Site Loader

Содержание

Операционный усилитель 741 — Википедия

Операционный усилитель 741 в корпусе TO-5

Операционный усилитель 741 (другие обозначения: uA741, μA741) — универсальный интегральный операционный усилитель второго поколения на биполярных транзисторах. Оригинальный μA741 был разработан в 1968 году Дэвидом Фуллагаром из Fairchild Semiconductor на основе разработанного Бобом Видларом LM101. В отличие от LM101, использовавшего внешний конденсатор частотной коррекции, в μA741 этот конденсатор был выполнен непосредственно на кристалле ИС. Простота применения μA741 и совершенные для своего времени характеристики способствовали широкому применению новой схемы и сделали её «типовым» универсальным ОУ. Несмотря на появление значительно лучших по характеристикам аналогичных микросхем ОУ 741 и его клоны по состоянию на 2015 год все ещё выпускаются множеством производителей (например LM741, AD741, К140УД7).

Структура ОУ

Несмотря на то, что проще и полезнее рассматривать операционный усилитель как чёрный ящик с характеристиками идеального ОУ, важно также иметь представление о внутренней структуре ОУ и принципах его работы, так как при разработке с использованием ОУ могут возникнуть проблемы, обусловленные ограничениями его схемотехники.

Структура ОУ различных марок отличается, но в основе лежит один и тот же принцип. ОУ второго и последующих поколений состоят из следующих функциональных блоков:

Внутренняя схема операционного усилителя 741
  1. Дифференциальный усилитель
    • Входной каскад — обеспечивает усиление при малом уровне шума, высокое входное сопротивление. Обычно имеет дифференциальный выход.
  2. Усилитель напряжения
    • Имеет высокий коэффициент усиления по напряжению, спад Амплитудно-частотной характеристики как у однополюсного фильтра низких частот, обычно единственный (то есть не дифференциальный) выход.
  3. Выходной усилитель

Токовые зеркала

Части схемы, обведённые красной линией являются токовыми зеркалами. Первичный ток, который задаёт все остальные токи, определяется напряжением питания ОУ и резистором 39 kΩ (плюс два падения напряжения на диодном переходе). Первичный ток составляет примерно

I ref = V S + − V S − − 2 V be 39 k Ω {\displaystyle I_{\text{ref}}={\frac {V_{{\text{S}}+}-V_{{\text{S}}-}-2V_{\text{be}}}{39\,{\text{k}}\Omega }}} (1)

Режим входного каскада по постоянному току задаётся двумя токовыми зеркалами слева. Токовое зеркало, образованное транзисторами Q8/Q9 позволяет работать с большими синфазными напряжениями на входе, не выходя при этом из активного режима работы транзисторов. Токовое зеркало Q10/Q11 косвенно используется для установки тока покоя входного каскада. Этот ток устанавливается резистором 5 kΩ. Цепь задания тока смещения работает следующим образом. Если ток входного каскада начинает отличаться (отличие обнаруживает транзистор Q8) от значения, заданного транзистором Q10, это отражается в токе Q9, что приводит к изменению напряжения в точке соединения коллекторов Q9 и Q10. Это напряжение, поступая на базы Q3 и Q4, уменьшает отклонение тока входного каскада от номинального. Таким образом, постоянная составляющая тока входного каскада стабилизирована глубокой отрицательной обратной связью.

Токовое зеркало Q12/Q13 обеспечивает для усилителя класса А постоянный ток нагрузки, этот ток практически не зависит от выходного напряжения ОУ.

Дифференциальный входной каскад

Часть схемы, обведенная синей линией, является дифференциальным усилителем. Транзисторы Q1 и Q2 работают как эмиттерные повторители, они нагружены на пару транзисторов Q3 и Q4, включенных как усилители с общей базой. Помимо этого Q3 и Q4 согласуют уровень напряжения и обеспечивают предварительное усиление сигнала перед подачей его на усилитель класса А.

Дифференциальный усилитель из транзисторов Q1 — Q4 имеет активную нагрузку — токовое зеркало, состоящее из транзисторов Q5 — Q7. Транзистор Q7 увеличивает точность (равенство токов в ветвях) токового зеркала путём уменьшения тока сигнала, отбираемого с коллектора Q3 для управления базами транзисторов Q5 и Q6. Это токовое зеркало обеспечивает преобразование дифференциального сигнала в недифференциальный следующим образом:

  • Ток сигнала через коллектор Q3 поступает на вход токового зеркала, при этом выход зеркала (коллектор Q6) соединен с коллектором Q4.
  • Здесь токи коллекторов Q3 и Q4 суммируются, поскольку для дифференциальных входных сигналов сигнальные токи через транзисторы Q3 и Q4 равны по абсолютному значению и противоположны по направлению.

Таким образом, сумма вдвое превышает токи, текущие через транзисторы Q3 и Q4. Напряжение сигнала на коллекторе Q4 в режиме холостого хода равно произведению суммы сигнальных токов и сопротивлений коллекторов Q4 и Q6, включенных параллельно. Это произведение относительно велико, поскольку сопротивления коллекторов для токов сигнала большие[1]

.

Следует отметить, что ток базы входных транзисторов ненулевой и дифференциальное сопротивление входа ОУ 741 составляет примерно 2 MΩ.

ОУ имеет два вывода балансировки (на рисунке обозначены Offset), которые обеспечивают возможность подстройки напряжения смещения входа ОУ до нулевого значения. Для подстройки нужно подключить к выводам потенциометр.

Усилительный каскад класса А

Часть схемы, обведенная пурпурной линией, является усилительным каскадом класса А. Он состоит из двух n-p-n транзисторов, включенных как пара Дарлингтона. Коллекторной нагрузкой является выходная часть токового зеркала Q12/Q13, благодаря чему достигается высокое усиление этого каскада. Конденсатор емкостью 30 пФ обеспечивает частотно-зависимую отрицательную обратную связь, которая повышает устойчивость ОУ при работе с внешней обратной связью. Такая техника называется

компенсация Миллера, она функционирует практически так же, как и интегратор, построенный на ОУ. Полюс может находиться на достаточно низкой частоте, например 10 Гц для ОУ 741. Соответственно, на этой частоте происходит спад −3 дБ амплитудно-частотной характеристики ОУ при разомкнутой петле внешней обратной связи. Частотная компенсация обеспечивает безусловную стабильность ОУ в широком диапазоне условий и тем самым упрощает его применение.

Цепи смещения выхода

Часть схемы, обведенная зеленой линией, предназначена для правильного смещения транзисторов выходного каскада. Эта часть схемы представляет собой умножитель напряжения база-эмиттер — двухполюсник, поддерживающий на своих выводах постоянную разность потенциалов вне зависимости от протекающего тока. Фактически, это аналог стабилитрона, выполненный на транзисторе Q16. Если считать ток базы транзистора Q16 равным нулю, а напряжение база-эмиттер равным 0.625 В (типичное напряжение база-эмиттер для кремниевых биполярных транзисторов), то ток, текущий через резисторы 4.5 kΩ и 7.5 kΩ будут одинаковы, а напряжение на резисторе 4.5 kΩ составит 0.375 В. Таким образом, напряжение на всем двухполюснике будет равно 0.625 + 0.375 = 1 В. Это напряжение поддерживает выходные транзисторы в чуть открытом состоянии, что уменьшает искажения типа «ступенька».

Поддержание напряжения смещения путём умножения напряжения база-эмиттер примечательно тем, что при изменениях температуры напряжения база-эмиттер меняются одновременно и у смещаемого каскада, и у цепи смещения, то есть температурно-зависимые эффекты взаимно вычитаются. Это обстоятельство значительно улучшает термостабильность режима смещаемых транзисторов, особенно в интегральных схемах, где все транзисторы имеют одинаковую температуру (поскольку находятся на одном кристалле).

В некоторых усилителях, выполненных на дискретных компонентах, функцию смещения выходных транзисторов выполняют последовательно включенные полупроводниковые диоды (обычно два диода).

Выходной каскад

Выходной каскад (обведён голубой линией) класса AB — двухтактный эмиттерный повторитель (Q14, Q20), смещение которого устанавливается умножителем напряжения Vbe (Q16 и резисторы, соединённые с его базой). На выходной каскад подаётся сигнал с коллекторов транзисторов Q13 и Q19. Диапазон выходных напряжений ОУ примерно на 1 В меньше, чем напряжение питания; это обусловлено падением напряжения на полностью открытых транзисторах выходного каскада.

Резистор сопротивлением 25 Ω в выходном каскаде служит датчиком тока. Этот резистор совместно с транзистором Q17 ограничивает ток эмиттерного повторителя Q14 на уровне примерно 25 мА. Ограничение тока в нижнем плече (транзистор Q20) двухтактного выходного каскада осуществляется путём измерения тока через эмиттер транзистора Q19 и последующего ограничения тока, текущего в базу Q15. В более новых вариантах схемотехники ОУ 741 могут использоваться несколько иные методы ограничения выходного тока.

Примечания

Ссылки

Операционный усилитель 741 — Википедия

Операционный усилитель 741 в корпусе TO-5

Операционный усилитель 741 (другие обозначения: uA741, μA741) — универсальный интегральный операционный усилитель второго поколения на биполярных транзисторах. Оригинальный μA741 был разработан в 1968 году Дэвидом Фуллагаром из Fairchild Semiconductor на основе разработанного Бобом Видларом LM101. В отличие от LM101, использовавшего внешний конденсатор частотной коррекции, в μA741 этот конденсатор был выполнен непосредственно на кристалле ИС. Простота применения μA741 и совершенные для своего времени характеристики способствовали широкому применению новой схемы и сделали её «типовым» универсальным ОУ. Несмотря на появление значительно лучших по характеристикам аналогичных микросхем ОУ 741 и его клоны по состоянию на 2015 год все ещё выпускаются множеством производителей (например LM741, AD741, К140УД7).

Структура ОУ

Несмотря на то, что проще и полезнее рассматривать операционный усилитель как чёрный ящик с характеристиками идеального ОУ, важно также иметь представление о внутренней структуре ОУ и принципах его работы, так как при разработке с использованием ОУ могут возникнуть проблемы, обусловленные ограничениями его схемотехники.

Структура ОУ различных марок отличается, но в основе лежит один и тот же принцип. ОУ второго и последующих поколений состоят из следующих функциональных блоков:

Внутренняя схема операционного усилителя 741
  1. Дифференциальный усилитель
    • Входной каскад — обеспечивает усиление при малом уровне шума, высокое входное сопротивление. Обычно имеет дифференциальный выход.
  2. Усилитель напряжения
    • Имеет высокий коэффициент усиления по напряжению, спад Амплитудно-частотной характеристики как у однополюсного фильтра низких частот, обычно единственный (то есть не дифференциальный) выход.
  3. Выходной усилитель

Токовые зеркала

Части схемы, обведённые красной линией являются токовыми зеркалами. Первичный ток, который задаёт все остальные токи, определяется напряжением питания ОУ и резистором 39 kΩ (плюс два падения напряжения на диодном переходе). Первичный ток составляет примерно

I ref = V S + − V S − − 2 V be 39 k Ω {\displaystyle I_{\text{ref}}={\frac {V_{{\text{S}}+}-V_{{\text{S}}-}-2V_{\text{be}}}{39\,{\text{k}}\Omega }}} (1)

Режим входного каскада по постоянному току задаётся двумя токовыми зеркалами слева. Токовое зеркало, образованное транзисторами Q8/Q9 позволяет работать с большими синфазными напряжениями на входе, не выходя при этом из активного режима работы транзисторов. Токовое зеркало Q10/Q11 косвенно используется для установки тока покоя входного каскада. Этот ток устанавливается резистором 5 kΩ. Цепь задания тока смещения работает следующим образом. Если ток входного каскада начинает отличаться (отличие обнаруживает транзистор Q8) от значения, заданного транзистором Q10, это отражается в токе Q9, что приводит к изменению напряжения в точке соединения коллекторов Q9 и Q10. Это напряжение, поступая на базы Q3 и Q4, уменьшает отклонение тока входного каскада от номинального. Таким образом, постоянная составляющая тока входного каскада стабилизирована глубокой отрицательной обратной связью.

Токовое зеркало Q12/Q13 обеспечивает для усилителя класса А постоянный ток нагрузки, этот ток практически не зависит от выходного напряжения ОУ.

Дифференциальный входной каскад

Часть схемы, обведенная синей линией, является дифференциальным усилителем. Транзисторы Q1 и Q2 работают как эмиттерные повторители, они нагружены на пару транзисторов Q3 и Q4, включенных как усилители с общей базой. Помимо этого Q3 и Q4 согласуют уровень напряжения и обеспечивают предварительное усиление сигнала перед подачей его на усилитель класса А.

Дифференциальный усилитель из транзисторов Q1 — Q4 имеет активную нагрузку — токовое зеркало, состоящее из транзисторов Q5 — Q7. Транзистор Q7 увеличивает точность (равенство токов в ветвях) токового зеркала путём уменьшения тока сигнала, отбираемого с коллектора Q3 для управления базами транзисторов Q5 и Q6. Это токовое зеркало обеспечивает преобразование дифференциального сигнала в недифференциальный следующим образом:

  • Ток сигнала через коллектор Q3 поступает на вход токового зеркала, при этом выход зеркала (коллектор Q6) соединен с коллектором Q4.
  • Здесь токи коллекторов Q3 и Q4 суммируются, поскольку для дифференциальных входных сигналов сигнальные токи через транзисторы Q3 и Q4 равны по абсолютному значению и противоположны по направлению.

Таким образом, сумма вдвое превышает токи, текущие через транзисторы Q3 и Q4. Напряжение сигнала на коллекторе Q4 в режиме холостого хода равно произведению суммы сигнальных токов и сопротивлений коллекторов Q4 и Q6, включенных параллельно. Это произведение относительно велико, поскольку сопротивления коллекторов для токов сигнала большие[1].

Следует отметить, что ток базы входных транзисторов ненулевой и дифференциальное сопротивление входа ОУ 741 составляет примерно 2 MΩ.

ОУ имеет два вывода балансировки (на рисунке обозначены Offset), которые обеспечивают возможность подстройки напряжения смещения входа ОУ до нулевого значения. Для подстройки нужно подключить к выводам потенциометр.

Усилительный каскад класса А

Часть схемы, обведенная пурпурной линией, является усилительным каскадом класса А. Он состоит из двух n-p-n транзисторов, включенных как пара Дарлингтона. Коллекторной нагрузкой является выходная часть токового зеркала Q12/Q13, благодаря чему достигается высокое усиление этого каскада. Конденсатор емкостью 30 пФ обеспечивает частотно-зависимую отрицательную обратную связь, которая повышает устойчивость ОУ при работе с внешней обратной связью. Такая техника называется компенсация Миллера, она функционирует практически так же, как и интегратор, построенный на ОУ. Полюс может находиться на достаточно низкой частоте, например 10 Гц для ОУ 741. Соответственно, на этой частоте происходит спад −3 дБ амплитудно-частотной характеристики ОУ при разомкнутой петле внешней обратной связи. Частотная компенсация обеспечивает безусловную стабильность ОУ в широком диапазоне условий и тем самым упрощает его применение.

Цепи смещения выхода

Часть схемы, обведенная зеленой линией, предназначена для правильного смещения транзисторов выходного каскада. Эта часть схемы представляет собой умножитель напряжения база-эмиттер — двухполюсник, поддерживающий на своих выводах постоянную разность потенциалов вне зависимости от протекающего тока. Фактически, это аналог стабилитрона, выполненный на транзисторе Q16. Если считать ток базы транзистора Q16 равным нулю, а напряжение база-эмиттер равным 0.625 В (типичное напряжение база-эмиттер для кремниевых биполярных транзисторов), то ток, текущий через резисторы 4.5 kΩ и 7.5 kΩ будут одинаковы, а напряжение на резисторе 4.5 kΩ составит 0.375 В. Таким образом, напряжение на всем двухполюснике будет равно 0.625 + 0.375 = 1 В. Это напряжение поддерживает выходные транзисторы в чуть открытом состоянии, что уменьшает искажения типа «ступенька».

Поддержание напряжения смещения путём умножения напряжения база-эмиттер примечательно тем, что при изменениях температуры напряжения база-эмиттер меняются одновременно и у смещаемого каскада, и у цепи смещения, то есть температурно-зависимые эффекты взаимно вычитаются. Это обстоятельство значительно улучшает термостабильность режима смещаемых транзисторов, особенно в интегральных схемах, где все транзисторы имеют одинаковую температуру (поскольку находятся на одном кристалле).

В некоторых усилителях, выполненных на дискретных компонентах, функцию смещения выходных транзисторов выполняют последовательно включенные полупроводниковые диоды (обычно два диода).

Выходной каскад

Выходной каскад (обведён голубой линией) класса AB — двухтактный эмиттерный повторитель (Q14, Q20), смещение которого устанавливается умножителем напряжения Vbe (Q16 и резисторы, соединённые с его базой). На выходной каскад подаётся сигнал с коллекторов транзисторов Q13 и Q19. Диапазон выходных напряжений ОУ примерно на 1 В меньше, чем напряжение питания; это обусловлено падением напряжения на полностью открытых транзисторах выходного каскада.

Резистор сопротивлением 25 Ω в выходном каскаде служит датчиком тока. Этот резистор совместно с транзистором Q17 ограничивает ток эмиттерного повторителя Q14 на уровне примерно 25 мА. Ограничение тока в нижнем плече (транзистор Q20) двухтактного выходного каскада осуществляется путём измерения тока через эмиттер транзистора Q19 и последующего ограничения тока, текущего в базу Q15. В более новых вариантах схемотехники ОУ 741 могут использоваться несколько иные методы ограничения выходного тока.

Примечания

Ссылки

Операционный усилитель 741 — это… Что такое Операционный усилитель 741?

Операционный усилитель 741 в корпусе TO-5

Операционный усилитель 741 (другие обозначения: uA741, μA741) — универсальный интегральных операционный усилитель второго поколения на биполярных транзисторах. Оригинальный μA741 был разработан в 1968 году Дэвидом Фуллагаром из Fairchild Semiconductor на основе разработанного Бобом Видларом LM101. В отличие от LM101, использовавшего внешний конденсатор частотной коррекции, в μA741 этот конденсатор был выполнен непосредственно на кристалле ИС. Простота применения μA741 и совершенные для своего времени характеристики способствовали широкому применению новой схемы и сделали её «типовым» универсальным ОУ.

Структура ОУ

Несмотря на то, что проще и полезнее рассматривать операционный усилитель как чёрный ящик с характеристиками идеального ОУ, важно также иметь представление о внутренней структуре ОУ и принципах его работы, так как при разработке с использованием ОУ могут возникнуть проблемы, обусловленные ограничениями его схемотехники.

Структура ОУ различных марок отличается, но в основе лежит один и тот же принцип. ОУ второго и последующих поколений состоят из следующих функциональных блоков:

Внутренняя схема операционного усилителя 741
  1. Дифференциальный усилитель
    • Входной каскад — обеспечивает усиление при малом уровне шума, высокое входное сопротивление. Обычно имеет дифференциальный выход.
  2. Усилитель напряжения
    • Имеет высокий коэффициент усиления по напряжению, спад Амплитудно-частотной характеристики как у однополюсного фильтра низких частот, обычно единственный (то есть не дифференциальный) выход.
  3. Выходной усилитель

Токовые зеркала

Части схемы, обведённые красной линией являются токовыми зеркалами. Первичный ток, который задаёт все остальные токи, определяется напряжением питания ОУ и резистором 39 kΩ (плюс два падения напряжения на диодном переходе). Первичный ток составляет примерно

(1)

Режим входного каскада по постоянному току задаётся двумя токовыми зеркалами слева. Токовое зеркало, образованное транзисторами Q8/Q9 позволяет работать с большими синфазными напряжениями на входе, не выходя при этом из активного режима работы транзисторов. Токовое зеркало Q10/Q11 косвенно используется для установки тока покоя входного каскада. Этот ток устанавливается резистором 5 kΩ. Цепь задания тока смещения работает следующим образом. Если ток входного каскада начинает отличаться (отличие обнаруживает транзистор Q8) от значения, заданного транзистором Q10, это отражается в токе Q9, что приводит к изменению напряжения в точке соединения коллекторов Q9 и Q10. Это напряжение, поступая на базы Q3 и Q4, уменьшает отклонение тока входного каскада от номинального. Таким образом, постоянная составляющая тока входного каскада стабилизирована глубокой отрицательной обратной связью.

Токовое зеркало Q12/Q13 обеспечивает для усилителя класса А постоянный ток нагрузки, этот ток практически не зависит от выходного напряжения ОУ.

Дифференциальный входной каскад

Часть схемы, обведенная синей линией, является дифференциальным усилителем. Транзисторы Q1 и Q2 работают как эмиттерные повторители, они нагружены на пару транзисторов Q3 и Q4, включенных как усилители с общей базой. Помимо этого Q3 и Q4 согласуют уровень напряжения и обеспечивают предварительное усиление сигнала перед подачей его на усилитель класса А.

Дифференциальный усилитель из транзисторов Q1 — Q4 имеет активную нагрузку — токовое зеркало, состоящее из транзисторов Q5 — Q7. Транзистор Q7 увеличивает точность (равенство токов в ветвях) токового зеркала путем уменьшения тока сигнала, отбираемого с коллектора Q3 для управления базами транзисторов Q5 и Q6. Это токовое зеркало обеспечивает преобразование дифференциального сигнала в недифференциальный следующим образом:

  • Ток сигнала через коллектор Q3 поступает на вход токового зеркала, при этом выход зеркала (коллектор Q6) соединен с коллектором Q4.
  • Здесь токи коллекторов Q3 и Q4 суммируются, поскольку для дифференциальных входных сигналов сигнальные токи через транзисторы Q3 и Q4 равны по абсолютному значению и противоположны по направлению.

Таким образом, сумма вдвое превышает токи, текущие через транзисторы Q3 и Q4. Напряжение сигнала на коллекторе Q4 в режиме холостого хода равно произведению суммы сигнальных токов и сопротивлений коллекторов Q4 и Q6, включенных параллельно. Это произведение относительно велико, поскольку сопротивления коллекторов для токов сигнала большие[1].

Следует отметить, что ток базы входных транзисторов ненулевой и дифференциальное сопротивление входа ОУ 741 составляет примерно 2 MΩ.

ОУ имеет два вывода балансировки (на рисунке обозначены Offset), которые обеспечивают возможность подстройки напряжения смещения входа ОУ до нулевого значения. Для подстройки нужно подключить к выводам потенциометр.

Усилительный каскад класса А

Часть схемы, обведенная пурпурной линией, является усилительным каскадом класса А. Он состоит из двух n-p-n транзисторов, включенных как пара Дарлингтона. Коллекторной нагрузкой является выходная часть токового зеркала Q12/Q13, благодаря чему достигается высокое усиление этого каскада. Конденсатор емкостью 30 пФ обеспечивает частотно-зависимую отрицательную обратную связь, которая повышает устойчивость ОУ при работе с внешней обратной связью. Такая техника называется компенсация Миллера, она функционирует практически так же, как и интегратор, построенный на ОУ. Полюс может находиться на достаточно низкой частоте, например 10 Гц для ОУ 741. Соответственно, на этой частоте происходит спад −3 дБ амплитудно-частотной характеристики ОУ при разомкнутой петле внешней обратной связи. Частотная компенсация обеспечивает безусловную стабильность ОУ в широком диапазоне условий и тем самым упрощает его применение.

Цепи смещения выхода

Часть схемы, обведенная зеленой линией, предназначена для правильного смещения транзисторов выходного каскада. Эта часть схемы представляет собой двухполюсник, поддерживающий постоянную разность потенциалов на своих выводах вне зависимости от протекающего тока (в основе — умножитель напряжения база-эмиттер). Фактически, это аналог стабилитрона, выполненный на транзисторе Q16. Если считать ток базы транзистора Q16 равным нулю, а напряжение база-эмиттер равным 0.625 В (типичное напряжение база-эмиттер для кремниевых биполярных транзисторов), то ток, текущий через резисторы 4.5 kΩ и 7.5 kΩ будут одинаковы, а напряжение на резисторе 4.5 kΩ составит 0.375 В. Таким образом, напряжение на всем двухполюснике будет равно 0.625 + 0.375 = 1 В. Это напряжение поддерживает выходные транзисторы в чуть открытом состоянии, что уменьшает искажения типа «ступенька».

Поддержание напряжения смещения путем умножения напряжения база-эмиттер примечательно тем, что при изменениях температуры напряжения база-эмиттер меняются одновременно и у смещаемого каскада, и у цепи смещения, то есть температурно-зависимые эффекты взаимно вычитаются. Это обстоятельство значительно улучшает термостабильность режима смещаемых транзисторов, особенно в интегральных схемах, где все транзисторы имеют одинаковую температуру (поскольку находятся на одном кристалле).

В некоторых усилителях, выполненных на дискретных компонентах, функцию смещения выходных транзисторов выполняют последовательно включенные полупроводниковые диоды (обычно два диода).

Выходной каскад

Выходной каскад (обведён голубой линией) класса AB — двухтактный эмиттерный повторитель (Q14, Q20), смещение которого устанавливается умножителем напряжения Vbe (Q16 и резисторы, соединённые с его базой). На выходной каскад подаётся сигнал с коллекторов транзисторов Q13 и Q19. Диапазон выходных напряжений ОУ примерно на 1 В меньше, чем напряжение питания; это обусловлено падением напряжения на полностью открытых транзисторах выходного каскада.

Резистор сопротивлением 25 Ω в выходном каскаде служит датчиком тока. Этот резистор совместно с транзистором Q17 ограничивает ток эмиттерного повторителя Q14 на уровне примерно 25 мА. Ограничение тока в нижнем плече (транзистор Q20) двухтактного выходного каскада осуществляется путём измерения тока через эмиттер транзистора Q19 и последующего ограничения тока, текущего в базу Q15. В более новых вариантах схемотехники ОУ 741 могут использоваться несколько иные методы ограничения выходного тока.

Примечания

Ссылки

Операционный усилитель 741 — Википедия. Что такое Операционный усилитель 741

Операционный усилитель 741 в корпусе TO-5

Операционный усилитель 741 (другие обозначения: uA741, μA741) — универсальный интегральный операционный усилитель второго поколения на биполярных транзисторах. Оригинальный μA741 был разработан в 1968 году Дэвидом Фуллагаром из Fairchild Semiconductor на основе разработанного Бобом Видларом LM101. В отличие от LM101, использовавшего внешний конденсатор частотной коррекции, в μA741 этот конденсатор был выполнен непосредственно на кристалле ИС. Простота применения μA741 и совершенные для своего времени характеристики способствовали широкому применению новой схемы и сделали её «типовым» универсальным ОУ. Несмотря на появление значительно лучших по характеристикам аналогичных микросхем ОУ 741 и его клоны по состоянию на 2015 год все ещё выпускаются множеством производителей (например LM741, AD741, К140УД7).

Структура ОУ

Несмотря на то, что проще и полезнее рассматривать операционный усилитель как чёрный ящик с характеристиками идеального ОУ, важно также иметь представление о внутренней структуре ОУ и принципах его работы, так как при разработке с использованием ОУ могут возникнуть проблемы, обусловленные ограничениями его схемотехники.

Структура ОУ различных марок отличается, но в основе лежит один и тот же принцип. ОУ второго и последующих поколений состоят из следующих функциональных блоков:

Внутренняя схема операционного усилителя 741
  1. Дифференциальный усилитель
    • Входной каскад — обеспечивает усиление при малом уровне шума, высокое входное сопротивление. Обычно имеет дифференциальный выход.
  2. Усилитель напряжения
    • Имеет высокий коэффициент усиления по напряжению, спад Амплитудно-частотной характеристики как у однополюсного фильтра низких частот, обычно единственный (то есть не дифференциальный) выход.
  3. Выходной усилитель

Токовые зеркала

Части схемы, обведённые красной линией являются токовыми зеркалами. Первичный ток, который задаёт все остальные токи, определяется напряжением питания ОУ и резистором 39 kΩ (плюс два падения напряжения на диодном переходе). Первичный ток составляет примерно

I ref = V S + − V S − − 2 V be 39 k Ω {\displaystyle I_{\text{ref}}={\frac {V_{{\text{S}}+}-V_{{\text{S}}-}-2V_{\text{be}}}{39\,{\text{k}}\Omega }}} (1)

Режим входного каскада по постоянному току задаётся двумя токовыми зеркалами слева. Токовое зеркало, образованное транзисторами Q8/Q9 позволяет работать с большими синфазными напряжениями на входе, не выходя при этом из активного режима работы транзисторов. Токовое зеркало Q10/Q11 косвенно используется для установки тока покоя входного каскада. Этот ток устанавливается резистором 5 kΩ. Цепь задания тока смещения работает следующим образом. Если ток входного каскада начинает отличаться (отличие обнаруживает транзистор Q8) от значения, заданного транзистором Q10, это отражается в токе Q9, что приводит к изменению напряжения в точке соединения коллекторов Q9 и Q10. Это напряжение, поступая на базы Q3 и Q4, уменьшает отклонение тока входного каскада от номинального. Таким образом, постоянная составляющая тока входного каскада стабилизирована глубокой отрицательной обратной связью.

Токовое зеркало Q12/Q13 обеспечивает для усилителя класса А постоянный ток нагрузки, этот ток практически не зависит от выходного напряжения ОУ.

Дифференциальный входной каскад

Часть схемы, обведенная синей линией, является дифференциальным усилителем. Транзисторы Q1 и Q2 работают как эмиттерные повторители, они нагружены на пару транзисторов Q3 и Q4, включенных как усилители с общей базой. Помимо этого Q3 и Q4 согласуют уровень напряжения и обеспечивают предварительное усиление сигнала перед подачей его на усилитель класса А.

Дифференциальный усилитель из транзисторов Q1 — Q4 имеет активную нагрузку — токовое зеркало, состоящее из транзисторов Q5 — Q7. Транзистор Q7 увеличивает точность (равенство токов в ветвях) токового зеркала путём уменьшения тока сигнала, отбираемого с коллектора Q3 для управления базами транзисторов Q5 и Q6. Это токовое зеркало обеспечивает преобразование дифференциального сигнала в недифференциальный следующим образом:

  • Ток сигнала через коллектор Q3 поступает на вход токового зеркала, при этом выход зеркала (коллектор Q6) соединен с коллектором Q4.
  • Здесь токи коллекторов Q3 и Q4 суммируются, поскольку для дифференциальных входных сигналов сигнальные токи через транзисторы Q3 и Q4 равны по абсолютному значению и противоположны по направлению.

Таким образом, сумма вдвое превышает токи, текущие через транзисторы Q3 и Q4. Напряжение сигнала на коллекторе Q4 в режиме холостого хода равно произведению суммы сигнальных токов и сопротивлений коллекторов Q4 и Q6, включенных параллельно. Это произведение относительно велико, поскольку сопротивления коллекторов для токов сигнала большие[1].

Следует отметить, что ток базы входных транзисторов ненулевой и дифференциальное сопротивление входа ОУ 741 составляет примерно 2 MΩ.

ОУ имеет два вывода балансировки (на рисунке обозначены Offset), которые обеспечивают возможность подстройки напряжения смещения входа ОУ до нулевого значения. Для подстройки нужно подключить к выводам потенциометр.

Усилительный каскад класса А

Часть схемы, обведенная пурпурной линией, является усилительным каскадом класса А. Он состоит из двух n-p-n транзисторов, включенных как пара Дарлингтона. Коллекторной нагрузкой является выходная часть токового зеркала Q12/Q13, благодаря чему достигается высокое усиление этого каскада. Конденсатор емкостью 30 пФ обеспечивает частотно-зависимую отрицательную обратную связь, которая повышает устойчивость ОУ при работе с внешней обратной связью. Такая техника называется компенсация Миллера, она функционирует практически так же, как и интегратор, построенный на ОУ. Полюс может находиться на достаточно низкой частоте, например 10 Гц для ОУ 741. Соответственно, на этой частоте происходит спад −3 дБ амплитудно-частотной характеристики ОУ при разомкнутой петле внешней обратной связи. Частотная компенсация обеспечивает безусловную стабильность ОУ в широком диапазоне условий и тем самым упрощает его применение.

Цепи смещения выхода

Часть схемы, обведенная зеленой линией, предназначена для правильного смещения транзисторов выходного каскада. Эта часть схемы представляет собой умножитель напряжения база-эмиттер — двухполюсник, поддерживающий на своих выводах постоянную разность потенциалов вне зависимости от протекающего тока. Фактически, это аналог стабилитрона, выполненный на транзисторе Q16. Если считать ток базы транзистора Q16 равным нулю, а напряжение база-эмиттер равным 0.625 В (типичное напряжение база-эмиттер для кремниевых биполярных транзисторов), то ток, текущий через резисторы 4.5 kΩ и 7.5 kΩ будут одинаковы, а напряжение на резисторе 4.5 kΩ составит 0.375 В. Таким образом, напряжение на всем двухполюснике будет равно 0.625 + 0.375 = 1 В. Это напряжение поддерживает выходные транзисторы в чуть открытом состоянии, что уменьшает искажения типа «ступенька».

Поддержание напряжения смещения путём умножения напряжения база-эмиттер примечательно тем, что при изменениях температуры напряжения база-эмиттер меняются одновременно и у смещаемого каскада, и у цепи смещения, то есть температурно-зависимые эффекты взаимно вычитаются. Это обстоятельство значительно улучшает термостабильность режима смещаемых транзисторов, особенно в интегральных схемах, где все транзисторы имеют одинаковую температуру (поскольку находятся на одном кристалле).

В некоторых усилителях, выполненных на дискретных компонентах, функцию смещения выходных транзисторов выполняют последовательно включенные полупроводниковые диоды (обычно два диода).

Выходной каскад

Выходной каскад (обведён голубой линией) класса AB — двухтактный эмиттерный повторитель (Q14, Q20), смещение которого устанавливается умножителем напряжения Vbe (Q16 и резисторы, соединённые с его базой). На выходной каскад подаётся сигнал с коллекторов транзисторов Q13 и Q19. Диапазон выходных напряжений ОУ примерно на 1 В меньше, чем напряжение питания; это обусловлено падением напряжения на полностью открытых транзисторах выходного каскада.

Резистор сопротивлением 25 Ω в выходном каскаде служит датчиком тока. Этот резистор совместно с транзистором Q17 ограничивает ток эмиттерного повторителя Q14 на уровне примерно 25 мА. Ограничение тока в нижнем плече (транзистор Q20) двухтактного выходного каскада осуществляется путём измерения тока через эмиттер транзистора Q19 и последующего ограничения тока, текущего в базу Q15. В более новых вариантах схемотехники ОУ 741 могут использоваться несколько иные методы ограничения выходного тока.

Примечания

Ссылки

Операционный усилитель 741 Википедия

Операционный усилитель 741 в корпусе TO-5

Операционный усилитель 741 (другие обозначения: uA741, μA741) — универсальный интегральный операционный усилитель второго поколения на биполярных транзисторах. Оригинальный μA741 был разработан в 1968 году Дэвидом Фуллагаром из Fairchild Semiconductor на основе разработанного Бобом Видларом LM101. В отличие от LM101, использовавшего внешний конденсатор частотной коррекции, в μA741 этот конденсатор был выполнен непосредственно на кристалле ИС. Простота применения μA741 и совершенные для своего времени характеристики способствовали широкому применению новой схемы и сделали её «типовым» универсальным ОУ. Несмотря на появление значительно лучших по характеристикам аналогичных микросхем, ОУ 741 и его клоны по состоянию на 2015 год все ещё выпускаются множеством производителей (например LM741, AD741, К140УД7).

Структура ОУ[ | ]

Несмотря на то, что проще и полезнее рассматривать операционный усилитель как чёрный ящик с характеристиками идеального ОУ, важно также иметь представление о внутренней структуре ОУ и принципах его работы, так как при разработке с использованием ОУ могут возникнуть проблемы, обусловленные ограничениями его схемотехники.

Структуры ОУ различных марок различаются, но в основе лежит один и тот же принцип. ОУ второго и последующих поколений состоят из следующих функциональных блоков:

Внутренняя схема операционного усилителя 741
  1. Дифференциальный усилитель
    • Входной каскад — обеспечивает усиление при малом уровне шума, высокое входное сопротивление. Обычно имеет дифференциальный выход.
  2. Усилитель напряжения
    • Имеет высокий коэффициент усиления по напряжению, спад Амплитудно-частотной характеристики как у однополюсного фильтра низких частот, обычно единственный (то есть, не дифференциальный) выход.
  3. Выходной усилитель

Внутренняя схема операционного усилителя 741 серии — МегаЛекции

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГОБУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ
УНИВЕРСИТЕТ»

Кафедра электротехники и информационных систем

Реферат по теме:

«Генераторы прямоугольных сигналов на операционных усилителях»

Выполнил:

Черечукин А.В.

Проверил:

Шагаев О.Ф

Москва

Генераторы прямоугольных сигналов на операционных усилителях

Операционный усилитель (ОУ)— усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение, как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Операционные усилители (ОУ) являются основной частью всей современной электронной измерительной аппаратуры. Исторически ОУ получили свое развитие в области аналогового вычисления, где эти схемы разрабатывались для суммирования, вычитания, умножения, интегрирования, дифференцирования и т.д., с целью решения дифференциальных уравнений во многих технических задачах. Сегодня аналоговые вычислительные устройства в основном заменены цифровыми, однако высокие функциональные возможности ОУ по-прежнему находят себе применение и поэтому их используют во многих электронных схемах и приборах.

ОУ 741 в корпусе TO-5
Обозначение операционного усилителя на схемах

 

Внутренняя схема операционного усилителя 741 серии

  1. Дифференциальный усилитель — предназначен для усиления сигнала, имеет низкий уровень собственных шумов, высокое входное сопротивление и обычно дифференциальный выход.
  2. Усилитель напряжения — обеспечивает высокое усиление сигнала по напряжению, имеет спадающую амплитудно-частотную характеристику с одним полюсом, и обычно имеет один выход.
  3. Выходной усилитель — обеспечивает высокую нагрузочную способность, низкое выходное сопротивление, ограничение тока и защиту при коротком замыкании.



 

 

Генератор сигналов— это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т.д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например усилителя охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра)

Применение. Неотъемлемой частью почти любого электронного устройства является генератор. Кроме генераторов испытательных сигналов, выполняемых в виде отдельных изделий, источник регулярных колебаний необходим в любом периодически действующем измерительном приборе, в устройствах, инициирующих измерения или технологические процессы, и вообще в любом приборе, работа которого связана с периодическими состояниями или периодическими колебаниями. Так, например, генераторы колебаний специальной формы используются в цифровых измерительных приборах, осциллографах, радиоприемниках, телевизорах, часах, ЭВМ и множестве других устройств.

 

Схемотехнически электронный генератор представляет собой усилитель, охваченный положительной обратной связью. В качестве усилителя могут быть использованы схемы на дискретных транзисторах, цифровые ИМС, интегральные таймеры, а также операционные усилители. Использование ОУ позволяет построить стабильные многофункциональные генераторы с хорошим воспроизведением формы выходного сигнала, минимальные по габаритам.

NS047 — Генератор прямоугольных импульсов 250 Гц — 16 кГц

 

 

Генераторы импульсных сигналов, или генераторы импульсов, предназначены для получения от источника питания постоянного напряжения электрических колебаний резко несинусоидальной формы, называемых релаксационными. Для таких колебаний характерно наличие участков сравнительно медленного изменения напряжения и участков, на которых напряжение изменяется скачкообразно.

Для импульсных генераторов характерно наличие внешней и внутренней положительной обратной связи (ОС), обуславливающей возможность их самовозбуждения и скоротечный (лавинообразный, регенеративный) процесс перехода активных элементов генератора из одного крайнего (закрытого, открытого) в другое (открытое, закрытое) состояние.

Импульсные генераторы делятся на генераторы прямоугольных, трапецеидальных, пилообразных сигналов (импульсов)

 

Остановимся на прямоугольных ИП, которые могут работать в трех основных режимах: автоколебательном, ждущем и в режиме синхронизации.

 

 

Генераторы, предназначенные для получения колебаний прямоугольной формы, называют мультивибраторами. В отличие от генераторов гармонических колебаний в мультивибраторе используется цепь обратной связи первого порядка, а активный элемент работает в нелинейном режиме.

Мультивибраторы работают в режиме автоколебаний или в ждущем режиме. Соответственно, различают автоколебательные и моностабильные (ждущие) мультивибраторы.

Схема автоколебательного мультивибратора на операционном усилителе показана на рис. 6.4.1. Активным элементом является инвертирующий триггер Шмитта, реализованный на ОУ и резисторах R1, R2. Резистор R3 и конденсатор C формируют времязадающую цепь, определяющую длительность формируемых импульсов.

Операционный усилитель охвачен положительной обратной связью (цепь R1— R2) и находится в режиме насыщения, поэтому напряжение на выходе ивых = ±инас. Переключение ОУ из положительного насыщения в отрицательное и обратно происходит, когда напряжение на инвертирующем входе достигает положительного и отрицательного порогов срабатывания, равных +PUнас и -0Uнас соответственно. Здесь Р — коэффициент обратной связи: р = R1/(R1 + R2).

 

Передаточная характеристика триггера Шмитта показана на рис. 6.4.2.

Рассмотрим работу мультивибратора, предположив, что в момент t = 0 напряжение на выходе схемы ивых = +инас, а напряжение конденсатора U C (0) < ринас. Напряжение uC (t) изменяется по закону

 

Постоянная времени т = R3C . В момент tl напряжение uC (t) достигает величины PU нас, ОУ переключается в состояние отрицательного насыщения. Выходное напряжение скачком принимает значение, равное — инас. Начинается перезарядка конденсатора. Напряжение uC (t) изменяется по

закону

 

В момент t2 напряжение uC (t) становится равным -ринас и ОУ

переключается в состояние положительного насыщения. Далее процесс периодически повторяется. Временные диаграммы напряжений uC (t) и

u ВЫХ(t) показаны на рис. 6.4.3.

 

 

 

На выходе мультивибратора наблюдаются прямоугольные импульсы амплитудой ± U нас. Период повторения импульсов T = 2 R3C ln[l + (2 R1/R2)]. При R1 = R2 период колебаний T « 2.2R3C.

Пример 6.4.1. Рассчитать частоту повторения импульсов на выходе мультивибратора (рис. 14.9), если R1 = R2 = 10 кОм, R3 = 4.54 кОм, С = 10 нФ.

Решение. Поскольку R1 = R2, частота повторения импульсов

 

Мультивибратор на рис. 6.4.1 является симметричным, поскольку положительные и отрицательные импульсы равны. Положительные и отрицательные импульсы различной длительности можно получить в несимметричном мультивибраторе, показанном на рис. 6.4.4. Перезарядка конденсатора во время формирования положительных и отрицательных импульсов осуществляется через различные резисторы. Когда напряжение на выходе ОУ положительно, открыт диод VD1 и перезарядка происходит с постоянной времени т1 = R3C. Когда напряжение на выходе ОУ

отрицательно, открыт диод VD2 и постоянная времени т2 = R4C. Можно менять длительность положительных и отрицательных импульсов, варьируя сопротивления резисторов R3 и R4 .

 

Ждущие мультивибраторы. Назначение таких устройств — получение одиночных импульсов заданной длительности. Схема ждущего мультивибратора показана на рис. 6.4.5. Импульс на выходе возникает при
подаче на вход специального запускающего сигнала. Поскольку на входе включена дифференцирующая цепь, форма и длительность такого сигнала могут быть произвольными.

Устойчивое состояние ждущего мультивибратора достигается включением диода VD параллельно конденсатору Cl. Когда выходное напряжение ивых = -инас, диод открыт и напряжение конденсатора ис ≈ 0.7 В.

Дифференциальное напряжение на входе ОУ отрицательно, и схема находится в устойчивом состоянии. Этому режиму соответствует интервал 0 — tl на рис. 6.4.6. При подаче на вход импульса положительной полярности в момент tj дифференциальное напряжение на входе ОУ становится положительным и ОУ переключается в состояние положительного насыщения: Uвых (tx )=+Uнас. Диод закрывается, и конденсатор Cx начинает заряжаться. Когда напряжение на инвертирующем входе ОУ достигает величины ринас (момент t2), дифференциальное напряжение становится отрицательным и ОУ переключается в состояние отрицательного насыщения: Uвых (t2 )=-Uнас. Напряжение иС (t) начинает уменьшаться. Когда иС (t) достигает значения — 0.7 B, диод открывается и схема вновь оказывается в устойчивом состоянии.

 

Длительность импульса, формирующегося на выходе ждущего мультивибратора, определяется выражением

 

 

Время восстановления устойчивого состояния схемы называется временем релаксации и определяется формулой

 

 

При сборке схем мультивибраторов использовать модели операционных усилителей LM324 или uA741 из библиотеки EVAL.slb.

 

Список используемой литературы.

http://beez-develop.ru/index.php/faq/useful-shems/73—square-generator

http://gendocs.ru/v12155

http://ru.wikipedia.org/wiki

 

 


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

UA741CN / LM741CN — ОУ и Компараторы — МИКРОСХЕМЫ — Электронные компоненты (каталог)

 

Операционный усилитель UA741CN / LM741CN широкого применения с встроенной частотной коррекцией, максимальной скоростью нарастания выходного напряжения 0,5В/мкС и возможностью балансировки. Также известен как ОУ типа 741.

 

Основные характеристики UA741CN:

Напряжение питания (max)

±22V

Максимальное входное напряжение

±15V

Максимальное выходное напряжение

±10V(мин.)/±13V(тип.)

Входной ток

100nA(макс.)/10nA (тип.)

Усиление (типовое)

90dB

Максимальная рассеиваемая мощность

500 mW

Быстродействие

0,3 µS

Скорость нарастания (макс.)

0,5V/µS(тип.)

Температурный диапазон

-20..+70oC

Корпус

DIP-8

Аналоги

КР140УД708, HA17741

 

Расположение выводов UA741CN:

Назначение выводов UA741CN:

Vcc Плюс питания
Vee Минус питания
Vin(-),Vin(+) Дифференциальные входы
Vout Выход
Offset Балансировка нуля
NC Не подключен

Более подробные характеристики ОУ UA741CN с графиками работы Вы можете получить скачав файл документации ниже (на английском языке).

Операционный усилитель 741

Операционный усилитель 741

НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАНИЯ СТРАНИЦЫ

ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 741

Райан В. 2002-09

PDF ФАЙЛ — НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТИ РАБОЧЕГО ЛИСТА

Операционный усилитель, наверное, самый доступна универсальная интегральная схема.Это очень дешево, особенно с учетом того, что он содержит несколько сотен компонентов. Самый распространенный операционный усилитель — 741, он используется во многих схемах.

OP AMP — это линейный усилитель с прекрасным разнообразие использования. Его основное предназначение — усиление (усиление) слабого сигнала. — немного похоже на пару Дарлингтона.

OP-AMP имеет два входа: ИНВЕРТИРОВАНИЕ (-) и НЕИНВЕРТИРОВАНИЕ (+), а также один выход на выводе 6.

Чип можно использовать в схема двумя способами. Если напряжение идет на второй контакт, то это известно как ИНВЕРТИРУЮЩИЙ УСИЛИТЕЛЬ.
Если напряжение поступает на третий контакт, цепь становится НЕИНВЕРТИРУЮЩИЙ УСИЛИТЕЛЬ.

Интегральная схема 741 выглядит как любая другая чип. Однако это OP-AMP общего назначения. Вам нужно только знать основная информация о его работе и использовании. Диаграмма напротив показаны контакты 741 OP-AMP.Важные контакты — 2, 3 и 6. потому что они представляют собой инвертирование, неинвертирование и отключение напряжения. Уведомление треугольная диаграмма, представляющая интегральную схему операционного усилителя.

741 ИСПОЛЬЗУЕТСЯ ДВУМЯ СПОСОБАМИ

1.Инвертирующий усилитель . Вторая ветка — это вход, а выход всегда наоборот.

В инвертирующем усилителе напряжение поступает на микросхему 741 через ножку два и выходит из фишки 741 на шестом участке. Если полярность положительный вход в чип, он отрицательный к тому времени, когда он выходит через шестую ногу. Полярность была изменена.

2. Неинвертирующий усилитель. Третья ветвь является входом, а выход не реверсируется.

В неинвертирующем усилителе напряжение поступает на микросхему 741 через ножку три и оставляет фишку 741 через шестую ветку. На этот раз, если это положительный вход в 741, то он все еще выходит положительный. Полярность осталась прежней.

НАЖМИТЕ ЗДЕСЬ ДЛЯ СЛЕДУЮЩЕЙ СТРАНИЦЫ OPAMP

НАЖМИТЕ ЗДЕСЬ ДЛЯ ИНДЕКСА ЭЛЕКТРОНИКИ СТР.

.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовательская работа
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

.

741 Операционный усилитель | Электронные схемы

ВВЕДЕНИЕ

Операционный усилитель, часто называемый операционным усилителем, представляет собой усилитель с очень высоким коэффициентом усиления, предназначенный для усиления сигналов напряжения переменного и постоянного тока. Современные технологии интегральных схем и технологии крупномасштабного производства снизили цены на такие усилители, доступные для всех любителей, экспериментаторов и любителей. Операционный усилитель теперь используется в качестве основного элемента усиления, как элегантный транзистор, в электронных схемах.Вы часто можете найти их на ресурсах базы данных электронных компонентов, как вне сети, так и в Интернете.

Рис.1. Символ рабочего усилителя

Символ, используемый для обозначения операционного усилителя на схемах, показан на рисунке 1. Операционный усилитель имеет два входа и только один выход. Один вход называется инвертирующим и обозначается знаком минус. Сигнал, подаваемый на этот вход, появляется на выходе как усиленный, но инвертированный по фазе сигнал.Второй вход называется неинвертирующим входом и обозначается знаком плюс. Сигнал, подаваемый на этот вход, появляется на выходе как усиленный сигнал, который имеет ту же фазу, что и входной сигнал.

Наличие двух входных клемм упрощает схему обратной связи и делает операционный усилитель универсальным устройством. Если обратная связь применяется от выхода к инвертирующей входной клемме, результатом является отрицательная обратная связь, которая дает стабильный усилитель с точно регулируемыми характеристиками усиления.С другой стороны, если обратная связь применяется к неинвертирующему входу, результатом является положительная обратная связь, которая дает генераторы и мультивибраторы. Специальные эффекты получаются путем сочетания обоих типов обратной связи.

Из всех типов производимых операционных усилителей, тип 741 получил очень широкую популярность. Он доступен в 14-контактных двухрядных корпусах, 8-контактных двухканальных корпусах или в корпусах TO-типа. Конфигурации выводов для всех этих пакетов показаны на рисунке 2.

Рис.3. Конфигурация контактов для двойного ОУ Тип 747

Интегральная схема типа 747 вмещает операционные усилители двух типов в одном корпусе. Конфигурации выводов для разных корпусов показаны на рисунке 3.

Присылайте свои идеи, которые очень важны для нашего успеха…

.

% PDF-1.6 % 1523 0 obj> endobj xref 1523 74 0000000016 00000 н. 0000002925 00000 н. 0000003248 00000 н. 0000003301 00000 п. 0000003691 00000 н. 0000004092 00000 п. 0000004662 00000 н. 0000005540 00000 н. 0000006081 00000 п. 0000006526 00000 н. 0000006564 00000 н. 0000009281 00000 п. 0000009674 00000 н. 0000010053 00000 п. 0000010252 00000 п. 0000015974 00000 п. 0000016052 00000 п. 0000017267 00000 п. 0000018110 00000 п. 0000023584 00000 п. 0000024078 00000 п. 0000024446 00000 п. 0000024752 00000 п. 0000026522 00000 п. 0000027400 00000 н. 0000034120 00000 п. 0000034635 00000 п. 0000035031 00000 п. 0000035364 00000 п. 0000036977 00000 п. 0000037554 00000 п. 0000037750 00000 п. 0000038284 00000 п. 0000038539 00000 п. 0000038762 00000 п. 0000043508 00000 п. 0000043973 00000 п. 0000044359 00000 п. 0000044647 00000 п. 0000045971 00000 п. 0000047431 00000 п. 0000048667 00000 п. 0000049905 00000 н. 0000051102 00000 п. 0000053773 00000 п. 0000079754 00000 п. 0000079828 00000 п. 0000079917 00000 н. 0000080063 00000 п. 0000080150 00000 п. 0000080204 00000 п. 0000080361 00000 п. 0000080415 00000 п. 0000080587 00000 п. 0000080668 00000 п. 0000080722 00000 п. 0000080874 00000 п. 0000080999 00000 п. 0000081052 00000 п. 0000081173 00000 п. 0000081292 00000 п. 0000081345 00000 п. 0000081466 00000 п. 0000081519 00000 п. 0000081621 00000 п. 0000081671 00000 п. 0000081796 00000 п. 0000081852 00000 п. 0000081905 00000 п. 0000081958 00000 п. 0000082012 00000 н. 0000082066 00000 п. 0000002716 00000 н. 0000001815 00000 н. трейлер ] >> startxref 0 %% EOF 1596 0 obj> поток xb«b`L`232; 0p, Ppa

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *