Site Loader

Содержание

Расчет импульсного трансформатора для двухтактного преобразователя и согласующих устройств

В правильно сконструированном двухтактном преобразователе постоянный ток через обмотку и подмагничивание сердечника отсутствуют. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность. Поскольку трансформатор имеет много взаимозависимых параметров, расчет ведут по шагам, уточняя при необходимости исходные данные.

1. Как определить число витков и мощность?

Габаритная мощность, полученная из условия не перегрева обмотки, равна [1]:

Pгаб = So ⋅ Sc ⋅ f ⋅ Bm / 150           (1)

Где: Pгаб — мощность, Вт;
Sc — площадь поперечного сечения магнитопровода, см2 ;
So — площадь окна сердечника, см2;
f — частота колебаний, Гц;
Bm = 0,25 Тл — допустимое значение индукции для отечественных никель-марганцевых ферритов на частотах до 100 кГц. 

Максимальную мощность трансформатора выбираем 80% от габаритной:

Pmax = 0,8 ⋅ Pгаб           (2)

Минимальное число витков первичной обмотки n1 определяется максимальным напряжением на обмотке Um и допустимой индукцией сердечника Bm:

n1 = ( 0,25 ⋅ 104 ⋅ Um ) / ( f ⋅ Bm ⋅ Sc )           (3)

Размерности единиц здесь те же, что и в формуле (1).

Плотность тока в обмотке j для трансформаторов мощностью до 300 Вт принимаем 3..5 А/мм2 (большей мощности соответствует меньшее значение). Диаметр провода в мм рассчитываем по формуле:

d = 1,13 ⋅ ( I / j )1/2           (4)

Где I — эффективный ток обмотки в А.

Пример 1:

Для ультразвуковой установки нужен повышающий трансформатор мощностью 30..40 Вт. Напряжение на первичной обмотке синусоидальное, с эффективным значением Uэфф = 100 В и частотой 30 кГц.

Выберем ферритовое кольцо К28x16x9.

Площадь его сечения: Sc = ( D — d ) ⋅ h / 2 = ( 2,8 — 1,6 ) ⋅ 0,9 / 2 = 0,54 см2
Площадь окна: So = π ⋅ ( d / 2 )2 = π⋅ ( 1,6 / 2 )2 = 2 см2
Габаритная мощность: Pгаб = 0,54 ⋅ 2 ⋅ 30 ⋅ 103 ⋅ 0,25 / 150 = 54 Вт
Максимальная мощность: Pmax = 0,8 ⋅ 54 = 43,2 Вт
Максимальное напряжение на обмотке: Um = 1,41 ⋅ 100 = 141 В
Число витков: n1 = 0,25 ⋅104 ⋅ 141 / ( 30 ⋅ 103 ⋅ 0,25 ⋅ 0,54 ) = 87
Число витков на вольт: n0 = 87 / 100 = 0,87
Эффективное значение тока первичной обмотки: I = P / U = 40 / 100 = 0,4 A
Плотность тока выберем 5 А/мм2.
Тогда диаметр провода по меди: d = 1,13 ⋅ ( 0,4 / 5 )1/2 = 0,31 мм

2. Как уточнить плотность тока?

Если мы делаем маломощный трансформатор, то можем поиграть с плотностью тока и выбрать более тонкие провода, не опасаясь их перегрева. В книге Эраносяна [2, Стр.109] дана такая табличка:

  Pн, Вт  

1 .. 7  

  8 .. 15  

  16 .. 40  

  41 .. 100  

  101 .. 200  

j, А/мм2

7 .. 12

6 .. 8

5 .. 6

4 .. 5

4 .. 4,5

Почему плотность тока зависит от мощности трансформатора?

Выделяемое количество теплоты равно произведению удельных потерь на объем провода. Рассеиваемое количество теплоты пропорционально площади обмотки и перепаду температур между ней и средой. С увеличением размера трансформатора объем растет быстрее площади и для одинакового перегрева удельные потери и плотность тока надо уменьшать. Для трансформаторов мощностью 4..5 кВА плотность тока не превышает 1..2 А/мм2 [3].

3. Как уточнить число витков первичной обмотки?

Зная число витков первичной обмотки n вычислим ее индуктивность. Для тороида она определяется по формуле:

L = μ0 ⋅ μ ⋅ Sс ⋅ n2 / la        (5)

Где:
Площадь   дана в м2
средняя длина магнитной линии la в м;
индуктивность в Гн;
μ0 = 4π ⋅ 10-7 Гн/м — магнитная постоянная.

В инженерном виде эта формула выглядит так:

L = AL n2        (5А)    ,     n = ( L / AL )1/2        (5Б)

Коэффициент AL и параметр мощности Sо ⋅ Sc для некоторых типов колец приведены в Таблице 2 [4,5,6]:

Кольцо

К7х4х2

К10х6х3

К10х6х4,5

К16х10х4,5

К20х12х6

К32х20х6

К38х24х7

К40х25х11

AL , нГн/вит2 ± 25%

224

310

460

430

620

570

650

1050

Sc , см4

0,004

0,017

0,025

0,106

0,271

1,131

2,217

4,050

Для работы трансформатора в качестве согласующего устройства должно выполняться условие:

L > ( 4 .. 10 ) ⋅ R / ( 2 ⋅ π ⋅ fmin )         (6)

Где L — индуктивность в Гн;
R = U2эфф / Pн приведенное к первичной обмотке сопротивление нагрузки Ом;
fmin — минимальная частота, Гц.

В ключевых преобразователях в первичной обмотке трансформатора текут два тока: прямоугольный ток нагрузки Iпр = Um / R и треугольный ток намагничивания обмотки IT:

Для нормальной работы преобразователя величина треугольной составляющей не должна превышать 10% от прямоугольной, т.е индуктивность обмотки должна удовлетворять неравенству:

L > 5 R / f         (7)

При необходимости число витков увеличивают или применяют феррит с большей μ. Чрезмерно завышать число витков в обмотке не желательно. Из-за роста межвитковой емкости на рабочей частоте могут возникнуть резонансные колебания.

Выбранный феррит должен иметь достаточную максимальную индукцию и малые потери в рабочей полосе частот. Как правило, на низких частотах (до 1 МГц) применяют феррит с μ = 1000 .. 6000 , а на радиочастотах приходиться использовать материалы с μ = 50 .. 400.

Пример 2:

Трансформатор из Примера 1 намотан на кольце К28х16х9 из никель-марганцевого феррита 2000НМ с магнитной проницаемостью μ = 2000.
Мощность нагрузки P = 40 Вт , эффективное напряжение первичной обмотки Uэфф = 100 В , частота f = 30 кГц. Уточним число его витков.

Приведенное сопротивление нагрузки:  R = 1002 / 40 = 250 Ом
Площадь поперечного сечения магнитопровода:  Sc = 0,54 см2 = 0,54 ⋅ 10 -4 м2
Средняя длина магнитной линии: la = π ( D +d ) / 2 = π ( 2,8 + 1,6 ) ⋅ 10 -2 / 2 = 6,9 ⋅ 10 -2 м
Коэффициент индуктивности: AL = 4π ⋅ 10-7 ⋅ 2000 ⋅ 0,54 ⋅ 10 -4 / 6,9⋅10-2 = 1966 нГн / вит2

Минимальная индуктивность первичной обмотки по формуле (6): 
L = 10 ⋅ 250 / ( 2π ⋅ 3 ⋅ 104 ) = 13,3 мГн
Число витков: n = (13,3 ⋅ 10 -3 / 1,963 ⋅ 10 -6 ) 1/2 = 82      

Оно даже меньше, чем рассчитанное ранее в Примере 1  nmin = 87.
Таким образом, условие достаточной индуктивности выполнено и число витков первичной обмотки n = 87.

4. Какие ферриты можно применить и почему?

Как известно, сердечник в трансформаторе выполняет функции концентратора электромагнитной энергии. Чем выше допустимая индукция B и магнитная проницаемость μ , тем больше плотность передаваемой энергии и компактнее трансформатор. Наибольшей магнитной проницаемостью обладают т.н. ферромагнетики — различные соединения железа, никеля и некоторых других металлов.

Магнитное поле описывают две величины: напряженность Н (пропорциональна току обмотки) и магнитная индукция В (характеризует силовое действие поля в материале). Связь В и H называют кривой намагничивания вещества. У ферромагнетиков она имеет интересную особенность — гистерезис (греч. отстающий) — когда мгновенный отклик на воздействие зависит от его предыстории.

После выхода из нулевой точки (этот участок называют основной кривой намагничивания) поля начинают бегать по некой замкнутой кривой (называемой петлей гистерезиса). На кривой отмечают характерные точки — индукцию насыщения Bs, остаточную индукцию Br и коэрцитивную силу Нс.

Рис.1. Магнитные свойства ферритов. Слева форма петли гистерезиса и ее параметры. Справа основная кривая намагничивания феррита 1500НМ3 при различных температурах и частотах: 1 — 20кГц, 2 — 50кГц, 3 — 100 кГц.

По значениям этих величин ферромагнетики условно делят на жесткие и мягкие. Первые имеют широкую, почти прямоугольную петлю гистерезиса и хороши для постоянных магнитов. А материалы с узкой петлей используют в трансформаторах. Дело в том, что в сердечнике трансформатора есть два вида потерь — электрические, и магнитные. Электрические (на возбуждение вихревых токов Фуко) пропорциональны проводимости материала и частоте, а вот магнитные тем меньше, чем меньше площадь петли гистерезиса.

Ферриты это пресс порошки окисей железа или других ферромагнетиков спеченные с керамическим связующим. Такая смесь сочетает два противоположных свойства — высокую магнитную проницаемость железа и плохую проводимость окислов. Это минимизирует как электрические, так и магнитные потери и позволяет делать трансформаторы, работающие на высоких частотах. Частотные свойства ферритов характеризует критическая частота fc , при которой тангенс потерь достигает 0,1. Тепловые — температура Кюри Тс , при которой μ скачком уменьшается до 1.

Отечественные ферриты маркируются цифрами, указывающими начальную магнитную проницаемость, и буквами, обозначающими диапазон частот и вид материала.

Наиболее распространен низкочастотный никель-цинковый феррит, обозначаемый буквами НН. Имеет низкую проводимость и сравнительно высокую частоту fc. Но у него большие магнитные потери и невысокая температура Кюри.

Никель-марганцевый феррит имеет обозначение НМ. Проводимость его больше, поэтому fc низкая. Зато малы магнитные потери, температура Кюри выше, он меньше боится механических ударов.

Иногда в маркировке ферритов ставят дополнительную цифру 1, 2 или 3. Обычно, чем она выше, тем более температурно стабилен феррит.

Какие марки ферритов нам наиболее интересны?

Для преобразовательной техники хорош термостабильный феррит 1500НМ3 с fc=1,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

Для спец применений выпускают феррит 2000НМ3 с нормируемой дезакаммодацией (временной стабильностью магнитной проницаемости). У него fc=0,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

Для мощных и компактных трансформаторов разработаны ферриты серии НМС. Например 2500НМС1 с Bs=0,45 Тл и 2500НМС2 c Bs=0,47 Тл. Их критическая частота fc=0,4 МГц, а температура Кюри Tc>200 ℃.

Что касается допустимой индукции Bm, этот параметр подгоночный и в литературе не нормируется. Ориентировочно можно считать Bm = 0,75 Вsmin. Для никель-марганцевых ферритов это дает примерно 0,25 Тл. С учетом падения Bs при повышенных температурах и за счет старения в ответственных случаях лучше подстраховаться и снизить Bm до 0,2 Тл.

Основные параметры распространенных ферритов сведены в Таблицу 3:

Марка

100НН

400НН

600НН

1000
НН

2000
НН

2000
НМ

1000
НМ3

1500
НМ1

1500
НМ3

μнач

80..120

350..
500

500..
800

800..
1200

1800..
2400

1700..
2500

800..
1200

1200..
1800

1200..
1800

fc, МГц

7

3,5

1,5

0,4

0,1

0,5

1,8

0,7

1,5

Tc, ℃

120

110

110

110

70

200

200

200

200

Bs, Тл

0,44

0,25

0,31

0,27

0,25

0,38..
0,4

0,33

0,35..
0,4

0,35..
0,4

5. Насколько нагреется сердечник?

Потери в магнетике.

При частоте менее критической потери энергии в магнетике складываются в основном из потерь на перемагничивание, а вихретоковыми можно пренебречь.

Опыт и теория показывают, что потери энергии в единице объема (или массы) на одном цикле перемагничивания прямо пропорциональны площади петли гистерезиса. Следовательно мощность магнитных потерь:

PH = P0 ⋅ V ⋅ f      (8)

Где:
P0 – удельные потери в единице объема (измеренные на частоте f0 при индукции B0 ) ;
V – объем образца.

Таблица 4. Удельные объемные потери в ферритах 2500НМС при f0 =16 кГц ; B0=0,2 Тл:

T , oC  

P0 , мкВт / ( см 3 ⋅ Гц )

2500НМС1

2500НМС2

25

10,5

8,5

100

8,7

6

Однако, с ростом частоты индукция насыщения уменьшается, петля гистерезиса деформируется, а потери растут. Для учета этих факторов Штейнмец (C. P. Steinmetz, 1890-1892) предложил эмпирическую формулу:

PH = P1 ⋅ m ⋅ ( f / f1 ) α ( B / B1) β      (9)

Условились [7, Стр.54], что f1 = 1 кГц, B1 = 1 Тл.
Величины P1, α, β и массу сердечника m указывают в справочнике.

Таблица 5. Удельные потери в некоторых ферритах

Марка

1500НМ3

2000НМ1-А,Б

2000НМ3

2000НМ-17

3000
НМ-А

6000НМ-1

f

0,4..100 кГц

0,1..1 МГц

0,4..100 кГц

0,1..1 МГц

0,4..200 кГц

20..50 кГц

50..100 кГц

P1,
Вт / кг

23,2

32±7

13±3

44,6

63±10

25±4

48±8

11±2

38±0,8

α

1,2

1,2

1,4

1,3

1,2

1,4

1,2

1,35

1,6

β

2,2

2,4

2,7

2,85

2,76

2,69

2,6

Потери в меди.

Омические потери в первичной обмотке при комнатной температуре и без учета скин-эффекта:

PM1 = I2 эфф ( ρ / Sm ) ( ( D — d ) + 2h ) ⋅ n1      (10)

Где:
Iэфф — эффективный ток,
D — внешний, d — внутренний диаметр кольца, h — его высота в метрах;
n1 — число витков; Sm — поперечное сечение провода, в мм2 ;
ρ = 0,018 Ом ⋅ мм2 / м — удельное сопротивление меди.

Суммарные потери во всех обмотках при повышенной температуре окружающей среды:

PM = ( PM1 + PM2 + .. )( 1 + 0,004 ( T — 25oC ) )      (11)

Общие потери в трансформаторе.

Потери в магнетике и меди:

PΣ = PH + PM      (12)

Предполагаемая температура перегрева при естественной конвекции:

ΔT = PΣ / ( αm Sохл )      (13)

Где αm = (10..15) -4 Вт/(см2oС)     ,     Sохл = π /2 ( D2 — d2 ) + π h ( D + d )

Пример 3:

Найдем потери в трансформаторе из Примеров 1 и 2. Для простоты считаем, что вторичная и первичная обмотка одинаковые. 

Эффективный ток первичной обмотки Iэфф = 0,4 А.

Потери в меди первичной обмотки:
PM1 = 0,42 ⋅ ( 0,018 / 0,08 ) ⋅ ( 28 — 16 + 18 ) ⋅ 10 -3 ⋅ 87 ≈ 0,1 Вт.

Потери в меди обеих обмоток: PM = 0,2 Вт.

Согласно справочным данным для феррита 2000НМ P1 = 32 Вт / кг ; α = 1,2 ; β = 2,4 ; масса сердечника К28х16х9 равна 20 грамм.

Потери в феррите: PH = 32 ⋅ ( 30 / 1 ) ⋅ 1,2 ⋅ ( 0,25 / 1 ) ⋅ 2,4 ⋅ 20 ⋅ 10 -3= 1,36 Вт

Суммарные потери в трансформаторе:   PΣ = 1,56 Вт.     

Ориентировочный КПД = ( 40 — 1,56 ) / 40 ⋅ 100% ≈ 96%

6. Как учесть инерционные свойства трансформатора?

На Рис.2. показана T-схема замещения трансформатора. В нее входят сопротивление источника ri , приведенное сопротивление нагрузки R = n2   или R = Pн / U2эфф   ,     где n = U1 / U2 — коэффициент трансформации, Uэфф — эффективное напряжение первичной обмотки.

Рис.2. Эквивалентная схема трансформатора.

Инерционные свойства трансформатора определяют малые индуктивности рассеяния Ls, индуктивность намагничивания (почти равна индуктивности первичной обмотки L1), параллельная емкость обмотки Сp (т.н. динамическая емкость) и последовательная емкость между обмотками Сп.

Как оценить индуктивности и емкости?

L1 рассчитывают по формуле (5) или измеряют экспериментально.
Согласно [8] индуктивность рассеивания по порядку величины равна Ls ~ L1 / μ.
Емкость Ср составляет примерно 1 пФ на виток.

Трансформатор работает подобно полосовому фильтру. На малых частотах он представляет собой ФВЧ с частотой среза ωн = R / Lμ.
На высоких частотах элементы Ls и Cp образуют ФНЧ с частотой среза ωв ≈ ( Ls Cp )-1/2
Последовательная емкость Сп невелика и на работу практически не влияет.

В модели есть два характерных резонанса:

Низкочастотный (резонанс намагничивания) в параллельном контуре Lμ Ср.
Его частота   fμ ≈ ( 1/ 2 π ) ⋅ (Lμ Cp )-1/2  , а добротность
Qμ ≈ ( ri || R ) ⋅ ( Lμ / Cp)-1/2      (14)

Высокочастотный (резонанс рассеивания) в контуре, образованном Ls и .
Его частота fs ≈ ( 1/ 2 π ) ⋅ (Ls Cp )-1/2   , а добротность   Qs ≈ ( Ls / Cp)1/2 / ri         (15)

Как влияют резонансы обмотки?

Амплитудно-частотная характеристика трансформатора похожа на АЧХ полосового фильтра, но на ее верхнем краю резонанс fs дает характерный пик.

Реакция же на импульсы напряжения зависит от способа включения источника и величин сопротивлений схемы.

При малом внутреннем сопротивлении источника riпроявляется лишь резонанс fs в виде характерного «звона» на фронтах импульсов.
Если же источник подключается через ключ, то при его размыкании могут возникать интенсивные колебания с частотой  fμ.

Рис.3. Пример АЧХ и переходного процесса в трансформаторе. Его эквивалентная схема дана ниже на рисунке 4.

7. Экспериментальное измерение параметров импульсного трансформатора.

Для пробы было взято кольцо из феррита 3000НМ размера К10х6х2. Первичная обмотка составляла 21 виток; вторичная 14; коэффициент трансформации n = 1,5 ; сопротивление нагрузки равнялось 4,7 кОм; источником служил генератор прямоугольных импульсов на TTL микросхемах с уровнем 6В, частотой 1 МГц и внутренним сопротивлением ri ≈ 200 Ом.

Рассчитаем теоретические параметры:

Sc = 4 ⋅ 10 -6 м2 , la = 25,13 ⋅ 10 -3 м , ALтеор = 600 нГн / вит2 , L1теор = 0,6 ⋅ 212 = 265 мкГн, Ls теор ≈ 265/3000 = 0,09 мкГн , Сp теор ≈ 21+14 = 35 пФ.
Приведенное сопротивление нагрузки R = n2 Rн = 2,25 ⋅ 4,7 ~ 10 кОм.

Результаты измерений индуктивностей прибором АКИП-6107:

L1 = 269 мкГн ,   L2 = 118 мкГн , закоротив вторичную обмотку получим 2Ls = 6,8 мкГн, что на два порядка выше ее теор оценки.

Динамическую емкость Cp можно оценить по формуле (15), подав на трансформатор прямоугольные импульсы и измерив при помощи осциллографа период колебаний «звона» на фронтах импульсов на выходе вторичной обмотки. Частота «звона» fs оказалась 18,5 МГц , что дает Ср ≈ 21 пФ и неплохо согласуется с теор оценкой.

Для сравнения с опытом эквивалентная схема с измеренными параметрами моделировалась в программе LT Spice.

Рис.4. Модель трансформатора. Vout — приведенное напряжение, фактическое будет в n раз меньше.Рис.5. Результаты эксперимента. Масштаб вертикальной шкалы 1 вольт на деление.

Итак, модель, построенная на основе измеренных Lμ , Ls и Cp вполне согласуется с экспериментом.

Теоретическая оценка [8] емкости 1 пФ на виток для малых колец приемлема, но оценка индуктивности рассеяния на два порядка расходится с фактической. Ее проще определять на опыте.

Приложение 1. Вывод формулы для числа витков.

При подаче напряжения U на обмотку в ней возникнет ЭДС индукции E:
U = -E = n Sc dB / dt

Для синусоидального напряжения с амплитудой Um:
Um = n Sc ω Bm
Откуда число витков: n = Um / ( Sc ω Bm )

Выразив круговую частоту через обычную, а площадь в см2 получим инженерную формулу:

n = 0,16 ⋅ 104 / ( f ⋅ Bm⋅ Sc )

Для прямоугольного напряжения величиной Um приращение индукции: 
dB = dt Um / ( n Sc )
Интегрируя ее по времени от 0 до T/2 и учитывая, что за половину периода поле изменится от -Bm до +Bm получим:     2Bm = ( T / 2) Um / ( n Sc )

Выразив период через частоту, а площадь в см2 получим инженерную формулу:

n = 0,25 ⋅104 / ( f ⋅ Bm ⋅ Sc )

Она пригодна для обоих случаев.

Приложение 2. Вывод формулы для габаритной мощности трансформатора.

Согласно закону электромагнитной индукции Фарадея связь напряжения на катушке с изменением магнитной индукции в ней:  

U dt = n Sc dB

За время от 0 до T/2 индукция изменится от -Bm до +Bm.  Интегрируя в этих пределах получим среднее напряжение:

Uср = 4n  ⋅  Sc ⋅  Bm ⋅  f

Где:

Но приборы измеряют не среднее, а действующее напряжение, которое эквивалентно постоянному по энергии. Связь среднего и действующего напряжения дает коэффициент формы кф = Uэфф / Uср . Для меандра он равен 1, для синуса 1,11.

Отсюда эффективное напряжение на катушке:
Uэфф = 4 ⋅  кф ⋅  n ⋅  Sc ⋅  Bm ⋅  f

Габаритную мощность оценим из следующих соображений. Частота f не велика, потери на вихревые токи и перемагничивания малы и мощность ограничена лишь перегревом обмотки. Его определяет максимальная плотность тока j , одинаковая для обоих обмоток.

Определим габаритную мощность как полусумму мощностей первичной и вторичной обмоток.

Pгаб = ( P1+P2 ) / 2 = ( Uэфф1⋅ I1 + Uэфф2 ⋅ I2 ) / 2 = j ( S1 n1 + S2 n2 ) 4 кф Sc Bm f / 2       

Где S1 и S2 площади витка первичной и вторичной обмоток.

Это соотношение можно записать через площадь меди Sm: 

Pгаб = 2⋅  кф ⋅ f ⋅ Sc ⋅ Sm ⋅ Bm ⋅ j

Площадь меди связывают с коэффициентом заполнения окна σ = Sm / Sо.

Сигма это некий эмпирический коэффициент, равен минимум 0,15 для однослойной обмотки и максимум 0,4 для многослойной (больше не поместится).

В итоге наша формула имеет вид:

Pгаб = 2 ⋅ кф ⋅ σ⋅  f ⋅ Sc⋅  Sо ⋅ Bm ⋅ j 

Все величины здесь в СИ.

Допустим, что напряжение имеет форму меандра, кф = 1. Выбирая плотность тока j = 2,2 А / мм2 ; коэффициент заполнения σ = 0,15 ; выразив площади в см2 ; Bm в Тл ; частоту в Гц получим расчетную формулу:

Pгаб = Sc ⋅ So ⋅ f ⋅ Bm / 150

Как видно, эта формула выведена с большим запасом, реально можно получить с трансформатора и большую мощность.

Литература.

  1. Косенко С. “Расчёт импульсного трансформатора двухтактного преобразователя” // Радио, №4, 2005, с. 35 — 37, 44.

  2. Эраносян С. А. Сетевые блоки питания с высокочастотными преобразователями. — Л.: Энергоатомиздат. Ленингр. отд-ние, 1991,— 176 с: ил.

  3. С. В. Котенёв, А. Н. Евсеев. Расчет и оптимизация тороидальных трансформаторов и дросселей. — М.: Горячая линия-Телеком, 2013. — 359 с.: ил.

  4. А. Петров «Индуктивности, дроссели, трансформаторы «// Радиолюбитель, №12, 1995, с.10-11.

  5. Михайлова М.М., Филиппов В.В., Муслаков В.П. Магнитомягкие ферриты для радиоэлектронной аппаратуры. Справочник. — М.: Радио и связь, 1983. — 200 с., ил.

  6. Расчетные геометрические параметры кольцевых сердечников.

  7. Б.Ю.Семенов. Силовая электроника для любителей и профессионалов. М. : Солон-Р, 2001. — 327 с. : ил

  8. Курс лекций «Импульсная техника» для студентов 4-го курса кафедры Радиофизики. Глава 3.

Питание с помощью трансформатора | Шаг за шагом

Трансформатор понижает напряжение сети до величины, которая необходима для питания цепей накала (обычно 6,3 в). Нити накала сетевых ламп питаются непосредственно переменным током, так как катод их снабжен подогревателем (лист 110). Имеющийся в блоке питания выпрямитель преобразует переменное напряжение сети в постоянное напряжение, необходимое для питания анодных и экранных цепей, и поэтому такой выпрямитель называют анодным.

Переменное напряжение на анодный выпрямитель подается со специальной повышающей обмотки трансформатора, и это позволяет сохранять неизменным анодное напряжение (обычно оно составляет 150-250 в) при питании аппаратуры от сети с различным напряжением 100, 127 или 220 в. В приемнике или усилителе имеется два, а иногда и три трансформатора различного назначения, и тот из них, который используется для получения необходимых питающих напряжений, называют сетевым или силовым трансформатором.

Мы уже знаем, что если расположить рядом две катушки и по одной из них пропустить переменный ток, то возникающее вокруг этой катушки переменное магнитное поле наведет переменный ток во второй катушке. При этом напряжение, которое появится на концах второй катушки (обмотки), будет зависеть от того, насколько сильно обе катушки связаны общим магнитным полем, и от соотношения числа витков первой и второй обмотки: чем больше витков во второй (вторичной) обмотке, тем больше будет напряжение на ней.

Так, например, если в первой (первичной) обмотке имеется 100, а во второй 200 витков и если к первичной обмотке подводится напряжение 1 в, то на вторичной обмотке появится напряжение 2 в. Если уменьшить число витков вторичной обмотки в четыре раза (50 витков), то в четыре раза уменьшится действующее на ней напряжение (0,5 в). Цифра, показывающая, во сколько раз напряжение на вторичной обмотке больше, чем на первичной, называется коэффициентом трансформации n (лист 114). Коэффициент трансформации численно равен числу витков вторичной обмотки w

2, деленному на число витков первичной обмотки w1.

Если w2 меньше, чем w1, то коэффициент трансформации меньше единицы и напряжение понижается (понижающий трансформатор). Иногда, правда, для удобства расчетов, в понижающем трансформаторе коэффициентом трансформации считают отношение w1 к w2, и величина п в этом случае получается больше единицы. Такое «переворачивание» формулы обычно оговаривают специальным примечанием.

Следует заметить, что никакой разницы между понижающим и повышающим трансформатором нет: все зависит от того, к какой обмотке подводится напряжение, то есть от того, какую обмотку мы считаем первичной. Любой повышающий трансформатор станет понижающим, если подвести напряжение к его вторичной обмотке. Точно так же можно понижающий трансформатор включить как повышающий.

Если рядом с первичной обмоткой, к которой подводится переменное напряжение, расположить несколько обмоток с разным числом витков, то с них можно получить несколько различных напряжений. Этот принцип и используется в трансформаторах и, в частности, в силовом трансформаторе для получения нужных напряжений: высокого напряжения для анодного выпрямителя и низкого напряжения для питания нитей накала ламп. В соответствии с этим в силовом трансформаторе имеются сетевые обмотки, к которым подводится напряжение от сети 127 или 220 в, повышающая обмотка (150-300 в) и накальная обмотка (6,3 в). В большинстве силовых трансформаторов имеется еще и вторая накальная обмотка (6,3 или 5 в) для специальной выпрямительной лампы — кенотрона (лист 116).

Для того чтобы усилить магнитное поле, связывающее обмотки трансформатора, их располагают на стальном сердечнике, который собирают «в перекрышку» (лист 115) из пластин толщиной 0,3-0,5 мм, имеющих форму буквы «Ш» (Ш-образные пластины).

В обозначении типа пластин после букв «Ш» или «УШ» (уширенные пластины) стоит цифра, показывающая ширину среднего стержня этой пластины. В описаниях аппаратуры часто указывают сечение сердечника, которое представляет собой произведение ширины среднего стержня l на толщину набора b (лист 115).

Обмотки трансформатора делают из медного провода марки ПЭ, ПЭЛ или ПЭВ. Буквы «ПЭ» говорят о том, что провод покрыт эмалевой изоляцией. Буква «Л» означает, что изоляция лакостойкая, а буква «В» — влагостойкая (лист 79). В подавляющем большинстве случаев обмоточные провода различных марок могут заменять друг друга.

Как уже отмечалось, в название провода входит также цифра, указывающая диаметр этого провода. Так, например, название «ПЭ-0,12» относится к эмалированному проводу диаметром 0,12 мм. Диаметр указывают без учета изоляции, но эмалевая изоляция обычно настолько тонка (сотые и тысячные доли миллиметра), что ее можно и не учитывать. Необходимый диаметр провода определяется величиной тока, который проходит по обмотке: чем больше ток, тем более толстым должен быть провод. Все обмотки обычно располагают на каркасе из картона или другого изоляционного материала. При намотке провод укладывают тонкими слоями, между которыми делают прокладки из бумаги.

Если вы будете делать трансформатор сами, то особенно внимательно следите за тем, чтобы крайние витки не проваливались и не соединялись с крайними витками других слоев. Нельзя допускать повреждения эмалевой изоляции, потому что любое замыкание витков, например замыкание двух соседних витков, приводит к перегреву трансформатора и выходу его из строя.

Число витков отдельных обмоток трансформатора определяется потребляемой от него мощностью, сечением сердечника и сортом стали. Однако при любом сердечнике соотношение между числом витков отдельных обмоток определяется только необходимым коэффициентом трансформации, то есть тем, во сколько раз нужно увеличить или уменьшить напряжение.

Так, если сетевая обмотка, рассчитанная на 127 в, имеет 1270 витков (10 витков на каждый вольт), то для включения трансформатора в сеть 220 в к этой обмотке нужно добавить еще 930 витков (1270+930=2200 витков). Если к выпрямителю нужно подвести напряжение 250 в, то в рассматриваемом трансформаторе повышающая обмотка должна иметь 2500 витков, а накальная обмотка (напряжение 6,3 в) — 63 витка.

При расчете силового трансформатора определяют число витков, которое приходится на один вольт w’, а затем, умножая это число на напряжение, которое нужно подвести к какой-нибудь обмотке (или получить с нее), определяют необходимое число витков всей обмотки. В нашем примере w’= 10. Это следует из первых же приведенных цифр: 127 в и 1270 витков, то есть на каждый вольт приходится 10 витков. Исходя из этой цифры, мы и получили данные всех обмоток, приведенные выше. При переделке старого трансформатора можно определить w’ измерив напряжение на какой-нибудь обмотке, а затем подсчитав число ее витков. Иногда в подобных случаях целесообразно временно намотать специальную обмотку, содержащую 15-20 витков любого провода.

В фабричных приемниках очень часто применяют трансформаторы с комбинированной сетевой обмоткой (лист 117). Здесь при напряжениях сети 110 и 127 в секции первичной обмотки включаются параллельно и по каждой из них проходит лишь половина общего тока. Это позволяет применять провод более тонкий, чем в простейшей схеме с отводами (лист 116). Для массового производства такая экономия имеет огромное значение.

На листах 118, 119 и 120 приведен порядок упрощенного расчета трансформатора. Исходные данные, которые нужны для расчета, — это накальные, анодные и экранные токи и напряжения примененных ламп. Все эти данные можно взять из таблицы параметров ламп. Если в результате расчета выяснится, что все обмотки не могут уместиться в окне сердечника, то следует увеличить сечение сердечника S и вновь произвести расчет. В результате увеличения S уменьшится число витков на 1 в (w’)

, а следовательно, общее число витков во всех обмотках.

Трансформатор

Трансформатор состоит из двух отдельных обмоток, называемых первичной и вторичной обмотками. Входное напряжение переменного тока прикладывается к первичной обмотке и создает изменяющееся магнитное поле. Это магнитное поле взаимодействует со вторичной обмоткой, индуцируя в ней напряжение переменного тока (точнее, ЭДС). Напряжение, индуцируемое во вторичной обмотке, имеет ту же частоту, что и входное напряжение, но его амплитуда определяется соотношением числа витков вторичной и первичной обмоток.

Если входное напряжение на выводах первичной обмотки = V1
выходное напряжение на выводах вторичной обмотки = V2
число витков первичной обмотки = T1
число витков вторичной обмотки = T2

то

Кроме того, I1/ I2 = T1/ T2, где I1 и I2 – токи первичной и вторичной обмоток соответственно.

 

Коэффициент полезного действия (КПД) трансформатора

Приведенные выше соотношения предполагают, что трансформатор имеет 100%-ный КПД, т. е. полностью отсутствуют какие-либо потери мощности. Следовательно,

Входная мощность I1•V1 = Выходная мощность I2•V2.
На практике трансформаторы имеют КПД около 96-99%. Для увеличения КПД трансформатора его первичная и вторичная обмотки наматываются на одном магнитном сердечнике (рис. 7.10).

 

Повышающий и понижающий трансформаторы

Повышающий трансформатор вырабатывает на выходе (во вторичной обмотке) более высокое напряжение, чем приложено на входе (к первичной обмотке). Для этого число витков вторичной обмотки делается больше числа витков первичной обмотки.
Понижающий трансформатор вырабатывает на своем выходе меньшее напряжение, чем на входе, поскольку его вторичная обмотка имеет меньшее число витков по сравнению с первичной.

 

Коэффициент приведения сопротивления

Трансформатор, изображенный на рис. 7.11, имеет в цепи вторичной обмотки нагрузочный резистор r2. Сопротивление r2 можно пересчитать или, как говорят, привести к первичной обмотке, т. е. к сопротивлению трансформатора r1 со стороны первичной обмотки. Отношение r1/ r2 называется коэффициентом приведения сопротивления. Этот коэффициент можно рассчитать следующим образом. Поскольку r1 = V1 / I1 и r2 = V2 / I2, то

Рис. 7.10. Трансформатор.

Рис. 7.11. Коэффициент приведения
сопротивления


r1/ r2 = Т12/ Т22 = n2.

Рис. 7.12. Автотрансформатор.

 


Рис. 7.13. Автотрансформатор с несколькими отводами.

 

Но V1 / V2 = T1 / T2 = n и I2 / I1 = T1 / T2 = n, поэтому

r1 / r2 = n2

Например, если сопротивление нагрузки r2 = 100 Ом и отношение числа витков обмоток (коэффициент трансформации) T1 / T2 = п = 2 : 1, то со стороны первичной обмотки трансформатор можно рассматривать как резистор с сопротивлением r1 = 100 Ом • 22 = 100 • 4 = 400 Ом.

 

Автотрансформатор

Трансформатор может иметь одну-единственную обмотку с одним отводом от части витков этой обмотки, как показано на рис. 7.12. Здесь T1 — число витков первичной обмотки и T2 — число витков вторичной обмотки. Напряжения, токи, сопротивления и коэффициент трансформации определяются теми же формулами, которые применимы к обычному трансформатору.
На рис. 7.13 показан еще один трансформатор с единственной обмоткой, в котором сделано несколько отводов от этой обмотки. Все соотношения для напряжений, токов и сопротивлений по-прежнему определяются коэффициентом трансформации (V1/Va = Т1/Тa, V1/Vb = Т1/Тb и т. д.).

 

Трансформатор с отводом от средней точки вторичной обмотки

На рис. 7.14 изображен трансформатор с отводом от середины его вторичной обмотки. С верхней и нижней половин вторичной обмотки снимаются выходные напряжения Va и Vb, Отношение входного напряжения (на первичной обмотке) к каждому из этих выходных напряжений определяется отношением числа витков, причем

V1/Va = Т1/Тa V1/Vb = Т1/Тb

где Т1, Тa и Тb — число витков первичной, вторичной а и вторичной b обмоток соответственно. Поскольку отвод сделан от середины вторичной обмотки, напряжения Va и Vb равны по амплитуде. Если средняя точка заземлена, как в схеме на рис. 7.14, то выходные напряжения, снимаемые с двух половин вторичной обмотки, находятся в противофазе.


Пример

Обратимся к рис. 7.15. (а) Рассчитайте напряжение между выводами В и С трансформатора, (б) Если между выводами А и В намотано 30 витков, то сколь¬ко всего витков имеет вторичная обмотка трансформатора?
Решение
a) VBC = VAD – VAB – VCD = 36 В – 6 В – 12 В = 18 В.
Число витков между А и В
b) VAB / VAD == ———————————————
Число витков между А и D

Следовательно, 6 В/36 В = 30/ TAD, отсюда TAD = 30 • 36/6 = 180 витков.

Рис. 7.14. Трансформатор с отводом от средней точки вторичной обмотки.

Рис. 7.15. VAD = 36 В, VAB = б В,
VCD = 12 В.

 

Магнитная цепь

Принято говорить, что в магнитной цепи магнитный поток (или магнитное поле), измеряемый в теслах, создается силой, называемой магнитодвижущей силой (МДС). Магнитная цепь обычно сравнивается с электрической цепью, причем магнитный поток сопоставляется с током, а магнитодвижущая сила с электродвижущей силой. Точно так же, как говорят о сопротивлении R электрической цепи, можно говорить о магнитном сопротивлении S магнитной цени; эти понятия имеют аналогичный смысл. Например, такой магнитомягкий материал, как ковкое железо, обладает низким магнитным сопротивлением, т. е. низким сопротивлением для магнитного потока.

 

Магнитная проницаемость

Магнитная проницаемость материала это мера легкости его намагничивания. Например, ковкое железо и другие электромагнитные материалы, такие, как ферриты, обладают высокой магнитной проницаемостью. Эти материалы применяются в трансформаторах, катушках индуктивности, реле и ферритовых антеннах. В отличие от них немагнитные материалы имеют очень низкую магнитную проницаемость. Магнитные сплавы, такие, как кремнистая сталь, обладают способностью сохранять состояние намагниченности в отсутствие магнитного поля и поэтому применяются в качестве постоянных магнитов в громкоговорителях (динамических головках), магнитоэлектрических измерительных приборах с подвижной катушкой и т. д.

 

Экранирование

Рассмотрим полый цилиндр, помещенный в магнитное поле (рис. 7.16). Если этот цилиндр изготовлен из материала с низким магнитным сопротивлением (магнитомягкого материала), то магнитное поле будет концентрироваться в стенках цилиндра, как показано на рисунке, не попадая в его внутреннюю область.

Рис. 7.16. Магнитное экранирование.

Рис. 7.17. Электростатическое экранирование в трансформаторе.

Следовательно, если в эту область поместить какой-либо предмет, он будет защищен (экранирован) от влияния магнитного поля в окружающем пространстве. Такое экранирование, называемое магнитным экранированием, применяется для защиты от внешних магнитных полей электронно-лучевых трубок, магнитоэлектрических измерительных приборов с подвижной катушкой, динамических головок громкоговорителей и т. п.
В трансформаторах иногда применяется другой тип экранирования, называемый электростатическим или электрическим экранированием. Между первичной и вторичной обмотками трансформатора размещается экран из тонкой медной фольги, как показано на рис. 7.17. При заземлении такого экрана сильно уменьшается влияние емкости между обмотками, которая возникает из-за разности потенциалов этих обмоток. Электростатическое экранирование применяется также в коаксиальных кабелях и всюду, где проводники имеют разные потенциалы и находятся в непосредственной близости друг от друга.

В этом видео рассказывают о том, что такое трансформатор:

Добавить комментарий

Глава 18. Трансформаторы . Введение в электронику

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Описать, как работает трансформатор.

• Объяснить, в каких единицах измеряется мощность трансформатора.

• Объяснить, как трансформатор работает в цепи.

• Описать разницу между повышающим, понижающим и развязывающим трансформаторами.

• Описать, как связаны отношения напряжений, токов и числа витков в обмотках трансформатора.

• Описать применения трансформаторов.

• Перечислить различные типы трансформаторов.

Трансформаторы позволяют передавать сигнал переменного тока из одной цепи в другую. При передаче сигнала, его напряжение может повышаться, понижаться или оставаться неизменным.

18-1. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Если две электрически изолированные катушки разместить рядом друг с другом и приложить к одной из них переменное напряжение, то возникнет изменяющееся магнитное поле. Это изменяющееся магнитное поле индуцирует напряжение во второй катушке: такое явление называется электромагнитной индукцией. А описанное устройство называется трансформатором.

Обмотка трансформатора, к которой приложено переменное напряжение, называется первичной обмоткой. Другая обмотка, в которой напряжение индуцируется, называется вторичной обмоткой. Величина индуцируемого напряжения зависит от величины взаимоиндукции двух катушек.

Величина взаимоиндукции определяется коэффициентом связи. Коэффициент связи — это число от 0 до 1, где 1 соответствует такому случаю, когда все линии магнитного потока первичной обмотки пересекают вторичную обмотку, а 0 — соответствует случаю, когда ни одна линия магнитного потока первичной обмотки не пересекает вторичную обмотку.

При расчете трансформатора учитывается частота, на которой он должен работать, а также мощность и напряжение, на которые он должен быть рассчитан. Например, область применения трансформатора определяет выбор материала сердечника, на который наматываются обмотки. Для применения на низких частотах используются железные сердечники, а для применения на высоких частотах — воздушные сердечники. Воздушные сердечники — это неметаллические сердечники, используемые для уменьшения потерь на высоких частотах.

Мощность трансформаторов измеряется в вольт-амперах (ВА), а не в ваттах (Вт). Это обусловлено тем, что нагрузка является реактивной и, следовательно, мощность также будет реактивной. Если нагрузка является чисто емкостной, то малое реактивное сопротивление может быть причиной большого тока. Мощность в ваттах при этом будет небольшой, тогда как мощность в вольт-амперах будет отражать реальный ток, текущий в обмотках.

На рис. 18-1 показано схематическое обозначение трансформатора.

Рис. 18-1. Схематическое обозначение трансформатора, показывающее сдвиг фаз.

Направление первичной и вторичной обмоток на сердечнике определяет полярность индуцированного напряжения во вторичной обмотке. Приложенное переменное напряжение может быть либо в фазе с индуцированным напряжением, либо сдвинуто относительно него на 180 градусов. Точки на схематическом обозначении трансформатора используются для указания полярности.

Трансформаторы иногда наматывают с отводом на вторичной обмотке (рис. 18-2).

Рис. 18-2. Трансформатор с отводом от центра вторичной обмотки.

Вторичная обмотка с отводом посредине эквивалентна двум вторичным обмоткам, каждая из которых имеет по половине от общего числа витков.

Центральный вывод используется в блоках питания для преобразования переменного напряжения в постоянное.

Трансформатор может также иметь отводы на первичной обмотке для компенсации сетевого напряжения, которое может быть слишком низким или слишком высоким.

18-1. Вопросы

1. Как работает трансформатор?

2. Что учитывается при расчете трансформатора?

3. Приведите пример того, как применение трансформатора определяет его конструкцию.

4. В каких единицах измеряется мощность трансформатора?

5. Нарисуйте схематическое обозначение трансформатора.

18-2. ВЗАИМОИНДУКЦИЯ

Когда трансформатор работает без нагрузки (рис. 18-3), по вторичной обмотке не течет ток.

Рис. 18-3. Трансформатор без нагрузки во вторичной обмотке.

Ток течет только по первичной обмотке, так как трансформатор подсоединен к источнику тока. Величина тока в первичной обмотке зависит от числа витков в ней. Первичная обмотка действует подобно катушке индуктивности. Небольшой ток, который течет по ней, называется током намагничивания (или током холостого хода). Ток намагничивания компенсирует активное сопротивление первичной обмотки переменному току и поддерживает магнитное поле сердечника. Так как первичная обмотка имеет индуктивное реактивное сопротивление, ток намагничивания отстает по фазе от приложенного напряжения. Эти условия меняются при подключении нагрузки ко вторичной обмотке.

Когда ко вторичной обмотке подсоединяется нагрузка (рис. 18-4), в ней индуцируется ток. Обычно на трансформаторах вторичная обмотка намотана поверх первичной.

Рис. 18-4. Трансформатор с нагрузкой во вторичной обмотке.

Магнитное поле, созданное первичной обмоткой, пересекает витки вторичной обмотки. Ток во вторичной обмотке создает свое магнитное поле. Магнитное поле вторичной обмотки пересекает витки первичной обмотки, индуцируя в ней напряжение, направленное противоположно приложенному. Это магнитное поле помогает увеличению тока в первичной обмотке с помощью эффекта, называемого взаимоиндукцией. Первичная обмотка индуцирует напряжение во вторичной обмотке, а вторичная обмотка индуцирует направленное противоположно напряжение в первичной.

18-2. Вопросы

1. Как нагрузка влияет на работу трансформатора?

2. Дайте определение взаимоиндукции.

3. Опишите, как трансформатор индуцирует напряжение во вторичной обмотке.

18-3. КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ

Коэффициент трансформации определяет, является ли трансформатор повышающим, понижающим или пропускает напряжение неизменным. Коэффициент трансформации — это отношение числа витков вторичной обмотки к числу витков первичной обмотки:

Коэффициент трансформации = NS/NP

где NS — число витков во вторичной обмотке, a Np — в первичной.

Трансформатор, у которого напряжение во вторичной обмотке больше, чем в первичной, называется повышающим трансформатором. Степень повышения напряжения зависит от коэффициента трансформации. Отношение напряжения вторичной обмотки к напряжению первичной обмотки равно отношению чисел витков этих обмоток:

ES/EP = NS/NP

Следовательно, коэффициент трансформации повышающего трансформатора всегда больше единицы.

ПРИМЕР: Трансформатор имеет 400 витков первичной обмотки и 1200 витков вторичной. Если к первичной обмотке приложить переменное напряжение 120 вольт, то какое напряжение индуцируется во вторичной?

Дано:

Ер = 120 Вольт; Ns = 1200 витков; Np = 400 витков.

Еs =? 

Решение:

Es/EP = Ns/Np

Es/120 = 1200/400

Es = 360 В

Трансформатор, у которого напряжение во вторичной обмотке меньше, чем в первичной, называется понижающим трансформатором. Степень понижения напряжения определяется коэффициентом трансформации. Коэффициент трансформации понижающего трансформатора всегда меньше единицы.

ПРИМЕР: Трансформатор имеет 500 витков первичной обмотки и 100 витков вторичной. Если к первичной обмотке приложить переменное напряжение 120 вольт, то какое напряжение индуцируется во вторичной?

Дано:

Ер = 120 Вольт; Ns = 100 витков; Np = 500 витков.

Еs =? 

Решение:

Es/EP = Ns/Np

Es/120 = 100/500

Es = 24 В

Если предположить, что трансформатор не имеет потерь, то мощность во вторичной обмотке должна равняться мощности в первичной. Хотя трансформатор может повышать напряжение, он не может увеличивать мощность. Мощность, снимаемая со вторичной обмотки никогда не может быть больше мощности, потребляемой первичной обмоткой. Следовательно, когда трансформатор повышает напряжение, он понижает ток, и выходная мощность остается равной входной. Это может быть выражено следующим образом:

PP = PS

(IP)(EP) = (IS)(ES).

Следовательно, ток обратно пропорционален коэффициенту трансформации:

IP/IS = NS/NP

ПРИМЕР: Трансформатор имеет коэффициент трансформации 10:1. Если по первичной обмотке течет ток 100 миллиампер, то какой ток течет по вторичной обмотке?

(Замечание: первая цифра в коэффициенте трансформации относится к первичной обмотке, а вторая цифра — ко вторичной).

Дано:

Np= 10; Ns = 1; Ip = 100 мA = 0,1 A.

Is =?

Решение: 

Ip/Is = Ns/Np

0,1/Is = 1/10

Is = 1 A

Важным применением трансформаторов является согласование импедансов. Максимальная мощность передается только тогда, когда импеданс нагрузки равен импедансу источника сигнала. Когда импедансы не согласованы, мощность передается не полностью.

Например, если транзисторный усилитель может эффективно возбуждать 100-омный усилитель, то он не сможет эффективно раскачать 4-омный громкоговоритель. Использование трансформатора между транзисторным усилителем и громкоговорителем поможет согласовать импедансы. Это достигается выбором соответствующего коэффициента трансформации.

Отношение импедансов равно квадрату коэффициента трансформации:

Zp/Zs = (Np/Ns)2

ПРИМЕР: Какой должен быть коэффициент трансформации трансформатора для согласования 4-омного громкоговорителя с 100-омным источником сигнала?

Дано:

Zp = 100; Zs = 4.

Np =?; Ns =? 

Решение:

Zp/Zs = (Np/Ns)2

100/4 = (Np/Ns)2

√(25) = Np/Ns

5/1 = Np/Ns

Коэффициент трансформации равен 5:1.

18-3. Вопросы

1. Чем определяется, какой это трансформатор — повышающий или понижающий?

2. Напишите формулу для определения коэффициента трансформации трансформатора.

3. Напишите формулу для определения напряжения через коэффициент трансформации трансформатора.

4. Чему равно напряжение на вторичной обмотке трансформатора, имеющего 100 витков первичной обмотки и 1800 витков вторичной, при приложенном напряжении 120 вольт?

18-4. ПРИМЕНЕНИЯ

Трансформаторы имеют множество применений. Среди них: повышение и понижение напряжения и тока, согласование импедансов, сдвиг фаз, гальваническая развязка, блокирование постоянного тока при пропускании переменного и вывод нескольких сигналов с разными уровнями напряжения.

Передача электроэнергии к потребителям требует использования трансформаторов. Электростанции расположены рядом с источниками сырья и природной энергии, и электроэнергия часто должна передаваться на большие расстояния. Провода, используемые для передачи энергии, имеют сопротивление, приводящее к потерям мощности при передаче. Мощность равна произведению тока на напряжение:

Р = IE.

Закон Ома утверждает, что ток прямо пропорционален напряжению и обратно пропорционален сопротивлению:

I = E/R

Следовательно, величина потерь мощности пропорциональна сопротивлению линии. Самый легкий путь уменьшения потерь мощности — это уменьшение тока.

ПРИМЕР: Электростанция вырабатывает 8500 вольт при 10 амперах. Сопротивление линии передачи 100 ом. Чему равны потери мощности в линии?

 Дано:

I = 10 A; R = 100 Ом

P =?; E =?

Решение:

Сначала найдем падение напряжения на линии.

I = E/R

10 = E/100 

Е = 1000 В.

Используя Е, найдем потерю мощности.

Р = IE = (10)(1000)

Р = 10000 Вт.

Каковы будут потери мощности, если мы с помощью трансформатора повысим напряжение до 85000 вольт при 1 ампере?

Дано:

I = 1 A; R = 100 Ом

E =?

Решение:

Сначала найдем падение напряжения на линии.

I = E/R

1 = E/100 

Е = 100 В.

Используя Е, найдем потерю мощности.

Р = IE = (1)(100)

Р = 100 Вт.

Способ намотки трансформатора определяет, будет ли он производить фазовый сдвиг напряжения обмоток. Знак фазового сдвига определяет тип включения трансформатора. Замечание: знак фазы можно изменить, поменяв местами выводы на нагрузке (рис. 18-5).

Рис. 18-5. Трансформатор можно использовать для создания фазового сдвига.

Если к трансформатору приложить постоянное напряжение, то после установления магнитного поля во вторичной обмотке э.д.с. наводиться не будет. Для индуцирования напряжения во вторичной обмотке необходимо изменение тока. Трансформатор можно использовать для гальванической развязки вторичной обмотки и любого постоянного напряжения в первичной (рис. 18-6).

Рис. 18-6. Трансформатор может быть использован для блокирования постоянного напряжения.

Трансформаторы используются для гальванической развязки электронного оборудования и сети переменного тока 120 вольт, 60 герц при его тестировании (рис. 18-7).

Рис. 18-7. Трансформатор гальванической развязки предотвращает поражение электрическим током, изолируя оборудование от земли.

Причина использования трансформатора — предотвращение поражения электрическим током. Без трансформатора один вывод источника тока соединяется с шасси прибора. Когда шасси удаляется из корпуса, появляется опасность поражения электрическим током. Это может произойти с большей вероятностью, если сетевой шнур подключен определенным образом. Трансформатор предотвращает электрический контакт оборудования с землей. Развязывающий трансформатор не повышает и не понижает напряжение.

Автотрансформатор — это устройство, используемое для повышения или понижения приложенного напряжения и представляющее собой специальный трансформатор, в котором одна обмотка является частью другой. На рис. 18-8(А) изображен автотрансформатор, понижающий напряжение. Напряжение понижается потому, что вторичная обмотка содержит меньшее число витков. На рис. 18-8(Б) изображен автотрансформатор, повышающий напряжение. Напряжение повышается потому, что вторичная обмотка содержит большее число витков. Недостаток автотрансформатора в том, что вторичная обмотка не изолирована от первичной. Преимущество — он дешевле и проще в изготовлении, чем трансформатор.

Рис. 18-8. Автотрансформатор — это специальный трансформатор, который используется для повышения и понижения напряжения.

Специальным типом автотрансформатора является переменный автотрансформатор, в котором нагрузка подсоединяется к подвижному рычагу и одному из выводов автотрансформатора. Перемещение рычага изменяет коэффициент трансформации и, следовательно, напряжение на нагрузке. Выходное напряжение может изменяться от 0 до 130 вольт переменного тока.

18-4. Вопросы

1. Где применяются трансформаторы?

2. Как трансформаторы используются при передаче электроэнергии?

3. Как трансформатор производит фазовый сдвиг входного сигнала?

4. Почему важно использовать трансформаторы гальванической развязки при работе с электронным оборудованием?

5. Для чего используется автотрансформатор?

РЕЗЮМЕ

• Трансформатор состоит из двух катушек — первичной обмотки и вторичной обмотки.

• Переменное напряжение прикладывается к первичной обмотке, индуцируя напряжение во вторичной обмотке.

• Трансформаторы позволяют передавать сигнал переменного тока от одной цепи к другой.

• Трансформаторы позволяют повышать напряжение, понижать напряжение или оставлять его неизменным.

• Трансформаторы рассчитаны на работу при определенных частотах.

• Мощность трансформаторов измеряется в вольт-амперах (ВА).

• Схематическим обозначением трансформатора является:

• Коэффициент трансформации определяет, является трансформатор повышающим, понижающим или оставляет напряжение неизменным.

Коэффициент трансформации = NS/NP

• Отношение напряжения вторичной обмотки к напряжению первичной обмотки равно отношению чисел витков этих обмоток:

ES/ЕР = NS/NP

• Трансформатор, у которого напряжение на вторичной обмотке больше, чем на первичной, называется повышающим трансформатором.

• Коэффициент трансформации повышающего трансформатора всегда больше единицы.

• Трансформатор, у которого напряжение на вторичной обмотке меньше, чем на первичной, называется понижающим трансформатором.

• Коэффициент трансформации понижающего трансформатора всегда меньше единицы.

• Величина повышенного или пониженного напряжения определяется коэффициентом трансформации.

• Применения трансформаторов включают: согласование импедансов, сдвиг фаз, гальваническую развязку, блокирование постоянного и пропускание переменного токов и вывод нескольких сигналов с разными уровнями напряжения.

• Трансформатор гальванической развязки пропускает сигнал неизмененным.

• Трансформатор гальванической развязки используется для предотвращения поражения электрическим током.

• Автотрансформатор используется для повышения и понижения напряжения.

• Автотрансформатор — это специальный трансформатор, который не обеспечивает гальваническую развязку.

Глава 18. САМОПРОВЕРКА

1. Объясните, как электромагнитная индукция индуцирует напряжение во вторичной обмотке трансформатора.

2. Почему мощность трансформаторов измеряется в вольт-амперах, а не в ваттах?

3. Чем отличаются два трансформатора, один их которых при приложенном напряжении к первичной обмотке не имеет нагрузки во вторичной обмотке, а второй имеет нагрузку?

4. К первичной обмотке трансформатора приложено переменное напряжение 120 вольт, а напряжение на вторичной — 12 вольт. Какое количество витков имеет вторичная обмотка, если первичная содержит 400 витков?

5. Какой коэффициент трансформации должен иметь трансформатор для согласования 4-омного громкоговорителя с 16-омным источником сигнала?

6. Объясните, почему трансформаторы играют важную роль при передаче электроэнергии потребителям.

7. Каким образом трансформатор гальванической развязки предотвращает поражение электрическим током?

Первичная обмотка трансформатора — Энциклопедия по машиностроению XXL

Электрическая схема контактных машин состоит из трех элементов трансформатора, прерывателя тока и переключателя степеней мощности (рис. 5.38). Первичную обмотку трансформатора подключают к сети с напряжением 220—380 В ее изготовляют секционной для изменения числа рабочих витков при переключении ступени мощности. Вторичная обмотка трансформатора состоит из одного или двух витков (вторичное напряжение 1 —12 В). Сила вторичного тока составляет 1000—J00 ООО А.  [c.219]
Трансформатор имеет сердечник — магнитопровод из трансформаторной стали, на сердечнике размещаются две обмотки — первичная и вторичная. Переменный ток из сети, проходя через первичную обмотку трансформатора, намагничивает сердечник, создавая в нем переменный магнитный поток, который, пересекая витки вторичной обмотки, индуктирует в ней переменный ток.  [c.59]

Контактные машины работают на переменном токе от трансформаторов. Первичную обмотку трансформаторов подключают к сети с напряжением 220—380 В, ее изготовляют секционной для изменения числа рабочих витков при переключении ступеней мощности.  [c.112]

Таким образом, для изменения Е/а необходимо изменять число включенных витков первичной обмотки 1 1, соответственно будет изменяться и вторичный сварочный ток. Для увеличения вторичного тока необходимо уменьшить число витков первичной обмотки трансформатора.  [c.113]

В усилителях мощности и усилителях высокой частоты нагрузку часто включают через трансформатор. В этом случае первичную обмотку трансформатора включают вместо Z , а во вторичную цепь трансформатора включают нагрузку. В усилителях высокой частоты это позволяет уменьшить сопротивление Rbh и, следовательно, полосу пропускания, а в усилителях низкой частоты согласовать нагрузку с усилительным при ром и тем самым увеличить мощность, отдаваемую в нагрузку.  [c.168]

Напряжение, снимаемое с резисторов, подводится к двум вершинам моста, содержащего в своих плечах конденсаторы Сф и регулируемые резисторы Яф для изменения фазы защитного напряжения. Две другие вершины этого моста соединяются с первичной обмоткой трансформатора Тр2, вторичная обмотка которого включается между вершиной Д измерительной схемы и землей.  [c.56]

Опыт эксплуатации закалочных установок показал их высокую надежность и безопасность при обслуживании. Монтаж закалочных устройств и линий передачи должен производиться с учетом требований ПУЭ [261. Конструкция стачка должна исключать возможность случайного прикосновения к элементам, находящимся под высоким напряжением (конденсаторы, выводы первичной обмотки трансформатора и т. п.). Вторичная обмотка трансформатора и все металлические конструкции станка должны быть заземлены. Напряжение на индукторе составляет несколько десятков, а иногда и сотни вольт и может служить причиной поражения персонала. Запрещается прикасаться к индуктору, находящемуся  [c.187]

Измерение угловых ускорений осуществляют датчиками с дифференцирующими электрическими устройствами и инерционными датчиками. Первые, применяемые для измерения малых ускорений, имеют датчики угловых скоростей генераторного типа с трансформатором на его выходе. При постоянной угловой скорости в первичной обмотке трансформатора будет протекать ток, а во вторичной тока не будет. При изменении угловой скорости во вторичной обмотке индуктируется ток, пропорциональный изменению угловой скорости, т. е. угловому ускорению.  [c.436]


В среднем положении якоря напряжение на первичной обмотке трансформатора управления равно нулю. При перемещении пальца 5 вверх или вниз изменяется воздушный зазор между якорем и сердечниками катушек, а вместе с этим меняется и индуктивное сопротивление сердечников 3 w 4. На обмотке трансформатора управления возникает напряжение, пропорциональное величине перемещения якоря, а фаза определяется направлением смещения якоря от среднего положения. Сигнал со вторичной обмотки управляющего трансформатора подается на вход электронного анализатора, соединенного с фазочувствительными двухтактными электронными усилителями. От электронных усилителей сигналы поступают к электромагнитным усилителям, а оттуда к электродвигателям следящей и задающей подач. Схемы усилителей обеспечивают регулирование скоростей подач.  [c.308]
Рис. 38. Принцип действия тороидальных установок замкнутого типа. Сердечник трансформатора продет сквозь тороидальный контейнер с плазмой. Через первичную обмотку трансформатора пропускается большой мощности разряд, который индуцирует в плазме сильный электрический ток, создающий, в свою очередь, магнитное поле (его силовые линии показаны пунктиром), сжимающее плазму
Сигнал индукционного датчика 28 через потенциометр 29 подается на вход суммирующего усилителя 30, на выходе которого включен трансформатор Тр. Параллельно первичной обмотке трансформатора включена батарея конденсаторов С/ с переключателем, имеющая переменную емкость. Батарея конденсаторов С1 служит для настройки по фазе, а потенциометр 29—для настройки по амплитуде автоколебаний. Со вторичной обмотки трансформатора сигнал подается на вход усилителя 32 мощности, состоящего из двух параллельно включенных электровакуумных триодов. Режим работы триодов зависит от входного сигнала, при максимальной выходной мощности триоды работают с токами сетки (режим С).  [c.121]

В установке использованы два генератора импульсов и два зарядных устройства, что позволяет работать отдельно на каждом аппарате, обеспечивая необходимую гибкость технологической схемы. Первичная обмотка импульсного трансформатора включена в цепь заземления генератора II и III стадии. Импульсный ток, протекающий первичной обмотке трансформатора при срабатывании ГИН-240, генерирует напряжение на вторичной обмотке, которая соединена с электродом доводочной камеры (ЭД-1).  [c.292]

Первичная обмотка трансформатора выполняется на одно из стандартных напряжений — 127, 220, 380 или 500 в либо с переключателями витков на 127/220 или 220/380 в для постоянства вторичного напряжения 65 или. 50 в (фиг. 29).  [c.286]

Величина и форма кривой, характеризующей этот ток, задаются с помощью соответствующего изменения величины ёмкости, а также числа витков в первичной обмотке трансформатора. Изменением числа витков или ёмкости конденсатора можно подобрать нужную характеристику волны вторичного тока, наиболее удовлетворительную для сварки того или иного материала.  [c.69]

Силовая схема электроподвижного состава однофазного тока с коллекторными двигателями состоит из первичной высоковольтной цепи (токоприёмники и первичная обмотка трансформатора) и вторичной низковольтной цепи (вторичная обмотка трансформатора, система контакторов, для переключения ступеней трансформатора и тяговые двигатели).  [c.479]

Первичные обмотки трансформаторов контактных машин (фиг. 60) изготовляются  [c.279]

Фиг. 60. Первичные обмотки трансформаторов а—цилиндрическая однослойная б — то же многослойная в — дисковая однорядная г—то же многорядная.

Для увеличения тока через игнитрон в маломощных машинах применяют шунтирующее сопротивление, включаемое параллельно первичной обмотке трансформатора.  [c.294]

Линейное напряжение питающей сети Uj j подаётся на первичную обмотку трансформатора /. Вторичное линейное напряжение этого  [c.176]

Лампа А через кнопку питается от первичной обмотки трансформатора и предупреждает сварщика о наличии  [c.216]

В случае работы на фиксированной частоте при определении индуктивности первичной обмотки трансформатора исходят из допустимого шунтирующего действия  [c.567]

Для измерения распределения капель жидкости с низкой проводимостью и при больших скоростях потока (до 180 м/с) А. С. Федоровым [147, 148] предложена схема с высокочастотной коррекцией (рис. 2.18). Постоянное напряжение or источника подается во входную часть измерительной схемы. При замыкании электродов движущейся каплей в первичной обмотке трансформатора возникает ток. Импульс со вторичной обмотки поступает на вход импульсного усилителя. Усилитель имеет подъем частотной характеристики в диапазоне от 0,1 до 20 МГц. Выходное напряжение усилителя приобретает вид импульсов длительностью 1,5 МКС. Резистор R в этой схеме служит для регулировки полосы пропускания контура, образованного первичной обмоткой трансформатора и паразитной емкостью. Частотная характеристика трансформатора практически равномерна в диапазоне от 0,1 до 30 МГц. Схема обеспечивает эффективное подавление помех, спектр которых является более низкочастотным. В то же время из-за подъема частотной характеристики на высоких частотах, в области которых находится спектр полезного сигнала, амплитуда полезных импульсов увеличивается. При этом уменьшается число потерянных импульсов от капель малого размера, связанное с влиянием паразитной емкости. Скорость счета импульсов определяется с помощью счетчика.  [c.48]

Контактные машины включают и выключают со стороны первичной обмоТки трансформатора. В процессе сварки необходимо периодически включать и выключать ток. Для этого применяют прерыватели нескольких типов простые механические контакторы, электромагнитные (синхронные и асинхронные), электронные приборы (ти-ратронные и игнитронные).  [c.113]

Следуюн(ий метод регулирования основан на использовании индукционного регулятора (рис. 5-8, г). Простейшим индукционным регулятором может служить заторможенЕ1ый асинхронный двигатель с фазным ротором, устроенный таким образом, чтобы ротор можно было плавно поворачивать на 180°. К тре хфазной сети присоединяются три фазные обмотки либо ротора, либо статора, создающие вращающееся магнитное поле. Если к сети присоединен ротор, то в каждой фазной обмотке статора благодаря вращающемуся магнитному полю индуктируется переменное напряжение. При повороте ротора амплитуда этого напряжения остается одной и той же, а фаза будет изменяться. Первичная обмотка испытательного трансформатора присоединяется к сети последовательно с одной из указанных выше фазных обмоток. Вследствие этого к трансформатору прикладывается геометрическая сумма напряжения сети П] и напряжения фазной обмотки В зависимости от положения ротора сдвиг фаз между напряжениями П, и Пз имеет различное значение. Таким образом, напряжение на первичной обмотке трансформатора Пт при повороте ротора будет плавно и.зменяться от минимума (О1 — С/. ) до максимума (и214 >) Индукционные регуляторы обеспечивают плавное регулирование напряжения, по вызывают искажение кривой напряжения.  [c.106]

Источник высокого напряжения (рис. 6-4) служит для создания электрической дуги. Он должен позволять создавать на электродах напряжение 12,5 кВ при токе между электродами 10—100 мА. Требуемое напряжение получается на вторичной обмотке трансформатора Тр2. Средняя точка вторичной обмотки заземлена однако воз—можно использование трансформаторов с незаземлен-ной средней точкой, в этом случае заземляется один из электродов. Для измерения напряжения на электродах служит электростатический вольтметр V2. Сила тока дуги измеряется амперметром А. Погрешность измерения тока и напряжения должна быть не более 2%. Напряжение и ток первичной обмотки трансформатора Тр2 регулируются при помощи автотрансформатора Тр1 я резисторов R1—RIO. Последние включаются в определенной последовательности при помощи специального коммутационного устройства S и позволяют получить требуемые значения тока дуги (табл. 6-1) при неизменном напряжении.  [c.127]

Вследствие низкого os гр системы деталь — индуктор— трансформатор параллельно первичной обмотке трансформатора должна быть подключена батарея статических косинусных конденсаторов, разгружающая питающий фидер от реактивных токов. Батарея располагается в непосредственной близости и комплектуется для среднечастотных установок конденсаторами типа ЭСВ, мощностью до 400 кВ-А (при частоте 10 кГц). Конденсаторы секционированы на секции по одной четверти общей мощности с одним общим и одним отдельным выводом каждая и допускают подключение отдельными секциями. В состав конденсаторной батареи обязательно входит один подстроечный конденсатор типа ЭСВП, у которого емкость для каждой из четырех секций распределена следующими частями 1/16 2/16 4/16 и 9/16. Секции конденсаторов подсоединяются к сборочной шине батареи разъединителями.  [c.56]

Свободные концы термопары через герметизирующее уплотнение выведены из вакуумной камеры и присоединены компенсационными проводами к одноточечному регулирующему потенциометру ПСР1-01 (обозначенному ИП ) со шкалой 0—1600° С. Позиционное регулирование температуры индентора осуществляется при замыкании — размыкании цепи первичной обмотки трансформатора Тр контактом реле Рд, соединенным с электронным потенциометром HlJg.  [c.169]

Работа приборов бесконтактного типа основана на изменении индуктивного сопротивления катушек дифференциального трансформатора при изменении зазора между сердечниками катушек и якорем. В них якорь I, соединенный с рычагом 2, располагается между сердечниками 3 м. 4 дифференциального трансформатора. Величина воздушного зазора регулируется в пределах от О до 2 мм. Первичные обмотки и намотаны на средних стержнях и включены последовательно во вторичную обмотку питающего трансформатора ПТ. Вторичные обмотки З Л 4 дифференциального трансформатора последовательно соединены с первичной обмоткой трансформатора управления ТрУ1. Вторичные обмотки ТрУ2 и ТрУЗ включены после-  [c.308]


Выделяемое при первом же взрыве тепло вполне достаточно для того, чтобы образовался ионизированный слой раскаленного газа, или плазмы, которая распространяется по цилиндру вслед за ударной волной. В таком газе орбитальные электроны отделяются от своих исходных атомов, и присутствие этих свободных электронов делает ионизированный газ (то есть плазму) электропроводящим Ч Колеблясь вместе с ионизированным газом вдоль цилиндра, волна свободных электронов создает переменный электрический ток, и, таким образом, ядерная энергия в реакторе- бомбе непосредственно превращается в электрическую (без обременительного процесса кипячения воды, необходимого для получения пара и приведения в движение турбогенератора). Конечно, мы еще должны найти способ извлекать эуу электроэнергию из реактора- бомбы , прежде чем сможем использовать его на практике. В принципе для этого можно установить соответствующие катушки-токосниматели (как показано на рис. 21) переменный электрический ток, текущий внутри реактора, будет индуцировать электрический ток в таких катушках подобно тому, как первичная обмотка трансформатора индуцирует токи во вторичной обмотке. Однако на практике токоснимающие катушки очень сложно установить настолько близко к реактору, чтобы такая индуктивная связь была достаточно эффективной. Из этого затруднительного положения можно выйти, пропустив токоснимающие электроды сквозь стенки цилиндра, однако и в этом случае весьма трудно найти такой материал для электродов, который выдержал бы громадные рабочие температуры внутри реактора (около 3500° С у внутренней поверхности цилиндра и вдвое большая — в критической зоне).  [c.70]

В контуре первичной обмотки трансформатора внешняя э. д. с, генератора U в] и противо-э. д. с. от первичной катушки расходуется на клеммах компенсирующей емкости Qo [фарада = к/е] и на активном и реактивйом сопротивлении самой обмотки.  [c.68]

На рис. 8 показана принципиальная схема радиоактивного реле, разработанного в ЦНИКП (Е. Я. Клочков). Оно имеет лишь одну пампу 6Н8 (двойной триод), используемую для выпрямления и усиления. Первичная обмотка трансформатора находится в режиме феррорезонанса. Чувствительность реле для практических целей достаточно высока.  [c.202]

В конструкции датчика Рудашевского (схема — см. фиг. 165. г) на подвижной ножке, связанной с корпусо,м пружинным шарниром, укреплён якорь из трансформаторного железа, на котором ломещена первичная обмотка трансформатора. Два сердечника со вторичными об-  [c.231]

Тепло выделяется в канале и благодаря интенсивной циркуляции металла передаётся в шахту. Первичная обмотка трансформатора и сердечник охлаждаются воздушным дутьём. Подовый камень, изготовляемый из специальной массы, обладает очень высокой стойкостью (до 2000—3000 плавок). Шахта футеруется шамотным кирпичом. Печь-накло-  [c.164]

Фиг. 2. Электрокинематическая схема стыковоИ машины с рычажным подаюше осадочным устройством 1 — подвижная плита 2 — неподвижная плита 3 — секционированная первичная обмотка трансформатора 4 — вторичная обмотка трансформатора 5—рычаг подаюше-осадочного устройства 6—выключающий сектор 7 —вспомогательное реле —главный контактор Р—вспомогательный трансформатор.
Эффективная защита первичной обмотки трансформатора от попадания влаги, искр и брызг расплавленного металла, от повреждения вследствие трения о подвижные части ма-шутны или в результате взаимного перемещения обмоток под действием электромагнитных сил.  [c.266]

Первичная обмотка трансформатора секпионирована она имеет три ступени — на первичное напряжение 340, 360 и 380 в.  [c.216]

Применение неспекающегося катализатора позволяет упростить конструкцию крекера, который может быть изготовлен сварным, без фланцевых соединений. Контроль температуры крекера осуществляется термопарой, закладываемой в специальный карман внутренней ката-лизаторной камеры. Накал обмотки крекера может регулироваться тремя путями последовательно включенным реостатом, меняющим силу тока в пределах 10—20 а переключением витков первичной обмотки трансформатора (при подключении крекера к аппарату АВ-40-а) терморегулятором, включенным в цепь обмотки крекера.  [c.218]

Трансформаторы тока служат для преобразования из.ле1)яемого тока большой величины в ток малой величины и предназначаются для включения амперметров, токовых катушек ваттметров, счетчиков, реле. Первичная обмотка трансформатора тока включается последовательно в цепь измеряемого тока вторичная обмотка замыкается на прибор, катушку реле или закорачи ается, так как при разомкнутой вторичной обмотке напряжение на ее концах становится недопустимо большим. На фиг. 65 показано включение амперметра и катушки реле. Все аппараты, включаемые  [c.372]

Систему управления инвертором функционально и конструктивно можно разделить на три части задающий генератор, каскады предварительного усиления и оконечный каскад (выходная панель). Принцип работы задающего генератора основывается на заряде емкости через переменное сопротивление и разряде ее через динистор. В качестве переменного сопротивления используется переход коллектор — эмиттер строенного транзистора. Деление частоты задающего генератора и предварительное формирование импульсов управления осуществляются на логических элементах и блокинг-генерато-рах. Оконечные каскады обоих каналов управления собраны на силовых тиристорах. Нагрузка оконечных каскадов (управляющие переходы тиристоров инвертора) подключается через трансформаторы. Трансформаторы выполнены на ферритовых сердечниках. Каждому плечу инвертора соответствует один трансформатор. Первичная обмотка трансформатора намотана секциями, между которыми намотаны вторичные обмотки. Импульсы управления имеют передний фронт не более 2 мкс при амплитуде импульсов 3—3,5 А. Система управления инвертором, кроме оконечных каскадов, выполнена отдельным блоком. В этом же блоке расположены цепи защиты преобразователя от аварийных режимов.  [c.215]

Котлы могут быть включены в работу в любой последовательности, для чего переключатель ПП на общекотельном блоке устанавливается в положение, соответствующее номеру включаемого котла. Включение котла происходит следующим образом. Подается энергопитание в схему безопасности котла, нажимается кнопка — пуск КУП-1 на панели блока котла. Включается реле РП-1, 1РП и первичная обмотка трансформатора ТР, через который происходит питание схемы блока котла.  [c.77]


Лабораторная работа «Определение числа витков в обмотке трансформатора» 11 класс

Лабораторная работа № 8 Тема: Определение числа витков в обмотке трансформатора Цель: научиться определять число витков в обмотке трансформатора Оборудование: трансформатор лабораторный, источник переменного напряжения 12 В, авометр, провод изолированный Для   определения   числа   витков   в   обмотке   трансформатора   с   неизвестными   параметрами   можно   воспользоваться   тем свойством трансформатора, что в режиме холостого хода отношение напряжений на первичной и вторичной его обмотках равно отношению числа витков в первичной обмотке к числу витков во вторичной обмотке: Пояснения к работе Намотав на сердечник трансформатора вторичную обмотку с известным числом витков  N2  и, измерив напряжение  U2  на первичную обмотку, можно определить число витков N1 в первичной обмотке N1=N2*U1/U2  Ход работы 1.Намотайте вторичную обмотку из 20­40 витков на сердечник исследуемого трансформатора 2.Подключите   выводы   первичной   обмотки   трансформатора   к   источнику   переменного   напряжения  U1=12   В,   измерьте напряжение на вторичной обмотке  U2. По измеренным значениям напряжения  U1  и  U2  и известному числу витков  N2  во вторичной обмотке, определите число витков в первичной обмоткеN1: ___________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ Вывод: В результате проедённой работы  я научился (лась) _______________________________________________________ __________________________________________________________________________________________________________ __________________________________________________________________________________________________________ __________________________________________________________________________________________________________

Моделирование в электроэнергетике — Приведение параметров трансформатора к числу витков одной из обмоток

Приведение параметров трансформатора к числу витков одной из обмоток

 Рассмотрим однофазный двухобмоточный трансформатор (см. рис.1), который обладает собственными индуктивностями обмоток и взаимной индуктивностью между обмотками.

Рис.1. Схема однофазного двухобмоточного трансформатора

Для данной схемы однофазного двухобмоточного трансформатора можно записать систему уравнений, которая связывает напряжения и токи в обмотках трансформатора:

 

 

Записанная система уравнений содержит переменные, которые приведены к разным классам напряжения. Так, например, в первом уравнении содержаться переменные (сопротивления, токи и напряжения), которые приведены к обмотке с числом витков , а во втором уравнении содержаться переменные (сопротивления, токи и напряжения), которые приведены к обмотке с числом витков . Данное обстоятельство затрудняет выполнение расчетов, количественного анализа процессов происходящих в трансформаторе и построение векторных диаграмм. Для упрощения анализа и расчета режимов работы трансформатора пользуются способом, при котором одна из его обмоток приводится к другой.

Рассмотрим процесс приведение параметров трансформатора к числу витков первичной обмотке. Основной смысл приведения состоит в том, чтобы привести все переменные (сопротивления, токи и напряжения) к числу витков первичной обмотки, а электромагнитную связь между обмотками заменить электрической связью.

При выполнении приведения параметров трансформатора к числу витков первичной обмотке условно выполняют замену реальной вторичной обмотки некоторой фиктивной обмоткой с числом витков :

 

где коэффициент трансформации определяется по формуле .

Таким образом, коэффициент приведения вторичной обмотки к первичной равен коэффициенту трансформации. В дальнейшем все параметры приведенной обмотки будем обозначать со штрихами:

 

В приведенной обмотке в соответствии с новым числом витков увеличиваются все ЭДС, напряжения и падения напряжения, т.е.:

 

 

 

 

Важным условием приведения является то, чтобы мощности и потери энергии во вторичной обмотке не изменялись. Для этого должны выполняться равенства:

 

 

Аналогично последнему соотношению индуктивное сопротивление рассеяния приведенного трансформатора определяется следующим образом:

 

Перепишем систему уравнений через параметры приведенной обмотки.

› Первое уравнение перепишется в следующем виде

 

 

› Второе уравнение перепишется в следующем виде

 

 

 

Таким образом, система уравнений, записанная для приведенного трансформатора, будет иметь следующий вид:

 

 

где взаимное сопротивление приведенного трансформатора определяется по формуле

 

С учетом закона полного тока к системе уравнений можно добавить следующее уравнение:

 

В результате система уравнений преобразуется к виду:

 

 

Полученная система уравнений для приведенного трансформатора соответствует Т-образной схеме замещения однофазного двухобмоточного трансформатора (см. рис.2).

Рис.2. Схема замещения приведенного однофазного двухобмоточного трансформатора

В случае если в цепи вторичной обмотки расположены другие элементы (лини электропередач, нагрузка и т.д.) необходимо выполнить преобразование параметров данных элементов к числу витков первичной обмотки (или выполнить преобразование к одному классу напряжения).

 

 

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

минимальное количество витков для первичной обмотки трансформатора 120 В 60 Гц

минимальное количество витков для первичной обмотки трансформатора 120 В 60 Гц
    Минимальное количество витков, необходимое для первичной обмотки 120 В силового трансформатора частотой 60 Гц, является строго охраняемым секретом. Нет действительно, но все всегда говорят о коэффициентах поворота, но забывают указать минимальное количество витков на первичку. Ну, железо/кремний/металлический сердечник трансформатор может принимать только так большой магнитный поток, прежде чем он насыщается и не может принять больше.Если вы идете помимо этого, индуктивность падает много, и в конечном итоге вы потребляете намного больше тока от линии электропередач. и будет очень жарко, нехорошо. Консервативное эмпирическое правило для ламинирования трансформатора может спасти от выброшенного трансформатора 60 Гц: Количество витков, необходимое для первичной обмотки 120 В 60 Гц = 800/(площадь сердечника в квадратных дюймах). Ты измерьте высоту (на диаграмме ниже «L») стопки пластины и ширину («W») центральной ножки пластины Е. Другими словами, представьте себе один виток провода, натянутого на центральную жилу, площадь петля, которую образует этот единственный виток, является площадью.На приведенной ниже диаграмме это L раз W. Не включать внешние ноги буквы E или I. Чем больше площадь, тем меньше количество ходов. Как только у вас есть количество первичных витков, то вы можете сделать соотношение витков, чтобы получить количество витков для вторичный. Добавьте еще несколько витков, чтобы компенсировать сопротивление провода. потери напряжения. Если ваш частота электросети 50 Гц, вам нужно в 60/50 раз выше 120 В 60 Гц результат для вашей первичной обмотки на 120В, и вдвое больше, чем для 240В. Что получается 2.4 раза выше 120V60Hz результат выше

    Конечно, вам также необходимо выбрать достаточно толстый магнитный провод, чтобы выдержать ток, который будет накладывать нагрузка. но достаточно тонкий, так что вы можете сделать все обороты вокруг ядра, не становясь слишком толстым, чем снаружи части E lams не подходят. А также позвольте для изоляции лам сердечника изолировать от нижняя часть обмоток и изоляция между первичной и вторичной обмотками (регламент безопасности требует 1400 В постоянного тока изоляции) и стороны обмоток тоже.Аккуратная намотка витков позволит более плотно упаковать обороты). Если провод окажется слишком тонким для тока, вам понадобится сердечник большего размера. Это уравнение должно получиться ты на стадионе:

    A — поперечное сечение жилы в кв. дюймах, а W — выходное напряжение в вольт-амперах.

    Более общее уравнение:


    E — напряжение обмотки, т. е. первичное входное напряжение или вторичное выходное напряжение.
    F — частота линии электропередач (сети)
    H — число линий магнитного потока на квадратный дюйм железа, для большинства силовых трансформаторов это 56300 RMS.Железо больше не примет.
    N — это количество витков для вышеупомянутой первичной или вторичной обмотки E.
    A — площадь поперечного сечения сердечника в квадратных дюймах

    Если E принять за 1, это дает количество витков на вольт для любой обмотки на сердечнике.

    Работаем с этим уравнением, чтобы проверить, соответствует ли оно простому эмпирическому правилу:
    . Выполните некоторые вычисления, установите A равным 1 квадратному дюйму, F — 60 Гц, E — 120 В и H — 56300, и мы получим

    . N=(10 8 E)/(A H F (4,44)) = (10 8 *120)/(1 * 56300 * 60 * (4.44)) = 800. Но это круговая подтасовка, так как я заставил 56300 работать с уравнением по-другому.

    Железные сплавы с высокой проницаемостью, используемые в трансформаторах, достигают магнитного насыщения при 1,6–2,2 Тл. Итак, тельса — это количество линий магнитного потока на квадратный метр. 1553 квадратных дюйма в квадратный метр. Принимая вышеуказанное 56300 * 1552 = 87377600. Но напряжение обмотки E является среднеквадратичным значением, и упомянутое магнитное насыщение было бы пределом, и вы должны принять во внимание пик значение Э.Пересчет ложной переменной H с пиковым значением E вместо ее среднеквадратичного значения. дает нам 78400 за квадратный дюйм для H. Что дает нам 123000000 за квадратный метр. В сочетании с 10 8 в знаменателе в приведенном выше уравнении мы получаем 1,23, что похоже на telsas. Если да, то это выглядит так консервативное значение, чтобы держаться подальше от насыщения. Все это махание руками может быть или не быть действительным, так как я не физик. Но если мое махание рукой хорошо, оно, похоже, подтверждает правильность практическое правило «Количество витков, необходимое для первичной обмотки 120 В, 60 Гц, = 800 / (площадь сердечника в квадратных дюймах)».

Как найти первичную и вторичную обмотку трансформатора? – М.В.Организинг

Как найти первичную и вторичную обмотку трансформатора?

Расчет первичной обмотки

  1. Первичное напряжение = Vp = 230 В. Первичный ток ( ):
  2. Количество витков на первичной стороне можно рассчитать как: Общее количество витков ( ) = количество витков на вольт x напряжение на первичной стороне.
  3. Количество витков вторичной стороны можно рассчитать как:
  4. Как мы знаем, длина одного витка равна 0.1778 м.

Имеет ли значение, как подключить трансформатор?

Как только вы узнаете, какие два провода имеют напряжение для нужного отвода, просто подключите один провод питания к проводу на нашем трансформаторе с нужным отводом напряжения, а другой провод питания к проводу на нашем трансформаторе с маркировкой «Comm». Неважно, какая фаза к какому проводу идет.

Какая сторона трансформатора положительная?

Когда потенциал первичной клеммы h2 становится положительным (т.е. в течение первого полупериода переменного тока) и вторичная клемма слева становится положительной одновременно, ток поступает на клемму h2 и выходит на вторичную клемму слева.

Что такое синий провод на трансформаторе?

Питание поступает в термостат по проводу, подключенному к трансформатору, обычно красного цвета, и возвращается к трансформатору по проводу С, обычно синему, но может быть и черному.

Куда идет синий провод?

Синий провод от потолочного вентилятора подключается ко второму проводу под напряжением с потолка.Этот второй провод может различаться по цвету, но чаще всего он красный или черный. Это соединение позволяет вам запитать свет от второго выключателя.

Какая общая сторона трансформатора 24 В?

Провод C или «общий провод» обеспечивает непрерывную подачу питания 24 В переменного тока на термостат. С технической точки зрения, мощность течет от R (красного) провода, но не постоянно (во всяком случае, не сама по себе).

Синий или желтый плюс на трансформаторе?

ваш правый на 24V цвета желтый это R… синий это C.звучит так, как будто он разорвался… на низкой стороне. изоляция неиспользуемых первичных проводов предназначена только для безопасности, но общий белый — единственное соединение между тремя напряжениями…

Желтый или белый положительный?

В проводке постоянного тока в США, по моему опыту, цвета с 1 по 4 кода резистора обычно назначаются положительным напряжениям — коричневый, красный, оранжевый и желтый, а также белый (№ 9). Зеленый имеет тенденцию быть неопределенным или заземленным.

Как определить, является трансформатор положительным или отрицательным?

Как узнать, какой провод положительный, а какой отрицательный, если он черный? Если разноцветный провод черно-красный, то черный провод — отрицательный, а красный — положительный.Если оба провода черные, но один с белой полосой, то полосатый провод — отрицательный, а простой черный — положительный.

Синий провод находится под напряжением?

Синий провод известен как нейтральный провод, и его задача — отводить электричество от прибора. Коричневый кабель, известный как провод под напряжением, на самом деле подает электричество на ваш прибор. Вместе эти два провода образуют полную электрическую цепь.

Что такое красный белый и черный провода?

Черный, красный, белый с черной или красной лентой всегда указывает на горячий провод.Термин «горячий» означает, что по этим проводам проходит ток от вашей электрической панели к месту назначения. Черные или красные провода всегда передают питание от сервисной панели (блока выключателя) к устройствам вашего дома. Что такое красные провода?

Провод какого цвета является нейтральным?

черный

Для чего нужен нулевой провод?

Нейтральный провод возвращает цепь к первоначальному источнику питания. В частности, нейтральный провод соединяет цепь с землей или шиной, обычно подключаемой к электрическому щиту.Это обеспечивает циркуляцию тока через вашу электрическую систему, что позволяет полностью использовать электричество.

ОСНОВНЫЕ ТРАНСФОРМАТОРЫ

Полная теория на сайте electronics-tutorials.ws. Одна из основных причин, по которой мы используем переменные напряжения и токи переменного тока в наших домах и на рабочих местах, заключается в том, что источники переменного тока можно легко генерировать при удобном напряжении, преобразовывать (отсюда и название трансформатора) в гораздо более высокие напряжения, а затем распределять по стране с помощью национальная сеть опор и кабелей на очень большие расстояния.

Причина преобразования напряжения на гораздо более высокий уровень заключается в том, что более высокие напряжения распределения означают меньшие токи при той же мощности и, следовательно, меньшие потери I2*R в кабельной сети, объединенной в сеть. Эти более высокие напряжения и токи передачи переменного тока затем могут быть снижены до гораздо более низкого, более безопасного и пригодного для использования уровня напряжения, где их можно использовать для питания электрооборудования в наших домах и на рабочих местах, и все это возможно благодаря базовому трансформатору напряжения.

Трансформатор напряжения можно рассматривать как электрический компонент, а не как электронный компонент. Трансформатор в основном представляет собой очень простое статическое (или стационарное) электромагнитное пассивное электрическое устройство, которое работает по принципу закона индукции Фарадея путем преобразования электрической энергии из одного значения в другое. Трансформатор делает это путем соединения двух или более электрических цепей с помощью общего колебательного магнитного контура, который создается самим трансформатором.Трансформатор работает по принципу «электромагнитной индукции» в форме взаимной индукции.

Взаимная индукция — это процесс, при котором катушка провода магнитно индуцирует напряжение в другую катушку, расположенную в непосредственной близости от нее. Тогда можно сказать, что трансформаторы работают в «магнитном домене», а трансформаторы получили свое название от того, что они «преобразовывают» один уровень напряжения или тока в другой. Трансформаторы способны увеличивать или уменьшать уровни напряжения и тока своего питания без изменения его частоты или количества электроэнергии, передаваемой от одной обмотки к другой через магнитную цепь.

Однофазный трансформатор напряжения в основном состоит из двух электрических катушек, одна из которых называется «первичная обмотка», а другая — «вторичная обмотка». В этом уроке мы определим «первичную» сторону трансформатора как сторону, которая обычно получает питание, а «вторичную» — как сторону, которая обычно подает питание. В однофазном трансформаторе напряжения первичная обмотка обычно является стороной с более высоким напряжением. Эти две катушки не находятся в электрическом контакте друг с другом, а вместо этого намотаны вместе на общую замкнутую магнитную железную цепь, называемую «сердечником».Этот сердечник из мягкого железа не является сплошным, а состоит из отдельных пластин, соединенных вместе, чтобы уменьшить потери в сердечнике.

Две обмотки катушки электрически изолированы друг от друга, но магнитно связаны через общий сердечник, что позволяет передавать электроэнергию от одной катушки к другой. Когда электрический ток проходит через первичную обмотку, создается магнитное поле, которое индуцирует напряжение во вторичной обмотке, как показано на рисунке.

Однофазный трансформатор напряжения

Другими словами, для трансформатора нет прямого электрического соединения между двумя обмотками катушки, поэтому он также называется изолирующим трансформатором.Как правило, первичная обмотка трансформатора подключается к источнику входного напряжения и преобразует или преобразует электрическую мощность в магнитное поле. В то время как работа вторичной обмотки состоит в том, чтобы преобразовывать это переменное магнитное поле в электрическую энергию, создавая требуемое выходное напряжение, как показано.

 

Конструкция трансформатора (однофазная)

Где:
— VP – первичное напряжение
— VS – вторичное напряжение
— NP – количество первичных обмоток
— NS – количество вторичных обмоток
— Φ (phi) – потокосцепление

Обратите внимание, что две обмотки катушки не связаны электрически, а связаны только магнитно.Однофазный трансформатор может увеличивать или уменьшать напряжение, подаваемое на первичную обмотку. Когда трансформатор используется для «повышения» напряжения на его вторичной обмотке по отношению к первичной, он называется повышающим трансформатором. Когда он используется для «уменьшения» напряжения на вторичной обмотке по отношению к первичной, он называется понижающим трансформатором.

Однако существует третье условие, при котором трансформатор вырабатывает то же напряжение на вторичной обмотке, что и на его первичной обмотке.Другими словами, его выходной сигнал идентичен передаваемому напряжению, току и мощности. Этот тип трансформатора называется «трансформатор импеданса» и в основном используется для согласования импеданса или изоляции соседних электрических цепей.

Разница в напряжении между первичной и вторичной обмотками достигается за счет изменения числа витков в первичной обмотке (NP) по сравнению с числом витков во вторичной обмотке (NS).

Поскольку трансформатор представляет собой в основном линейное устройство, теперь существует соотношение между числом витков первичной обмотки и числом витков вторичной обмотки.Это соотношение, называемое коэффициентом трансформации, более известное как «коэффициент витков» трансформаторов (TR). Это значение коэффициента трансформации определяет работу трансформатора и соответствующее напряжение на вторичной обмотке.

Необходимо знать соотношение числа витков провода на первичной обмотке по сравнению со вторичной обмоткой. Соотношение витков, которое не имеет единиц измерения, сравнивает две обмотки по порядку и записывается через двоеточие, например, 3:1 (3-к-1). В этом примере это означает, что если на первичной обмотке 3 вольта, то на вторичной обмотке будет 1 вольт, 3 вольта на 1 вольт.Тогда мы можем видеть, что если соотношение между числом витков изменяется, результирующие напряжения также должны измениться в том же отношении, и это верно.

Трансформаторы — это все о «соотношениях». Отношение первичной обмотки к вторичной, отношение входа к выходу и соотношение витков любого данного трансформатора будет таким же, как его отношение напряжения. Другими словами, для трансформатора: «отношение витков = отношение напряжения». Фактическое количество витков провода на любой обмотке, как правило, не важно, важно только соотношение витков, и это отношение задается как:

Коэффициент трансформации трансформаторов

Предполагая идеальный трансформатор и фазовые углы: ΦP ≡ ΦS Обратите внимание, что порядок чисел при выражении значения коэффициента трансформации трансформаторов очень важен, так как коэффициент трансформации 3:1 выражает совсем другое соотношение трансформатора и выходное напряжение, чем тот, в котором соотношение оборотов дано как: 1:3.

 

Основы трансформатора Пример №1
Трансформатор напряжения имеет 1500 витков на первичной обмотке и 500 витков на вторичной обмотке. Каким будет коэффициент трансформации (TR) трансформатора.


Это соотношение 3:1 (3-к-1) просто означает, что на каждую вторичную обмотку приходится три первичные обмотки. По мере того, как отношение изменяется от большего числа слева к меньшему числу справа, значение первичного напряжения снижается, как показано на рисунке.

 


Основы трансформатора Пример №2
Если к первичной обмотке того же трансформатора, что и выше, приложено среднеквадратичное значение 240 вольт, каким будет результирующее вторичное напряжение без нагрузки.


Еще раз подтверждая, что трансформатор является «понижающим», так как первичное напряжение составляет 240 вольт, а соответствующее вторичное напряжение ниже на 80 вольт.

Тогда основной целью трансформатора является преобразование напряжения с заданными коэффициентами, и мы можем видеть, что первичная обмотка имеет заданное количество или количество обмоток (катушек провода) на ней, чтобы соответствовать входному напряжению.Если выходное напряжение вторичной обмотки должно быть таким же, как и входное напряжение первичной обмотки, то на вторичном сердечнике должно быть намотано такое же количество витков катушки, как и на первичном сердечнике, что обеспечивает равномерное соотношение витков 1:1. (1 к 1). Другими словами, одна катушка включает вторичную обмотку, а другая катушку включает первичную.

Если выходное вторичное напряжение должно быть больше или выше входного напряжения (повышающий трансформатор), то на вторичной обмотке должно быть больше витков, обеспечивающих соотношение витков 1:N (1-к-N), где N представляет число витков.Аналогичным образом, если требуется, чтобы вторичное напряжение было ниже или меньше первичного (понижающий трансформатор), количество вторичных обмоток должно быть меньше, обеспечивая соотношение витков N:1 (N-к-1). .

Мы видели, что количество витков вторичной обмотки по сравнению с первичной обмоткой, т. е. соотношение витков, влияет на величину напряжения вторичной обмотки. Но если две обмотки электрически изолированы друг от друга, как создается это вторичное напряжение? Ранее мы говорили, что трансформатор в основном состоит из двух катушек, намотанных на общий сердечник из мягкого железа.Когда переменное напряжение ( VP ) подается на первичную катушку, ток течет через катушку, которая, в свою очередь, создает вокруг себя магнитное поле, называемое взаимной индуктивностью, за счет этого протекания тока в соответствии с законом электромагнитной индукции Фарадея. Сила магнитного поля возрастает по мере того, как ток увеличивается от нуля до максимального значения, которое выражается как dΦ/dt.

 

По мере того, как магнитные силовые линии, создаваемые этим электромагнитом, расширяются наружу от катушки, сердечник из мягкого железа формирует путь для магнитного потока и концентрирует его.Этот магнитный поток связывает витки обеих обмоток, увеличиваясь и уменьшаясь в противоположных направлениях под действием источника переменного тока.

Однако сила магнитного поля, индуцируемого в сердечнике из мягкого железа, зависит от силы тока и количества витков в обмотке. Когда ток уменьшается, напряженность магнитного поля уменьшается.

Когда магнитные линии потока обтекают сердечник, они проходят через витки вторичной обмотки, вызывая индукцию напряжения во вторичной катушке.Величина индуцируемого напряжения будет определяться: N*dΦ/dt (закон Фарадея), где N — количество витков катушки. Также это индуцированное напряжение имеет ту же частоту, что и напряжение первичной обмотки.

Тогда мы можем видеть, что одинаковое напряжение индуцируется в каждом витке обеих обмоток, потому что один и тот же магнитный поток связывает витки обеих обмоток вместе. В результате общее индуцированное напряжение в каждой обмотке прямо пропорционально количеству витков в этой обмотке. Однако пиковая амплитуда выходного напряжения, доступного на вторичной обмотке, будет уменьшена, если магнитные потери сердечника высоки.

Если мы хотим, чтобы первичная катушка создавала более сильное магнитное поле для преодоления магнитных потерь в сердечниках, мы можем либо пропустить больший ток через катушку, либо сохранить тот же ток, но вместо этого увеличить количество витков катушки ( NP ) обмотки. Произведение ампер на витки называется «ампер-витки», что определяет намагничивающую силу катушки.

Предположим, у нас есть трансформатор с одним витком в первичной обмотке и только с одним витком во вторичной обмотке.Если один вольт подается на один виток первичной обмотки, при условии отсутствия потерь, должен протекать достаточный ток и генерироваться достаточный магнитный поток, чтобы индуцировать один вольт на одном витке вторичной обмотки. То есть каждая обмотка поддерживает одинаковое количество вольт на виток.

Поскольку магнитный поток изменяется синусоидально, Φ = Φmax sinωt, то основное соотношение между ЭДС индукции ( E ) в обмотке катушки из N витков определяется выражением:

ЭДС = обороты x скорость изменения

 

Где:
— ƒ – частота потока в Герцах, = ω/2π
— Ν – количество витков катушки.
— Φ – величина потока в веберах

Это известно как уравнение ЭДС трансформатора. Для ЭДС первичной обмотки N будет числом витков первичной обмотки (NP), а для ЭДС вторичной обмотки N будет числом витков вторичной обмотки (NS).

Также обратите внимание, что, поскольку трансформаторам для правильной работы требуется переменный магнитный поток, трансформаторы нельзя использовать для преобразования или подачи постоянного напряжения или тока, поскольку магнитное поле должно изменяться, чтобы индуцировать напряжение во вторичной обмотке.Другими словами, трансформаторы НЕ работают на постоянном напряжении постоянного тока, а только на переменном или пульсирующем напряжении.

Если бы первичная обмотка трансформатора была подключена к источнику постоянного тока, индуктивное сопротивление обмотки было бы равно нулю, поскольку постоянный ток не имеет частоты, поэтому эффективное сопротивление обмотки будет очень низким и равным только сопротивлению меди использовал. Таким образом, обмотка будет потреблять очень большой ток от источника постоянного тока, что приведет к ее перегреву и, в конечном итоге, к перегоранию, потому что, как мы знаем, I = V/R.


Основы трансформатора Пример №3
Однофазный трансформатор имеет 480 витков на первичной обмотке и 90 витков на вторичной обмотке. Максимальное значение плотности магнитного потока составляет 1,1 Тл при подаче на первичную обмотку трансформатора напряжения 2200 вольт, 50 Гц. Вычислить:

а).  Максимальный поток в активной зоне.


б). Площадь поперечного сечения сердечника.


в). Вторичная ЭДС индукции.

Основы работы с трансформаторами — Эффективность

Трансформатору не требуются движущиеся части для передачи энергии. Это означает отсутствие потерь на трение или сопротивление воздуха, связанных с другими электрическими машинами. Однако трансформаторы страдают от других типов потерь, называемых «потери в меди» и «потери в железе», но, как правило, они довольно малы.Потери в меди, также известные как потери I2R, представляют собой потери электроэнергии в виде тепла в результате циркуляции токов вокруг медных обмоток трансформатора, отсюда и название. Потери в меди представляют собой наибольшие потери при работе трансформатора. Фактическую потерянную мощность в ваттах можно определить (в каждой обмотке) путем возведения в квадрат ампер и умножения на сопротивление обмотки в омах (I2R). Потери в железе, также известные как гистерезис, представляют собой отставание магнитных молекул внутри сердечника в ответ на переменный магнитный поток.Это отставание (или несовпадение по фазе) связано с тем, что для обращения магнитных молекул требуется мощность; они не меняются местами до тех пор, пока поток не достигнет достаточной силы, чтобы обратить их. Их реверсирование приводит к трению, а трение производит тепло в ядре, что является формой потери мощности. Гистерезис внутри трансформатора можно уменьшить, если сделать сердечник из специальных стальных сплавов. Интенсивность потерь мощности в трансформаторе определяет его КПД. КПД трансформатора отражается в потерях мощности (мощности) между первичной (входной) и вторичной (выходной) обмотками.Тогда результирующий КПД трансформатора равен отношению выходной мощности вторичной обмотки PS к подводимой мощности первичной обмотки PP и, следовательно, высок. Идеальный трансформатор имеет 100% КПД, потому что он отдает всю получаемую энергию. Настоящие трансформаторы, с другой стороны, не на 100% эффективны, и при полной нагрузке КПД трансформатора составляет от 94% до 96%, что вполне неплохо. Для трансформатора, работающего при постоянном напряжении и частоте с очень высокой мощностью, КПД может достигать 98%.КПД, η трансформатора определяется как:

 

Эффективность трансформатора


Где: Вход, выход и потери выражены в единицах мощности. Обычно при работе с трансформаторами первичные ватты называются «вольт-амперами», ВА, чтобы отличить их от вторичных ватт. Тогда приведенное выше уравнение эффективности можно изменить на:


Иногда легче запомнить взаимосвязь между входом, выходом и эффективностью трансформатора, используя изображения.Здесь три величины ВА, Вт и η были наложены друг на друга в виде треугольника, дающего мощность в ваттах вверху с вольт-амперами и эффективностью внизу. Такое расположение представляет фактическое положение каждой величины в формулах эффективности.

Треугольник эффективности трансформатора

и транспонирование приведенных выше треугольных величин дает нам следующие комбинации того же уравнения:

 

Затем, чтобы найти Вт (выход) = ВА x эфф., либо найти ВА (вход) = Вт/эфф., либо найти КПД, эфф. = Вт/ВА и т. д.

Краткий обзор основ трансформатора

Тогда подведем итоги этого урока по основам трансформации. Трансформатор изменяет уровень напряжения (или уровень тока) на своей входной обмотке на другое значение на своей выходной обмотке с помощью магнитного поля. Трансформатор состоит из двух электрически изолированных катушек и работает по принципу «взаимной индукции» Фарадея, в котором ЭДС индуцируется во вторичной катушке трансформатора магнитным потоком, создаваемым напряжениями и токами, протекающими в первичной обмотке катушки.

Первичная и вторичная обмотки катушек намотаны на общий сердечник из мягкого железа, состоящий из отдельных пластин, для уменьшения потерь на вихревые токи и мощности. Первичная обмотка трансформатора подключена к источнику переменного тока, который должен быть синусоидальным по своей природе, а вторичная обмотка подает электроэнергию на нагрузку. Сказав это, трансформатор можно использовать в обратном направлении с питанием, подключенным к вторичной обмотке, при условии соблюдения номинальных значений напряжения и тока.

Мы можем представить трансформатор в виде блок-схемы следующим образом:

Основное представление трансформатора

 

Отношение первичных и вторичных обмоток трансформатора относительно друг друга дает либо повышающий трансформатор напряжения, либо понижающий трансформатор напряжения, при этом отношение числа первичных витков к числу вторичных витков называется «витками». коэффициент» или «коэффициент трансформации».

Если это отношение меньше единицы, n < 1, то NS больше NP и трансформатор классифицируется как повышающий. Если это отношение больше единицы, n > 1, то есть NP больше NS, трансформатор классифицируется как понижающий. Обратите внимание, что однофазный понижающий трансформатор также можно использовать в качестве повышающего трансформатора, просто поменяв местами его соединения и сделав обмотку низкого напряжения первичной, и наоборот, пока трансформатор работает в пределах исходного расчетного номинала ВА.

Если отношение витков равно единице, то есть n = 1, то и первичная, и вторичная обмотки имеют одинаковое количество витков, поэтому напряжения и токи будут одинаковыми как для первичной, так и для вторичной обмоток.

Этот тип трансформатора 1:1 классифицируется как изолирующий трансформатор, так как первичная и вторичная обмотки трансформатора имеют одинаковое количество вольт на виток. КПД трансформатора — это отношение мощности, которую он отдает в нагрузку, к мощности, которую он поглощает из сети.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.