Site Loader

Содержание

активную, реактивную, полную (P, Q, S), а также коэффициент мощности (PF) В чем измеряется полезная мощность

то есть произведение векторов силы на скорость движения — и есть мощность. В чем измеряется она? По международной системе СИ, единицей измерения данной величины является 1 Ватт.

Ватт и другие единицы измерения мощности

Ватт означает мощность, где за одну секунду производится работа в один джоуль. Последнюю единицу назвали так в честь англичанина Дж.Уатта, который изобрел и соорудил первую паровую машину. Но он при этом использовал другую величину — лошадиную силу, каковая применяется и по сей день. Одна лошадиная сила приблизительно равна 735,5 Ватт.

Таким образом, кроме Ватта, мощность измеряют в метрической лошадиной силе. А при очень малом значении также используют Эрг, равный десяти в минус седьмой степени Ватт. Возможно и измерение в одной единице массы/силы/метров в секунду, что равно 9,81 Ватт.

Мощность в двигателе

Названная величина является одной из самых важных в любом моторе, который бывает самой разной мощности. Например, электрическая бритва имеет сотые доли киловатта, а ракета космического корабля насчитывает миллионы.

Для разной нагрузки необходима различная мощность для сохранения определенной скорости. Например, машина станет тяжелее, если в нее поместить больше груза. Тогда сила трения о дорогу увеличится. Поэтому, чтобы поддерживать ту же скорость, что и в ненагруженном состоянии, потребуется большая мощность. Соответственно, мотор будет съедать больше топлива. Об этом факте известно всем водителям.

Но при большой скорости важна и инерция машины, которая прямо пропорциональна ее массе. Бывалые водители, знающие об этом факте, находят при езде лучшее сочетание топлива и скорости, чтобы бензина уходило меньше.

Мощность тока

В чем измеряется мощность тока? В той же самой единице по системе СИ. Она может быть измерена прямым или косвенным методом.

Первый способ реализуется при помощи ваттметра, потребляющего существенную энергию и сильно нагружающего источник тока. С его помощью измеряется от десяти Ватт и более. Косвенный метод используют при необходимости измерить малые значения. Приборами для этого служат амперметр и вольтметр, подсоединенные к потребителю. Формула в данном случае будет иметь такой вид:

При известном сопротивлении нагрузки, измеряем протекающую через нее величину тока и находим мощность так:

P = I 2 ∙ R н.

По формуле P = I 2 /R н также может быть вычеслена мощность тока.

В чем измеряется она в сети трехфазного тока, тоже не секрет. Для этого применяют уже знакомый прибор — ваттметр. Причем решить задачу, чем измеряется электрическая мощность, можно с помощью одного, двух или даже трех приборов. Например, для четырехпроводной установки потребуется три устройства. А для трехпроводной при несимметричной нагрузке — два.

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д. ), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная “полезная” мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в (Вт

).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с , однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная “вредная” мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт ), а в вольт-амперах реактивных (Вар ).

Рассчитывается по формуле:

Q = U⋅I⋅sinφ ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной ) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода ), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи )– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100% ). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

S = U⋅I

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА ).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.


Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром . Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Ещё в 18 веке мощность стали считать в лошадиных силах. До сих пор эта физическая величина употребляется для обозначения силы двигателей. Рядом с показателем мощности двигателя внутреннего сгорания в ваттах продолжают писать значение в л.с.

Мощность как физическая величина, формула мощности

Значение, показывающее, как быстро происходят преобразование, трансляция или потребление энергии в какой-либо системе, – мощность. Для характеристик энергетических условий важно, насколько быстро выполняется процесс.

Работа, реализуемая в единицу времени, именуется мощностью:

  • А – работа;
  • t – время.

Можно учитывать отдельно мощность в механике и электрическую мощность.

Чтобы получить ответ на вопрос: в чем измеряется механическая мощность, рассматривают действие силы на движущееся тело. Сила проделывает работу, мощность в таком случае определяется по формуле:

  • F – сила;
  • v – скорость.

При вращательном движении эту величину определяют с учётом момента силы и частоты вращения, «об./мин.».

Зависимость между электрическим током и мощностью

В электротехнике работой будет U – напряжение, которое перемещает 1 кулон, количество перемещаемых в единицу времени кулонов – это ток (I). Мощность электротока или электрическую мощность P получают, умножив ток на напряжение:

Это полная работа, выполненная за 1 секунду. Зависимость здесь прямая. Изменяя ток или напряжение, изменяют мощность, расходуемую устройством.

Одинакового значения Р добиваются, варьируя одну из двух величин.

Определение единицы измерения мощности тока

Единица измерения мощности тока носит имя Джеймса Ватта, шотландского инженера-механика. 1 Вт – это мощность, которую вырабатывает ток 1 А при разности потенциалов 1 В.

К примеру, источник при напряжении 3,5 В создаёт в цепи ток 0,2 А, тогда мощность тока получится:

P = U*I = 3,5*0,2 = 0,7 Вт.

Внимание! В механике мощность принято изображать буквой N, в электротехнике – буквой P. В чем измеряется n и P? Независимо от обозначения, это одна величина, и измеряется она в ваттах «Вт».

Ватт и другие единицы измерения мощности

Говоря о том, в чем измеряется мощность, необходимо знать, о чём идёт речь. Ватт – это величина, соответствующая 1 Дж/с. Она принята в Международной Системе Единиц. В каких единицах ещё измеряется мощность? Раздел науки астрофизика работает с единицей под названием эрг/с. Эрг – очень маленькая величина, равная 10-7 Вт.

Ещё одна, поныне распространённая, единица из этого ряда – «лошадиная сила». В 1789 году Джеймс Ватт подсчитал, что груз весом 75 кг из шахты может вытащить одна лошадь и сделать это со скоростью 1 м/с. Исходя из подсчёта такой трудоёмкости, мощность двигателей допускается измерить этой величиной в соотношении:

1 л.с. = 0,74 кВт.

Интересно. Американцы и англичане считают, что 1 л.с. = 745.7 Вт, а русские – 735.5 Вт. Спорить, кто прав, а кто нет, не имеет смысла, так как мера эта внесистемная и не должна быть использована. Международная организация законодательной метрологии рекомендует изъять её из обращения.

В России при расчёте полиса КАСКО или ОСАГО используют эти данные силового агрегата автомобиля.

Формула взаимосвязи между мощностью, напряжением и силой тока

В электротехнике работу рассматривают как некоторое количество энергии, отдаваемое источником питания на действие электроприбора в период времени. Поэтому электрическая мощность есть величина, описывающая быстроту трансформации или передачи электроэнергии. Её формула для постоянного тока выглядит так:

  • U – напряжение, В;
  • I – сила тока, А.

Для некоторых случаев, пользуясь формулой закона Ома, мощность можно вычислить, подставив значение сопротивления:

P = I*2*R, где:

  • I – сила тока, А;
  • R – сопротивление, Ом.

В случае расчётов мощности цепей переменного тока придётся столкнуться с тремя видами:

  • активная её формула: P = U*I*cos ϕ, где – коэффициент угла сдвига фаз;
  • реактивная рассчитывается: Q = U*I*sin ϕ ;
  • полная представлена в виде: S = √P2 + Q2, гдe P – aктивная, а Q2 – реактивная.

Расчёты для однофазной и трёхфазной цепей переменного тока выполняются по разным формулам.

Важно! Потребители электроэнергии на предприятиях в большинстве асинхронные двигатели, трансформаторы и другие индуктивные приёмники. При работе они используют реактивную мощность, а та, протекая по линиям электропередач, приводит ЛЭП к дополнительной нагрузке. Чтобы повысить качество энергии, используют компенсацию реактивной энергии в виде конденсаторных установок.

Приборы для измерения электрической мощности

Провести измерения мощности позволяет ваттметр. У него две обмотки. Одна включается в цепь последовательно, как амперметр, вторая параллельно, как вольтметр. В установках электроэнергетики ваттметры определяют значения в киловатт-час «кВт*час». В измерениях нуждается не только электрическая, а также лазерная энергия. Приборы, способные измерять этот показатель, изготавливаются как стационарного, так и переносного исполнения. С их помощью оценивают уровень лазерных излучений оборудования, применяющего этот вид энергии. Один из портативных измерителей – LP1, японского производителя. LP1 разрешает напрямую определять значения силы светового излучения, к примеру, в визуальном пятне оптических устройств проигрывателей DVD.

Мощность в бытовых электрических приборах

Для нагрева металла нити накаливания лампочки, увеличения температуры рабочей поверхности утюга или иного бытового прибора, тратится определённое количество электроэнергии. Её величину, отбираемую нагрузкой за час, считают потребляемой мощностью этого аппарата.

Внимание! Если на лампочке написано «40 W, 230 V», это значит, что за 1 час она потребляет из сети переменного тока 40 Вт. Зная количество лампочек и параметры, подсчитывают, сколько энергии тратится на освещение комнат в месяц.

Как перевести ватты

Так как ватт величина маленькая, в быту оперируют киловаттами, пользуются системой перевода величин:

  • 1 Вт = 0,001 кВт;
  • 10 Вт = 0,01 кВт;
  • 100 Вт = 0,1 кВт;
  • 1000 Вт = 1 кВт.

Мощность некоторых электрических приборов, Вт

Средние значения потребления электроэнергии бытовых устройств:

  • плиты – 110006000 Вт;
  • холодильники – 150-600 Вт;
  • стиральные машины – 1000-3000 Вт;
  • пылесосы – 1300-4000 Вт;
  • электрочайники – 2000-3000 Вт.

Параметры каждого бытового прибора указываются в паспорте, а также обозначаются на корпусе. Там определены точные значения для информации потребителя.

Видео

Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.

Мощность — физическая величина , равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В чем измеряется мощность?

Единицы измерения мощности, которые известны каждому школьнику и являются принятыми в международном сообществе – ватты. Названы так в честь ученого Дж. Уатта. Обозначаются латинской W или вт.

1 Ватт – единица измерения мощности, при которой за секунду происходит работа, равная 1 джоулю. Ватт равен мощности тока, сила которого 1 ампер, а напряжение – 1 вольт. В технике, как правило, применяются мегаватты и киловатты. 1 киловатт равен 1000 ватт.
Измеряется мощность и в эрг в секунду. 1 эрг в сек. Равен 10 в минус седьмой степени ватт. Соответственно, 1 ватт равен 10 в седьмой степени эрг/сек.

А еще единицей измерения мощности считается внесистемная «лошадиная сила». Она была введена в оборот еще в восемнадцатом веке и продолжает до сих пор применяться в автомобилестроении. Обозначается она так:

  • Л.С. (в русском),
  • HP (в английском).
  • PS (в немецком),
  • CV (во французском).

При переводе мощности помните, что в рунете существует невообразимая путаница при конверте лошадиных сил в ватты. В России, странах СНГ и некоторых других государствах 1 л.с. равняется 735, 5 ватт. В Англии и Америке 1 hp равняется 745, 7 ватт.

Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину — работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.

Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт — watt, международное обозначение — W, русское сокращение — Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.

Мощность — скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных силах . Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность — это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

В общем случае электрическая мощность определяется формулой:

где I — сила тока, U-напряжение

Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

В цепях переменного тока, помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

Для измерения мощности используют электронные приборы — Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины , которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.

Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность, даже если они имеют одинаковое предназначение.

Мощность — это физическая величина, характеризующая скорость работы.

Соответственно, механическая мощность — это физическая величина, характеризующая скорость механической работы:

Т. е. мощность — это работа в единицу времени.

Мощность в системе СИ измеряется в ваттах: [N ] = [Вт].

1 Вт — это работа в 1 Дж, совершенная за 1 с.

Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:

Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.

Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:

Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:

Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.

Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.

Примеры решения задач.

Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности . Определите силу трения, действующую на мотоцикл.


Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?



Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.{2}\cdot r} прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности , удобно обратиться к теории комплексных чисел . Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол (сдвиг фаз) — аргументом.{2}}}} .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина для значений φ {\displaystyle \varphi } от 0 до плюс 90° является положительной величиной. Величина sin ⁡ φ {\displaystyle \sin \varphi } для значений φ {\displaystyle \varphi } от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = U I sin ⁡ φ {\displaystyle Q=UI\sin \varphi } , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор , являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности .

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Полная мощность

Единица полной электрической мощности — вольт-ампер (русское обозначение: В·А ; международное: V·A ) .

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I {\displaystyle I} в цепи и напряжения U {\displaystyle U} на её зажимах: S = U ⋅ I {\displaystyle S=U\cdot I} ; связана с активной и реактивной мощностями соотношением: S = P 2 + Q 2 , {\displaystyle S={\sqrt {P^{2}+Q^{2}}},} где P {\displaystyle P} — активная мощность, Q {\displaystyle Q} — реактивная мощность (при индуктивной нагрузке Q > 0 {\displaystyle Q>0} , а при ёмкостной Q ).{*}}},} где U ˙ {\displaystyle {\dot {U}}} — комплексное напряжение, I ˙ {\displaystyle {\dot {I}}} — комплексный ток, Z {\displaystyle \mathbb {Z} } — импеданс, * — оператор комплексного сопряжения .

Модуль комплексной мощности | S ˙ | {\displaystyle \left|{\dot {S}}\right|} равен полной мощности S {\displaystyle S} . Действительная часть R e (S ˙) {\displaystyle \mathrm {Re} ({\dot {S}})} равна активной мощности P {\displaystyle P} , а мнимая I m (S ˙) {\displaystyle \mathrm {Im} ({\dot {S}})} — реактивной мощности Q {\displaystyle Q} с корректным знаком в зависимости от характера нагрузки.Мощность некоторых электрических приборов

В таблице указаны значения мощности некоторых потребителей электрического тока:

Электрический прибор Мощность,Вт
лампочка фонарика 1
сетевой роутер, хаб 10…20
системный блок ПК 100…1700
системный блок сервера 200…1500
монитор для ПК ЭЛТ 15…200
монитор для ПК ЖК 2…40
лампа люминесцентная бытовая 5…30
лампа накаливания бытовая 25…150
Холодильник бытовой 15…700
Электропылесос 100… 3000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1 000…2 000
Сварочный аппарат бытовой 1 000…5 500
Двигатель трамвая 45 000…50 000
Двигатель электровоза 650 000
Электродвигатель шахтной подъемной машины 1 000 000…5 000 000
Электродвигатели прокатного стана 6 000 000…9 000 000

Как измерить мощность в цепи трехфазного переменного тока

Мощность в цепи трехфазного тока может быть измерена с помощью одного, двух и трех ваттметров. Метод одного прибора применяют в трехфазной симметричной системе. Активная мощность всей системы равна утроенной мощности потребления по одной из фаз.

При соединении нагрузки звездой с доступной нулевой точкой или если при соединении нагрузки треугольником имеется возможность включить обмотку ваттметра последовательно с нагрузкой, можно использовать схемы включения, показанные на рис. 1.

Рис. 1 Схемы измерения мощности трехфазного переменного тока при соединении нагрузок а — по схеме звезды с доступной нулевой точкой; б — по схеме треугольника с помощью одного ваттметра

Если нагрузка соединена звездой с недоступной нулевой точкой или треугольником, то можно применить схему с искусственной нулевой точкой (рис. 2). В этом случае сопротивления должны быть равны Rвт+ Rа = Rb =Rc.

Рис 2. Схема измерения мощности трехфазного переменного тока одним ваттметром с искусственной нулевой точкой

Для измерения реактивной мощности токовые концы ваттметра включают в рассечку любой фазы, а концы обмотки напряжения — на две другие фазы (рис. 3). Полная реактивная мощность определяется умножением показания ваттметра на корень из трех. (Даже при незначительной асимметрии фаз применение данного метода дает значительную погрешность).

Рис. 3. Схема измерения реактивной мощности трехфазного переменного тока одним ваттметром

Методом двух приборов можно пользоваться при симметричной и несимметричной нагрузке фаз. Три равноценных варианта включения ваттметров для измерения активной мощности показаны на рис. 4. Активная мощность определяется как сумма показаний ваттметров.

При измерении реактивной мощности можно применять схему рис. 5, а с искусственной нулевой точкой. Для создания нулевой точки необходимо выполнить условие равенства сопротивлений обмоток напряжений ваттметров и резистора R. Реактивная мощность вычисляется по формуле

где Р1 и Р2 — показания ваттметров.

По этой же формуле можно вычислить реактивную мощность при равномерной загрузке фаз и соединении ваттметров по схеме рис. 4. Достоинство этого способа в том, что по одной и той же схеме можно определить активную и реактивную мощности. При равномерной загрузке фаз реактивная мощность может быть измерена по схеме рис. 5, б.

Метод трех приборов применяется при любой нагрузке фаз. Активная мощность может быть замерена по схеме рис. 6. Мощность всей цепи определяется суммированием показаний всех ваттметров.

Рис. 4. Схемы измерения активной мощности трехфазного переменного тока двумя ваттметрами а — токовые обмотки включены в фазы А и С; б — в фазы А и В; в — в фазы В и С

Реактивная мощность для трех- и четырехпроводной сети измеряется по схеме рис. 7 и вычисляется по формуле

где РA, РB, РC — показания ваттметров, включенных в фазы А, В, С.

Рис. 5. Схемы измерения реактивной мощности трехфазного переменного тока двумя ваттметрами

Рис. 6. Схемы измерения активной мощности трехфазного переменного тока тремя ваттметрами а — при наличии нулевого провода; б — с искусственной нулевой точкой

На практике обычно применяют одно-, двух- и трехэлементные трехфазные ваттметры соответственно методу измерения.

Чтобы расширить предел измерения, можно применить все указанные схемы при подключении ваттметров через измерительные трансформаторы тока и напряжения. На рис. 8 в качестве примера показана схема измерения мощности по методу двух приборов при включении их через измерительные трансформаторы тока и напряжения.

Рис. 7. Схемы измерения реактивной мощности тремя ваттметрами

Рис. 8. Схемы включения ваттметров через измерительные трансформаторы.

Мощность электрической цепи реактивная — Энциклопедия по машиностроению XXL

Момент электрического диполя, электрический Момент элементарного электрического тока, магнитный момент магнитного диполя, магнитный Мощность электрической цепи мощность электрической цепи, активная Мощность электрической цепи, полная Мощность электрической цепи, реактивная  [c.213]

Мощность электрической цепи, реактивная  [c.219]


Реактивная мощность электрической цепи вар вар var  [c.92]

В электротехнике для измерения полной мощности электрической цепи, определяемой произведением действующих значений напряжения и силы тока С/эф, /дф, не применяют единицу мощности ватт (которой измеряется только активная составляющая мощности), а пользуются единицей вольт-ампер (В А). Для измерения реактивной мощности применяют единицу вар, которую определяют как реактивную мощность цепи с синусоидальным переменным током при действующих значениях напряжения 1 В и тока 1 А, если сдвиг фазы между током и напряжением я/2.  [c.260]

Реактивная мощность электрической цепи вар 10 10- 10  [c.91]

Реактивная мощность электрической цепи Q, Р, вар вар var 10- 10- i  [c.45]

Реактивная мощность электрической цепи ьтт- вар вар var Вар — реактивная мощность электрической цепи с синусоидальным переменным током при sin ф = = 1 и действующих значениях напряжения 1 В и силы тока I А  [c.604]

В рассмотренных выше работах форма напряжения (т.е. зависимость напряжения от времени) на дуге рассчитывается при заданной синусоидальной форме тока. Это означает, что последовательно с дугой в цепь включена большая индуктивность, определяющая форму и силу тока в цепи. При этом коэффициент мощности сети ( os ) близок к нулю. Для практических же целей гораздо более важен противоположный случай, когда в дуге выделяется большая часть мощности источника питания. Однако при этом вид кривой тока дуги существенно отличается от синусоиды и зависит от параметров самой дуги. Еще труднее заранее предсказать форму кривой, если дуга включена в сложную электрическую цепь, содержащую различные активные и реактивные элементы. Отсюда ясно, что в общем случае вид кривых тока и напряжения на дуге зависит как от заданных внешних условий (геометрия канала, род газа и т.д.), так и от схемы электрической цепи, содержащей дугу. Таким образом, замкнутая теория дуги пе-  [c.190]

Таким образом, мощность, связанная с реактивной частью импеданса, аналогична мощности, потребляемой индуктивностью в цепи переменного тока, а сама реактивная часть 1т 2 — индуктивному сопротивлению катушки. Активная же часть Не 2 = р с ЗоЯ определяет мощность, необратимо теряемую источником на излучение в среду, и она эквивалентна активному сопротивлению электрической цепи. Поэтому эквивалентная схема акустического импеданса пульсирующей сферы может быть представлена параллельно соединенными катушкой и омическим сопротивлением.  [c.208]


Состояние электрической цепи по отношению к реактивной мощности характеризует коэффициент мощности ( os ф), который представляет собой отношение активной мощности к полной (кажущейся) мощности  [c.32]

В, электрических цепях переменного тока с реактивными сопротивлениями различают три вида мощности полную 5, активную Р и реактивную Q. Полная мощность 5 электроустановки переменного тока состоит из мощности, расходуемой в активном сопротивлении Р и реактивной части мощности О, (геометрическая сумма).  [c.14]

Реактивная часть Q полной мощности обусловлена колебаниями энергии при возникновении и исчезновении магнитных и электрических полей, В электрической цепи переменного тока с реактивными сопротивлениями происходит перекачивание энергии от источника к реактивным сопротивлениям и обратно. Реактивны токи, протекающие между источником (генератором) и реактивными приемниками, бесполезно загружают генератор, трансформаторные подстанции, линии передачи и этим вызывают дополнительные потери энергии.  [c.15]

Реактивная мощность Q — мощность, обусловленная наличием магнитных и электрических полей в индуктивностях и емкостях цепи. Она не имеет постоянной составляющей. Реактивная мощность измеряется в вольт-амперах реактивных (вар) и определяется по следующим формулам  [c.306]

Мощность постоянного тока в цепи обмотки управления намного меньше реактивной мощности переменного тока рабочих обмоток, включенных в цепь потребителя. Поэтому, затрачивая малую мощность Б обмотке управления (слабый электрический сигнал), можно регулировать величину переменного тока в цепи потребителя большой мощности (преобразованный сигнал большой мощности).  [c.131]

Изменение тока в электрической цепи (включение, выключение) вызывает появление в ней ЭДС самоиндукции, препятствующей этому изменению. При увеличении тока она направлена против ЭДС источника напряжения, а при уменьшении тока, она мешает ему исчезнуть. Сопротивление в цепи, возникающее в результате действия ЭДС самоиндукции, называется индуктивным, а сопро-тивл 1ние проводников цепи—активным. Вся мощность, получаемая цепью переменного тока, называется кажущейся и состоит из активной и реактивной — мощностей. Активная мощность расходуется на нагрев. В двигателях переменного тока большая часть активной мощности превращается в механическую. Реактивная мощность обусловлена наличием магнитных и электрических полей в индуктивностях и емкостях цепей. В цепи с индуктивной нагрузкой нельзя избежать наличия реактивной мощ-  [c.31]

Причины сдвига фаз и практические последствия его. На многие из цепей переменного тока (установки для генерирования, канализации и потребления электрической энергии) оказывает неблагоприятное влияние то обстоятельство, что в них циркулируют токи, к-рые необходимы для поддержания надлежащего электромагнитного режима, но не м. б. превращены в полезную энергию. С электродвигателями, тpaн фopмiaтopaми и проводами свя-(J зано существование пульсирующих магнитных полей возникновение и исчезновение этих полей сопряжено с пульсацией энергии, к-рая передается из электрической цепи в магнитное поле и обратно из поля в цепь, не со-/ вершая при этом полезной работы. Соответствующие этой реактивной мощности токи в проводах называются реактивными они сдвинуты по фазе на 90° относительно активных токов. Полный ток I, состоящий из реактивной слагающей I,. и активной Ifj (фиг. 3), оказывается вследствие этого сдвинутым по фазе относительно напряжения на нек-рый угол ср. Отношение активной составляющей тока 1а к полному току J, т. е.  [c.223]

Процедуры метода энергетического баланса сводятся в общих чертах к следующему. Изучаемый автоколебательный контур разбивается на линейную и нелинейную части. В первом приближении принимается, что колебания выходных координат линейного звена имеют гармонический характер. Далее записываются два интегральных соотношения, одно из которых описывает энергетический баланс для активной составляющей мощности, другое — для реактивной составляющей мощности. Понятия активной и реактивней мощности заимствованы из электротехники. Применительно к задачам о колебаниях механических систем под активной мощностьк> понимается работа, совершаемая внешними силами за период колебания . (В электротехнике активная мощность равна электрической энергии, отдаваемой или поглощаемой в рассматриваемом участке цепи.) Что же касается реактивной мощности, то она, па аналогии с электротехникой, определяется таким же образом, как и активная мощность, но от силы, сдвинутой по фазе от реальной на четверть периода. (В электротехнике реактивная мощность описывает нерассеиваемую часть энергии, колеблющуюся между источником и приемником в цепи синусоидального тока.)  [c.196]


КОНДЕНСАТОР ЭЛЕКТРИЧЕСКИЙ (от лат. ondensa-tor, букв.— тот, кто уплотняет, сгущает) — устройство, предназначенное для получения нужных величие электрич. ёмкости и способное накапливать и отдавать (перераспределять) электрич. заряды. К. э. применяются в электрич. цепях (сосредоточенные ёмкости), электроэнергетике (компенсаторы реактивно мощности), импульсных генераторах напряжения, в измерит, целях (измерит, конденсаторы п ёмкостные датчики).  [c.436]

В результате электрического расчета при заданном напряжении и частоте источника питания определяются следующие электрические параметры коэффициент полезного действия, активные и реактивные мощности в системе, коэффициент мощности, токи в цепях индукторов, двухмерное распределение внутренних источников теплоты в загрузке. Электрический расчет в данных моделях реализует вариант метода интегральных уравнений с осреднением ядра интегрального уравнения (см. главу 2). Это позволяет эффективно производить электрический расчет индукционных нагревателей независимо от выраженности поверхностного эффекта в загрузке с многослойными, секционированными, многофазными индукто-)ами, с обычным и автотрансформаторным включением обмоток. Лредусмотрен также учет влияния на электромагнитные параметры индукционной системы таких элементов, как медные водоохлаждаемые кольца, электромагнитные экраны и другие проводящие немагнитные тела, в которых можно выделить осесимметричные линии тока. Тепловой расчет заключается в определении двухмерного температурного поля в загрузке в процессе нагрева при определенных граничных условиях на поверхности загрузки, которые задаются или исходя из свободного теплообмена с окружающей средой (конвекцией, излучением) или с учетом футеровки. Одновременно находятся как общие тепловые потери, так и потери с отдельных поверхностей загрузки.  [c.217]


Ошибка 404 | НПФ КонтрАвт. КИПиА для АСУ ТП

Выберите продукцию из спискаНормирующие преобразователи измерительные …НПСИ-ТП нормирующий преобразователь сигналов термопар и напряжения …НПСИ-237-ТП нормирующий преобразователь сигналов термопар и напряжения, IP65 …НПСИ-ТС нормирующий преобразователь сигналов термосопротивлений …НПСИ-237-ТС нормирующий преобразователь сигналов термосопротивлений, IP65 …НПСИ-150-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-150-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-110-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-110-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-250/500-УВ1 преобразователь сигналов термопар, термосопротивлений и потенциометров…НПСИ-250/500-УВ1.2 преобразователь сигналов термопар, термосопротивлений и потенциометров, разветвитель «1 в 2» …НПСИ-230-ПМ10 нормирующий преобразователь сигналов потенциометров …НПСИ-200-ГРТП модули гальванической развязки токовой петли…НПСИ-200-ГР1/ГР2 модули гальванической развязки токового сигнала (4…20) мА…НПСИ-200-ГР1.2 модуль разветвления 1 в 2 и гальванической развязки сигнала (4…20) мА…НПСИ-ДНТВ нормирующий преобразователь действующих значений напряжения и тока…НПСИ-ДНТН нормирующий преобразователь действующих значений напряжения и тока …НПСИ-200-ДН/ДТ нормирующие преобразователи действующих значений напряжения и тока…НПСИ-МС1 преобразователь мощности, напряжения, тока, коэффициента мощности…НПСИ-500-МС3 измерительный преобразователь параметров трёхфазной сети с RS-485 и USB …НПСИ-500-МС1 измерительный преобразователь параметров однофазной сети с RS-485 и USB …НПСИ-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией…НПСИ-237-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией, IP65 …НПСИ-ЧВ/ЧС нормирующие преобразователи частоты, периода, длительности сигналов, частоты сети…ПНТ-х-х нормирующий преобразователь сигналов термопар…ПСТ-х-х нормирующий преобразователь сигналов термосопротивлений…ПНТ-a-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-a-Pro нормирующий преобразователь сигналов термосопротивлений программируемый…ПНТ-b-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-b-Pro нормирующий преобразователь сигналов термосопротивлений программируемыйБарьеры искрозащиты (барьеры искробезопасности)…КА5003Ех барьеры искрозащиты, разветвители 1 в 2 сигналов термопар, термометров сопротивления и потенциометров, 1-канальные, USB, RS-485…КА5004Ех барьеры искрозащиты, сигналы термопар, термометров сопротивления и потенциометров, сигнализация, USB, RS-485…КА5011Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 1-канальные, HART …КА5022Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 2-канальные…КА5013Ех барьеры искрозащиты (барьеры искробезопасности), приемники-разветвители 1 в 2 аналогового сигнала (4…20) мА, 1-канальные, HART, шина питания …КА5031Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 1-канальные, HART …КА5032Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 2-канальные, HART …КА5131Ех барьеры искрозащиты (барьеры искробезопасности), передатчики аналогового сигнала (4…20) мА, 1-канальные, HART …КА5132Ех барьеры искрозащиты (барьеры искробезопасности), передатчики аналогового сигнала (4…20) мА, 2-канальные…КА5241Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 1-канальные…КА5242Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5262Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5232Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5234Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 4-канальныеКонтроллеры, модули ввода-вывода…MDS AIO-1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-1/F1 Модули комбинированные функциональные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4/F1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов, 4 ПИД регулятора…MDS AI-8UI Модули ввода аналоговых сигналов тока и напряжения…MDS AI-8TC Модули ввода сигналов термопар, тока и напряжения…MDS AI-8TC/I Модули ввода сигналов термопар, тока и напряжения с индивидуальной изоляцией между входами…MDS AI-3RTD Модули ввода сигналов термосопротивлений и потенциометров…MDS AO-2UI Модули вывода сигналов тока и напряжения…MDS DIO-16BD Модули ввода-вывода дискретных сигналов…MDS DIO-4/4 Модули ввода-вывода дискретных сигналов …MDS DIO-12h4/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DIO-8H/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DI-8H Модули ввода дискретных сигналов высоковольтные…MDS DO-8RС Модули вывода дискретных сигналов …MDS DO-16RA4 Модули вывода дискретных сигналов …MDS IC-USB/485 преобразователь интерфейсов USB и RS-485…MDS IC-232/485 преобразователь интерфейсов RS-232 и RS-485…I-7561 конвертер USB в RS-232/422/485…I-7510 повторитель интерфейса RS-485/RS-485…I-7520 преобразователь интерфейса RS-485/RS-232Измерители-регуляторы технологические…МЕТАКОН-6305 многофункциональный ПИД-регулятор с таймером выдержки…МЕТАКОН-4525 многоканальный ПИД-регулятор…МЕТАКОН-1005 измеритель технологических параметров, щитовой монтаж, RS-485…МЕТАКОН-1015 измеритель, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1105 измеритель, позиционный регулятор, щитовой монтаж, RS-485…МЕТАКОН-1205 измеритель-регулятор, нормирующий преобразователь, контроллер, щитовой монтаж, RS-485…МЕТАКОН-1725 двухканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1745 четырехканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-512/532/562 многоканальные измерители-регуляторы…Т-424 универсальный ПИД-регулятор…МЕТАКОН-515 быстродействующий универсальный ПИД-регулятор…МЕТАКОН-513/523/533 ПИД-регуляторы…МЕТАКОН-514/524/534 ПДД-регуляторы…МЕТАКОН-613 программные ПИД-регуляторы…МЕТАКОН-614 программные ПИД-регуляторы…СТ-562-М источник тока для ПМТ-2, ПМТ-4Регистраторы видеографические…ИНТЕГРАФ-1100 видеографический безбумажный 4/8/12/16 канальный регистратор данных …ИНТЕГРАФ-1000/1010 видеографические безбумажные 8/16 канальные регистраторы данных …ИНТЕГРАФ-3410 видеографический безбумажный регистратор-контроллер термообработки… DataBox Накопитель-архиваторСчётчики, реле времени, таймеры…ЭРКОН-1315 восьмиразрядный одноканальный счётчик импульсов, поддержка RS-485, щитовой монтаж…ЭРКОН-315 счётчик импульсов одноканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-325 счетчик импульсов двухканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-415 тахометр-расходомер…ЭРКОН-615 счетчик импульсов реверсивный многофункциональный, поддержка RS-485, щитовой монтаж…ЭРКОН-714 таймер астрономический…ЭРКОН-214 одноканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-224 двухканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-215 реле времени программируемое одноканальное, поддержка RS-485, щитовой монтаж, цифровая индикацияБлоки питания и коммутационные устройства…PSM-120-24 блок питания 24 В (5 А, 120 Вт)…PSM-72-24 блок питания 24 В (3 А, 72 Вт)…PSM-36-24 блок питания 24 В (1,5 А, 36 Вт)…PSL низковольтные DC/DC–преобразователи на DIN-рейку 3 и 10 Вт…PSM-4/3-24 многоканальный блок питания 24 В (4 канала по 0,125 А, 3 Вт)…PSM-2/3-24 блок питания 24 В (2 канала по 0,125 А, 3 Вт)…PSM/4R-36-24 блок питания и реле, 24 В (1,5 А, 36 Вт)…БП-24/12-0,5 блок питания 24В/12В (0,5А)…ФС-220 фильтр сетевой…БПР блок питания и реле…БКР блок коммутации реверсивный (пускатель бесконтактный реверсивный)…БР4 блок реле…PS3400.1 блок питания 24 В (40 А) …PS3200.1 блок питания 24 В (20 А)…PS3100.1 блок питания 24 В (10 А)…PS3050.1 блок питания 24 В (5 А)…PS1200.1 блок питания 24 В (20 А)…PS1100.1 блок питания 24 В (10 А)…PS1050.1 блок питания 24 В (5 А)Программное обеспечение…SetMaker конфигуратор……  История  версий…MDS Utility конфигуратор…RNet программное обеспечение…OPC-сервер для регулятров МЕТАКОН…OPC-сервер для MDS-модулей

как найти, формула расчёта, в чем измеряется (2022)

  • Мощность в цепи переменного электрического тока
    • Понятие активной мощности
  • Что это означает
  • Простое объяснение с формулами
  • В чем измеряется активная мощность?
  • В чем разница между активной и реактивной мощности?
  • Как узнать какая мощность в цепи переменного тока
  • В однофазной цепи
  • Чему равна активная мощность трехфазной цепи?
  • Как рассчитать активную мощность трансформатора?
  • Электроприборы, влияющие на качество потребления
  • Чем отличается активная мощность от реактивной – Все об электричестве
  • Активная электроэнергия

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Что это означает

В сетях переменного тока, которыми на сегодняшний день пользуется абсолютно весь мир, без активной и реактивной мощностей никак не обойтись – они взаимозависимы и даже необходимы. К активной электроэнергии относится напряжение, которое вырабатывается на ТЭС, ГрЭС, АЭС, мобильном генераторе, стоящем в гараже и т.д. – оно поступает к потребителю (на фабрики, заводы, к нам домой) и питает все электроприборы от сети ≈220-380 V. В это же время функция реактивной составляющей полного тока заключается в бесцельном блуждании от источника к потребителю и обратно. Так откуда же берётся эта, бесполезная на первый взгляд, субстанция?

Все дело в том, что в наших домах, на предприятиях и любых других электрифицированных объектах есть приборы с индуктивными катушками (для примера можно взять статор двигателя), где постоянно возникают магнитные поля. То есть, часть из них вращает ротор (якорь), а часть возвращается обратно и так до бесконечности, пока существует движение активной энергии. Это хорошо демонстрирует кружка свежего пива: с жидкостью человек выпивает лишь малую часть пены, а остальную оставляет в бокале либо сдувает на землю. Но эта самая пена является продуктом брожения (индукции), без которого пива, как такового, не будет вообще.

Сейчас уже можно подвести первый итог в понимании темы: если есть индуктивная нагрузка (а она есть всегда), то обязательно появится реактивный ток, потребляемый индукцией, которая сама его создает. То есть, индукция вырабатывает реактивную мощность, потом её потребляет, вырабатывает заново и так постоянно, но в этом кроется одна проблема. Для движения реактивной субстанции туда обратно, нужна активная энергия, которая расходуется из-за постоянного движения электронов по проводам (нагрев проводов).

Будет интересно➡ Схемы подключения трехфазного счетчика. Установка трёхфазного счетчика

Можно прийти к выводу, что активная мощность генератора, это полное противопоставление реактивной, на первый взгляд бесполезной мощности? Но это не так. Вспомните, сестры неразлучны между собой, так как любят друг друга, а пиво без пены никто не станет пить, да и забродить без неё напиток будет не в состоянии. То же можно сказать о реактивной мощности – без неё невозможно создание магнитных полей, так что с этой силой придется считаться. Но тут в дело пошли мозговые извилины изобретателей, которые решили сократить территориальное пространство (не гонять по проводам взад-вперед) этой, не совсем понятной, субстанции и вырабатывать её в непосредственной близости от объекта потребления.

Для наглядного примера можно взять всем известный электрический фен, в котором есть двигатель, вращающий вал с лопастями – он называется турбиной для подачи горячего воздуха. Так вот, чтобы разгрузить линию электропередач от бесполезной беготни реактива от станции к потребителю и обратно, в корпус прибора встраивают конденсатор нужной емкости. А представьте себе ту же электросварку или токарный цех с десятками мощных станков, – какой потенциал высвобождается реактивным током для увеличения КПД. Если говорить техническим языком, то установка конденсаторов или других статических компенсирующих элементов называется компенсацией реактивной мощности. Получается, что активная и реактивная мощность, это две неразрывно связанных между собой величины.

Вырабатывать реактивную мощность могут также и генераторы на электростанциях любого типа. Для этого достаточно сменить ток возбуждения (перевозбуждения, недовозбуждения) и генератор окажется как поставщиком, так и потребителем этой величины. Но, это всего лишь законы физики, которые в данном случае не очень выгодны для людей, поэтому лучше всего переносить емкость накопления и отдачи, как можно ближе к источнику – в корпус прибора (агрегата) или в производственный цех.

Простое объяснение с формулами

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

P = U I

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I – в цепях постоянного тока

P = U I cosθ – в однофазных цепях переменного тока

P = √3 UL IL cosθ – в трёхфазных цепях переменного тока

P = 3 UPh IPh cosθ

P = √ (S2 – Q2) или

P =√ (ВА2 – вар2) или

Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или

кВт = √ (кВА2 – квар2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

Q = U I sinθ

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

В чем измеряется активная мощность?

Активная мощность: обозначение P, единица измерения: Ватт Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный) Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)

Будет интересно➡ Что такое автоматический ввод резерва и как работает АВР? Основные схемы АВР и их особенности.

В чем разница между активной и реактивной мощности?

Нет реактивной электроэнергии. Есть реактивная мощность. Активная — это нагревание резисторов. Реактивная — колебание тока и напряжения в ёмкостях и индуктивностях.

Как узнать какая мощность в цепи переменного тока

Стоит указать, что это величина, которая прямо связывается сиными показателями. Кпримеру, она находится впрямой зависимости отвремени, силы, скорости, вектора силы искорости, модуля силы искорости, момента силы ичастоты вращения. Часто вформулах вовремя вычисления электромощности используется также числоПи споказателем сопротивления, мгновенным током, напряжением наконкретном участке электрической сети, активной, полной иреактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость иначальная сила тока снапряжением.


Формула мощности вцепи переменного тока

В однофазной цепи

Понять, какой мощностный показатель есть воднофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить натрансформаторный коэффициент тока. Вмомент измерения мощности ввысоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр иобеспечить безопасность пользователя. Параллельна цепь включается ненепосредственным способом, аблагодаря трансформатору напряжения. Вторичные обмотки скорпусами измерительных трансформаторных установок необходимо заземлять воизбежание случайного изоляционного повреждения ипопадания высокого напряжения наприборы.

Обратите внимание! Для определения параметров всети необходимо амперметр перемножить натрансформаторный коэффициент тока, ацифры, полученные вольтметром, перемножить натрансформаторный коэффициент напряжения.


Воднофазной цепи

Чему равна активная мощность трехфазной цепи?

Активной мощностью трехфазной системы называется сумма активных мощностей всех фаз приемника. где — φ угол сдвига фаз между фазными напряжением и током.

Как рассчитать активную мощность трансформатора?

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула: S = U I, где U – это напряжение сети, а I – это сила тока сети. Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда: S = U * I * cos φ.

Электроприборы, влияющие на качество потребления

Коэффициент мощности равен единице при подключении ламп и нагревателей. Он уменьшается до 0,7 и менее, когда в цепи добавляют преобладающие по потреблению энергии электромоторы, другие компоненты с реактивными составляющими.

Правильное применение определений и расчетов мощности помогает оптимизировать проект электрической сети с учетом особенностей подключаемых нагрузок. Приведенные выше сведения пригодятся на стадии определения параметров проводки, защитных автоматов. Комплексное использование этих знаний повысит надежность электроснабжения, предотвратит возникновение и развитие аварийных ситуаций.

Чем отличается активная мощность от реактивной – Все об электричестве

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны.

Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР).

Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

ПриборМощность бытовых приборов, Вт/час
Зарядное устройство2
Люминесцентная лампа ДРЛОт 50
Акустическая система30
Электрический чайник1500
Стиральной машины2500
Полуавтоматический инвертор3500
Мойка высокого давления3500

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющей

Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

Будет интересно➡ Полное сопротивление

S = U I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Схема симметричной нагрузки

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ.

Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная.

Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Расчет трехфазной сети

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

QL = ULI = I2xL

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P2 + Q2, и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: xL = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности.

Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы.

С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

Диаграмма треугольников напряжений

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL – QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

Активная электроэнергия

Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее.

Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Предыдущая

РазноеОсобенности резонанса токов

Следующая

РазноеАвтоматические выключатели

(PDF) Измерение активной мощности, электрической энергии, а также среднеквадратичных значений напряжения и тока с использованием метода преобразования с двойным наклоном

ITAK

doi:10.3906/elk-1704-131

Турецкий журнал электротехники и компьютерных наук

http://journals.tubitak.gov.tr/elektrik/

Исследовательская статья

Измерение активной мощности , электрическая энергия и среднеквадратичное значение напряжения и тока

с использованием метода преобразования двойного наклона

Khaoula KHLIFI∗, Amira HADDOUK, Ahlem AYARI, Hfaiedh MECHERGUI

Факультет электротехники, Высшая национальная школа инженеров Туниса, Тунисский университет,

Тунис, Тунис

Получено: 11.04.2017 • Принято/опубликовано онлайн: 16.01.2018 • Окончательная версия: ..201

Резюме: Мы использовали метод преобразования двойного наклона (DS) для реализации интеллектуальной системы с высоким разрешением

, которая обеспечивает измерение активной мощности и электроэнергии. потребление. Мощность нагрузки соответствует двум преобразователям тока и напряжения на эффекте Холла

, которые связаны с прецизионным аналоговым умножителем. Аналого-цифровой преобразователь (DS-ADC)

DS выполняет преобразование путем подавления шума со временем преобразования, которое составляет

кратных частот первой крутизны АЦП.Цифровой сбор осуществляется PIC 16F877 с использованием алгоритма управления

, обеспечивающего контроль, сбор и обработку информации. Результаты отображаются на 2-строчном ЖК-дисплее с 16-ю

столбцами. Разработанный прибор является программируемым, что дает ему множество преимуществ, таких как скорость выполнения, надежность измерения

, коррекция ошибок.

Ключевые слова: DS-ADC, нелинейная нагрузка, подавление гармоник, обработка ПОС, электрическая энергия

1.Введение

В настоящее время новые технологии включают в себя большое количество домашнего оборудования, которое более чувствительно к мощности нагрузки, например,

компьютеры и электронные устройства, содержащие различные виды энергии. Это приводит к ухудшению качества

распределения электроэнергии и влияет на характеристики этого электрооборудования. Следовательно, необходимо влияние

расходов счета-фактуры клиента, что требует измерения истинной потребляемой энергии [1–4].

Большинство разработанных методик измерения энергии

являются теоретическими и не имеют достаточного подробного описания [2,3].

Интеллектуальные измерительные системы способствуют оптимизации технического обслуживания, контролю качества электроэнергии

и защите установок. В этой статье представлен интересный метод с использованием двухскатного аналого-цифрового преобразователя

(DS-ADC) с высоким разрешением для измерения среднеквадратичного значения тока, напряжения, активной мощности и энергии для линейных и нелинейных нагрузок. . Мы используем квазисинхронную выборку с первой гармоникой

напряжения сети.Этот метод устраняет ошибку дискретизации и неизохронные гармоники

и обладает высокой помехоустойчивостью [5].

Этот метод извлекает результирующую истинную мощность произведения изохронных токов и напряжения

гармоник. Разработанная система фактически является вкладом в реализацию интеллектуального измерительного прибора высокого разрешения

. Перспективы направлены на управление энергопотреблением в умных домах и просты по конструкции [6].

* Адрес для переписки: [email protected]

1

Страница не найдена — А. Эберле

Diese Seite nutzt Website Tracking-Technologien von Dritten, um ihre Dienste anzubieten und stetig zu verbessern. Diese Dienste werden erst nach betätigen des «Alle akzeptieren» — Buttons aktiv. Sie können dem sowohl zustimmen, а также auch die Verwendung von Tracking-Cookies, которые можно использовать. Bitte beachten Sie, dass auch nach betätigen des «Nur funktionsfähig»-Buttons, für den Betrieb der Seite notwendige Cookies aktiv bleiben.Datenschutzerklärung Функциональный Функциональный Иммер Актив

Die Technische Speicherung Одер дер Zugang IST unbedingt erforderlich für ден rechtmäßigen Zweck, умирают Nutzung Эйнес bestimmten Dienstes цу ermöglichen, дер фом Teilnehmer Одер Nutzer ausdrücklich gewünscht вирда, Одер für ден alleinigen Zweck, умирают Übertragung етег Nachricht über Эйн Elektronisches Kommunikationsnetz durchzuführen.

Форлибен Форлибен

Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.

Статистика Статистика

Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.

Маркетинг Маркетинг

Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.

%PDF-1.7 % 138 0 объект > эндообъект внешняя ссылка 138 170 0000000016 00000 н 0000004523 00000 н 0000004699 00000 н 0000005420 00000 н 0000005457 00000 н 0000005571 00000 н 0000007819 00000 н 0000008213 00000 н 0000008707 00000 н 0000008878 00000 н 0000009467 00000 н 0000009579 00000 н 0000009892 00000 н 0000009987 00000 н 0000010266 00000 н 0000010812 00000 н 0000011296 00000 н 0000011685 00000 н 0000012249 00000 н 0000012763 00000 н 0000013223 00000 н 0000013611 00000 н 0000013939 00000 н 0000014336 00000 н 0000017944 00000 н 0000022368 00000 н 0000024038 00000 н 0000026687 00000 н 0000026802 00000 н 0000026919 00000 н 0000026950 00000 н 0000027025 00000 н 0000043561 00000 н 0000043883 00000 н 0000043949 00000 н 0000044065 00000 н 0000044140 00000 н 0000044215 00000 н 0000044312 00000 н 0000044461 00000 н 0000044776 00000 н 0000044831 00000 н 0000044947 00000 н 0000044978 00000 н 0000045053 00000 н 0000048735 00000 н 0000049053 00000 н 0000049119 00000 н 0000049235 00000 н 0000049258 00000 н 0000049336 00000 н 0000054094 00000 н 0000054160 00000 н 0000054276 00000 н 0000054299 00000 н 0000054377 00000 н 0000056964 00000 н 0000057030 00000 н 0000057146 00000 н 0000057169 00000 н 0000057247 00000 н 0000063707 00000 н 0000063773 00000 н 0000063889 00000 н 0000063920 00000 н 0000063995 00000 н 0000068575 00000 н 0000068892 00000 н 0000068958 00000 н 0000069074 00000 н 0000069105 00000 н 0000069180 00000 н 0000082443 00000 н 0000082759 00000 н 0000082825 00000 н 0000082941 00000 н 0000084492 00000 н 0000084824 00000 н 0000085197 00000 н 0000086929 00000 н 0000087246 00000 н 0000087617 00000 н 0000091241 00000 н 0000091280 00000 н 0000091667 00000 н 0000092054 00000 н 0000092441 00000 н 0000092828 00000 н 0000093056 00000 н 0000093252 00000 н 0000093398 00000 н 0000093473 00000 н 0000093777 00000 н 0000093852 00000 н 0000093965 00000 н 0000094302 00000 н 0000094377 00000 н 0000094683 00000 н 0000094747 00000 н 0000094778 00000 н 0000094853 00000 н 0000096484 00000 н 0000096814 00000 н 0000096880 00000 н 0000096999 00000 н 0000097030 00000 н 0000097105 00000 н 0000098825 00000 н 0000099155 00000 н 0000099221 00000 н 0000099340 00000 н 0000104239 00000 н 0000104303 00000 н 0000104334 00000 н 0000104409 00000 н 0000105771 00000 н 0000106101 00000 н 0000106167 00000 н 0000106286 00000 н 0000106317 00000 н 0000106392 00000 н 0000107973 00000 н 0000108303 00000 н 0000108369 00000 н 0000108488 00000 н 0000111212 00000 н 0000111276 00000 н 0000111307 00000 н 0000111382 00000 н 0000113085 00000 н 0000113412 00000 н 0000113478 00000 н 0000113597 00000 н 0000113628 00000 н 0000113703 00000 н 0000115562 00000 н 0000115889 00000 н 0000115955 00000 н 0000116074 00000 н 0000122685 00000 н 0000122760 00000 н 0000123052 00000 н 0000123125 00000 н 0000123148 ​​00000 н 0000123226 00000 н 0000135225 00000 н 0000147238 00000 н 0000147714 00000 н 0000147780 00000 н 0000147896 00000 н 0000147960 00000 н 0000147991 00000 н 0000148066 00000 н 0000151171 00000 н 0000151502 00000 н 0000151568 00000 н 0000151685 00000 н 0000151716 00000 н 0000151791 00000 н 0000160543 00000 н 0000160875 00000 н 0000160941 00000 н 0000161062 00000 н 0000164167 00000 н 0001310677 00000 н 0001311249 00000 н 0001311529 00000 н 0001311604 00000 н 0001311898 00000 н 0000003696 00000 н трейлер ]/предыдущая 1503607>> startxref 0 %%EOF 307 0 объект >поток h|]hW f7l(VY*t !ֶnKI»PhA(VJDmC}(X͇њdcb;41& РЖК >..$D[ڕ}MjkGI:+sQfWA(s_[dchiI! | ?Vɍ ȸ/ZR|UI=8`]M»Kb5p Vl&ř{J-㨨 7(

[!KWrlW_|Jw}9Mz?TĶ&?HsxtremeHg_9‹|kC(1*=%T-&9wG~e #ַ4u?gk

Как измерить активную и кажущуюся мощность переменного тока с помощью Arduino? — Блог о самодельных солнечных и ардуино проектах

Процесс калибровки 

После того, как код будет загружен в Arduino, если вы подключили экран ЖК-дисплея, вы увидите значение тока, напряжения, активной мощности и кажущейся мощности. Убедитесь, что источник переменного напряжения , который вы измеряете, ВЫКЛЮЧЕН.Нажмите кнопку SELECT на экране ЖК-дисплея и подождите 5 секунд. Он должен перейти к 0 вольт . То же самое для переменного тока, показывающего 0A . Для людей, у которых нет экрана ЖК-дисплея, вы можете вручную сместить значение смещения, введя значение смещения в код и повторно загрузив его снова. Есть 2 значения смещения (voltageOffset1 и voltageOffset2), которые необходимо откалибровать. Сделайте то же самое для модуля переменного тока для двух значений смещения (currentOffset1 и currentOffset2) и, наконец, powerOffset.

Подстроечный потенциометр Регулировка напряжения переменного тока  

Этот параметр предназначен для регулировки величины волны напряжения переменного тока. В отличие от переменного тока, мы вычисляем и получаем ожидаемый ток, но для переменного напряжения нам нужно опорное напряжение для настройки.

После завершения калибровки вы должны увидеть значение 0 вольт, когда напряжение не обнаружено. Теперь включите источник напряжения, а включите опорное напряжение считыватель (мультиметр или счетчик электроэнергии). Сравните оба значения напряжения. Поверните потенциометр триммера (триммер) с помощью небольшой отвертки , чтобы уменьшить или увеличить значение напряжения, определяемое Arduino. Вам нужно поворачивать потенциометр до тех пор, пока напряжение, отображаемое на ЖК-дисплее Shield или Serial Monitor, не будет таким же, как эталонное значение напряжения на вольтметре или измерителе энергии. И поздравляю, свершилось!!!!

Если внимательно читать коды, то мы действительно уменьшили потенциальную амплитуду волны вдвое (в формуле умножить на 2).

RMSVoltageMean = (sqrt(voltageMean))*2;

Вот почему при подаче контрольного напряжения измеренное значение высокое, и его необходимо уменьшить. F Амплитуда малой волны (x 1) искажается при напряжении около 250 В, что позволило нам решить проблему искажения.

Основные принципы работы

Принцип измерения

KL3403 работает с 6 аналого-цифровыми преобразователями для записи значений тока и напряжения всех 3 фаз.Значения отбираются с временной сеткой приблизительно 16 мкс.

Запись и обработка синхронны и идентичны для 3 этапов. Обработка сигнала для одной фазы описана ниже. Это описание применимо соответственно ко всем трем этапам. Общая мощность и общее потребление энергии представляют собой сумму трех фаз, средний ток представляет собой среднее значение.

Напряжение U и ток I Кривые

Напряжение U и ток I Кривые

RMS Значение Расчет значения

RMS Значение для напряжения и тока рассчитывается по интервалу измерения, в этом случае период Т.Используются следующие уравнения:

 

 

u (t) : мгновенное значение напряжения
i (t) : мгновенное значение тока
n: количество измеренных значений

системы (период T = 20 мс), в расчете учитывается 1280 измеренных значений.

 

Интервал измерения

Правильный выбор интервала измерения важен для качества измерения.Интервал измерения должен быть не менее ¼ T. ¼ T, ½ T, T, кратные ½ T, являются разумными значениями. Если используется случайный интервал, который не соответствует кратному ½ Тл и значительно меньше 5 Тл, измеренное значение будет значительно колебаться.

Значение по умолчанию для интервала измерения составляет 50 мс, что соответствует 2,5 Тл в сети с частотой 50 Гц и 3 Тл в сети с частотой 60 Гц. Опыт показывает, что это хороший компромисс между скоростью измерения и стабильностью. Отклонения от этого значения желательны только в случае особых требований к измерениям (например,грамм. высокая скорость измерения, низкие частоты сигнала или специальные кривые тока).

 

Измерение активной мощности

KL3403 измеряет активную мощность P в соответствии со следующим уравнением : Мгновенное значение напряжения
I (T) : мгновенное значение тока

Power S

(T) Curve

Power S (T) Curve

На первом шаге, мощность s (t) вычисляется в каждый момент выборки:

 

Вычисляется среднее значение за интервал измерения.Здесь также важен правильный выбор интервалов, как описано в разделе Измерение среднеквадратичного значения (интервал можно изменить только одновременно для U, I и P).

Частота сети в два раза выше соответствующих напряжений и токов.

 

Измерение полной мощности

В реальных сетях не все потребители являются чисто омическими. Фазовые сдвиги происходят между током и напряжением. Это не влияет на описанную выше методику определения среднеквадратичных значений напряжения и тока.

Ситуация с активной мощностью иная: Здесь произведение эффективного напряжения и эффективного тока представляет собой полную мощность.

 

Активная мощность меньше полной мощности.

S: очевидная мощность
P: активная мощность
Q: реактивная мощность
Φ: угол сдвига фазы

U

(T) , I (T) , P (T) кривые с углом сдвига фаз φ

 

u (t) , i (t) , p (t) кривые с углом сдвига фаз φ

Потребители значительны:

KL3403 определяет следующие значения:

из этих значений, необходимые параметры могут быть рассчитаны:

59

для измерения мощности

Знак активной мощности P и коэффициента мощности cos φ предоставляют информацию о направлении потока энергии.Положительный знак указывает на двигательный режим, отрицательный знак указывает на генераторный режим.

Кроме того, знак реактивной мощности Q указывает направление фазового сдвига между током и напряжением. Диаграмма Четырехквадрантное представление активной/реактивной мощности в режиме двигателя и генератора иллюстрирует это. В режиме двигателя (квадрант I и IV) положительная реактивная мощность указывает на индуктивную нагрузку, отрицательная реактивная мощность указывает на емкостную нагрузку. В режиме генератора (квадрант II и III) генератор индуктивного действия обозначается положительной реактивной мощностью, генератор емкостного действия — отрицательной реактивной мощностью.

 

Четырехквадрантное представление активной/реактивной мощности в режиме двигателя и генератора

 

Измерение пикового тока

Следует различать пиковое мгновенное значение и пиковое среднеквадратичное значение. Пиковое среднеквадратичное значение всегда относится к пиковому значению в пределах указанного интервала измерения.

 

Измерение частоты

KL3403 может измерять частоту входных сигналов в цепях напряжения (L1, L2, L3).Измерение занимает 5 секунд (интервал измерения).

Ошибка измерения

 

 

Расчет мощности с помощью программного обеспечения для восприятия

Простой пример ниже иллюстрирует расчет мощности для несинусоидальных значений.


(3.01)

Напряжение источника должно оставаться синусоидальным. График кривой должен включать основное колебание и гармонику напряжения.


(3.02)

Общее эффективное значение тока можно рассчитать по амплитудам или действующим значениям отдельных гармонических колебаний.


(3.03)

Действующее значение ранее рассчитанного синусоидального напряжения U rms =û/√2 используется для обозначения полной мощности потребителя.


(3.04)

Оценка формулы 2.03 показывает, что эффективная мощность создается только основной гармоникой тока.В этом случае гармонические колебания тока не дают вклада в эффективную мощность.


(3,05)

Для этого специального случая полученный коэффициент мощности: коэффициент смещения cosφ 1 основного колебания.

Полная мощность S делится по формуле (3.07) в основную полную мощность S 1 и реактивную мощность искажения D .


(3.07)

Полная основная мощность S 1 состоит, в свою очередь, из эффективной мощности P и реактивной мощности основного колебания Q 9

Поскольку эти величины мощности ортогонально связаны друг с другом, их можно представить в виде прямоугольного тела, как показано на рис.3.1, чтобы подчеркнуть эти отношения.

Эти переменные мощности теперь будут рассчитываться с помощью Восприятия. Кривые напряжения и тока назначаются следующим образом:


(3.08)

Соответствующие временные кривые показаны на рис. 3.2. В этом случае полная мощность рассчитывается как:


(3,09)

Только ток основной гармоники вносит вклад в мощность основной гармоники.


(3.10)

Расчетное значение активной мощности:


(3.11)

Полная мощность S и активная мощность P теперь могут использоваться для расчета общей реактивной мощности.


(3.12)

(3.12)

Фундаментальная сила формируется только из фундаментальных токовых колебаний:


(3.13)

(3.13)

Общая реактивная мощность Q и фундаментальная реактивная мощность Q 1 может быть используется для расчета реактивной мощности искажения:


(3.14)

Полученный коэффициент мощности:


(3.15)

Измерители активной или реактивной мощности EQ — Аналоговые измерители

Файлы cookie на нашей веб-странице

Что такое Куки?

Файл cookie — это небольшой фрагмент данных, отправляемый с веб-сайта и сохраняемый в веб-браузере пользователя, пока пользователь просматривает веб-сайт. Когда пользователь будет просматривать тот же веб-сайт в будущем, данные, хранящиеся в файле cookie, могут быть извлечены веб-сайтом, чтобы уведомить веб-сайт о предыдущей активности пользователя.

Как мы используем файлы cookie?

Посещение этой страницы может генерировать следующие типы файлов cookie.

Строго необходимые файлы cookie

Эти файлы cookie необходимы для того, чтобы вы могли перемещаться по веб-сайту и использовать его функции, такие как доступ к защищенным областям веб-сайта. Без этих файлов cookie запрошенные вами услуги, такие как корзины для покупок или электронный биллинг, не могут быть предоставлены.

2. Файлы cookie производительности

Эти файлы cookie собирают информацию о том, как посетители используют веб-сайт, например, какие страницы посетители посещают чаще всего и получают ли они сообщения об ошибках с веб-страниц.Эти файлы cookie не собирают информацию, которая идентифицирует посетителя. Вся информация, которую собирают эти файлы cookie, является агрегированной и, следовательно, анонимной. Он используется только для улучшения работы веб-сайта.

3. Функциональные файлы cookie

Эти файлы cookie позволяют веб-сайту запоминать сделанный вами выбор (например, ваше имя пользователя, язык или регион, в котором вы находитесь) и предоставлять расширенные, более персонализированные функции. Например, веб-сайт может предоставлять вам местные прогнозы погоды или новости о дорожном движении, сохраняя в файле cookie регион, в котором вы сейчас находитесь.Эти файлы cookie также можно использовать для запоминания изменений, внесенных вами в размер текста, шрифты и другие части веб-страниц, которые вы можете настроить. Они также могут быть использованы для предоставлять услуги, о которых вы просили, такие как просмотр видео или комментирование в блоге. Информация, которую собирают эти файлы cookie, может быть анонимной, и они не могут отслеживать ваши действия в Интернете на других веб-сайтах.

4. Целевые и рекламные файлы cookie

Эти файлы cookie используются для показа рекламы, более соответствующей вам и вашим интересам. Они также используются для ограничения количества просмотров рекламы, а также для измерения эффективности рекламной кампании.Обычно они размещаются рекламными сетями с разрешения оператора сайта. Они запоминают, что вы посещали веб-сайт, и эта информация передается другим организациям, например рекламодателям. Довольно часто целевые или рекламные файлы cookie будут связаны к функциям сайта, предоставляемым другой организацией.

Управление файлами cookie

Файлами cookie можно управлять через настройки веб-браузера. Пожалуйста, ознакомьтесь с справкой вашего браузера, как управлять файлами cookie.

На этом сайте вы всегда можете включить/отключить файлы cookie в пункте меню «Управление файлами cookie».

Управление сайтом

Этот веб-сайт управляется:

Искра д.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.