то гармониками в этом случае называют колебания на частотах: 24MHz – 3-я гармоника, 40MHz – 5-я гармоника и так далее. У кого-то мог возникнуть вопрос, почему в примере только нечётные гармоники, потому что кварц на чётных гармониках работать не может!!!

Кварцевого резонатора на частоту выше 32MHz у меня не нашлось, но даже этот результат можно считать отличным.
Очевидно, что для начинающего радиолюбителя предпочтителен способ без использования дорогостоящего осциллографа, поэтому ниже изображена схема для проверки кварца с помощью светодиода. Максимальная частота кварца, который удалось проверить с помощью этой схемы составляет 14MHz, следующий номинал который у меня был это 32MHz, но с ним генератор уже не запустился, но от 14MHz до 32MHz большой промежуток, скорее всего до 20MHz будет работать.

Нет в наличии

Сообщить

о поступлении на склад

В избранное

Набор компонентов для сборки частотомера с функцией тестера кварцевых резонаторов.

Простой и недорогой, разработанный на базе PIC микроконтроллера с возможностью учитывать при измерениях частотный сдвиг супергетеродинных приемников с пятизначным светодиодным индикатором, удобный и интуитивно понятный.

Функции
  • Разрешение дисплея автоматически переключается, чтобы обеспечить максимальную точность считывания значения при 5-тизначном индикаторе.
    Так же автоматически изменяется длительность измерения (gate time) в течение которого происходит подсчет импульсов на входе
  • Если частотомер используется для измерений в коротковолновых приемниках или передатчиках вам может потребоваться добавить или вычесть значение частотного сдвига из измеряемой частоты. Частота смещения во многих случаях равна промежуточной частоте, поскольку частотомер обычно подключается к генератору переменной частоты приемника.
  • Для измерения частоты генерации кварца просто подключите его к разъему с названием «Испытываемый кварц»

Дополнительная информация

Основные возможности:

Диапазон измерения частоты: 1 Гц — 50 МГц

Измерение кварцев общего применения в частотой генерации в диапазоне: 1МГц — 50 МГц

Автоматическое переключение диапазонов

Программируемые настройки прибавляемой и вычитаемой величины частотного сдвига при настройках и измерениях в УКВ приемниках и передатчиках.

Максимальное входное напряжение 5 Вольт

Режим энергосбережения при питании от автономного источника тока

Возможно использование 5В от USB интерфейса

Минимальное количество компонентов, простая сборка и настройка

Вопросы и ответы
  • Здравствуйте, могу ли я заказать этот товар в количестве 1 штуки?
    • Да, конечно можете!
  • Здравствуйте. Какой интервал напряжений измеряемой частоты допустим на входе в режиме частотомера?
    • Уровень ТТL логики, до 5 Вольт
  • привет. ккаое максимальное входное напряжение у этого частотомера?
  • Здравствуйте, когда поступит в продажу данный конструктор, в частности, в магазин Чип и Дип?
    • Добрый день! Товар сейчас в стадии приемки на склад готовой продукции, думаю в течение недели он будет доступен для заказа через наш интернет-магазин. По поводу Чипа и Дипа — этот вопрос надо задать непосредственно им.
  • Доброго времени суток! Подскажите в чем дело. Частотомер все время показывает одно и тоже число. 65.370
    • Первый раз слышим о такой проблеме. при правильной сборке устройство начинает работать сразу и не требует настройки. Смотрите монтаж и правильность установки всех компонентов. Номинал постоянный резисторов перед установкой необходимо контролировать мультиметром.

Главная особенность данного частотомера:
применён высокостабильный TCXO (Термо-Компенсированный Опорный Генератор). Применение технологии TCXO, позволяет сразу, без предварительного прогрева, обеспечивать заявленную точность измерения частот.

Технические характеристики частотомера FC1100-M3:

параметр минимум норма максимум
Диапазон измеряемых частот 1 Гц. 1100 МГц.
Дискретность отсчета частоты от 1 до 1100 МГц 1 кГц.
Дискретность отсчета частоты от 0 до 50 МГц 1 Гц.
Уровень входного сигнала для входа «A» (от 1 до 1100 МГц). 0,2 В.* 5 В.**
Уровень входного сигнала для входа «B» (от 0 до 50 МГц). 0,6 В. 5 В.
Период обновления показаний 1 раз/сек
Тестирование кварцевых резонаторов 1 МГц 25 МГц
Напряжение питания/потребляемый ток (Mini-USB) +5В./300мА
Стабильность частоты @19,2МГц, при температуре -20С…+80С 2ppm (TCXO)

Отличительные особенности частотомеров линейки FC1100 в частности:

Высокостабильный опорный генератор TCXO (стабильность не хуже +/-2 ppm).
Заводская калибровка.
Независимое одновременное измерение двух частот (Вход «A» и Вход «B»).
Вход «B»: Обеспечивает дискретность измерения частоты 1 Гц.
Вход «B» имеет полноценный аналоговый регулятор порога срабатывания входного компаратора (MAX999EUK), что даёт возможность измерять в том числе и зашумленные гармониками сигналы, отстраивая порог срабатывания компаратора в чистый участок периодического сигнала.
Вход «A» позволяет дистанционно измерять частоту портативных УКВ радиостанций на расстоянии нескольких метров, при использовании короткой антенны.
Функция быстрого тестирования кварцевых резонаторов от 1 до 25 МГц.
Современный TFT цветной дисплей с экономичной подсветкой.
Изготовитель не использует ненадежные электролитические конденсаторы. Вместо них применяются современные высококачественные SMD керамические конденсаторы значительных емкостей.
Унифицированное питание через разъём Mini-USB (+5v). Шнур питания Mini-USB — поставляется в комплекте.
Конструктив частотомера оптимизирован для встраивания в плоскую переднюю панель любого корпуса. В комплекте поставляются нейлоновые изолирующие стойки М3*8мм., для обеспечения зазора между передней панелью и печатной платой частотомера.
Изготовитель гарантирует, что не используются технологии запрограммированного старения, широко распространившиеся в современной технике.
Изготавливается в России. Мелкосерийное производство. Контроль качества на каждом этапе производства.
При производстве используются лучшие паяльные пасты, безотмывочные флюсы и припои.
С 22 ноября 2018 г. в продаже частотомер FC1100-M3. Вот его ВСЕ отличия и преимущества:
Повышена стабильность работы входного компаратора, его чувствительность, линейность.
Обновлена прошивка. Оптимизирована работа схемы.
По многочисленным просьбам в комплект добавлен переходник SMA-BNC, позволяющий пользоваться многочисленными стандартными кабелями, в том числе и осциллографическими щупами с разъёмами BNC.

Габариты печатной платы прибора FC1100-M3: 83мм*46мм.
Дисплей цветной TFT LCD с подсветкой (диагональ 1,44″ = 3,65см).
* Чувствительность по DataSheet MB501L (параметр «Input Signal Amplitude»: -4,4dBm = 135 мВ@50 Ом соответственно).
** Верхний предел входного сигнала ограничен мощностью рассеивания защитных диодов B5819WS (0,2 Вт*2 шт).

Обратная сторона частотомера FC1100-M3

Режим измерения частоты кварца в частотомерах FC1100-M2 и FC1100-M3


Схема компаратора/формирователя входного сигнала 0…50 МГц.

Схема делителя частоты входного сигнала 1…1100 МГц.

Краткое описание частотомера FC1100-M3:

Частотомер FC1100-M3 имеет два раздельных канала измерения частоты.
Оба канала частотомера FC1100-M3 работают независимо друг от друга, и могут использоваться для измерения двух различных частот одновременно.
При этом, оба значения измеренной частоты одновременно отображаются на дисплее.
«Вход A» — (Тип разъёма SMA-FEMALE) Предназначен для измерения относительно высокочастотных сигналов, от 1 МГц до 1100 МГц. Нижний порог чувствительности этого входа составляет чуть менее 0,2 В., а верхний порог — ограничивается на уровне 0,5…0,6 В. защитными диодами, включенными встречно-параллельно. Нет смысла подавать на этот вход значительные напряжения, ибо напряжения, выше порога открывания защитных диодов будут ограничиваться.
Примененные диоды позволяют рассеивать мощность не более 200 мВт., защищая вход микросхемы делителя MB501L. Не подключайте этот вход непосредственно к выходу передатчиков значительной мощности (более 100 мВт). Для измерения частоты источников сигнала амплитудой более 5 В., или значительной мощности — используйте внешний делитель напряжения (аттенюатор) или переходной конденсатор малой ёмкости (единицы пикофарад), включенный последовательно. При необходимости измерения частоты передатчика — обычно достаточно короткого отрезка провода в качестве антенны, включенного в разъём частотомера, и расположенного на небольшом расстоянии от антенны передатчика или можно использовать подходящую антенну «резинка» от портативных радиостанций, подключенную к разъёму SMA.

«Вход B» — (Тип разъёма SMA-FEMALE) Предназначен для измерения относительно низкочастотных сигналов, от 1 Гц до 50 МГц. Нижний порог чувствительности этого входа ниже, чем у «Входа A», и составляет 0,6 В., а верхний порог — ограничивается защитными диодами на уровне 5 В.
При необходимости измерения частоты сигналов, амплитудой более 5 В., используйте внешний делитель напряжения (аттенюатор). На этом входе использован высокоскоростной компаратор MAX999.
Входной сигнал подается на неинвертирующий вход компаратора, и сюда же подключен резистор R42, увеличивающий аппаратный гистерезис компаратора MAX999 до уровня 0,6 В. На инвертирующий вход компаратора MAX999, с переменного резистора R35, подается напряжение смещения, задающее уровень срабатывания компаратора. При измерении частоты зашумленных сигналов, необходимо вращением ручки переменного резистора R35 — добиться устойчивых показаний частотомера. Наибольшая чувствительность частотомера реализуется в среднем положении ручки переменного резистора R35. Вращение против часовой стрелки — снижает, а по часовой стрелке — увеличивает пороговое напряжение срабатывания компаратора, позволяя сдвигать порог срабатывания компаратора на незашумленный участок измеряемого сигнала.

Кнопкой «Управление», осуществляется переключение между режимом измерения частоты «Вход B» и режимом тестирования кварцевых резонаторов.
В режиме тестирования кварцевых резонаторов, к крайним контактам панели «Кварц Тест» — необходимо подключить тестируемый кварцевый резонатор, с частотой от 1 МГц до 25 МГц. Средний контакт этой панели — можно не подключать, он соединён с «общим» проводом прибора.

Обратите внимание, что в режиме тестирования кварцевых резонаторов, при отсутствии тестируемого кварца в панели, наблюдается постоянная генерация на относительной высокой частоте (от 35 до 50 МГц).
Также, следует заметить, что при подключении исследуемого кварцевого резонатора, частота генерации будет несколько выше его типовой частоты (в пределах единиц килогерц). Это определяется параллельным режимом возбуждения кварцевого резонатора.
Режим тестирования кварцевых резонаторов с успехом можно использовать для подбора одинаковых кварцевых резонаторов для лестничных многокристальных кварцевых фильтров. При этом, основной критерий подбора кварцевых резонаторов — максимально близкая частота генерации подбираемых кварцев.

Разъёмы, применяемые в частотомере FC1100-M3:

Источник питания для Частотомера FC1100-M3:

Частотомер FC1100-M3 оборудован стандартным разъёмом Mini-USB с напряжением питания +5,0 Вольт.
Потребляемый ток (не более 300 мА) — обеспечивает совместимость с большинством источников питания напряжения USB.
В комплекте имеется кабель «Mini-USB» «USB A», который позволяет питать частотомер от любого устройства, обладающего таким разъёмом (Персональный Компьютер, Ноутбук, USB-HUB, Блок Питания USB, Сетевое Зарядное Устройство USB) и так далее.

Для автономного питания Частотомера FC1100-M3 — оптимально подходят широко-распространенные батареи «Power Bank», со встроенными Литий-Полимерными аккумуляторами, используемые обычно для питания аппаратуры, обладающей разъёмами USB. В этом случае, помимо явного удобства, бонусом вы получаете гальваническую развязку от сети и/или питающего устройства, что немаловажно.


Проверка кварцевого генератора с системой сбоев мультиметра

В большинстве случаев компьютер дает сбой, как только я касаюсь одного из двух проводов. […] Является ли это нормальным и не подходящим способом тестирования?

Да, это ожидаемое поведение. Как уже упоминалось в комментариях, реальный кварцевый привод имеет очень низкое энергопотребление и поэтому чувствителен к любой дополнительной нагрузке.

Ваш мультиметр, вероятно, предназначен для измерения частоты (относительно) низкого импеданса e.грамм. сигналы логического уровня. Даже в этом случае его дополнительная загрузка может вызвать проблемы с , в зависимости от мультиметра.

Есть ли другой способ определить исправность кристалла?

На IBM PC или PC / XT кристалл соединен с ИС тактового генератора Intel 8284A, чтобы выполнить необходимое деление частоты кристалла для ЦП и других тактовых импульсов и генерировать соответствующие сигналы логического уровня.

Вы можете провести ряд тестов.Я бы начал с измерения выхода OSC (вывод 12 8284A), который является версией частоты кристалла с буферизацией логического уровня, поэтому вы должны измерить там 14,31818 МГц. (Будьте осторожны, чтобы не закоротить другие контакты на этой ИС при проведении измерений, особенно если у вас «нормальный» и не очень тонкий («игольчатый») мультиметр-щуп.)


Компьютер работал очень медленно и нестабильно. Кто-то предложил посмотреть на осциллятор.

Я просто добавлю, что есть и другие возможные причины нестабильности старого компьютера.Главный кристалл не был бы одним из моих первых подозреваемых. Соединения (например, ИС с разъемами) — одна из проблемных областей. Одним из основных компонентов, который с возрастом портится, являются электролитические конденсаторы. Поэтому я бы включил проверку качества напряжений на шинах питания с помощью осциллографа в качестве первой части любого исследования.

Мультиметр может измерять «грубые» проблемы на шинах питания, но не может выявить относительно «тонкие» проблемы, например, . чрезмерная рябь. Другими словами: если мультиметр показывает наличие проблемы, значит, — это проблема; если мультиметр не показывает проблемы, значит, все еще может быть .Только осциллограф может показать некоторые типы проблем.

Вы можете посетить Retrocomputing Stack за советом специалиста.

Осциллятор

— Как проверить кварцевый резонатор на плате?

Как я вижу, ответа не последовало. Позвольте предложить другой ответ.

Большинство современных микросхем используют так называемый осциллятор Пирса для генерации стабильных часов с использованием кристаллов. Вот конфигурация главной схемы:

Как видно, схема не симметрична: правая сторона — это выход какого-то драйвера (обычно обозначается как XO), а левая сторона — вход на инвертирующий усилитель (обычно обозначаемый как XI).Поэтому относительно безопасно исследовать конец XO (выходной), при условии, что зонд имеет относительно высокий импеданс. Подойдет обычный пассивный пробник 1:10 с входным сопротивлением 1 МОм. На практике выходной драйвер в усилителе схемы сделан намеренно слабым, как правило, с нагрузочной способностью не более 1 мА, чтобы предотвратить перегрузку Xtal, но 1 мА должно быть достаточно для управления пробником осциллографа 1M.

Емкость наконечника пробника может сместить частоту колебаний на 20-50 ppm, так как это изменит настройку схемы (Xtal нагрузка, C1 последовательно с C2).Однако нагрузка датчика на XO не должна нарушать колебания, если только вся цепь не является слишком маргинальной и не соответствует критериям стабильности (отрицательное сопротивление усилителя должно быть в 3-5 раз больше, чем Xtal ESR). Если датчик делает это, считайте тест Xtal неудачным.

Никогда не следует пытаться исследовать вход XI, может быть, только пробником на 100 МОм, и только из любопытства. Причина не в емкости наконечника (2-8-12 пФ или что-то еще), а в появлении сдвига постоянного тока на выводе XI из-за конечного импеданса зонда.Генератор Пирса является очень тонкой нелинейной схемой и имеет очень важную составляющую обратной связи по постоянному току R1, которая эффективно регулирует входной уровень постоянного тока до точки максимального усиления, обычно примерно на полпути от земли к Vcc. Компонент R1 обычно составляет 1 МОм и выше, и колебания центрируются в автоматически выбранной точке постоянного тока. При подключении пробника даже на 10 МОм эта точка смещается вниз, усиление падает, а колебания затухают.

И, конечно же, лучший способ проверить колебания — не трогать его щупами, а иметь внутренний буфер с выходом на какой-то другой тестовый пин GPIO.

Пайка

— Выбор припоя, влияющего на кристалл кварца?

У меня были проблемы с часами реального времени на базе DS1307 , виноват, похоже, использованный нами припой. Позволь мне объяснить.

Мы использовали модуль RTC I2C на базе Adafruit DS1307 на стандартной Raspberry Pi. Часы были построены — и было обнаружено, что они взаимодействуют нормально (например, I2C был хорош), но не «тикают», например. второй не продвигался. Сборка их на макетной плате (а не пайка) привела к рабочим часам, поэтому о самом модуле не могло быть и речи.
Также электрическое соединение между кристаллом и микросхемой, проверенное простым мультиметром, прошло на всех единицах.

Дальнейшее расследование и сужение круга вопросов с моим доверенным пиратом автобуса (бог послал нам устройство без тяжелого испытательного оборудования!) Заставили меня перепаять соединения моим собственным припоем (то есть тем, что я использую дома) — и вуаля, они работали. Дальнейшее сужение показало, что на самом деле мне нужно было только очистить и перепаять соединения кристаллического кварца, даже не нужно было повторно паять сторону IC.

Кто-нибудь знает или имеет представление или объяснение, почему
S-Pb60Sn40 делает , а не ,
S-Sn60Pb36Cu1 работает с для подключения кристаллического кварца к печатной плате, например. таким образом, что DS1307 начинает тикать?
Большая разница между используемым припоем, по-видимому, заключается в примерно замененных пропорциях свинца и олова, но, может быть, 1% меди как-то работает?
Я предполагаю, что это как-то связано с выбором припоя, каким-то образом демпфирующего генератор, но вопрос «как» все еще меня озадачивает.

Для статистики: 87 штук припаяли «плохим» припоем, ни один из них не работает (например, «тикает»). Я перепаял вручную 53 из них, все рабочие. Для 48 из них я только разобрал, перепаял соединения кварцевого генератора.

Edit 1 — Очистка контактных площадок под пайку
Как предлагали некоторые из вас, я вручную очистил несколько печатных плат 70% изопропиловым спиртом и / или чистой водой — безрезультатно, часы все еще не «тикали». Только снятие, а затем повторная пайка двух кварцевых разъемов заставляет их тикать.

Edit 2 — Тип припоя, который я использовал
Припой, который работал , а не , — это продукт от Stannol, тот, который выполняет, — это продукт от Felder Löttechnik GmbH (pdf на немецком языке, извините, они не Похоже, онлайн-версии на английском языке нет).

Edit 3 — Флюс, который находится в припое (он же приближается …)
В нерабочем припое Stannol используется флюс типа 2.1.2.A — то есть, согласно Википедии, это органический водный припой. растворимый жидкий (?? это кажется неправильным!) флюс с галогенидами.В рабочем припое от Felder используется флюс типа 1.1.2.B, то есть твердый флюс на основе смолы и канифоли с галогенидами.
\ $ \ Longrightarrow \ $ Причиной может быть либо неизвестный «органический, водорастворимый» флюс от Stannol, либо другая формула припоя с добавлением меди от Felder.

Как проверить кристаллы кварца, найденные в часах

Я думаю, эта статья будет очень интересна для тех из нас, кто хочет протестировать эти особые крошечные обычные кварцевые кристаллы, которые используются во всех современных электронных часах и во всех видах таймеров.Особенно, если у вас есть пара таких, как я, и вы хотите узнать, работают ли они еще. И мы также находим эти кристаллы на всех материнских платах ПК для работы часов реального времени (на борту чипа RTC). К сожалению, большинство схем могут без проблем тестировать только более крупные кристаллы кварца, но не работают с кристаллами, которые используются в современных часах. Колебательная энергия, исходящая от этих меньших часовых кристаллов, слишком мала для большинства схем, чтобы генерировать заметный осциллирующий синусоидальный сигнал на выходе.

Итак, выше на eBay и многих других интернет-сайтах, продаваемых в Интернете, тестер кристаллов кварца не может проверить эти специальные кристаллы для часов. Они могут тестировать только обычные более крупные кристаллы до примерно 50 МГц. Несмотря на то, что вышеупомянутый красивый и недорогой комплект в комплекте с программируемым процессором PIC, дисплеем и корпусом из плексигласа не может быть полезен в нашем случае.

Следовательно, другим вариантом было бы использовать старые бывшие в употреблении часы с ЖК-дисплеем, которые все еще работают и на которых мы можем легко измерить их по контактам кристалла.Я сделал это, подключив 1,5 В постоянного тока к часам, показанным на следующих фотографиях, и измерил с помощью зонда осциллографа непосредственно на одном из обоих контактов кристалла, пока он работал. И заземление контакта моего осциллографа я только что соединил с землей входа 1,5 В постоянного тока.

Мой телескоп Tektronix 2465A показал идеально колеблющийся кристалл кварца с частотой 32768 Гц.

Итак, это уже выглядит как отличный тестовый образец для наших часовых кристаллов. Тем не менее, я хотел протестировать другие схемы, чтобы увидеть, могу ли я проверить эти кристаллы другими способами, кроме использования старых цифровых часов с ЖК-дисплеем.Еще потому, что часы очень крошечные и хрупкие и не подходят для замены их другими кристаллами.

Следующая фотография экрана моего осциллографа показывает идеально генерирующий синусоидальный сигнал.

На предыдущей фотографии показано, как мой прицел Tektronix исследовал колеблющийся кристалл с помощью красного провода, прикрепленного к внутреннему кварцевому стержню. Чтобы убедиться, что мой тестер кристалла часов также работает с другими частотами, кроме стандартных 32 768 кГц, эти старые часы в качестве тестового устройства могут стать проблемой, если часы не будут колебаться на других частотах.Итак, я протестировал несколько других схем на экспериментальной доске.

Вышеупомянутая схема не годилась и даже имела проблемы со стандартными кристаллами кварца. (Я использовал другой тип BC547, так что это могло быть причиной того, что он не работает. Но у них обычно fT около 100 МГц, так что этого не может быть).

Следующая схема на полевом транзисторе справа отлично работала с обычными кристаллами, но опять же не с нашими крошечными кристаллами для часов. Но, по крайней мере, с обычными кристаллами это сработало сразу.

И, возможно, следующая схема Пирса будет работать так же, как она используется во многих колебательных схемах микропроцессоров Xtal, но я не пробовал.Также потому, что я решил использовать тестер для часов на старой доброй CMOS IC CD4060.

Принцип всех колебательных контуров заключается в усилении, по крайней мере, с коэффициентом выше 1 с положительной обратной связью на входе нашего усилителя, чтобы он начал колебаться. Если усиление меньше, он просто отказывается колебаться. И в нашем случае с очень маленькими кристаллами кварца усиление должно быть в состоянии усилить очень маленькую энергию наших кристаллов до уровня, при котором она достигает стабильных колебаний.Для колебаний применяются следующие правила: когда усиление (усиление) A = Uout / Uin, и когда 1/3 выхода является обратной связью с входом, мы должны убедиться, что 1/3 x A = 1, чтобы началось колебание. Или, если 1/3 — коэффициент обратной связи k, нам нужно убедиться, что 1 / k> = A. Таким образом, в этом случае A будет иметь коэффициент усиления не менее 3333 или выше, чтобы компенсировать потери в цепи и поддерживать положительную обратную связь. Поскольку

энергии, исходящей от нашего кристалла, настолько малы, что нам нужен усилитель, который это компенсирует.Таким образом, стартовое усиление будет намного выше в начале, прежде чем будут достигнуты стабильные колебания. А в часах это компенсируется схемой, которая вначале усиливает шум, который генерируется в крошечном кристалле, прежде чем он станет стабильным синусовым колебанием. На предыдущей фотографии был показан простой и совершенный рабочий тестер часовых кристаллов на экспериментальной доске, который можно использовать с большинством, если не со всеми этими крошечными кристаллами кварца.

В нем используется стандартная ИС CD4060 CMOS, а резисторы и конденсаторы вообще не критичны! Я использовал 2.2 МОм плюс резистор 330 кОм плюс два конденсатора 33 пФ на ножках испытуемого кварца. Но другие значения компонентов, вероятно, тоже будут работать. Все, что нужно, — это осциллограф и источник питания 5 В для питания этого маленького тестера. Все мои кристаллы кварца прошли проверку этим тестером.

И ни один из тех очень дорогих инструментов производителя часов, которые я видел в Интернете, не может проверить только кристаллы кварца, если их снять с их плат. Как правило, они просто проверяют синхронизацию полностью исправных часов и не могут проверять кристаллы.

Увидев все эти очень профессиональные инструменты по цене, которые могут себе позволить лишь немногие, я уверен, что эта удобная и простая в сборке схема для испытания кварцевых кристаллов станет отличным новым тестером для расширения нашего набора электронных инструментов. И у нас никогда не будет достаточно этих инструментов для тестирования!

Альберт ван Беммелен, Верт, Нидерланды.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о публикации приветствуется. Пожалуйста, оставьте это в комментариях.

P.S — Если вам понравилось это читать, нажмите здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите ни одного поста. Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам — спасибо!

Примечание: вы можете прочитать его предыдущую статью о ремонте по ссылке ниже:

https://jestineyong.com/lenovo-ideapad-330-liquid-damage-repair/

Нравится (64) Не понравилось (3)

Как проверить кристалл с помощью тестера, чекера и осциллографа

Простые способы проверки Кристалл с тестером или шашкой

A Кристалл и маркировка местоположения

Тестировать кристалл тестером или шашкой.Кварцевые генераторы используются для генерации точного и стабильного радио. частоты и встречаются в большом количестве электронного оборудования такие как компьютеры (материнская плата и монитор), телевизор, Телекоммуникационные системы (мобильный телефон) и др. Функция чтобы частота часов не смещалась. Если сигнал от этого часы перестают вырабатывать частоту, или они слабы, или импульсы начинают меняться или изменяться, электронное оборудование может показать временные проблемы или может остановиться все вместе.

Кристаллы в компьютере Материнская плата

Контакты микропроцессора, удерживающие кварцевый генератор обычно называют OSC IN и OSC OUT и частота указана на кристалле. Расположение кристаллы были обозначены как XTAL или X. Некоторые примеры кристаллов частота генератора составляет 4 мегагерца, 8 МГц, 16 МГц и т. д. на.

Я испытал довольно много поломок кристалла компьютерного монитора, вызывающих Экранное меню (OSD) исчезнет с экрана.Некоторые на Экран дисплея даже отсутствует половина дисплея, а также неустойчивый. Замена только кристалла решает проблему экранного меню монитора. А ослабление кристаллического соединения на материнской плате компьютера может вызвать система «зависает» после некоторого времени работы.

Кристаллы довольно хрупкие компоненты из-за их конструкции и дизайна. В отличие от резистора или конденсатора, если вы уроните его на землю с приличной высоты, будет 50-50 шансов, что он будет работать очередной раз.

Хотя кристалл не вышел из строя легко, как резистор или конденсатор, это важно для специалист по ремонту электроники, чтобы знать, как проверить кристалл.

Кристалл и его маркировка местоположения в мониторе компьютера

Проверка кристалла не ветерок тоже. Вы не можете просто достать свой верный глюкометр и проверить кристалл в нем.Фактически, есть три метода проверить кристалл: —

Использование осциллографа — кристалл Генератор генерирует синусоидальную волну при возбуждении. Это уместно затем, чтобы увидеть форму волны, представляющую синусоидальную волну на часах булавки. Если часы не работают должным образом, замените кристалл. Проверьте кристалл при включенном питании. Обычно микропроцессоры обычно очень надежный, но не в этом случае Compaq MV720 Монитор.

Монитор пришел без высоких симптом напряжения.Используя прицел, чтобы проверить обнаруженный кристалл очень нестабильная форма сигнала, и замена микропроцессора решила нет проблем с высоким напряжением, и форма волны кристалла показывает идеальную синусоидальная волна.

кварцевый генератор синусоида

Второй метод — использовать частоту счетчик для проверки частоты кварцевого генератора. В измерения должны выполняться при включенном питании оборудования.Положите щуп измерителя или частотомера к контакту кристалла и считайте измерение. Убедитесь, что на вашем частотомере диапазон, который выше, чем частота кристалла, на котором вы находитесь проверка.

Если кристалл 8 МГц, то ваш измеритель должен иметь диапазон, чтобы можно было проверить эту частоту. Предполагая, что показание кристалла составляет 2,5 МГц, вы знаете, что кристалл не функционирует должным образом и его необходимо заменить.Обычный цифровой мультиметр обычно имеет небольшой диапазон для проверки частота. Однако цифровой счетчик (бренд Greenlee), которым я пользуюсь использование может измерять до 24 МГц. Вы можете прочитать спецификацию вашего глюкометра и посмотрите, насколько велик диапазон является.

Частотомер в цифровой мультиметр

Кварцевый генератор и микропроцессор (ЦП) на материнской плате

Третий метод — использовать Кристалл. Checker — этим способом; обычно кристалл помещается в цепь обратной связи транзисторного генератора.Если он колеблется и светодиод горит, это означает, что кристалл функционирует. Если кристалл не работает, светодиод погаснет. Вместо светодиода в качестве индикатора используется другой дорогой кристалл. Checker использует приборную панель, чтобы указать, функционирует или нет. Если вы ищете информацию о кристаллах на в Интернете вы найдете несколько веб-сайтов, на которых есть советы о том, как проверить кристалл, а также как его построить.


Измерение тактовой частоты и частоты генератора

Тактовая частота может относиться к генератору, который был разработан для обеспечения тактового сигнала для облегчения работы одного или нескольких синхронных процессоров.Напротив, для асинхронной операции не требуются часы, потому что каждый шаг запускается после завершения предыдущего шага. Потенциально это быстрее, чем синхронная операция, потому что нет узкого места, вызванного устройством синхронизации. Но повышенная сложность конструкции является проблемой. Несмотря на надежды на будущее, асинхронная работа в настоящее время широко не используется, поэтому часы остаются необходимым компонентом.

Основной генератор в цифровых схемах построен на резонансном контуре LC или RC, который в различных конфигурациях связан с усилителем, выходящим за пределы его линейного диапазона.Этот тип генератора имеет ограниченную стабильность частоты при различных нагрузках и колебаниях напряжения питания. Температурное старение и старение компонентов также вызывают дрейф частоты. Поэтому в большинстве цифровых приложений, таких как синхронизация микропроцессоров, используется кварцевый генератор.

Точно обработанный кристалл кварца заменяет контур резервуара LC или RC в различных типах генераторов. Поскольку кристалл кварца является компонентом, определяющим частоту, высокая степень стабильности частоты сохраняется независимо от температуры, старения компонентов и других переменных.

Подойдут и другие кристаллы, но обычно используется кварц, поскольку он достаточно прочен, чтобы противостоять разрушению при длительной вибрации. Кроме того, кварц легко измельчается, а сырье легко доступно.

Тонкая пластина из кристалла кварца при приложении напряжения проявляет пьезоэлектрический эффект. Он колеблется с частотой, определяемой размерами кварцевой плиты. Вибрации, в свою очередь, создают колебательное напряжение, которое выводится через клеммы, подключенные к противоположным сторонам кристалла.Частота обратно пропорциональна толщине кристалла, измеренной между двумя точно отшлифованными и металлизированными сторонами.

Кварцевый кристалл эквивалентен одновременным параллельным и последовательным резонансным контурам, поэтому связанные реактивные устройства настраивают генератор на выход одного или другого (не обоих), после чего он становится очень стабильным и надежным источником частоты. Добротность, мера спектральной чистоты, может достигать 200000 по сравнению с обычным ЖК-генератором с добротностью менее 1000.

Типовая эквивалентная схема для кристалла кварца. Микропроцессоры

обычно имеют два вывода генератора, обозначенные на схеме Osc 1 и Osc 2. Они являются входами от кварцевого генератора, который синтезирует непрерывный поток прямоугольных импульсов.

При измерении кварцевых генераторов следует учитывать несколько эффектов. Кристаллы имеют эквивалентную схему, состоящую из параллельной цепи RLC с отдельной емкостью (полученной из металлического корпуса).Следует отметить, что измерительные пробники, используемые с осциллографами, обычно имеют некоторую параллельную емкость. Таким образом, размещение зонда осциллографа поперек кристалла вносит некоторую дополнительную емкость.

Эта дополнительная емкость может вызвать проблемы. В некоторых случаях этого может быть достаточно, чтобы увеличить частоту колебаний кристалла на несколько сотен частей на миллион. (Вкратце, генераторы и другие устройства управления частотой указывают изменение частоты в частях на миллион (ppm).Соотношение Δ f = ( f × PPM) / 10 6 . Здесь PPM — пиковое изменение (выраженное как ±), f — центральная частота (в Гц), а Δ f — пиковое изменение частоты (в Гц). Например, 100 ppm на 100 МГц представляют собой изменение частоты (Δ f ) на 10 кГц. Таким образом, максимальная и минимальная частоты составляют 100,01 и 99,99 МГц соответственно.)

Поставщик кристаллов ECS Inc. предоставляет эти данные, чтобы показать, как частота колебаний его кристаллов обычно изменяется при емкостной нагрузке.

В схемах простого кварцевого генератора емкостной нагрузки от зонда осциллографа может быть даже достаточно, чтобы предотвратить колебания кристалла. Один из способов минимизировать такие трудности — использовать пробник с малой емкостью. Например, Tektronix производит пробник под названием TPP1000, который предназначен для использования с осциллографом MDO3000, имеющим емкостную нагрузку всего 3,9 пФ. Подобные датчики доступны и для других прицелов Tek.

Современные высокопроизводительные цифровые устройства могут выполнять измерения в циклах сигналов, полученных за один захват.К сожалению, ограничения памяти часто вынуждают их захватывать только небольшой временной интервал сигнала (обычно до 1 мс) при максимальной частоте дискретизации. Это существенно ограничивает точность измерения. Основная цель временной развертки осциллографа — низкий джиттер, поэтому осциллографы не обладают хорошей стабильностью частоты. Ситуацию можно исправить, используя стабильную внешнюю привязку, такую ​​как рубидиевая временная база, стабильная до 1 ppb (частей на миллиард), или, что еще лучше, источник времени с привязкой к GPS с хорошей точностью до 0.1 ppb.

Также следует отметить, что осциллографы измеряют частоту для каждого периода входного сигнала. В зависимости от настроек осциллографа прибор может усреднять результаты по нескольким захватам или по всем периодам сигнала в рамках одного захвата. Проблема в том, что на измерение частоты за один период дискретизации могут влиять джиттер периода сигнала и внутренний шум осциллографа, что приводит к изменению результатов на тысячи частей на миллион. Сбор тысяч образцов и усреднение значительно снижает ошибку.Но в ситуациях, требующих сверхточного измерения частоты, предпочтительным средством получения точности на уровне миллионных долей является использование частотомера.

В современных частотомерах для подсчета частоты используется метод, называемый обратным счетом. При использовании этого метода время стробирования (измерения) синхронно с входным сигналом, поэтому ошибка измерения ограничивается одним периодом опорного тактового сигнала. Для лучшего разрешения опорная частота умножается. Основное преимущество этого подхода заключается в том, что разрешение не зависит от входной частоты.

Типичное соединение для измерения частотомера.

Существуют дополнительные методы, которые дополнительно повышают разрешающую способность измерения за счет отметки времени начала и остановки фронтов входного сигнала. Это позволяет определить, когда эти события происходят в пределах эталонного тактового цикла. Современные частотомеры могут достигать разрешения 20 пс или выше.

Поскольку нагрузка на схему генератора может повлиять на измерения частоты, необходимо подумать о подключении тестируемого сигнала к частотомеру.Обычной практикой является использование коаксиального кабеля 50 Ом, при условии, что на входе прибора 50 Ом, подключенном к испытательной цепи через резистор (часто 1 кОм), предназначенный для изоляции ИУ от внешней нагрузки. Эта схема измерения (с сопротивлением 1 кОм) имеет коэффициент затухания 21: 1.

Схема простого тестера кристаллов

— Codrey Electronics

Начинающему любителю электроники часто нужно выбирать кристаллы правильной частоты для домашних проектов. Чтобы облегчить эту задачу, я представляю вам эту простую схему тестера кристаллов.По сути, это простая схема генератора, использующая несколько общих частей. Выход схемы тестера кристалла может быть подключен к частотомеру или цифровому мультиметру со считыванием частоты для точного определения частоты кристалла. Или его можно использовать в качестве интерфейсного адаптера для проектов тестеров кристаллов на базе микроконтроллеров.

Если вам нужно протестировать несколько кристаллов для проектов, над которыми вы работаете, вы легко можете найти в Интернете бесчисленное количество схем для проверки кристаллов, но в которых не хватает того или иного.Вот моя первая версия схемы тестера кристаллов, на самом деле улучшенная адаптация устаревшей схемы, которую я взял из сети. Данная схема, рассчитанная на работу от входа питания 5-12 В постоянного тока, может быть использована для оценки стандартных кристаллов, имеющих частоту около 20 МГц.

Схема представляет собой стандартный генератор Колпитца. Здесь T1 обеспечивает усиление, а обратная связь генератора — через C1 и C2. Выходной сигнал генератора снимается с эмиттера T1, и он связан по переменному току через C3, который затем также поступает на выходные клеммы.Несмотря на то, что BC547B обеспечивает достаточное усиление, и я смог протестировать многие стандартные кристаллы до 16 МГц, я думаю, что RF-транзистор C9018, вероятно, даст лучшие результаты. Как оказалось, в моем ящике с компонентами в настоящее время отсутствуют такие ВЧ-транзисторы, и эта ситуация позже будет решена путем заказа их у одного из моих китайских поставщиков.

Для проведения быстрого теста я сделал свою базовую схему на макетной плате, как показано ниже. В любом случае, вам не рекомендуется следовать этой практике, вместо этого припаивайте все компоненты вплотную на очень маленькой перфорированной печатной плате и обрезайте лишние выводы всех компонентов, припаянных на печатной плате.

В то время как я тестировал прототип макета, я случайным образом подключил несколько заведомо исправных кристаллов (благодаря моему импортному прецизионному тестеру кристаллов) в контрольные точки кристаллов и проверил выходной сигнал с помощью одного из моих надежных цифровых мультиметров с умеренно высоким импедансом на частоте 30 МГц. вход счетчика. Посмотрите результат теста кварцевого резонатора с частотой 4 МГц, отображаемый частотомером цифрового мультиметра.

Я также тестировал его с одним из моих DSO. Самым приятным результатом было то, что все мои стандартные кристаллы вообще без проблем работали в схеме.

Обратите внимание, что многие кристаллы часового типа с частотой 32,768 кГц и несколько керамических резонаторов не работали с этим тестером, потому что для правильной работы таких типов требуется совершенно иная схема генератора. Это также относится к некоторым «обертонным» кристаллам с более высокими частотами (они могут колебаться на своей основной частоте, верно). Поскольку генератор Колпитца работает на частоте 32,768 кГц, вы можете пройти этот эксперимент самостоятельно https://softsolder.com/2017/04/07/colpitts-oscillator-at-32-768-khz/.

Еще одна проба кварцевого генератора

Вы можете легко построить кварцевые генераторы, используя биполярные переходные транзисторы (BJT) и полевые транзисторы (FET). Как ясно сказано (и вы, возможно, знаете), представленная здесь схема широкодиапазонного тестера кристалла представляет собой просто генератор Колпитца, но с его контуром LC-резервуара (параллельный резонансный контур, который обеспечивает колебания обратной связи) был заменен тестируемым кварцевым кристаллом. Одна важная вещь, которую следует учитывать, заключается в том, что BJT, используемый в схеме, должен быть адекватным для работы на скоростях переключения, значительно превышающих основную частоту кристаллов, предназначенных для тестирования.

Что ж, теперь к созданию базового кварцевого генератора CMOS 10 МГц. См. Его принципиальную схему ниже. В этой схеме кристалл колеблется на своей последовательной резонансной частоте. Первый затвор инвертора изначально смещен в середину своей рабочей области резистором обратной связи 1 МОм (R1), чтобы гарантировать, что Q-точка инвертора находится в области высокого усиления. Второй затвор инвертора подключен как буфер между выходом генератора и выходной нагрузкой.

Кварцевый генератор на основе обычных транзисторов дает синусоидальную форму выходного сигнала.Однако этот кварцевый генератор CMOS выдает прямоугольный сигнал из-за наличия в схеме цифровых логических элементов. Также обратите внимание, что максимальная рабочая частота зависит от коммутационных характеристик логического элемента, используемого в конструкции.

Естественно, у меня было несколько продвинутых проектов по тестированию кристаллов, и они будут в дальнейшем, так что следите за обновлениями. А пока вы можете ознакомиться с этой статьей, в которой подробно описаны важные рабочие характеристики кристаллов, в том числе резонансная частота, режим резонанса, емкость нагрузки, последовательное сопротивление, емкость держателя, подвижная индуктивность и емкость, калибровка температуры и уровень возбуждения.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *